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Abstract: A design method presented in a previous paper for the sequential generation of
observation sites used for the inversion of a prediction model is extended to cope with practical
issues such as delayed observations and design of batches of imposed size. The final objective of
the construction is to be able to associate with any target T in the output space a value xT of the
input factors such that the response of the system at xT will be “close” to T (from an industrial
point of view, xT corresponds to manufactory conditions that yield a product whose feature
of interest is described by T ). The problem is thus much different from the more standard one
where one wishes to build a precise model over the whole input space: here the model only has
to be precise over a set of values xT that permit to reach any target T , that is, the observation
sites should not be spread over the entire admissible input space, but should rather concentrate
in areas that cover the reachable output space when mapped by the system. Examples in low
dimensions are presented that illustrate the behavior of the method and allow a comparison to
be made with a standard sequential method for designing exploratory experiments.

Keywords: Kriging; system inversion; experimental design; sequential design; Tsallis entropy.

1. INTRODUCTION

We shall design an experiment (that is, choose observation
sites X1, . . . , XN ) for a system

S : X ⊂ R
m → R

p ,

for which no prior information is available. The input
domain X is a compact subset of R

m and the reachable
output domain Y = S(X ) ⊂ R

p is unknown. The objective
of the design is to construct a model that will allow us to
“invert” the system in the following sense: with any given
reachable target vector T ∈ S(X ) one wishes to associate
an input vector xT such that the value S(xT ) is as close to
T as possible. The number N of observations to be made
is fixed in advance and the experimental design problem
consists in selecting N points X1, . . . , XN ∈ X such
that the inverse problem above is solved with maximum
accuracy after the observation of Yi = Y (Xi), i = 1, . . . , N .

The input/output relationship is modeled by kriging (see,
e.g., Sacks et al. [1989]; Santner et al. [2003]), which gives,
at low computational cost, a prediction and an estimate of
the prediction error at each point of the input domain (see
Section 2). We use the Matlab toolbox DACE [Lophaven
et al., 2002]. After having observed the output values
Y N = (Y1, . . . , YN )⊤ at the observation sites X1, . . . , XN

the posterior distribution D(Y (x)|Y N ) of the output at
any point x ∈ X is easily constructed. One can then define

xT = arg min
x∈X

IE{‖Y (x) − T ‖2 |Y N} (1)

= arg min
x∈X

[
‖ŷN(x) − T ‖2 + σ̂2

N (x)
]
,

the inverse prediction for T , with ŷN (x) = IE{Y (x) |Y N}
and σ̂2

N (x) = IE{‖Y (x) − ŷN (x)‖2 |Y N} respectively the

model prediction and variance at x. A natural measure of
the prediction accuracy for the target T is thus

ζN (T ) = ‖ŷN(xT ) − T ‖2 + σ̂2
N (xT ) ,

and two global criteria for the prediction accuracy over the
whole reachable output space Y can be considered,

JM,N (X1, . . . , XN ) = max
T∈Y

ζN (T ) ,

JI,N(X1, . . . , XN ) =

∫

Y
ζN (T )µ(dT ) ,

with µ(·) some given probability measure on Y indicating
the relative interest among target values. A straightfor-
ward formulation of the design problem would consist in
minimizing IE{JM,N(x1, . . . , xN )} or IE{JI,N(x1, . . . , xN )}
with respect to x1, . . . , xN . This is, however, a formidable
task and we need to follow another route (the quantities
JM,N (X1, . . . , XN ) and JI,N (X1, . . . , XN) can neverthe-
less be used to evaluate a posteriori the quality of a given
design in terms of inverse prediction performance, see
Bettinger et al. [2008]).

Compared to [Bettinger et al., 2008], we consider a more
natural extension to the case when responses are available
with delay and several design points must be chosen
simultaneously. The idea used in this previous paper
consists in choosing observation sites that sample Y as
uniformly as possible, in the sense that the N observed
responses Yi = Y (Xi), i = 1, . . . , N , are as spread as
possible in R

p. Since this implies the exploration of the
whole domain Y, we expect any possible target T ∈ Y to be
“close” to a certain Yi. At the same time, one wishes that
the Xi’s remain as concentrated as possible in X : indeed,
model predictions must be precise for values xT that



permit to reach any target T and those inverse predictions
xT , obtained by (1), will preferably be chosen in areas
where σ̂2

N (x) is small, that is, in the neighborhood of some
Xi’s. This concentration of design points in the input space
can be obtained by constructing the design sequentially
when the precision of the prediction is properly taken into
account at each step, thereby favoring the choice of Xn+1

at step n close to points Xi already sampled. Choosing
the point Xn+1 after Y1, . . . , Yn have been observed has
also the advantage of using all the (increasing) information
available and summarized in the current distributions
D(Y (x)|Y n), x ∈ X . An initial design with N0 points
is chosen, with N0 small compared to N . Since no prior
information on the system is available, a space-filling
design is used, ensuring that the first N0 sites are as
well spread in X . As suggested by Morris and Mitchell
[1995], we use a latine hypercube design, easy to generate,
combined with the optimization of a maximin-distance
criterion, see Section 4.2.

Two methods are proposed in [Bettinger et al., 2008] for
choosing Xn+1:

• maximize the conditional (posterior) expectation of
the minimum distance between Y (x) and the Yi’s
already observed,

Xn+1 = argmax
x∈X

IE{ min
i=1,...,n

‖Y (x) − Yi‖ |Y1, . . . , Yn} ,

see Section 3.2 (the idea being that, in the average
sense, the next output Yn+1 will be “far” from previ-
ous ones Y1, . . . , Yn);

• maximize the expected second-order Tsallis entropy

H2[·] [Tsallis, 1988] of a kernel density estimator φ̂n,x
formed from the Yi’s and Y (x),

Xn+1 = argmax
x∈X

IE{H2[φ̂n,x]} ,

see Section 3.3. The idea here is that maximum
entropy over a compact set is obtained for the uniform
distribution: we thus expect the method to spread
the Yi’s as much as possible in Y (the second-order
Tsallis entropy being used because it allows very
simple analytical calculations).

Note that the precision of the model prediction is taken
into account by both approaches through the conditional
distribution of Y (x) used to evaluate the expectation IE{·}.
In [Bettinger et al., 2008] we showed on a (noise-free) toy
example with 2 inputs and 1 output that both approaches
yield satisfactory designs.

For practical reasons, it may happen that batches of k
points Xn+1, . . . , Xn+k must be chosen simultaneously,
and that those k points must be selected before the k
previous observations are available (knowing, however,
the input values Xn−k+1, . . . , Xn used in previous batch).
This is the case in particular when the analysis of the
outputs produced by the system is a time-consuming
procedure and external constraints impose that the system
S (experimental or simulated) is operated continuously.
A rather crude adaptation of the methods above to such
a situation was proposed in [Bettinger et al., 2008] and
illustrated by the application to a 5-inputs/2-outputs noisy
system derived from real data collected in oil industry.

We show below that such practical constraints on delayed
observations and batch design can easily be taken into
account when using the design method based on the max-
imization of the expected entropy, without requiring any
particular approximation (this is not the case, however, for
the method based on the maximization of the expected
minimum distance). The paper is organized as follows:
Section 2 recalls the main properties of kriging predic-
tors. Section 3 presents three sequential design methods,
based on the maximization of the kriging variance σ̂2

n(x),
of the expected minimum distance and of the expected
entropy, with their extensions to the “batch-delayed” case.
In Section 4 the methods are compared on low-dimensional
noise-free toy examples. The adaptation to the case of
noisy observations, together with the need of specific
optimization algorithms, are mentioned in a conclusion
section.

2. PREDICTION BY KRIGING

For the sake of simplicity of the presentation we only
consider the case of a single (scalar) response Y (x). When
several responses are present, we thus assume that they
are modelled independently. Notice, however, that a more
sophisticated approach (co-kriging) permits to take possi-
ble correlation between responses into account, see, e.g.,
Chilès and Delfiner [1999]. The model used for Y (x) is

Y (x) = f⊤(x)β + Z(x) + ε(x) ,

where f(x) = (f1(x), . . . , fk(x))
⊤ is a vector of known

regression functions, β = (β1, . . . , βn)
⊤ is a vector of

unknown parameters, Z(·) is a second-order stationary
stochastic process with zero mean, and ε(x) denotes the
observation error at x. Those errors are assumed to be
centered, independently distributed with variance σ2

ε , and
independent from Z(x). We note Cov {Z(x1), Z(x2)} =
σ2
zρ(x1 − x2, ψ) the covariance function of Z, where σ2

z is
the variance and ρ(·) the correlation function of Z, and
ψ is a vector of unknown parameters. Popular correlation
functions include (with ψ ∈ R, t ∈ R

m)

ρe(t, ψ) =

m∏

i=1

e−ψ|ti| , (2)

ρg(t, ψ) = e−ψ‖t‖
2

, (3)

ρm(t, ψ) =

m∏

i=1

1

Γ(ν)2ν−1

(
2
√
ν|ti|
ψ

)ν
Kν

(
2
√
ν|ti|
ψ

)
, (4)

called respectively the (isotropic) exponential, Gaussian
and Matérn correlation functions, with Kν the modified
Bessel function of order ν. The smoothness of the paths
of Z is related to the choice of the correlation function: in
a nutshell, (2) corresponds to a process with non-smooth
trajectories whereas (3) gives infinitely differentiable tra-
jectories. In-between, the regularity of a model built with
(4) grows with ν.

Suppose one has collected n observations Y n = (Y1, . . . , Yn)
⊤

at X1, . . . , Xn, denote Zn = (Z(X1), . . . , Z(Xn))
⊤ and

assume that σ2
ε and the characteristics of the process ρ(·),

σ2
z and ψ are known. The kriging predictor at an arbitrary

point x0 ∈ X is the best (in the sense of minimum
variance) linear unbiased predictor at x0. Easy calculations
give



ŷn(x0) = f⊤
0 β̂ + r⊤0 R−1 (Y n − F β̂) , (5)

where we note f0 = f(x0), r0 = Cor{Z(x0), Z
n} ∈ R

n,
F = (f(X1) . . . f(Xn))

⊤, and

β̂ = (F⊤ R−1 F )−1F⊤ R−1Y n ,

with R = R + (σ2
ε/σ

2
z) In, R = Cor{Zn, Zn} and In the

n-dimensional identity matrix.

The prediction variance (called kriging variance) at x0 is

σ̂2
n(x0) = σ2

z

(
a⊤ R a− 2a⊤ r0 + 1

)
+ σ2

ε , (6)

where a is obtained from ŷn(x0) = a⊤Y n in (5).

We assume that the process Z(·) is Gaussian and that
the observation errors are normal. One can then easily
construct the log-likelihood function

l(β, σ2
z , σ

2
ε , ψ) =−1

2

[
n log(σ2

z) + log(det R) +

(Y n − F β)⊤ R−1(Y n − F β)

σ2
z

]
,

which enable to estimate the unknown kriging parameters
β, σ2

z , σ
2
ε and ψ by maximum likelihood, see, e.g., Santner

et al. [2003].

One can easily check that when σ2
ε = 0 (no measurement

errors) ŷn(Xi) = Yi and σ̂2
n(Xi) = 0, i = 1, . . . , n:

the predictor is then an interpolator and the prediction
variance equals zero at the design points. The method can
be put in a Bayesian framework, assuming for instance a
prior on β and σ2

z with σ2
ε and ψ known. When σ2

z is also
assumed to be known and a non-informative prior is put on
β, then the posterior distribution D[Y0|Y n] of Y0 = Y (x0)
is normal

(Y0|Y n) ∼ N (ŷn(x0), σ̂
2
n(x0)) . (7)

This is approximately true in other circumstances and
can be generalized to the case of simultaneous multiple-
point predictions. Let Y0 = (Y (xn+1), . . . , Y (xn+k))

⊤

correspond to the vector of responses at the new de-
sign sites X0 = (xn+1, . . . , xn+k) and denote Z0 =
(Z(xn+1), . . . , Z(xn+k))

⊤. Then,(
Zn

Z0

)
∼ N

(
0,

(
Σnn Σn0

Σ0n Σ00

))

gives (see Pronzato and Thierry [2003])

(Y0|Y n) ∼ N (Ŷn(X0), Σ̂n(X0)) , (8)

where

Ŷn(X0) =
{
Σ0nΣ

−1
nn + V ⊤(F⊤Σ−1

nnF )−1F⊤Σ−1
nn

}
Y n ,

Σ̂n(X0) = Σ00 − Σ0nΣ
−1
nnΣn0 + V ⊤(F⊤Σ−1

nnF )−1V ,

with V ⊤ = F0−Σ0nΣ
−1
nnF , F0 = (f(xn+1), . . . , f(xn+k))

⊤.
For k = 1 we recover the normal distribution (7). The
distribution (8) will be used to compute expectations
when choosing new design points in the presence of
batch/delayed observations.

3. BATCH SEQUENTIAL DESIGN

3.1 Maximization of kriging variance

A classical approach for the sequential generation of design
points that aim at giving precise kriging predictions over
the whole domain X consists in choosing at step n

Xn+1 = arg max
x∈X

σ̂2
n(x) , (9)

with σ̂2
n(x) given by (6). As mentioned above, when there

is no observation error we have σ̂2
n(Xi) = 0, i = 1, . . . , n,

and this approach thus guarantees that no repetition of
observations at the same location will take place. (In
(9), and also in the optimization problems to follow, the
maximization is usually performed by grid search.)

In the case of batch optimization, the choice (9) can be
generalized (see Sahama and Diamond [2001]) into

(Xn+1, . . . , Xn+k) = arg max
X0∈Xk

det Σ̂n(X0) , (10)

with Σ̂n(X0) as in (8). In the batch-delayed setting, when
observations at the k previous sites Xn−k+1, . . . , Xn are
unknown, we propose to use

(Xn+1, . . . , Xn+k) = arg max
X0∈Xk

det Σ̂n−k(X0) , (11)

with Σ̂n−k(X0) the covariance matrix of the random vector
(Y (Xn−k+1), . . . , Y (Xn), Y (xn+1), . . . , Y (xn+k))

⊤ condi-
tional to the observations Y (X1), . . . , Y (Xn−k). Note that
when σ2

ε = 0 this prevents repetitions of observations at
the same locations Xn−k+1, . . . , Xn as the batch under
treatment.

The example used in Section 4 to illustrate the behaviors
of the design rules (10, 11) indicates that, although not
adapted to the model-inversion problem considered here,
those design rules are suitable for generating exploratory
space-filling designs in the input space X under the con-
straint of batch design of imposed size and in presence of
delayed observations.

3.2 Maximization of minimum distance

Consider first the simplest case k = 1 (where points
are added one-at-a-time). The quantity d(y, Y n) =
mini=1,...,n ‖y− Yi‖ measures how far y is from the obser-
vations already performed. Using (7), we can compute the
expected value of this quantity for an observation made at
x and thus choose next design point as

Xn+1 = arg max
x∈X

IE{d(Y (x), Y n) |Y n} . (12)

An analytic expression for IE{d(Y (x), Y n) |Y n} is easily
obtained when p = 1 ; for larger p, however, the integrant
has to be computed numerically, which becomes very time-
consuming.

A generalization to the batch setting (k ≥ 1) could be
based on

(Xn+1, . . . , Xn+k) = arg max
X0∈Xk

IE

{
min

i=1,...,n+k, j=n+1,...,n+k, j 6=i
‖Yi − Yj‖

∣∣∣Y n
}

(13)

with Yi = Y (xi) for i = n + 1, . . . , n + k. However, this
is very cumbersome to implement and we do not go any
further here; one may refer to Bettinger et al. [2008] for
a simple heuristic extension of (12) in the batch-delayed
setting.

3.3 Maximization of Tsallis entropy

This approach follows a similar idea to the method above,
but measures the dispersion of the observations in the



output space through entropy: since maximum entropy
over a compact set is obtained for the uniform distribution,
we maximize the (expected) entropy of the distribution of
the observations {Y1, . . . , Yn, Y (x)} in Y.

First, a kernel-density estimator of this distribution is
computed (see, e.g., Wand and Jones [1995])

φ̂n,x(y) =
1

n+ 1

[
n∑

i=1

ϕYi,h(y) + ϕY (x),h(y)

]
(14)

with ϕz,h(·) the probability density function (p.d.f.) of
the normal N (z, h2). Usually, the smoothing parameter
h (window width) is taken decreasing with n in order
to ensure good asymptotic properties for the density
estimator. In the context considered here, however, the
total number of observations N is small, and we keep h
constant (h = 0.01, with the range of observed outputs
normalized to [0, 1] at each step).

Second, the entropy of (14) is computed. A natural candi-
date is Shannon entropy, which, for φ(·) a p.d.f. on R

p, can
be written as H1(φ) = −

∫
Rp φ(t) log[φ(t)] dt. However,

this entropy functional does not yield an analytic formula
for a mixture of normal distributions such as (14). We
thus consider the second-order Tsallis entropy of the p.d.f.
φ(·), H2(φ) = 1 −

∫
Rp φ

2(t) dt, which can be given an
analytic expression when substituting the estimator (14)
for φ. Indeed, we have

H2[φ̂n,x] = 1 − 1

(n+ 1)2

n+1∑

i,j=1

ϕYi,h
√

2(Yj) ,

where we denote Yn+1 = Y (x). We thus obtain the
selection rule

Xn+1 = argmax
x∈X

IE{H2[φ̂n,x] |Y n} , (15)

with Y (x) having the distribution (7). One can notice

that, moreover, IE{H2[φ̂n,x] |Y n} can be given an ana-
lytic expression using the property

∫
Rp ϕa,σ(t)ϕb,δ(t) dt =

ϕa,
√
σ2+δ2(b).

In the batch setting, we replace the kernel estimator (14)
by

φ̂n,X0
(y) =

1

n+ k

[
n∑

i=1

ϕYi,h(y) +
n+k∑

i=n+1

ϕY (xi),h(y)

]

and obtain the multiple-point selection rule

(Xn+1, . . . , Xn+k) = arg max
X0∈Xk

IE
{
H2

[
φ̂n,X0

]∣∣∣Y n
}
,

(16)
which can still be given an analytic expression. In the
batch-delayed case, we use an approach similar to that
in Section 3.1 and choose (Xn+1, . . . , Xn+k) as

(Xn+1, . . . , Xn+k) = arg max
X0∈Xk

IE
{
H2

[
φ̂n,X0

]∣∣∣Y n−k
}
.

(17)

4. EXAMPLES

We first consider a 1-input/1-output example to illustrate
graphically the behaviors of selection rules (16, 17) and
(10, 11) and compare their performances. We then consider
the same 2-inputs/1-output example as in [Bettinger et al.,

2008] and generate the design with the rule (16), which
allows some comparison to be made with the case when
the points are added one-at-a-time with (15).

The kriging parameters are estimated by maximum likeli-
hood, excepted for ν which is set to 3.7.

4.1 A toy example with m = p = 1

We illustrate the behaviors of the selection rules on a given
set of noise-free scalar observations depending on a scalar
input variable x ∈ X , with X formed of 101 equally spaced
points in [0, 1].

We first compare the influence of the correlation function
on the new set of points proposed by the design rule (16)
for batches of size k = 2.

The locations of the points proposed by the algorithm is
plotted on Figure 1. The n = 6 current observations (set
to arbitrary values) are represented by dots, the solid lines
correspond to the kriging predictions and the dashed lines
indicate the 95% confidence intervals around the predic-
tions. The locations of the two design points generated
by (16) are indicated by stars. In the exponential case,
the model is not smooth and the confidence bounds are
very loose; the new points proposed by the design rule are
close to previous points, in regions where predictions are
reliable. The fact that confidence bounds are unreasonably
tight for the Gaussian correlation is known in the kriging
litterature, see Stein [1999], and might produce an over-
confidence in the predictions, although this is not the case
here. Also, Gaussian correlation matrices are often poorly
conditioned [Ababou et al., 1994]; since inverses of correla-
tion matrices are required this raises numerical difficulties
(even if Cholesky factorization is used). Therefore, in the
rest of the paper we use (and in general recommend the
use of) the Matérn correlation function (4).

Consider now the behavior of the design rule (10) on the
same data set (with the Matérn correlation), see Figure 2.
Similarly to its well-known version (9) for k = 1, the design
rule (10) enforces exploration and proposes points located
in low-sampled areas in the input space. It is therefore
not especially adapted to the model-inversion problem
considered in this paper.

In Figure 3 we compare the rules (17) and (11) with the
same set of observations as above (dots) and considering
the previous optimal batches of size 2 as being under
treatment (circles). One may notice that the entropy-based
rule (17) (top) places the next two points in areas where
predictions are precise and reasonably far from previous
observations (or expected observations for the two delayed
ones). The variance-based rule (11) (bottom) has the same
tendency as the rule (10) to generate new points far
from previous design points, thus enforcing a space-filling
property in the input domain. Although not adapted to
the context considered here, this rule can be of interest in
a batch-delayed setting when the objective is to build an
accurate model over the entire input domain.

4.2 A toy example with m = 2 and p = 1

The system is now supposed to follow the equation (no
observation error, σ2

ε = 0)
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Fig. 1. Effect of the correlation function (exponential:top;
Gaussian: middle; Matérn: bottom) on the choice of
k = 2 new points with the rule (16).

Y (x1, x2) = 0.2ex1−3 + 2.2|x2| + 1.3x6
2 − 2x2

2 − 0.5x4
2 −

0.5x4
2 + 2.5x2

1 + 0.7x3
1 + sin(5x1) cos(3x2

1) +

3

(8x1 − 2)
2

+ (5x2 − 3)2 + 1
.

The initial design is a 9-points maximin latin hypercube
(several such initial designs have been used, showing little
influence on the performance), points are then added
sequentially by pairs of k = 2 up to N = 19 with the
rule (16). The input domain corresponds to a regular grid
of 31×31 points in the square [0, 1]2. (This small number of
points permits to obtain the optimal solution at each step
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Fig. 2. Choice of k = 2 new points with the rule (10)
(Matérn correlation).
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Fig. 3. Choice of k = 2 new points with the rules (17) (top)
and (11) (bottom) in presence of delayed observations.

by exhaustive search in a reasonable computing time. We
noticed, however, that the results are rather sensitive to
the grid size. Considering finer grids, with an optimization
algorithm used at each step instead of exhaustive search,
would thus be of interest.)

Figure 4 illustrates the way points are added at each step.
The input values are plotted on the top, with dots repre-
senting the initial design, numbers indicating the sequence
of batches generated and dashed lines corresponding to



contour plots of the response Y (·, ·). The associated output
values are plotted on the bottom. Note that the points gen-
erated are concentrated in the input space; the dispersion
of the outputs in Y = [−0.67, 4.75] (bottom) is a bit worse
than for k = 1, see Bettinger et al. [2008].
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Fig. 4. Design points generated by (16) in a 2-inputs/1-
output example: inputs (top) and outputs (bottom).

5. CONCLUSIONS

This paper proposed extensions of two sequential design
rules to situations where runs should be made several-at-
a-time and practical considerations impose a delay in the
availability of observations. Simple examples illustrated
that the first one is appropriate when the objective is
to construct an accurate model over the whole input
domain, while the second one is especially suited for
model-inversion.

Both methods guarantee that there will be no repetition
of observations at the same design site when there is no
measurement error (σ2

ε = 0). The situation is different
when σ2

ε 6= 0. In that case, we suggested in [Bettinger
et al., 2008] to use the re-interpolation technique proposed
by Forrester et al. [2006] for computer experiments. A first
kriging predictor is constructed, taking the presence of
measurement errors into account; it does not interpolate
the data, that is, ŷn(Xi) 6= Yi. A second kriging predictor

is then constructed, assuming that there are no observation
errors and using the predictions ŷn(Xi) as if they were
observations. One can show that for any x the prediction
at this second stage coincides with ŷn(x) of the first stage,
with the noticeable difference that the prediction variance
for the second predictor is now zero at the observation
points Xi, which permits to avoid repetitions.

For both approaches, generating k points at a time requires
the solution of a k×m-dimensional optimization problem
at each step, which quickly becomes computationally un-
feasible when k increases (for the low dimensional exam-
ples considered, withm = 1, 2 and k = 2, the input domain
corresponded to a regular grid and all possible choices of
design points could be tested at each step). The develop-
ment of suitable algorithms (e.g., of the exchange type)
is under current investigation and forms a prerequisite
to the solution of the 5-inputs/2-outputs model-inversion
problem presented in [Bettinger et al., 2008].
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