
HAL Id: hal-00407796
https://hal.science/hal-00407796v1

Preprint submitted on 27 Jul 2009 (v1), last revised 17 Dec 2009 (v2)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Flicker stabilization in image sequences
Julie Delon, Agnès Desolneux

To cite this version:

Julie Delon, Agnès Desolneux. Flicker stabilization in image sequences. 2009. �hal-00407796v1�

https://hal.science/hal-00407796v1
https://hal.archives-ouvertes.fr


FLICKER STABILIZATION IN IMAGES SEQUENCES∗

JULIE DELON † AND AGNÈS DESOLNEUX ‡

Abstract. Flicker is an artefact appearing in old movies or in some videos, which is characterized by intensity
changes from a frame to another. Some of these contrast changes are not global and may be localized only on a part
of the image. In this paper, a new method to stabilize flicker in image sequences is proposed. This stabilization
is local and relies on image patches. Local contrast changes are performed in order to equalize the grey level
distribution of an image patch with the grey level distributions of all its corresponding patches in the previous and
following frames. The correspondences of a patch are computed thanks to a similarity measure that is built to be
robust to contrast changes.

1. Introduction. Flicker is an artefact that can be observed in image sequences and which
can be described as fast and unnatural intensity fluctuations from one frame to the other. This
artefact is very common in old movies, especially in movies shot before the twenties. The main
causes of flicker are support ageing (the negative of the film contains many chemical products
which get older and damaged with time) and a non constant exposure time from one frame to
the other (the film was driven manually at this time). Flicker also appears in more recent movies
or videos, especially sequences with a low time sampling, such as biological sequences of evolving
cells or video surveillance sequences. Removing or at least reducing flicker in movies is important
in order to improve the subjective quality of films, but it can also be a crucial step before any
other post-processing (like compression, segmentation, or image comparison for instance).

One of the characteristics of flicker is that it does not create salient geometrical structures. In
practice, we can even say that it is almost invisible on a single frame pulled out of the film, whereas
it can be striking in motion. A consequence of this “transparency” property is that flicker reduction
requires the use of successive frames in order to work properly: flicker cannot be removed just by
looking at each frame independently of the others (which is not necessarily the case for denoising
algorithms for instance). Flicker can have global and local aspects: depending on the film, it can
act as a global contrast change or like several local contrast changes which affect differently the
different parts of the current frame. In consequence, papers dealing with flicker either consider
it as a global phenomenon [6, 11, 14, 16, 7], or as local phenomenon [15, 12, 13, 14, 17, 16, 19],
acting non-uniformly on images. Global methods provide satisfactory results in the sense that
they are robust to motion and to the presence of small defects (dirt, scratches) in the frames.
However, these methods are unable to cope with a strongly localized flicker. Now, one of the main
difficulties of local flicker reduction is the necessity to take motion into account. Indeed, local
methods must decide if a local illumination change in the film is due to flicker or to a moving
object. This can get worse if the local flicker has a structured motion. These considerations are
illustrated by the different examples of Figure 1.1. The corresponding sequences are available at
http://www.tsi.enst.fr/~delon/Demos/Flicker_stabilization/. Now the main difference
between a contrast change and motion is that a contrast change does not modify the local geometry
of an image: in other words, it affects the dynamic of the grey levels, but not their local ordering.
In this paper, we will introduce a similarity measure between image patches relying mostly on the
geometry of patches (i.e. robust to contrast changes). This similarity measure will allow us to
estimate motion in the presence of flicker and as a consequence to correctly stabilize local flicker.

The outline of the paper is the following. In Section 2, we present the different flicker models
proposed in the literature and the state of the art of global and local flicker reduction. We will
see that most of these methods consider motion as an outlier and use either robust estimation
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(a) Images from The Cure, Charlie Chaplin, 1917

(b) Images from Les Aventures des Pieds Nickelés, Emile Cohl/Eclair, 1917-1918 (copyright:
Marc Sandberg)

(c) Taxi sequence with some synthetic local flicker

Fig. 1.1. Three sequences containing (a), (b) real flicker or (c) synthetic flicker.

methods or rejection criteria to detect motion zones and discard them from the flicker estimation,
relying implicitly on the assumption that there are few motions in the film. Then, in Section 3,
we introduce a similarity measure between image patches robust to contrast changes. This will
allow us to obtain a new method for local flicker stabilization that will take motion into account.
In Section 4, the results of this method are presented on several image sequences: sequences with
synthetic local flickers and extracts from old movies with strong real flickers.

2. Flicker model and state of the art.

2.1. Some notations. We introduce here the notations and vocabulary that will be used
throughout this paper: t and s denote time variables and x and y spatial variables. The damaged
film is denoted by u = (ut(.)), where ut is the frame at time t. The image domain is denoted by Ω.
It is generally a rectangle of R

2 or of Z
2 (in the case of discrete images). We only consider “black

and white” movies, which means that each image ut is a function from Ω to R. The original,
non-observed and unknown film, is denoted by u0.

Applying a contrast change to an image v means changing v into g(v), where g is an increasing
function from R into itself. We will call affine contrast change any contrast change of the form
g(λ) = aλ + b with a, b ∈ R and a > 0.
The upper and lower level sets of an image v : Ω 7→ R are respectively defined as the sets

χλ(v) = {x ∈ Ω; v(x) > λ} and χλ(v) = {x ∈ Ω; v(x) ≤ λ},

where λ ∈ R. If g is a contrast change, then χg(λ)(g(v)) = χλ(v), which means that the set of all
upper level sets (resp. the set of all lower level sets) remains the same under contrast changes. As
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a consequence, the topographic map of an image [3, 5], i.e. the set of connected components of the
topological boundaries of its level sets, remains unchanged under contrast changes. This means
that the geometrical content of an image is not modified by contrast changes, as we can see on
Figure 2.1.

Fig. 2.1. On the left, two images containing the same geometric content. Each image can be obtained by
applying a well chosen contrast change to the other. On the right, some level lines of these images. The small
differences that can be observed between level lines are due to quantization artifacts.

An image ut of the film being given, we write χλ(t) and χλ(t) for the upper and lower level
sets of ut. The histogram of ut, i.e. the distribution of its grey levels, is denoted by ht. The
corresponding cumulative distribution function (or cumulative histogram) is denoted by Ht. If ut

is defined on a discrete grid Ω with |Ω| = N2 and takes its values in {0, . . . , L}, the cumulative
histogram Ht : {0, . . . , L} → {0, . . . , N2} is given by:

Ht(λ) = |{x ∈ Ω|ut(x) ≤ λ}| =

λ∑

µ=0

ht(µ),

where | · | denotes the cardinality of a set.
This definition leads to the following interpretations:

• For any x ∈ Ω, Ht(ut(x)) is the rank of x, when the grey levels of ut are ordered increas-
ingly.

• Let k be an integer, we define H−1
t (k) = min{λ ∈ {0, . . . , L} ; Ht(λ) ≥ k}. If x is a pixel

of rank k in ut, then H−1
t (k) is the grey level of x.

• Let G be an increasing discrete function on {0, . . . , L}, taking its values in {0, . . . , N2}.
Let us define G−1(k) = min{λ ∈ {0, . . . , L} ; G(λ) ≥ k}. If we assume that Ht is onto,
then vt = G−1 ◦ Ht(ut) and ut share the same geometry, and the cumulative histogram
of vt is given by the function G. In practice, the hypothesis that Ht is onto is almost
never satisfied, and the cumulative histogram of G−1 ◦ Ht(ut) will only be very close to
G. Roughly speaking, this means that we can map the grey level distribution of an image
onto the grey level distribution of any other image by an adequate contrast change.

2.2. Modeling the flicker as global. Papers dealing with flicker can be roughly classified
in two categories: those which consider flicker as a global phenomenon, and those which consider
it as a local phenomenon, acting non-uniformly on images. This section begins with a review of
global methods and then focus specifically on one of them, which will be later extended to the
case of local flicker.

One of the simplest way to model the flicker is to consider that it acts as a global affine change
of contrast, i.e.

ut(x) = αtu
0
t (x) + βt, ∀x ∈ Ω,
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where αt and βt are two unknown constants, depending only on t. To correct this affine flicker,
the authors of [14, 16] apply an affine grey level transform to each frame, so that it fills a fixed
dynamic range. If this global correction is simple, it is emphasized in [6] that it is not really
satisfactory. Decencière [6] proposes instead to apply to ut an affine contrast change which fits
the mean and range of ut onto those of ut−1. The image ut+1 is then corrected thanks to ut, etc.
Unfortunately, this model is often too far from the true flicker damage, and the recursive aspect of
the method makes it oversensitive to initialization and unstable (subject to errors accumulation).

In order to avoid these shortcomings, any flicker reduction method should meet two require-
ments. First, the method should not depend of the time origin of the film, which means that
the flicker correction should commute with any time shift t → t + t0. Second, the result should
be the same if we reverse the time direction, which means that the correction should commute
with the operation t → −t. In order to take into account these considerations and to extend the
flicker correction to general (not only affine) contrast changes, the authors of [11] propose to fit the
contrast of ut onto a target grey level distribution, computed as the average grey level distribution
of all images of the film in a temporal neighborhood of t. However, it can be shown that averaging
directly a set of histograms is not always satisfactory and can lead to severe artifacts [8]. The next
paragraph gives some indications on the “good way” to average a set of histograms.

2.2.1. Midway equalization between two images. Let us begin with the case of two
images. Let u1 and u2 be two discrete images defined on a grid Ω containing |Ω| = N2 pixels
and taking their values in {0, . . . , L}. Let h1 and h2 denote their respective grey level histograms.
In order to average the contrast between u1 and u2 (i.e. to equalize their respective grey level
histograms on a common one), one could just apply a contrast change to each image such that
the grey level distribution of both images would fit (h1 + h2)/2. This solution is generally not
satisfactory. Indeed, if u1 (resp. u2) has a unimodal grey level histogram, centered at m1 (resp.
m2 6= m1), the average histogram (h1 + h2)/2 contains two modes: one at m1 and the other at
m2. It would be much more natural to define a midway histogram between them as a unimodal
histogram centered at (m1 + m2)/2.

(a) Before midway equalization

(b) After midway equalization

Fig. 2.2. Top: two images and their respective cumulative histograms. Bottom: the images and their cumu-
lative histograms after the midway equalization.

As it was shown in [7], the “good” midway histogram between h1 and h2 can be defined in
the following way: if Hi is the discrete cumulative histogram corresponding to hi, we call midway
histogram between H1 and H2 the cumulative histogram

H1/2 =

(
H−1

1 + H−1
2

2

)−1

.
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The properties of this midway distribution are the following:
• the images H−1

1/2 ◦ H1(u1) and H−1
1/2 ◦ H2(u2) have the same cumulative histogram H1/2.

• if there exists an image u0 and two contrast changes f and g such that u1 = f(u0) and
u2 = g(u0), then H1/2 is the cumulative histogram of (u1 + u2)/2.

• action on level sets: grey levels having the same rank in both images are averaged together.
Remark 1: In practice, in order to equalize the histograms of two images, one can for instance

create two vectors of length N2 containing respectively the ordered grey levels of u1 and u2, then
compute the mean of these two vectors, and finally assign to each pixel of each image the grey
level of the element in the averaged vector which has the same rank as the considered pixel.

Remark 2: If we consider h1 and h2 as densities of two distributions ν1 and ν2, then in
the theory of optimal transportation, the Wasserstein distance between ν1 and ν2 is defined as∫
|H−1

1 −H−1
2 | (see [18]). Now, consider the geodesic between ν1 and ν2 for the previous distance

and define µ1/2 as the middle of this geodesic. Then H1/2 is the cumulative distribution function
of ν1/2.

2.2.2. A scale-time correction for global flicker. An extension of the midway equaliza-
tion to image sequences, called Scale-Time Equalization (STE), can be used to stabilize the flicker
globally. In [8], Delon has shown the following proposition, which gives the canonical form of a
flicker reduction operator when some simple hypotheses are assumed.

Proposition 2.1. [8] Let (ut) be a film and (Ht) the discrete cumulative histograms of the
frames. Let STE be an operator acting on films and satisfying the following properties:

- STE acts like a contrast change on each frame,
- for any λ, the action of STE on the lower level sets χλ(t) of the frames does not depend

on the action of STE on the upper level sets χλ(t),
- STE acts on spatially constant films (i.e. films such that each frame is a constant image,

but the constant can vary in time) like a linear scale space (that is like a convolution with
a Gaussian kernel, see [9]).

Then, there is a scale parameter σ such that the operator STE fits the histogram of ut on the
“midway” histogram Ht whose inverse is defined by

H
−1
t (k) =

∫
1√

2πσ2
e−(t−s)2/2σ2

H−1
s (k) ds. (2.1)

The corresponding operator on u can be written

STEut(x) =
1√

2πσ2

∫
e−(t−s)2/2σ2

H−1
s ◦ Ht(ut(x))︸ ︷︷ ︸

rank of x in ut︸ ︷︷ ︸
grey level of the pixel of same rank as x in us

ds. (2.2)

Observe that this correction does not depend of the origin of the film: the operator commutes
with translations and symmetry in time. This correction is easy to perform and gives good results
as long as the flicker acts roughly globally on the film (see for instance Figure 2.3). However, such
a global method is obviously unable to eliminate local flicker as the ones observed in the examples
of Figure 1.1 (b) and (c).

2.3. Modeling the flicker as local. The methods of flicker reduction mentioned previously
are well adapted when the flicker is global and affects the whole image equally. In practice, the
flicker can vary from one part of the image to the other. Even worse, the zones which are the
most affected by the flicker can change with time. A typical example can be described as dark
and transparent shadows covering parts of the frame and moving from one frame to the other in
the sequence.

2.3.1. Mathematical model. The most general model for local flicker relies on the assump-
tion that each frame of the film is locally affected by a contrast change. This can be written as:

ut(x) = ft(x, u0
t (x)), (2.3)

5



(a)

(b)

Fig. 2.3. (a) Three images of the Chaplin’s film The Cure (see Figure 1.1 for original images) after a global
flicker correction using Equation (2.2). (b) Corresponding cumulative histograms.

where ft(x, ·) is a contrast change (λ → ft(x, λ) is increasing). Obviously, this model is not
restrictive enough: if u1 and v1 are two images with nothing in common, we can always write
v1(x) = (v1(x)/u1(x))u1(x), which means that we can transform u1 into v1 by Formula (2.3) using
f(x, λ) = (v1(x)/u1(x))λ. In order to reduce the field of possible ft, it is generally assumed that
ft is smooth in the spatial variable x (but not in the time variable t).

Some authors, in a different framework, have already given a mathematical definition of a
local change of contrast. For instance, in [3] and [4], local contrast changes are defined in a
strong mathematical sense: those are changes which preserve exactly the topographic map of the
image. More precisely, these changes are defined by an equation like (2.3), but with the additional
constraint on f that if u(x) = u(y) = λ and if x and y are on the same connected component of a
level line, then f(x, λ) = f(y, λ). Such a definition cannot be adopted for flicker, mainly because
of two points. First, there is no reason for the flicker to be correlated with the topographic map
of the images. Second, the topographic map of an image affected by some flicker is not exactly
preserved (see the experimental section at the end of the paper for an example of this). As
already mentioned, the flicker is transparent and preserve the salient geometric structures but not
the whole topographic map of the images.

In the literature, the model given in Equation (2.3) is often reduced to locally affine contrast
changes:

ut(x) = at(x)u0
t (x) + bt(x), (2.4)

where at and bt are smooth functions of x.

2.3.2. State of the art of local flicker reduction. Several methods have been proposed
to correct locally the flicker. In most of these methods [17, 15, 12, 13], the image domain is
divided into a fixed grid of blocks (the blocks can overlap). The correction is then applied locally
on each block independently from the others, either recursively [17, 15], or via a “filtering” using
blocks with the same spatial position in consecutive frames of the film [12, 13]. In [17], a recursive
affine correction is applied on each block. A rejection criterion is introduced to avoid the flicker
estimation in blocks containing motion or blotches. However, the proposed rejection criterion
cannot tell apart between the motion of a low-contrasted object and a local flicker. In order to
avoid this shortcoming, the authors of [19] replace the rejection criterion by an explicit block-
matching motion estimation. The authors of [15] also propose a recursive correction of flicker,
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where the motion is seen as an outlier: a scale parameter is used to decide if a local change is due
to flicker or not. For the reasons developed at the beginning of Section 2.2, the recursive aspect of
these methods makes them unstable and difficult to initialize. In [12], robust estimators are used
to estimate the flicker and discard what they consider as outliers in this estimation (i.e. blotches
and motion). In [13], a real parameter γ(x), varying slowly in space, controls the intensity of
flicker around each pixel x. The estimation of γ should theoretically involve motion estimation.
However, considering that “the motion estimation is deteriorated by the presence of flicker” [13],
the authors replace this estimation by a temporal filtering of γ.

2.3.3. Does flicker reduction need motion estimation?. All the previous methods, with
the exception of [19], rely on the implicit assumption that there are few motions in the film. In
these methods, motion is never explicitly estimated. Instead, these approaches use either robust
estimation methods or rejection criteria to detect motion zones and discard them in the flicker
estimation. In both cases, motion is treated as an outlier, and assumed to be minor enough to not
disturb the local flicker estimation. If the dominant motion (or background motion) of the film is
non-zero, or if the film contains several objects moving at the same time, most of these methods
might fail. Even in the case of low motion, deciding if a localized contrast change is due to flicker
or to the motion of a low contrasted object is not easy. In the next sections, we will see that
some kind of motion estimation is necessary for flicker reduction, even if this estimation doesn’t
have to be precise. Motion can be estimated in the presence of flicker thanks to specific similarity
measures, designed to be robust to contrast changes.

3. Motion based flicker reduction without prior estimation.

3.1. A similarity measure robust to contrast changes. Usually, when one wants to
estimate the motion in a movie, one computes the correspondences of the pixels based on the
assumption that grey levels are preserved. Unfortunately, when the movie is damaged by some
flicker, the grey level of a given object in the movie can vary in time. Thus, to recover the motion,
one needs to decide if two pixels correspond to each other even when there has been some contrast
change. To this aim, we propose to use a simple block-matching approach, relying on a similarity
measure D between patches (small squares of pixels) built to be robust to contrast changes. In
order to minimize the risk of errors, this similarity measure should nevertheless be discriminant
(the similarity measure between two similar patches should be much smaller than the similarity
measure between two very different patches). In short, we are looking for a similarity measure D
between images patches I and J having the following properties:

(i) Symmetry : D(I, J) = D(J, I),
(ii) Robustness to affine and increasing contrast changes: ∀a > 0 and ∀b, D(I, aI + b) should

be equal to 0,
(iii) Ability to discriminate: we want D(I, J) to be “large” when J doesn’t look like any aI+b.
We will consider three different similarity measures satisfying all the first and second properties

above, and will see that the third property will help choosing the best one. The similarity measures
that we will consider are the following ones:

• Dangle : the angular measure is the L2 distance between gradient orientations. For an
image I, let x → θI(x) = Arg(∇I(x)) ∈ [0, 2π) denote the orientation of the gradient
of I at any pixel x. It is invariant to any change of contrast (indeed, if g : R → R is
increasing, then ∇g(I) = g′(I)∇I, and thus θg(I) = θI). We then define the “angular
measure” between two image patches I and J (defined on the same domain Λ) by

Dangle(I, J)2 =‖ eiθI − eiθJ ‖2
2=

1

|Λ|
∑

x∈Λ

‖ eiθI(x) − eiθJ (x) ‖2 .

Such a distance has been used for instance by Lisani and Morel in [10] to detect changes
in satellite images. This distance has the property of being invariant under any increasing
change of contrast on I or J .

• Dcorr : the correlation measure is the L2 distance between image patches normalized by
their empirical mean and variance. Let I =

∑
x∈Λ I(x)/|Λ| (resp. J) denote the empirical

7



Fig. 3.1. Four patches, from left to right: I1, I2, J1 and J2. The first two patches I1 and I2 both represent
a constant zone up to a contrast change and an additive noise. The last two patches J1 and J2 both represent the
same edge zone up to a contrast change and an additive noise.

mean grey level of I (resp. of J) on the domain Λ, S2
I =

∑
x∈Λ(I(x)− I)2/|Λ| (resp. S2

J)

denote the empirical variance and Cov(I, J) =
∑

x∈Λ(I(x)− I)(J(x)− J)/|Λ| denote the
empirical covariance between I and J . Then the correlation measure is given by

Dcorr(I, J)2 =
1

2

∥∥∥∥
I − I

SI
− J − J

SJ

∥∥∥∥
2

2

= 1 − Corr(I, J) = 1 − Cov(I, J)

SISJ
,

• Daff : the “affine” similarity measure computes the L2 distance of each patch to all the
increasing affine transforms of the other, and then takes the max of these two measures
to achieve symmetry. This measure can be written as

Daff(I, J) = max

(
min
a≥0,b

‖ I − aJ − b ‖2, min
a≥0,b

‖ J − aI − b ‖2

)
.

Daff can be easily exactly computed, and we find that it is given by:

Daff(I, J)2 = max(S2
I , S2

J)(1 − Corr(I, J)2),

where S2
I , S2

J and Corr(I, J) are defined as above in the case of the correlation measure.
Remark: We have used here the word “similarity measure” instead of “distance” because

the usual properties of the mathematical definition of a distance are not satisfied (mainly the fact
that we can have D(I, J) = 0 without having I = J).

Remark 2: The measure Daff could be generalized to

Dmonotone(I, J) = max

(
min

g increasing
‖I − g(J)‖, min

g increasing
‖g(I) − J‖

)
,

which can be easily computed via the pool adjacent violators algorithm [1]. For the sake of
simplicity, we stick in this paper with the affine formulation.

The similarity measure D will be used to compare image patches in different frames of the
movie that could be affected by some flicker. A main requirement is thus that D is invariant
to affine contrast changes: the similarity measure between two patches of the same geometry
should be small. This property is satisfied by the three measures defined above but of course
not by the L2 distance. On the other hand, the similarity measure has to be discriminant: the
similarity between two patches representing very different geometries (for instance between a patch
containing an edge and an almost constant patch) should be large. These two goals (invariance
and discrimination) are of course contradictory: the more invariance a similarity measure has, the
less its discrimination power is. To find the optimal measure, a good trade-off between the two
criteria has to be found.

To choose between Dangle, Dcorr and Daff , we will first theoretically analyze how these similar-
ity measures behave when they have to compare image patches with the same geometry (constant
zone, or same edge zone with a change of contrast), and patches with dissimilar geometries (a flat
zone and an edge zone). Such patches are shown on Figure 3.1.

Proposition 3.1 (Choice of a similarity measure). Let Λ denote the domain on which
the image patches are defined: it is assumed to be a square of n × n pixels. Let I1 (resp. I2)
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be a random image patch, whose pixel grey levels are i.i.d. random variables with the normal
distribution N (c1, σ

2) (resp. N (c2, σ
2)), where c1, c2 and σ are constants. I1 and I2 can be seen

as noisy constant patches. Now, let J1 (resp. J2) be a random image patch, whose pixel grey levels
are independent, and such that for all 1 ≤ k ≤ n/2, J1(k, l) (resp. J2(k, l)) follows the N (α1, σ

2)
(resp. N (α2, σ

2)) distribution, and for all n/2 < k ≤ n, J1(k, l) (resp. J2(k, l)) follows the
N (β1, σ

2) (resp. N (β2, σ
2)) distribution, where α1, α2, β1 and β2 are constants. J1 and J2 can

be seen as noisy edge patches. Then the asymptotic behavior (in the sense of the a.s. convergence
when n → ∞) of the three similarity measures defined above is summarized in the following table:

D2(I1, I2) D2(I1, J1) D2(J1, J2)

D2
angle 2 (±

√
2

n
) 2 (±

√
2

n
) 2 − 2µ(C1/σ,C2/σ)

n

D2
corr 1 1 1 − C1C2√

C2
1+4σ2

√
C2

2+4σ2

D2
aff σ2 C2

1

4 + σ2
(
σ2 + max(

C2
1

4 ,
C2

2

4 )
)
· (1 − C2

1C2
2

(4σ2+C2
1 )(4σ2+C2

2 )
)

where C1 = β1 − α1 (resp. C2 = β2 − α2) is the contrast of the edge in J1 (resp. J2), and
µ(C1/σ, C2/σ) is a function of C1/σ and C2/σ which takes its values between −1 and 1.

Proof.

• We first start with the angular measure Dangle. We will assume here that the gradient of
any discrete image I is computed by simple differences on a four pixels neighborhood, that is:

∇I(k, l) =
1

2

(
I(k + 1, l) + I(k + 1, l + 1) − I(k, l) − I(k, l + 1)
I(k, l + 1) + I(k + 1, l + 1) − I(k, l) − I(k + 1, l)

)
.

Using complex numbers notations, we write

2∇I(k, l) = (1 + i)(I(k + 1, l + 1) − I(k, l) + i(I(k, l + 1) − I(k + 1, l))).

Now, observe that if X1, X2, X3 and X4 are four i.i.d. N (0, 1) random variables, then X4 −
X1 + i(X3 − X2) = ReiΘ, where Θ is uniform on [0, 2π) and R has the probability density
r → 1

2r exp(−r2/4) on R+. Thus, if I is a noisy constant image patch (like I1 or I2), the ori-
entations θI(k, l) are uniformly distributed on [0, 2π). If I is a noisy edge patch (like J1 or J2),
the orientations θI(k, l) are uniform on [0, 2π) when the point (k, l) does not belong to the edge
(i.e. when k 6= n/2). When the pixel (k, l) belongs to the edge (i.e. when k = n/2), then
θI(k, l) = Arg(C + iσReiΘ) = Arg(C

σ + iReiΘ), where C is the contrast of the edge and where R
and Θ follow the laws given above.

Let us now compute the angular measure Dangle between two generic image patches I and J :
D2

angle(I, J) = 1
n2

∑
k,l |eiθI(k,l) − eiθJ (k,l)|2 = 2 − 2

n2

∑
k,l cos(θI(k, l) − θJ(k, l)). If Θ is a random

variable uniformly distributed on [0, 2π), then E(cos Θ) = 1
2π

∫ 2π

0
cos θ dθ = 0 and Var(cosΘ) =

1
2π

∫ 2π

0
cos2 θ dθ = 1

2 . Now, if I1 and I2 are two noisy constant image patches, θI1
(k, l)−θI2

(k, l) is
uniformly distributed on [0, 2π). It follows that the expected value of their squared angular distance
is E(D2

angle(I1, I2)) = 2, and its variance is of the order of 4
n4 n2Var(cosΘ) = 2/n2. If I1 is a noisy

constant patch and J1 is a noisy edge patch, then θI1(k, l)− θJ1(k, l) is also uniformly distributed
on [0, 2π), thanks to the fact that θI1 is uniformly distributed on [0, 2π) and independent of θJ1 .
Consequently, their angular similarity measure has exactly the same property as Dangle(I1, I2).
Finally, assume that J1 and J2 are two noisy edge patches, with respective contrasts C1 and C2

across their edges. Consider the two random variables Φ1 = Arg(C1/σ + iR1e
iΘ1) and Φ2 =

Arg(C2/σ + iR2e
iΘ2), where R1, R2, Θ1 and Θ2 are independent random variables following

the laws defined above. Let us denote µ(C1/σ, C2/σ) = E(cos(Φ1 − Φ2)). The computation of
this function µ is not straightforward: it involves special Bessel type functions. However, notice
that when the normalized contrasts C1/σ and C2/σ increase, the laws of Φ1 and Φ2 get more
concentrated around 0 and µ gets closer to 1. Finally, to compute the expected angular similarity
measure between J1 and J2, we just write

E(D2
angle(J1, J2)) = 2 − 2

n
µ(C1/σ, C2/σ)
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• The computation of the two other similarity measures Dcorr and Daff is simpler. In the
following, the →a.s. sign denotes the almost sure convergence when n → ∞. Observe that the
image patch I1 can be written I1(k, l) = c1 + σXk,l, where the Xk,l’s are i.i.d. with the N (0, 1)
distribution. In the same way, I2 can be written I2(k, l) = c2 + σYk,l, where the Yk,l’s are i.i.d.
with the N (0, 1) distribution. It follows that

I1 =
1

n2

∑

k,l

(c1 + σXk,l) = c1 + σX →a.s. c1, S2
I1

= σ2S2
X →a.s. σ2,

and Cov(I1, I2) =
σ2

n2

∑

k,l

(Xk,l − X)(Yk,l − Y ) →a.s. 0.

Thus, when n → ∞, D2
corr(I1, I2) →a.s. 1 and D2

aff(I1, I2) →a.s. σ2.
For the patch J1, it can be written J1(k, l) = α1 + σZk,l for 1 ≤ k ≤ n/2 and J1(k, l) =

β1 + σZk,l for n/2 < k ≤ n, where the Zk,l’s are i.i.d. with the N (0, 1) distribution. As a
consequence,

J1 =
1

n2

∑

(k,l);k≤n/2

(α1 + σZk,l) +
1

n2

∑

(k,l);k>n/2

(β1 + σZk,l) =
α1 + β1

2
+ σZ →a.s.

α1 + β1

2
, and

S2
J1

=
1

n2




∑

(k,l);k≤n/2

(
α1 − β1

2
+ σ(Zk,l − Z))2 +

∑

(k,l);k>n/2

(
β1 − α1

2
+ σ(Zk,l − Z))2




=
C2

1

4
+ σ2 − C1

σ

n2




∑

(k,l);k≤n/2

Zk,l −
∑

(k,l);k>n/2

Zk,l


 →a.s.

C2
1

4
+ σ2.

In the same way, it can be shown that

Cov(I1, J1) = −C1

2

σ

n2




∑

(k,l);k≤n/2

Xk,l −
∑

(k,l);k>n/2

Xk,l


 +

σ2

n2

∑

k,l

(Xk,l − X)(Zk,l − Z) →a.s. 0

and Cov(J1, J2) →a.s.
C1C2

4
.

If we look at the first two columns in the table of Proposition 3.1, we notice that both the
angular similarity measure and the correlation measure are unable to discriminate between a
constant image patch and an edge zone. Whereas for the affine similarity measure, we statistically
have that D2

aff(I1, J1) > D2
aff(I1, I2), which means that it is able to discriminate between constant

zones and edge zones. Thus, the conclusion is the following:
Corollary 3.1. The affine similarity measure Daff is the only one of the three considered

similarity measures which is able to discriminate between an edge patch and a constant patch.
An experimental way to check this result is to compute similarity maps on real images. This

is illustrated by Figures 3.2 and 3.3. For a given patch, we compute the similarity measures to
all neighboring patches for four different measures: L2, Dangle, Dcorr and Daff . The similarity
maps thus obtained are an experimental check of Proposition 3.1 on more realistic patches. In
particular, we notice on the figures that the measures Dcorr and Dangle are not very discriminant:
patches in flat zones are similar to almost all other patches, whatever their geometry. On the
other hand, the similarity measure Daff is able to select only the patches which have the same
geometry as the considered patch I.

The conclusions of both the theoretical analysis and the experimental study are the same:
among the considered similarity measures, the optimal one is Daff . In all the following, we will
use D = Daff to measure the similarity between image patches.
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Fig. 3.2. Similarity map for a constant patch. Top: two consecutive images of a movie. Top left: patch I

delimited by the white frame. Top right: neighborhood to which belongs the center of the patch J. Bottom, from
left to right: similarity map (J → D(I, J)) for the similarity measures L2, Dangle, Dcorr and Daff . For each
map, the white grey level corresponds to the maximal value obtained on the neighborhood and the black grey level
corresponds to the minimal one. We notice here that the similarity measure Daff is the only one which is at the
same time discriminant (the “distance” between the constant patch and an edge patch is large) and invariant to
affine contrast changes.

Fig. 3.3. Similarity map for an edge patch. Top: two consecutive images of a movie. Top left: patch I

delimited by the white frame. Top right: neighborhood to which belongs the center of the patch J. Bottom, from
left to right: similarity map (J → D(I, J)) for the similarity measures L2, Dangle, Dcorr and Daff . For each
map, the white grey level corresponds to the maximal value obtained on the neighborhood and the black grey level
corresponds to the minimal one.

3.2. Motion based flicker reduction. The idea of the method we propose for flicker re-
duction will be to change locally the contrast in the movie thanks to weighted means of inverse
cumulative local histograms. The weights will be computed from the similarity between patches.

Let u be a discrete movie damaged by some flicker (local or not) and let ut be the frame of
the movie at time t. Let Λ be a square of pixels centered at 0. For x ∈ Ω, we consider the patch
ut(x + Λ) centered in x. Let Λx denote the set {x + Λ}. The similarity measure Daff introduced
in Section 3.1 is insensitive to contrast changes, and thus can be used to estimate the motion in
the presence of flicker. For each pixel x in ut, its matching point ϕt,s(x) in us can be estimated
by comparing ut(x + Λ) and us(y + Λ) for all y in a suitable neighborhood:

ϕt,s(x) = Argminy∈Wt,s(x)Daff(ut(x + Λ), us(y + Λ)), (3.1)
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where Wt,s(x) is a search window in us. Obviously, we get in particular ϕt,t(x) = x. In practice,
the choice of Wt,s(x) is crucial and will be discussed in details in Section 3.5 (in particular, we
will see how the size of this window should be related to the size of the patches). Let us mention
however that this window can either be static and written x+W , with W a neighborhood of 0, or be
updated at each frame and written Wt,s(x) = ϕt,s−1(x)+W if s > t and Wt,s(x) = ϕt,s+1(x)+W
if s < t. In this last case, the estimation of ϕt,s(x) depends on the estimation of ϕt,s−1(x) (or
ϕt,s+1(x) if s < t).

Relying on this estimation, a first naive motion-based flicker stabilization operator M can be
defined as

Mut(x) =
1√

2πσ2

∫

s

e−(t−s)2/2σ2

H−1
s,Λϕt,s(x)

(Ht,Λx
(ut(x))) ds, ∀x ∈ Ω (3.2)

where Ht,Λx
denotes the cumulative histogram of the patch ut(Λx). It may happen that the

Argmin operator in (3.1) is ambiguous and returns several points. In this case, one can simply
use all of them in Equation (3.2).

The previous stabilization uses the similarity measure Daff between patches merely as a way to
estimate the motion. Now, it may happen that the motion is badly estimated or difficult to estimate
for some s (for instance because of a change of sequence) and that the patch us(ϕt,s(x)+Λ), which
achieves the min in (3.1), is not as similar to ut(x+Λ) as it should be. It thus could be interesting to
take only into account patches such that Daff(ut(x+Λ), us(ϕt,s(x)+Λ)) is actually small. This can
be done by weighting the mean by a decreasing function of the distance D2

aff(ut(x+Λ), us(y+Λ)).
A weighted motion-based flicker stabilization operator WM can then be defined as:

WMut(x) =
1

Z̃t,x

∫

s

e−(t−s)2/2σ2

wt,x(s, ϕt,s(x))H−1
s,Λϕt,s(x)

(Ht,Λx
(ut(x))) ds, (3.3)

where wt,x is a weight function given by wt,x(s, y) = g
(
D2

aff(ut(x + Λ), us(y + Λ))
)
, with g : R

+ →
R

+ decreasing, and Z̃t,x a normalizing constant which ensures that the total sum of all weights is
equal to 1, i.e.

Z̃t,x =

∫

s

e−(t−s)2/2σ2

wt,x(s, ϕt,s(x)) ds.

In practice, we used in our experiments the decreasing function g(x) = e−
x2

h2 , where h is a
parameter that has to be tuned by the user. This parameter plays the same role as the value of the
threshold in soft thresholding denoising methods: when h is “large”, all weights become almost
equal, and thus the mean will mix everything together. On the other hand when h is “small”,
only points which look very similar to x will have a non negligible weight in the sum. We will
again discuss the way to set the value of h in the experimental section at the end of the paper.
Observe that other decreasing functions could be used for g, such as a hard thresholding function
for example.

We will see in the experimental section at the end of the paper that this flicker stabiliza-
tion procedure provides good results. One could argue that the motion estimation performed by
Equation (3.1) is not always accurate. Indeed, because of the redundancy of images, and be-
cause the similarity measure we use is robust to affine contrast changes, a pixel can have several
“good” matches, and it is then uneasy to find the right one among them. Following the idea of
the NL-means method [2] introduced by Buades, Coll and Morel for movie denoising, one could
think of taking advantage of the redundancy of images and thus, when a patch in ut has several
strong correspondences in us, just use all of them to stabilize the flicker. This is the idea of the
stabilization method presented in the next section.

3.3. Multi-patch based flicker stabilization. As explained above, we can define a new
flicker stabilization operator WP (Weighted multi-Patch stabilization operator) which is similar in
its form to the NL-means method for movie denoising with however two main differences: we take
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the mean of inverse cumulative histograms (instead of grey-levels directly) and we use the affine
similarity measure Daff (instead of the L2 distance). In this approach, the grey level distribution
of a patch ut(x + Λ) is replaced by a weighted mean (in the sense of Equation (2.1)) of the
distributions of all patches us(y + Λ) which are similar to ut(x + Λ) for the distance Daff . The
mean is taken only for y ∈ Wt,s(x) where Wt,s(x) is defined as above.

More precisely, the weighted multi-patch stabilization operator WP can be written

WPut(x) =
1

Zt,x

∫

s

Ct,x(s)

∫

y∈Wt,s(x)

wt,x(s, y)H−1
s,Λy

(Ht,Λx
(ut(x))) dy ds, (3.4)

where
• Ct,x(s) is a normalizing constant which controls the total weight of us. For instance, if

we wish to have Gaussian weights (as it was the case in Equation (2.1)), we just set

Ct,x(s) =
e−(t−s)2/2σ2

∫
y
wt,x(s, y) dy

.

Another possibility is to normalize each frame in such a way that its total weight is
maxy wt,x(s, y): this can be useful whenever there is a change of sequence in the movie;

• Zt,x is the final renormalization constant: it ensures that the total sum of all weights is 1,

Zt,x =

∫

s

Ct,x(s)

∫

y

wt,x(s, y) dy ds.

One of the main interests of this method relying on weighted patches is that it does not rely as
heavily on motion estimation as the weighted motion one. If the search window Wt,s(x) is fixed,
the method does not rely on any motion estimation at all. The motion being taken indirectly into
account through the weights wt,s(x), this approach can appear as more elegant than the approach
involving the operator WM (Equation (3.3)). Unfortunately, it provides results which are from
far not as good as the ones provided by WM . As we will see in the experimental section, it can
even create artefacts in the image sequences when the parameters are not perfectly well chosen.

3.4. Links between WM and WP . The operator WM can be seen as the limit of WP
when we introduce a real parameter p that we let go to infinity. More precisely, if we define the
operator WP (p) by

WP (p)ut(x) =
1

Z
(p)
t,x

∫

s

e−(t−s)2/2σ2

∫
y
wp

t,x(s, y) dy

∫

y∈{Wt,s(x)}

wp+1
t,x (s, y)H−1

s,Λy
(Ht,Λx

(ut(x))) dy ds,

where

Z
(p)
t,x =

∫

s

e−(t−s)2/2σ2

∫
y
wp

t,x(s, y) dy

∫

y∈{Wt,s(x)}

wp+1
t,x (s, y) dy ds,

then WP (0) = WP and WP (p)ut(x) goes to WMut(x) as p goes to infinity. This amounts to
change h2 in two different ways depending on the considered sum: it is changed into h2/(p + 1) in
the weighted sum of grey levels and it is changed into h2/p in the normalization per frame. This
result is analogous to the fact that in some sense “the L∞ norm is the limit of the Lp norm as p
goes to infinity”.

3.5. Setting the parameters. The different parameters ( the parameter h in the decreasing

function g(x) = e−
x2

h2 , the size of Λ and the size of W ) used in the previous stabilization procedures
are important and should be chosen carefully.

On the size of the patches |Λ|. If |Λ| is too large, the patches can contain different moving
objects and the estimation of the similarity measure Daff(ut(x + Λ), us(y + Λ)) can be unreliable.
However, if |Λ| is too small, the information in the patches can be poor and the measure Daff(ut(x+
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Λ), us(y + Λ)) can not be trusted either. A good choice for the size |Λ| is clearly related to the
resolution of the frames and the size of the objects moving in the sequences. In all the experiments
presented in this paper, Λ was set as a 21 × 21 square window.

On the choice of the parameter h. The parameter h is related to the values taken by the
similarity measure Daff on the image. Since the weights are given by exp(−Daff(·, ·)2/h2), h can
be seen as a soft threshold. It can also be seen as a regularization scale for the flicker. If h is large,
then all weights in (3.4) will be close to 1. In this case, the flicker is efficiently stabilized, but some
artefacts can appear since patches which can have very dissimilar geometries are mixed together.
Conversely, when h is small, only patches which are very similar to the considered frame will have
non negligible weights in the sum. But then, flicker is not as efficiently stabilized. In practice, we
observed that values of h between 10 and 30 (the distance Daff between patches being normalized
by the size of the patches) generally yield good results on most sequences.

On the size of the search window |W |. The size of the search window W should be large
enough to follow a pixel in the presence of a large motion. On the other hand, if W is too large,
there is a risk that patches corresponding to different objects, with the same geometry but different
contrast, will be mixed together. Now, a very simple and elementary requirement for the choice
of W (and for the whole approach in general) is that if a movie u does not contain any motion
nor any flicker (which means that all frames are the same - let v denote one of these frames), then
it should be invariant under the operators WM and WP . To satisfy such a requirement, we need
to ensure that for any pixel x, a patch v(y + Λ) with its center y in the window x + W and which
is similar (according to the similarity measure Daff) to the patch v(x + Λ) will not create “new”
grey level values at x when equalizing the grey level histograms. In other words, if we consider
the operator T defined on a single image v by

T v(x) =

∫
x+W

w(x, y)H−1
Λy

(HΛx
(v(x))) dy

∫
x+W

w(x, y) dy
, (3.5)

where w(x, y) = exp(−Daff2(v(x + V ), v(y + V ))/h2), then we should have T v ≃ v.
Proposition 3.2. In order to avoid any “ringing” effect in the neighborhood of edges, we

have to set

W ⊂ 2Λ.

Proof. Let v be the image of a noisy edge, as defined in Proposition 3.1. We assume that the
image domain is {−N, . . . ,−1, 0, 1, . . . , N}2 and that v is given by: v(x) = v(x1, x2) = α + σn(x)
if x1 < 0, and v(x) = β + σn(x) if x1 ≥ 0, where α and β are two grey levels, σ is the standard
deviation of the noise, and the n(x) are i.i.d. N (0, 1).

We then consider a patch v(x + Λ) where Λ = {−K, . . . ,−1, 0, 1, . . . ,K}2. By symmetry, we
will just compute what happens on the right side of the edge (i.e. in the domain x1 ≥ 0). Let
r(x) = HΛx

(v(x)). By definition, it is the rank of v(x) in the set of all v(x + z) with z ∈ Λ. If
x = (x1, x2) with x1 ≥ K, then the patch v(x+Λ) doesn’t intersect the edge. It is thus an almost
constant patch (up to the additive noise), and then r(x) is uniformly distributed between 1 and
|Λ| = (2K + 1)2.

The affine similarity measure between v(x + Λ) and another patch v(y + Λ) can be easily
computed (in a way similar to what we did in the proof of Proposition 3.1), and we obtain that:
D2

aff(v(x + Λ), v(y + Λ)) ≃ σ2 when v(y + Λ) is another constant patch (that is when y1 ≥ K or
y1 < −K). And D2

aff(v(x + Λ), v(y + Λ)) ≃ py(1 − py)(b − a)2 + σ2 when v(y + Λ) is a patch
containing the edge and where py = (K − y1)/(2K + 1) is the proportion of ≃ α values in the
patch.

On the other hand, we can also compute the expected values for H−1
Λy

(HΛx
(v(x))) and get:

H−1
Λy

(HΛx
(v(x))) = H−1

Λy
(r(x)) =





α if y1 < −K,
β if y1 ≥ K,

αpy + β(1 − py) otherwise.
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Let now W be the neighborhood used in the definition of the operator T in Equation (3.5).
We will denote it by W = {−m, . . . ,−1, 0, 1, . . . ,m}2.

If m > 2K, then there will exist points x such that K ≤ x1 < m − K. For all these points,
since x1 − m < −K their neighborhood x + W will contain points y such that y1 < −K. Thus,
since the similarity measure between v(x + Λ) and all other patches v(y + Λ) such that y1 < −K
or y1 ≥ K is the same and smaller than the similarity measure to edge patches, the grey level
T v(x) will be a weighted mean of α and β values, and will not remain close to v(x) ≃ β. This
effect can clearly be observed on Figure 3.5. Thus, in order to avoid creating such artefacts, we
have to set m ≤ 2K, in other words W ⊂ 2Λ.

On the other hand, points x which are such that the patch v(x + Λ) contains the edge will
have an almost unchanged grey level because there are no patches in the image which will have
the same geometry but with very different grey level values.

The typical edge profiles that we obtain after applying Equation (3.5) is shown on Figure 3.4.
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Fig. 3.4. Result of Equation (3.5) when W is larger than Λ. In this experiment, the size of Λ is 15×15 pixels
and the size of the search window W is 37× 37. Left: profile of a pure edge v. Middle: profile of T v when h = 10.
This profile shows some “ringing phenomenon”. Right: profile of T v when h = 100. In this case, since h is large,
all patches have an almost equal weight, whatever their geometry.

Fig. 3.5. Left: image v of a noisy edge (size 67 × 67 pixels). Right: image T v when the size of Λ is 15 × 15
pixels and the size of the search window W is 37 × 37. The search window is too large compared to the size of the
patches, and some artefacts appear: in particular, we can notice some kind of “ringing phenomenon” around the
edge.

4. Experiments and discussion. This section presents the results of the proposed stabi-
lization procedures on several sequences, containing real or synthetic flicker. The sequences and
the corresponding results are available at http://www.tsi.enst.fr/~delon/Demos/Flicker_

stabilization/.

4.1. Implementation. Equations (3.3) and (3.4) can be implemented independently on each
pixel x of ut. However, the computation of the weighted motion for the neighborhood Λx of each
pixel x in Ω can take time. In order to accelerate the process, the stabilization procedure can
be implemented by blocks. The domain Ω is divided into a fixed grid of overlapping blocks Λi,
i = 1, . . . , NB . Equation (3.3) (or (3.4)) is then used on each of these blocks to stabilize the flicker
of all pixels contained in the block (and not only the central pixel of the block). If a pixel x belongs
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Fig. 4.1. Left: a frame of a sequence containing no visible flicker. Center: same frame, after applying
Equation (3.3) with h = 10 to the whole sequence. Right: difference between both frames, rescaled from [0, 15] to
[0, 255] for better visualization.

to several blocks Λi1 , . . . ,Λix
, the restored grey levels obtained at x for each Λij

are averaged to
obtain the final restored value at x. This averaging regularization is a way to avoid block effects.

The following experiments are obtained using this block-based implementation. In these ex-
periments, the block (or patch) Λ is chosen as a square of size 21× 21. The overlap between these
blocks is chosen as half the size of a block, i.e. as 10 here. The search window W is also chosen as
21× 21, which is large enough for the motion observed in the sequences presented here and which
permits to satisfy the condition of Proposition 3.2. The temporal standard deviation σ is set to
5, which in practice means that the temporal neighborhood taken into account in the restoration
of ut is approximately [t− 2σ, t + 2σ] = [t− 10, t + 10] (10 images before t and 10 images after t).

4.2. Effects on a flicker-free sequence. A crucial property of a flicker stabilization pro-
cedure is its ability to leave intact a sequence which does not contain any flicker. Figure 4.1
illustrates this property. On the left, one can see a frame extracted from a sequence containing
several artifacts but no visible flicker. After applying Equation (3.3) to the whole sequence with
h = 10, the same frame in the modified sequence is shown in the center of the figure. The differ-
ence between both frames is shown on the right, rescaled from its range [0, 15] to [0, 255] for better
visualization. The two images are almost identical and the mean grey level difference between both
images is 0.79. If the sequence is stabilized with h = 30, the mean grey level difference becomes
0.91, which is still quite small. Although this mean difference remains moderate, a slight difference
can be perceived at some very specific locations. These zones correspond to small blotches, caused
by dirts on the film support. These blotches are present in this frame but do not correspond to
any information in other frames of the movie. They tend to disappear under the stabilization
procedure, since the grey level distribution of their neighborhood is mixed with neighborhoods in
other frames which do not contain blotches. As a consequence, these blotches appear clearly when
we compute the difference between the original sequence and the regularized one.

4.3. Synthetic flicker. One of the worst difficulties of old film restoration is that most of the
films suffer from several defects (blotches, scratches, flicker) at the same time. As it can be noticed
on the example of Figure 4.1, the restoration of a single defect is not completely independent of the
presence of the others. For this reason, we begin our experiments with two sequences containing
no such defects. The first sequence, called flag is build from a single 247× 188 frame, to which we
added independent samples of a white Gaussian noise random image. This sequence, on purpose,
does not contain any motion. The second sequence is the classical sequence taxi 1, generally used
in motion estimation benchmarks. In this sequence, the size of the frames is 256 × 191.

To each sequence, we added two kinds of synthetic flicker. The first one consists in a random
multiplicative and local flicker, placed on random positions along the sequence. More precisely,

1This sequence is available at http://i21www.ira.uka.de/image_sequences/.
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(a) Random local flicker

(b) Same frames after flicker stabilization with WM , h = 30

(c) Motion-coherent local flicker

(d) Same frames after flicker stabilization with WM , h = 30

Fig. 4.2. (a) Four frames of the flag sequence, affected by the random flicker given by Equation (4.1). (b)
Same frames after using Equation (3.3) to remove the flicker. (c) Four frames of the flag sequence, affected by
a motion-coherent flicker given by Equation (4.2) (a dark strip that goes through the images). (d) Same frames
after using Equation (3.3) to remove the flicker. One can notice that in both cases, since we only perform changes
of contrast, there is no spatial smoothing, and thus the noisy texture of the movie remains intact.

each frame ut of size Nc × Nr becomes

∀(k, l) ∈ Ω, ũt(k, l) = u(k, l) ×
(

1 + Ste
−

(k−Xt)
2+(l−Yt)

2

r2

)
, (4.1)

where St, Xt and t are independent and St ∼ U [−0.3, 0.3], Xt ∼ U [0, Nc], Yt ∼ U [0, Nr]; and where
the radius r is fixed to 100. This flicker has no motion coherence (see Figure 4.2 (a) and 4.3 (a)).
The frames become randomly locally darker or lighter. The second kind of flicker consists in a
multiplicative dark transparent strip moving from the top left to the down right of the frames as
the movie is played. More precisely, a frame ut becomes

∀(k, l) ∈ Ω, ũt(k, l) = u(k, l) ×
(
0.6 + 0.4e−

w
0.5+k+l−(t+1)γ

)
, (4.2)

where w is the width of the strip and γ is the speed of the flicker motion. The width w is set
to 60 for both sequences and the speed s is set to 40 for the flag sequence and to 15 for the taxi
sequence. This flicker is motion-coherent (see Figures 4.2 (c) and 4.3 (c)).

The four resulting sequences and the results of the WM operator (Equation (3.3)) using the
implementation described in Section 4.1 can be seen at the address http://www.tsi.enst.fr/

~delon/Demos/Flicker_stabilization/. All the parameters are set as described in Section 4.1
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(a) Random local flicker

(b) Same frames after flicker stabilization with WM , h = 30

(c) Motion-coherent local flicker

(d) Same frames after flicker stabilization with WM , h = 30

Fig. 4.3. (a) Four frames of the taxi sequence with an additional random local flicker, given by Equation (4.1).
(b)Same frames after applying Equation (3.3) to remove the flicker. (c) Four frames of the taxi sequence with an
additional local flicker, looking like a dark transparent strip moving across the frames, given by Equation (4.2).
(d) Same frames after applying Equation (3.3) to remove the flicker.

Fig. 4.4. Left: level lines of a frame of the original taxi sequence. the figure shows all level lines at a sample
rate of 5 grey levels. Center: level lines of the same frame in the sequence containing the motion-coherent flicker.
Right: level lines of the same frame in the sequence restored thanks to Equation (3.3).

and h is set to 30. Some frames extracted from the different sequences and the corresponding
frames in their restored versions can also be seen on Figures 4.2 and 4.3. Observe that the
restored sequences are not identical and depend strongly on the flicker that we try to eliminate.
For instance, the contrast of the frames in Figure 4.2 (b) (resp. Figure 4.3 (b)) is larger than
the contrast of the frames in 4.2 (d) (resp. Figure 4.3 (d)). Since the flicker has destroyed some
contrast information, we cannot hope to recover completely the contrast of the original sequence,
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but only to filter it enough to make it barely noticeable. Observe also on the flag sequence how
the flicker disappears while the noisy texture remains intact. This is due to the fact that only
changes of contrast are performed, without spatial smoothing.

Obtaining satisfactory results with the WP approach on these sequences is trickier. Indeed,
since this formulation makes use of all patches of a neighborhood to stabilize the contrast of a
given block, its results highly depend on the choice of the different parameters, and especially
on the choice of the parameter h. Most often, a given patch has several “good correspondences”
in each of the neighboring frames, which can all be reasonably used to stabilize the contrast of
the patch. For these patches, the operators WM and WP yield similar results. However, some
patches are singular, in the sense that they only have one (or zero) good corresponding patch per
neighboring frame. For these singular patches, it should be ensured that the weights of all the
non-similar patches in Equation (3.4) are negligible. This is illustrated by Figure 4.5, which shows
the kind of artefacts that can appear when these weights are not well chosen. This implies that
h should be set carefully. In practice, satisfactory results, however not as satisfactory as the ones
obtained with WM , could be obtained with h = 5 on the previous sequences. However, it should
be noted that for a really strong flicker, choosing h = 5 can be insufficient to remove the flicker
completely. In these cases, we strongly recommend to use the WM formulation with a higher
value of h.

Fig. 4.5. Left: center of a frame of the flag sequence with the random local flicker, after a local stabilization
by WP , with h = 30. For this value of h, some artefacts appear around the singular zones (here the area around
the intersection between the three regions). Right: extract of a frame of the taxi sequence with the motion-coherent
flicker, after a local stabilization by WP , with h = 100. Observe the artefacts around the zones of motion.

It is generally not easy to evaluate the performance of a flicker stabilization method because
in most cases there is no available ground truth. However, in the case of a synthetic flicker, we
can compare a frame of the original sequence with the same frame in the flickering sequence and
with the same frame after flicker stabilization. In order to measure the ability of the stabiliza-
tion procedure to recover the geometrical information of the original sequence, we compare the
topographic map of an original frame with the one of the corresponding restored frame. This is
illustrated by Figure 4.4. On the center, we notice that the local flicker has modified some level
lines. In particular, it has created level lines which are parallel to the dark transparent strip (see
below the white car, on the right of the black car). We also see that the most contrasted level
lines, which correspond to the salient objects in the image are not modified. On the right of the
figure, we show the level lines after flicker stabilization by WM . The level lines created by the
flicker have disappeared in this restored frame.

4.4. Sequences extracted from old movies. We finally show the results of the WM
operator on two sequences extracted from old movies. These sequences can be also seen at http:
//www.tsi.enst.fr/~delon/Demos/Flicker_stabilization/. Some frames extracted from the
original and stabilized sequences are shown on Figures 4.6 and 4.7. Here, the flicker has not been
artificially added: it is naturally present in these old movies. In the first sequence, shown on
Figure 4.6, the flicker is a mix of global contrast changes and of a dark transparent strip going
through the images from right to left when the movie is being played (the strip is placed on the
face of the man on the middle frame in the figure). This sequence can thus be compared to the
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synthetic sequences created in the previous section with the motion-coherent flicker. After applying
the WM operator, with h = 30, the other parameters being set as described in Section 4.1, the
flicker is not visible anymore.

(a) Original sequence

(b) Sequence stabilized with WM , h = 30

Fig. 4.6. (a) Three images of an old movie suffering from a strong local flicker. This flicker is visible as a
dark transparent strip going through the images from right to left when the movie is being played. The strip is
placed on the face of the man on the middle frame. (b) Same frames after flicker stabilization by Equation (3.3),
with h = 30. Other parameters are set as described in Section 4.1.

(a) Original sequence

(b) Sequence stabilized with STE + WM , h = 30

Fig. 4.7. (a) Four images of an old movie Les Aventures des Pieds Nickelés, Emile Cohl/Eclair (1917-1918,
copyright: Marc Sandberg) suffering from local flicker. (b) Same frames after a global correction by STE, followed
by a local stabilization by WM , with h = 30. Other parameters are set as described in Section 4.1.

The second sequence is as short extract from the movie Les Aventures des Pieds Nickelés, Emile
Cohl/Eclair (1917-1918, copyright: Marc Sandberg). In this sequence, shown on Figure 4.7 (a),
the flicker has a strong global component, although local variations can also be perceived along
the sequence. As a consequence, we applied first the global operator STE (Equation (2.2)) to
this sequence, with a large value of σ to get rid of these strong global contrast changes along the
sequence. After this global stabilization, local and fast fluctuations remained visible, taking the
shape of large bright spots at different locations on the frames. This is illustrated by Figure 4.8 (a),
which shows the absolute difference between two successive frames of the sequence after the global
correction. The visible differences are not only due to motion (or film shaking in this case) but
appear also as large bright spots at different places. As shown in Figures 4.7 (b) and 4.8 (b),
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(a) After STE (b) After STE + WM

Fig. 4.8. Left: difference between two successive frames of Les Aventures des Pieds Nickelés after a global
flicker stabilization thanks to the operator STE (Equation (2.2)). Right: difference between the same frames after
an additional local stabilization by WM , with h = 30. In both differences, a ratio of 10% pixels with maximal
values has been put to the maximal value for better visualization.

applying WM with h = 30 to this sequence enabled us to remove these spots and the remaining
flicker.

5. Conclusion. In this paper, a new procedure to stabilize the flicker in image sequences
has been proposed. The method relies on a similarity measure between image patches that has
been demonstrated to be at the same time robust to affine contrast changes and discriminant
enough. This similarity measure permits to roughly estimate the motion in the movie despite
the presence of flicker. The main stabilization operator introduced in this paper, called WM ,
makes use of this similarity measure to find the correspondences of a given patch and replaces
the grey level distribution of the patch by a weighted mean of the grey level distributions of all
these corresponding patches, the weights being chosen as a decreasing function of the similarity
measures between patches. The ability of this operator to deal with strongly localized flicker has
been demonstrated on several synthetic and real examples. In particular, since this operator only
performs contrast changes on image patches, and does not involve spatial smoothing, it is able to
preserve fine spatial features such as noise or textures in the frames.

The perspectives of this work are twofold. First, we believe that this approach should not be
restricted to old movie restoration and could be of great interest for other types of sequences, such
as biological sequences of evolving cells, in which the time sampling is very sparse and the frames
contain large local intensity variations. Second, we plan to study in more detail the theoretical
aspects of the method. In particular, the different operators introduced (WM and WP for movies,
and T for a single image) should certainly find statistical interpretations, in the same vein as what
has been done for the NL-means operator [2].
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