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We present new conditions for the strong consistency and asymptotic normality of the least squares estimator in nonlinear stochastic models when the design variables vary in a finite set. The application to self-tuning optimisation is considered, with a simple adaptive strategy that guarantees simultaneously the convergence to the optimum and the strong consistency of the estimates of the model parameters. An illustrative example is presented.

INTRODUCTION Consider a stochastic regression model with observations

Y k = η(x k , θ) + ε k , k = 1, 2 . . . ( 1 
)
where {ε k } is a sequence of i.i.d. random variables with IE(ε 1 ) = 0 and IE(ε 2 1 ) = σ 2 < ∞, {x k } is a sequence of design points in X ⊂ R d and η(x, θ) is a known function of x and parameter vector θ ∈ Θ, a compact subset of R p , with θ, the true unknown value of θ, such that θ ∈ int(Θ). We denote F k the σ-field generated by {Y 1 , . . . , Y k } and assume that x k is F k-1 measurable. This setup includes for instance the case of NARX models (nonlinear autoregressive models with exogeneous inputs) where Y k = η(Y k-1 , . . . , Y k-a , u k-q , . . . , u k-q-b , θ) + ε k where a, b ∈ N, q is the delay and u i is the input at stage i.

The unknown θ will be estimated by Least Squares (LS) and we denote

S n (θ) = n k=1 [Y k -η(x k , θ)] 2
and θn LS = arg min θ∈Θ S n (θ). We shall suppose that η(x, θ) is continuously differentiable with respect to θ ∈ int(Θ) for all x ∈ X and denote f θ (x) = ∂η(x, θ)/∂θ and M(ξ, θ) = X f θ (x)f θ (x) ξ(dx) , the information matrix for parameters θ and design measure ξ (a probability measure on X ). When ξ is the empirical measure ξ k for x 1 , . . . , x k we get the information matrix (normalized, per observation) This work was partly accomplished while the author was invited at the Isaac Newton Institute for Mathematical Sciences, Cambridge, UK. The support of the Newton Institute and of CNRS are gratefully acknowledged.

M(ξ

k , θ) = 1 k k i=1 f θ (x i )f θ (x i ) .
In the case of a linear regression model where

η(x, θ) = f (x)θ , ∀x ∈ X , θ ∈ Θ , (2) 
(so that M(ξ, θ) does not depend on θ), [START_REF] Lai | Least squares estimates in stochastic regression models with applications to identification and control of dynamic systems[END_REF] show that the conditions

λ min [nM(ξ n )] a.s. → ∞ , n → ∞ (3) {log λ max [nM(ξ n )]} ρ /λ min [nM(ξ n )]
a.s.

→ 0 , n → ∞ (4) for some ρ > 1 are sufficient for the strong consistency of the LS estimator θn LS when {ε k } in (1) is a martingale difference sequence and sup n IE(ε 2 n |F n-1 ) < ∞ a.s. The case of nonlinear stochastic regression models is considered in [START_REF] Lai | Asymptotic properties of nonlinear least squares estimates in stochastic regression models[END_REF], where sufficient conditions for strong consistency are given, which reduce to (3) and the [START_REF] Christopeit | Strong consistency of least squares estimators in linear regression models[END_REF] 

condition, λ max [nM(ξ n )] = O{λ ρ min [nM(ξ n )]} for some ρ ∈ (1, 2),(5)
in the case of a linear model.

This paper gives new sufficient conditions for the strong consistency of θn LS in nonlinear stochastic models. These conditions, obtained under the assumption that {x k } lives in a finite set, are much weaker than (3-4). The paper also gives conditions under which √ n M 1/2 (ξ n , θn LS )( θn LS -θ) converges in distribution to a normal random variable N (0, σ 2 I), with 0 and I respectively the p-dimensional null vector and identity matrix. This means that M(ξ n , θn LS ) can be used to characterize the asymptotic precision of the estimation of θ although the sequence of design points is stochastic. Conditions for strong consistency with a finite design space are given in Section 2 and conditions for asymptotic normality in Section 3. The application of these results to self-tuning optimisation is considered in Section 4, where a comparison is made with the results in [START_REF] Pronzato | Adaptive optimisation and D-optimum experimental design[END_REF][START_REF] Pronzato | Sequential experimental design and response optimisation[END_REF]]. A simple illustrative example is presented.

STRONG CONSISTENCY OF LS ESTIMATES

WITH A FINITE DESIGN SPACE Define D n (θ, θ) = n k=1 [η(x k , θ) -η(x k , θ)] 2 . ( 6 
)
Next theorem shows that the strong consistency of the LS estimator is a consequence of D n (θ, θ) tending to infinity fast enough for θ = θ. The fact that the design space X is finite makes the required rate of increase for D n (θ, θ) quite slow. Theorem 1. Let {x i } be a design sequence on a finite set X . If D n (θ, θ) given by ( 6) satisfies for all δ > 0 , inf

θ-θ ≥δ D n (θ, θ) /(log log n) a.s. → ∞ , (7) then θn LS a.s. → θ as n → ∞. If D n (θ, θ) simply satisfies for all δ > 0 , inf θ-θ ≥δ D n (θ, θ) p → ∞ , (8) then θn LS p → θ as n → ∞.
The proof is given in [START_REF] Pronzato | One-step ahead adaptive D-optimal design on a finite design space is asymptotically optimal[END_REF] and is based on the following lemma from [START_REF] Wu | Asymptotic theory of nonlinear least squares estimation[END_REF] 

[S n (θ) -S n ( θ)] > 0 → 1 , n → ∞ , (10) then θn LS p → θ as n → ∞. The condition [for all θ = θ , D n (θ, θ) → ∞ as n → ∞]
is sufficient for the strong consistency of θn LS when the parameter set Θ is finite, see [START_REF] Wu | Asymptotic theory of nonlinear least squares estimation[END_REF]. From Theorem 1, when X is finite this condition is also sufficient for the weak consistency of θn LS without restriction on Θ. It is proved in [START_REF] Wu | Asymptotic theory of nonlinear least squares estimation[END_REF] to be necessary for the existence of a weakly consistent estimator of θ in a regression model when the errors ε i are independent with a distribution having a density ϕ(•) positive almost everywhere and absolutely continuous with respect to the Lebesgue measure and with finite Fisher information for location. Notice that a classical condition for strong consistency of LS estimates in nonlinear regression with non-random design is D n (θ, θ) = O(n) for θ = θ, see e.g. [START_REF] Jennrich | Asymptotic properties of nonlinear least squares estimation[END_REF], which is much stronger than (7). Also note that (7) is much less restrictive than the conditions (3-4) for stochastic designs in linear models and than the [START_REF] Christopeit | Strong consistency of least squares estimators in linear regression models[END_REF] condition (5).

ASYMPTOTIC NORMALITY OF LS ESTIMATES WITH A FINITE DESIGN SPACE

Under a fixed design, the information matrix can be considered as a large sample approximation for the variancecovariance matrix of the estimator, thus allowing straightforward statistical inference from the trial. The situation is more complicated for adaptive designs and has been intensively discussed in the literature. The property below gives a simple sufficient condition in the situation where the x k 's in (1) belong to a finite set. We use the following regularity assumption for the model.

H f : For all x in X , the components of f θ (x) are continuously differentiable with respect to θ in some open neighborhood of θ.

Theorem 3. Assume that θn LS is strongly consistent, that H f is satisfied, that the design points belong to a finite set X and that exists a sequence

{C n } of p × p deterministic matrices such that C -1 n M 1/2 (ξ n , θ) p → I, with l n = λ min (C n ) satisfying n 1/4 l n → ∞ and θn LS -θ /l 2 n p → 0 as n → ∞. Then, θn LS satisfies √ n M 1/2 (ξ n , θn LS )( θn LS -θ) d → ω ∼ N (0, σ 2 I) (11) 
as n → ∞.

One may notice that, compared to [START_REF] Wu | Asymptotic theory of nonlinear least squares estimation[END_REF], we do not require that (n/τ n )M(ξ n , θ) tends to a positive definite matrix for some τ n → ∞ and, compared to [START_REF] Lai | Least squares estimates in stochastic regression models with applications to identification and control of dynamic systems[END_REF], [START_REF] Lai | Asymptotic properties of nonlinear least squares estimates in stochastic regression models[END_REF], we do not require the existence of highorder derivatives of η(x, θ) w.r.t. θ. On the other hand, we need that λ min (C n ) decreases more slowly than n -1/4 .

APPLICATION TO SELF-TUNING OPTIMISATION

Problem statement

We consider a self-tuning optimisation problem where one wishes to minimize some function φ(x, θ) with respect to x, the unknown parameters θ being estimated from the observations in the model (1). One may have φ(•, •) = η(•, •) but this is not mandatory. In particular, less regularity is required for φ(x, •) than for η(x, •) and we shall only use the following assumptions on φ.

H φ -(i): φ(x, θ
) is bounded for below and above for any x ∈ X and θ ∈ Θ.

H φ -(ii): For all x ∈ X , φ(x, θ) is a continuous function of θ in the interior of Θ. H φ -(iii): φ(x, θ) has a unique global minimizer x * = x * ( θ): ∀β > 0, ∃ > 0 such that φ(x, θ) < φ(x * , θ) + implies x -x * < β.
Note that compared to methods based on local gradient approximations, see, e.g. [START_REF] Manzie | Discrete time extremum seeking using stochastic perturbations[END_REF], the method is not restricted to a neighborhood of a local minimum of φ(x, θ). On the other hand, we shall assume that x belongs to a finite space and φ(x, θ) must have a known parametric form.

When the problem is to estimate x * , one can resort to optimal design theory and choose the sequence {x k } in order to optimize a criterion that measures the precision of the estimation of θ in (1). For instance, one may use a nominal value θ 0 for θ, construct a D-optimal design measure ξ * D (θ 0 ) on X maximizing log det M(ξ, θ 0 ) and choose x k 's such that their empirical measure approaches ξ * D (θ 0 ). Alternatively, one may relate the design criterion to the estimation of x * (θ), see, e.g., [Chaloner, 1989, Pronzato and[START_REF] Pronzato | Experimental design for estimating the optimum point in a response surface[END_REF].

In self-tuning optimisation, the design points form a sequence of control variables for the objective of minimizing i φ(x i , θ). The trivial optimum solution x i = x * ( θ) for all i is not feasible since θ is unknown, hence the dual aspect of the control: minimize the objective, help estimate θ. A naive approach (Forced-Certainty-Equivalence control) consists in replacing the unknown θ by its current estimated value at stage k, that is, x k+1 = x * ( θk LS ). However, this does not provide enough excitation to estimate θ consistently, see [START_REF] Bozin | Self tuning optimizerconvergence and robustness properties[END_REF] for a detailed analysis of the special case φ

(x, θ) = η(x, θ) = θ 1 x + θ 2 x 2 .
Here we shall consider the same approach as in [START_REF] Pronzato | Adaptive optimisation and D-optimum experimental design[END_REF][START_REF] Pronzato | Sequential experimental design and response optimisation[END_REF]] and use

x n+1 = arg min x∈X φ(x, θn LS ) -α n f θn LS (x)M -1 (ξ n , θn LS )f θn LS (x) , ( 12 
)
with α n > 0; that is, to the current objective φ(x, θn LS ), to be minimized with respect to x, we add a penalty for poor estimation, -α n f θn

LS (x)M -1 (ξ n , θn LS )f θn LS (x) (note that x n+1 is F n -measurable).
Iterations of the similar type can be used to generate an optimal design under a cost-constraint, the cost of an observation at the design point x for parameters θ being measured by φ(x, θ), see [START_REF] Pronzato | Penalized optimal designs for dosefinding[END_REF]. See also [START_REF] Åström | Adaptive Control[END_REF].

The results in Section 4.2 indicate that when X is finite and the sequence of penalty coefficients α n decreases slowly enough, the LS estimator θn LS is strongly consistent.

When θn

LS is frozen to a fixed value θ and α n ≡ α constant, the iteration (12) corresponds to one step of a steepest descent vertex-direction algorithm for the minimisation of X φ(x, θ) ξ(dx) -α log det M(ξ, θ), with step-length 1/n at stage n. Convergence of the empirical measure ξ n to an optimal design measure is proved in [START_REF] Pronzato | Adaptive optimisation and D-optimum experimental design[END_REF] using an argument developed in [START_REF] Wu | The convergence of general step-length algorithms for regular optimum design criteria[END_REF]. It is also shown in the same reference that X φ(x, θ) ξ n (dx) → min x∈X φ(x, θ) as n → ∞ when α n decreases to zero and the sequence {nα n } increases to infinity. If, moreover, H φ -(iii) is satisfied then ξ n w → δ x * (θ) (weak convergence of probability measures), with δ x the delta measure at x. Those results do not require X to be finite.

The fact that the parameters are estimated in (12) makes the proof of convergence a much more complicated issue. In the case of the linear regression model (2) it is shown in [START_REF] Pronzato | Adaptive optimisation and D-optimum experimental design[END_REF] that if {α n } is such that α n log n decreases to zero and nα n /(log n) 1+δ increases to infinity for some δ > 0, then X φ(x, θ) ξ n (dx)

a.s. → min x∈X φ(x, θ) (and ξ n w → δ x * ( θ) a.s. if H φ -(iii) is satisfied).
Using Bayesian imbedding, the same properties are shown to hold in [START_REF] Pronzato | Sequential experimental design and response optimisation[END_REF] under the weaker conditions α n → 0 and nα n → ∞ (however, the almost sure convergence then concerns the product measure µ×Q with µ the prior measure for θ and Q the probability measure induced by {ε k }). To the best of our knowledge, no similar result exists for nonlinear regression models.

When φ(x, θ) = 0 for all x the iteration (12) becomes

x n+1 = arg max x∈X f θn LS (x)M -1 (ξ n , θn LS )f θn LS (x) , ( 13 
)
which corresponds to one step in the sequential construction of a D-optimal design. Even for this particular situation, and although this method is widely used, very few asymptotic results are available: the developments in [START_REF] Ford | A sequentially constructed design for estimating a nonlinear parametric function[END_REF][START_REF] Wu | Asymptotic inference from sequential design in a nonlinear situation[END_REF][START_REF] Müller | Batch sequential design for a nonlinear estimation problem[END_REF]] only concern a particular example; [START_REF] Hu | On sequential designs in nonlinear problems[END_REF] is specific of Bayesian estimation by posterior mean and does not use a fully sequential design of the form (13); [START_REF] Lai | Asymptotic properties of nonlinear least squares estimates in stochastic regression models[END_REF] and [START_REF] Chaudhuri | On efficiently designing of nonlinear experiments[END_REF] require the introduction of a subsequence of non-adaptive design points to ensure consistency of the estimator and [START_REF] Chaudhuri | Nonlinear experiments: optimal design and inference based likelihood[END_REF] require that the size of the initial experiment (nonadaptive) grows with the increase in size of the total experiment. Intuitively, the almost sure convergence of θn

LS

to some θ∞ would be enough to imply the convergence of ξ n to a D-optimal design measure for θ∞ and, conversely, convergence of ξ n to a design ξ ∞ such that M(ξ ∞ , θ) is non-singular for any θ would be enough in general to make the estimator consistent. It is thus the interplay between estimation and design iterations (which implies that each design point depends on previous observations) that creates difficulties. As the results below will show, those difficulties disappear when X is a finite set. Notice that the assumption that X is finite is seldom limitative since practical considerations often impose such a restriction on possible choices for the design points; this can be contrasted with the much less natural assumption that would consist in considering the feasible parameter set as finite, see, e.g., [START_REF] Caines | A note on the consistency of maximum likelihood estimates for finite families of stochastic processes[END_REF].

The results below rely on simple arguments based on three ideas. First, we consider iterations of the form

x n+1 = arg min x∈X φ(x, θn ) -α n f θn (x)M -1 (ξ n , θn )f θn (x) , ( 14 
)
where { θn } is taken as any sequence of vectors in Θ.

The asymptotic design properties obtained within this framework thus also apply when θn corresponds to θn LS . Second, when X is finite we obtain a lower bound on the sampling rate of a subset of points of X associated with a nonsingular information matrix. Third, we can show that this bound guarantees the strong consistency of θn LS . With a few additional technicalities, this yields almost sure convergence results for the adaptive designs constructed via (12).

Asymptotic properties of LS estimates and designs

We shall use the following assumptions on X .

H X -(i): X is finite, X = {x (1) , x (2) , . . . , x (K) }. H X -(ii): inf θ∈Θ λ min K i=1 f θ (x (i) )f θ (x (i) ) > γ > 0.
H X -(iii): For all δ > 0 there exists (δ) > 0 such that for any subset {i 1 , . . . , i p } of distinct elements of {1, . . . , K},

inf θ-θ ≥δ p j=1 [η(x (i j ) , θ) -η(x (i j ) , θ)] 2 > (δ) .
H X -(iv): For any subset {i 1 , . . . , i p } of distinct elements of {1, . . . , K},

λ min   p j=1 fθ(x (ij ) )f θ (x (ij ) )   ≥ γ > 0 .
The case of sequential D-optimal design, corresponding to the iterations (13), is considered in [START_REF] Pronzato | One-step ahead adaptive D-optimal design on a finite design space is asymptotically optimal[END_REF]. When α n → α > 0 (n → ∞) in ( 12), the results are similar to those in [START_REF] Pronzato | One-step ahead adaptive D-optimal design on a finite design space is asymptotically optimal[END_REF] and θn LS a.s.

→ θ, M(ξ n , θn LS ) a.s. → M(ξ * , θ) with ξ * minimizing X φ(x, θ) ξ(dx) -α log det M(ξ, θ). One can take C n = M 1/2 (ξ * , θ
) for all n in Theorem 3 and θn LS is asymptotically normal.

The situation is more complicated when the sequence {α n } in (12,14) satisfies the following:

H α -(i): {α n }
is a non-increasing positive sequence tending to zero as n → ∞, the situation considered in the rest of the paper. We then obtain the following lower bound on the sampling rate of nonsingular designs.

Lemma 4. Let { θn } be an arbitrary sequence in Θ used to generate design points according to ( 14) in a design space satisfying H X -(i), H X -(ii), with an initialisation such that M(ξ n , θ) is non-singular for all θ in Θ and all n ≥ p. Let r n,i = r n (x (i) ) denote the number of times x (i) appears in the sequence x 1 , . . . , x n , i = 1, . . . , K, and consider the associated order statistics r n,1:

K ≥ r n,2:K ≥ • • • ≥ r n,K:K . Define q * = max{j : ∃β > 0| lim inf n→∞ r n,j:K /(nα n ) > β} .
Then, H φ -(i) and H α -(i) imply q * ≥ p with probability one.

For any sequence { θn } used in ( 14), the conditions of Lemma 4 ensure the existence of N 1 and β > 0 such that r n,j:K > βnα n for all n > N 1 and all j = 1, . . . , p. Under the additional assumption H X -(iii) we thus obtain that D n (θ, θ) given by ( 6) satisfies

1 log log n inf θ-θ ≥δ D n (θ, θ) > βnα n (δ) log log n , n > N 1 . Therefore, if nα n / log log n → ∞ as n → ∞, θn LS a.s.
→ θ from Theorem 1. Since this holds for any sequence { θn } in Θ, it is true in particular when θn LS is substituted for θn in ( 14). It thus holds for (12).

Using the following assumption

H α -(ii): the sequence {α n } is such that nα n is non- decreasing with nα n / log log n → ∞ as n → ∞;
in complement of H α -(i), one can show that the adaptive design algorithm ( 12) is such that {x n } tends to accumulate at the point of minimum cost for θ.

Theorem 5. Suppose that in the regression model (1) the design points for n > p are generated sequentially according to (12), where α n satisfies H α -(i) and H α -(ii). Suppose, moreover, that the first p design points are such that the information matrix is nonsingular for any θ ∈ Θ. Then, under H X -(i-iv), H φ -(i) and H φ -(ii) we have θn LS a.s.

→ θ and

X φ(x, θ) ξ n (dx) a.s. → min x∈X φ(x, θ) , n → ∞ . (15) If, moreover, H φ -(iii) is satisfied, then ξ n w → δ x * ( θ) almost surely , n → ∞ . ( 16 
)
Remark 6. Notice that the condition on the rate of decrease of {α n } in Theorem 5 is weaker than in [START_REF] Pronzato | Adaptive optimisation and D-optimum experimental design[END_REF] although the model is nonlinear. Also note that using a penalty for poor estimation of the form

-C det f θn LS (x)f θn LS (x) + n k=1 f θn LS (x k )f θn LS (x k ) det n k=1 f θn LS (x k )f θn LS (x k ) , C > 0,
as suggested in [START_REF] Åström | Adaptive Control[END_REF]] is equivalent to taking α n = C/n in (12), which does not satisfy H α -(ii) and therefore does not guarantee the strong consistency of the LS estimates.

Remark 7. The property ( 16) does not imply that the x k 's generated by ( 12) converge to x * ( θ). However, the following property is proved in [START_REF] Pronzato | Penalized optimal designs for dosefinding[END_REF]. Suppose that X is obtained by the discretization of a compact set X and define x = arg min x∈X φ(x, θ) and, for any design measure ξ on X , ∆θ(ξ) = X φ(x, θ) ξ(dx) -φ(x, θ). Suppose that there exist designs measures ξ α on X such that ∆θ(ξ α ) ≥ pα and for all > 0 lim sup

α→0 + sup x∈X , x-x > 2∆θ(ξ α ) [f θ (x)M -1 (ξ α , θ)fθ(x)] φ(x, θ) -φ(x, θ) < 1.
Then the supporting points of an optimal design measure minimizing X φ(x, θ) ξ(dx) -α log det M(ξ, θ) converge to x as α → 0 + , and, under the conditions of Theorem 5, the design sequence {x n } on X will concentrate around x * ( θ) as n → ∞. Remark 8. Under the conditions of Theorem 5, there exist N 0 and β > 0 such that, for all n > N 0 , λ min [M(ξ n , θ)] > βγα n , with γ as in H X -(iv). The asymptotic normality of θn LS is ensured if one can exhibit a sequence {C n } satisfying the conditions of Theorem 3. For λ min (C n ) ∼ α 1/2 n we then obtain that imposing the condition n 1/3 α n → ∞ on the decrease rate of α n would be enough. A possible construction is based on the matrix M 1/2 (ν n , θ) obtained when θ is substituted for θn LS in the iterations (12). However, it remains to be proved that M -1 (ν n , θ)M(ξ n , θ) p → I, which is not obvious (notice that the sequence { θn LS } becomes highly correlated as n increases). Remark 9. When the function to be minimized is the model response itself and, moreover, is linear with respect to θ, one can construct analytical approximate solutions for the self-tuning optimizer over a finite horizon N when using a Bayesian approach. In particular, one of the constructions proposed in [START_REF] Pronzato | Sequential experimental design and response optimisation[END_REF]] is shown to be within O(σ 4 ) of the optimal solution of the self-tuning optimizer problem (the latter being not computable, it corresponds to the solution of a stochastic dynamic programming problem).

Example

We take η(x, θ)

= θ 1 θ 2 θ 3 + θ 2 x + θ 3 (1 + θ 2 1 ) x 2 + θ 2 1 x 3 , φ(x, θ) = θ 2 + θ 1 x 2 + θ 2 θ 3 x 4 , with x ∈ [-1, 1] and θ = (θ 1 , θ 2 , θ 3 ) ∈ R.
One can easily check that the model is structurally globally identifiable so that, if the sequence {x k } is rich enough, the LS estimator is unique and θ can be estimated consistently. For the true value θ of the parameters we take θ = (0, 1, 1) which gives fθ(x) = (1, x, x 2 ) and φ(x, θ) = 1 + x 4 . The optimal design ξ * (α) on X = [-1, 1] that minimizes X φ(x, θ) ξ(dx)α log det M(ξ, θ) can be constructed analytically for any α, see [START_REF] Pronzato | Penalized optimal designs for dosefinding[END_REF]. For α < 2/9, the support points are -√ 3(α/2) 1/4 , 0, √ 3(α/2) 1/4 , with respective weights 1/6, 2/3, 1/6, showing that ξ * (α) concentrates around 0 = arg min x∈X φ(x, θ) as α tends to zero.

Figure 1 shows a typical sequence {x n } generated by (12) for n ≥ 3 when σ = 1, x 1 = -1, x 2 = 0, x 3 = 1, α n = (log n) -4 and X consists of 201 points regularly spaced in [-1, 1]. The design points tend to concentrate around x * ( θ) = 0 as n increases. This is due to the fact that φ(x, θ) is sufficiently flat around x * ( θ). The situation can be much different for other functions φ, see for instance the examples in [START_REF] Pronzato | Adaptive optimisation and D-optimum experimental design[END_REF][START_REF] Pronzato | Sequential experimental design and response optimisation[END_REF] where ( 16) is satisfied but design points are continuously generated far from x * ( θ) (although less and less often as n increases).

Figure 2 presents the corresponding sequence {φ(x n , θ)}, showing that convergence to the minimum value 1 is fast despite the model is nonlinear and the observations are very noisy, see Figure 3 for a plot of the sequence {Y n }.

The evolution of the parameter estimates θn LS is presented in Figure 4.

A concluding remark on the difficulties raised by dynamical systems

Compared to [START_REF] Choi | Extremum seeking control for discrete-time systems[END_REF] where a periodic disturbance of magnitude α plays the role of a persistently exciting input signal and the output converges to a neighborhood O(α 2 ) of the optimum, iterations of the form (12) guarantee exact asymptotic convergence to the optimum when the excitation provided by the penalty for poor estimation vanishes slowly enough, see Theorem 5. However, (12) assumes that x n+1 can be chosen freely in a given X that does not depend on x n ; that is, it implicitly assumes that the system to be optimized is static (it is only the fact that x n+1 depends on θn LS that introduces a dynamic feedback), whereas [START_REF] Choi | Extremum seeking control for discrete-time systems[END_REF] consider self-tuning optimisation of a dynamic discrete-time system. (See also [START_REF] Krstić | Performance improvement and limitations in extremum seeking control[END_REF], [START_REF] Krstić | Stability of extremum seeking feedback for general nonlinear dynamic systems[END_REF] for continuous-time dynamic systems). Within the setup of [START_REF] Choi | Extremum seeking control for discrete-time systems[END_REF], it means that we need to observe the input of the static nonlinearity. This is a rather severe limitation, but one that seems difficult to overcome.

To illustrate the problem, consider the classical algorithm for the sequential construction of a D-optimal design with iterations of the form (13), see [START_REF] Wynn | The sequential generation of D-optimum experimental designs[END_REF]. Take the linear model η(x, θ) = θ 1 x + θ 2 x 2 , so that f θ (x) = f (x) = (x, x 2 ) , and suppose that x n may only vary within the interval [-1, 1] by increments of ±δ in one iteration (so that x n+1 = x n+1 (u n ) = max{-1, min{1, x n + u n }} with u n ∈ {-δ, 0, δ}), with 1/δ integer. Also suppose that M(ξ n 0 ) is non singular for some n 0 and that x n 0 = mδ ∈ [0, 1] with m a strictly positive integer. One can easily check that the iterations u n = arg max u∈{-δ,0,δ}

f (x n + u n )M -1 (ξ n )f (x n + u n )
for n ≥ n 0 do not yield convergence to the D-optimal design measure ξ * D (which allocates weights 1/2 at the extreme points ±1). Indeed, negative values for x n can only be reached if x k = 0 is selected for some k ≥ n 0 , which is impossible since f (0) = 0. Other types of iterations, perhaps less myopic than (12) and ( 13) which only look one step-ahead, should thus be considered for general dynamic systems.

CONCLUSIONS

Self-tuning optimisation has been considered through an approach based on sequential penalized optimal design. Simple conditions have been given that guarantee the strong consistency of the LS estimator in this context of sequentially determined control variables, under the assumption that they belong to a finite set and that the penalty for poor estimation does not decrease too fast.
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