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STABILIZATION OF FLICKER-LIKE EFFECTS IN IMAGE SEQUENCES
THROUGH LOCAL CONTRAST CORRECTION ∗

JULIE DELON † AND AGNÈS DESOLNEUX ‡

Abstract. In this paper, we address the problem of the restoration of image sequences which have been
affected by local intensity modifications (local contrast changes). Such artifacts can be encountered in particular
in biological or archive film sequences, and are usually due to inconsistent exposures or sparse time sampling. In
order to reduce such local artifacts, we introduce a local stabilization operator, called LStab, which acts as a time
filtering on image patches and relies on a similarity measure which is robust to contrast changes. Thereby, this
operator is able to take motion into account without resting on a sophisticated motion estimation procedure. The
efficiency of the stabilization is shown on various sequences. The experimental results compares favorably with
state of the art approaches.

1. Introduction. In this paper, we are interested in a particular type of artifacts that can
be observed in image sequences and which can be described as fast and unnatural intensity fluc-
tuations from one frame to the other. These artifacts are very common in old movies, especially
in movies shot before the twenties, and are generally referred to as “flicker”. The main causes
of flicker in these movies are support ageing (the negative of the film contains many chemical
products which get older and damaged with time) and exposure inconsistency at the acquisition
stage (non constant exposure time from one frame to the other [49] - the film was driven manually
at this time). Similar effects can appear in more recent analog or digital videos, such as biological
or video surveillance sequences. In these cases, these artifacts are mostly due to a sparse time
sampling, a non uniform or a non constant illumination of the frames. Although they arise from
different physical processes, we will also refer to these artifacts as flicker, or as flicker-like effects.
Removing or at least reducing such artifacts in movies is important in order to improve the sub-
jective quality of films, but it can also be a crucial step before any other post-processing (like
compression, segmentation, or image comparison for instance).

One of the characteristics of flicker-like effects is that they do not create salient geometrical
structures in images. In practice, we can almost say that they are invisible on a single frame
pulled out of the film, while they cannot be missed in motion, or by comparing several consecutive
frames (see Figure 1.1). A consequence of this “transparency” property is that flicker reduction
requires the use of successive frames in order to work properly: flicker cannot be removed just by
looking at each frame independently of the others (this is not necessarily the case for denoising
algorithms for instance). Another characteristic of flicker-like effects is that they can have global
and local aspects: depending on the film, they can act as global contrast changes or as several local
contrast changes which affect differently various parts of the current frame. In consequence, one
of the main difficulties of local flicker reduction is to decide if local changes in the film are due to
flicker or to moving objects. This question becomes even more ambiguous when the local effects of
flicker have a structured motion, as illustrated by the taxi sequence shown in Figure 1.1(c). Now,
the main difference between the effects of flicker and moving objects is that the first ones do not
modify the salient geometry of the frames. In other words, they can affect the local dynamic of
the grey levels, but preserve, at least in first approximation, their local ordering.

1.1. Related works. In this section, we first briefly present different directions that have
been explored to modify locally the contrast and dynamic of images or movies. We then focus on
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(a) Three frames from the Physarum sequence.

(b) Three frames from Les Aventures des Pieds Nickelés, Emile Cohl/Eclair, 1917-1918 (copy-
right: Marc Sandberg).

(c) Three frames from the Taxi sequence, with some synthetic local flicker.

Fig. 1.1. Frames from three sequences containing (a), (b) real flicker or (c) synthetic flicker. The complete
sequences are available at http: // www. tsi. enst. fr/ ~ delon/ Demos/ Flicker_ stabilization/ .

methods developed specifically to remove flicker-like effects in image sequences.

1.1.1. Contrast modification in images and movies. The process of modifying the con-
trast or color rendering of an image has been thoroughly studied since the seventies. In particular,
several methods have been proposed to enhance globally or locally the contrast of images, while
preserving their local geometry and sometimes avoiding noise over-enhancement [23, 37, 38, 12, 43,
24, 30, 42, 5]. The aim of these approaches is to make low contrast structures in the image more
easily detectable, and this is of particular importance in domains requiring fine image interpreta-
tion, as medical image analysis, or satellite imaging. The most well-known of these enhancement
methods is Histogram Equalization, in which the grey level distribution of an image is mapped
globally onto a uniform distribution. Among the local methods for contrast enhancement, let us
mention Adaptive Histogram Equalization [38, 43], and multiscale methods based on wavelets or
curvelets decomposition of the image [24, 30, 42, 5]. These approaches aim at preserving edges
while increasing the contrast across them. Now, the first rigorous definition of a local contrast
change in an image is due to Caselles et al [9, 12] and can be summarized as follows. Recall that
a global contrast change is merely an increasing function of the grey values. If one denote by
Ω the image domain, Caselles et al define local contrast changes of an image u as the functions
f : Ω × R → R, increasing in the second variable and preserving exactly the topographic map
of u (i.e. the set of all the connected components of its level lines). In particular, they require
that if u(x) = u(y) = λ and if x and y are on the same connected component of a level line, then
f(x, λ) = f(y, λ). Relying on this definition, they propose an algorithm [12] to enhance locally
the contrast of images thanks to such local contrast changes.
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The methods described above deal with a single image, but many approaches have also been
developed to deal with contrast changes between several images. For example, image stitching
methods [45, 46, 27], which have become very popular in the last ten years, have to adjust in-
consistent exposures from one image to the other in order to avoid shifts in brightness or hue in
their final mosaics. In [46], these adjustments are block-based and rely on least square estimation.
In [27], exposure differences are eliminated by working with gradient images. Another field of
applications dealing with contrast modifications is the field of dynamic enhancement for images
and videos. Several approaches have been proposed to combine images of the same scene at dif-
ferent exposures and create a high dynamic range map of the scene [14, 4, 32]. The authors of [25]
extend these approaches to increase the dynamic of videos where the exposure of each frame is
varying rapidly. Although they control completely the exposure of frames during the capture, the
registering and tone-mapping they have to apply to increase the dynamic range of the frames are
very close to those involved in flicker reduction. Contrast enhancement can also be encountered
in papers dealing with very low light-level videos [1, 31], and with the fusion of flash and no flash
images [19, 34].

In a related direction, many works have focused on contrast modification and enhancement
in medical and biological sequences analysis. Now, we have to distinguish two different types of
contrast variations in such sequences: (a) the ones which are considered as artifacts and have to
be removed, and (b) the ones which are important to interpret the sequence, as those observed
in MRI contrast-enhanced sequences, where a contrast agent is injected to the patient and the
differential enhancement of image intensities assists the clinician to detect suspicious regions (see
[51, 22, 8] for instance). In the first case, removing flicker-like effects is important to perform other
tasks such as denoising [6], thresholding, motion estimation or automatic segmentation. This is
the case in the example of Figure 1.1(a). In the second case, one of the aim is to estimate the
local contrast enhancement curves (thanks to a parametric model) and to perform at the same
time segmentation, registration and abnormalities detection.

1.1.2. Flicker reduction in archived film sequences. Most of the papers dealing with
the reduction of flicker-like effects are devoted to the restoration of archived film sequences. These
papers can be roughly classified in two categories, those considering these effects as global, and
those considering that they affect frames non-uniformly. The earliest papers on flicker reduc-
tion [39, 44, 15] model the flicker as a global affine change of contrast on the frames. If we denote
with (u0

t )t∈R the original (unknown) image sequence and (ut)t∈R the observed image sequence, this
model can be written ut = αtu

0
t +βt, where αt and βt are two unknown constants, depending only

on t. Unfortunately, this simple affine model fails at capturing the non linear aspects of flicker-like
effects. A first non linear regularization approach is proposed in [41]. One limitation of these
different restoration schemes is that they act recursively or rely on reference frames, supposed to
be undegraded. These schemes are thus oversensitive to initialization and can become unstable
(subject to errors accumulation when dealing with long sequences). A more sophisticated model
of flicker degradation is developed by Vlachos in [49]. He shows in particular that the flicker
degradations due to exposure inconsistencies of photographic films are highly non linear and well
modeled by contrast changes of the form Id + ψ, where ψ is a cubic polynomial. Despite an
accurate modeling, the proposed correction algorithm is also limited by its recursive aspect. In
order to avoid this shortcoming, following papers have favored methods not depending on the time
origin and direction [33, 17]. The idea is to define a time dependent grey level distribution as a
midway of all grey level distributions of the frames us for s in [t−δt, t+δt], and to fit the contrast
of ut on this distribution. The authors of [33] define the midway distribution at time t as a direct
average of all grey level distributions in [t− δt, t+ δt]. The main drawback of this approach is that
direct histogram averaging can lead to severe artifacts in the frames, as its is shown in [17]. In
order to overcome this difficulty, Delon shows in [17] how to average correctly a set of histograms,
and derives a regularization operator, called Scale Time Equalization, from a sequence of axioms.
Roughly speaking, it is shown that the midway distribution at time t should be defined as the
harmonic mean of all frame distributions in [t− δt, t+ δt].

Global methods are attractive for their simplicity and their robustness to motion and to the
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presence of small defects (dirt, scratches). However, in practice, the effects of flicker can vary
within an image, and the zones which are the most affected can change from a frame to the other
(see Figure 1.1(c)). In the literature, one of the most popular model of local flicker degradation
involves locally affine contrast changes [47, 40, 50] and can be written ut(x) = at(x)u0

t (x) +
bt(x), ∀x ∈ Ω, where at and bt are smooth functions of the space variable x. This model can
be generalized to non linear degradations [35, 36, 21, 20] by the formula ut(x) = ft(x, u0

t (x)),
where ft(x, ·) is increasing and ft(·, λ) is assumed to be smooth. Several methods have been
proposed to correct these local degradations. A detailed survey of existing approaches can be
found in the recent paper [20]. In most of these approaches, the image domain is divided into
a fixed grid of overlapping blocks. A correction is then computed and applied on each block,
using corresponding blocks in other frames and eventually some weighted interpolation between
blocks to avoid blocking boundaries artifacts. The main differences between these works lie in
the way these corresponding blocks are chosen and in the way the flicker is compensated. Several
authors [47, 40, 50] propose a recursive affine correction, the blocks of the frame t−1 being used to
correct the blocks of the frame t. In [47, 40], motion estimation is avoided by making use of robust
estimators or of rejection criteria (to detect blocks containing motion or blotches and discard
them in flicker estimation). Whereas the authors of [50] make use of an explicit block-matching
motion estimation. Unfortunately, the recursive aspect of these methods makes them unstable and
sensitive to initialization. An alternative approach to local flicker stabilization is to use all frames
in a sliding temporal window [t − δt, t + δt], and reliability weights to compensate local flicker
degradations between frames [35, 36, 21, 20]. In [35], robust estimators are used to estimate the
flicker parameters while discarding outliers (blotches and motion) from this estimation. In [36],
a real parameter γ(x), varying slowly in space, controls the intensity of flicker around each pixel
x. The estimation of γ should theoretically involve motion estimation. However, considering that
“the motion estimation is deteriorated by the presence of flicker” [36], the authors replace this
estimation by a temporal filtering of γ. They propose in an optional second stage to perform a
conventional motion estimation on the deflickered sequence, and then use it to register the frames
before estimating again the flicker parameter γ. More recently, the authors of [21, 20] directly use
motion-compensated sequences to estimate a parametric intensity error profile between frames,
generalizing the approach of [49] to local flicker degradations.

1.1.3. Motion estimation in presence of local contrast changes. The question of
motion estimation is probably the main difficulty in movie and video restoration, in particular
in the restoration of flicker-like effects. Indeed, as mentioned before, it is sometimes especially
difficult to distinguish contrast irregularities due to flicker from those due to moving objects, or,
in the case of old movies, from those due to other impairments (blotches, scratches, etc.). In the
literature on flicker reduction, some authors choose [47, 40, 35] to not estimate motion, but to
consider it as an outlier: in these works, motion is assumed to be well handled by rejection criteria
or a robust estimation of flicker parameters. Obviously, if the sequence contains a dominant motion
or if several important objects are moving, these approaches turn out to be inadequate.

Now, if one want to estimate the motion flow in presence of flicker, it is important to propose
similarity measures which are robust to contrast changes. This is the case of [21, 20], where the
authors compensate motion thanks to the algorithm of Black and Anandan [3], in which the usual
“brightness constancy constraint” is relaxed by using robust similarity measures. More recently,
several approaches have been proposed to precisely estimate motion while remaining invariant or
robust to contrast [10, 26, 11], for instance by relying on gradient orientation instead of grey levels.
In this paper, we propose to follow another direction. We will show in Section 3.1 that a very
simple similarity measure between image patches, built to be robust to contrast changes, permits
to take motion directly into account in the flicker stabilization process and to obtain satisfying
results, without necessarily estimating this motion very accurately.

1.2. Contributions and outline of the paper. The goal of this paper is to propose a
generic method for correcting radiometric unsteadiness in image sequences. The method should
apply to all local radiometric degradations that can be described in first approximation by local
contrast changes, whatever their physical causes. In Section 2, we give some notations and recall
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the definition of the Scale-Time-Equalization introduced in [17]. Next, in Section 3, we present
a new stabilization operator for flicker-like effects, called LStab, which acts as a time filtering on
image patches. This operator relies on a similarity measure between image patches which is robust
to contrast changes, and is able to take motion into account without relying on a sophisticated
motion estimation procedure including regularization terms. The corresponding algorithm does
not require any pre- or post- treatment, is easy to reproduce and to implement, does not rely
on any assumption on the origin of the flicker and does not require “external procedures” like
choosing a reference frame. In Section 4, the ability of this operator to deal with different kinds of
local contrast degradations is demonstrated on several sequences: sequences with synthetic local
flickers, biological sequences and several extracts from old movies with strong real flicker. The
whole stabilization scheme is also confronted with state of the art flicker removal procedures on
two sequences, and seems to provide similar or better results than the ones presented in [36, 20].
The stability of the procedure in sequences without flicker is also investigated.

2. Scale Time Equalization. The goal of this section is to give a reminder on the mid-
way equalization of two images and on its extension to image sequences, namely the Scale-Time
Equalization.

2.1. Some notations. We begin here with the notations and vocabulary that will be used
throughout this paper. The damaged film is denoted by u = (ut(.)), where ut is the frame at
time t. The image domain, denoted by Ω, is generally a rectangle of R2 or of Z2 (in the case of
discrete images). We only consider “black and white” movies, which means that each image ut is
a function from Ω to R. The original, non-observed and unknown film, is denoted by u0.

As mentioned before, applying a contrast change to an image v means changing v into g(v),
where g is an increasing function from R into itself. We will call affine contrast change any contrast
change of the form g(λ) = aλ+ b with a, b ∈ R and a > 0.
The upper and lower level sets of an image v : Ω 7→ R are respectively defined as the sets

χλ(v) = {x ∈ Ω; v(x) > λ} and χλ(v) = {x ∈ Ω; v(x) ≤ λ},

where λ ∈ R. If g is a contrast change, then χg(λ)(g(v)) = χλ(v), which means that the set of all
upper level sets (resp. the set of all lower level sets) remains the same under contrast changes.
As a consequence, the topographic map of an image [9, 13], i.e. the set of connected components
of the topological boundaries of its level sets, remains unchanged under contrast changes. This
means that the geometrical content of an image is not modified by contrast changes, as we can
see on Figure 2.1.

Fig. 2.1. On the left, two images containing the same geometric content. Each image can be obtained by
applying a well chosen contrast change to the other. On the right, some level lines of these images. The small
differences that can be observed between level lines are due to quantization artifacts.

An image ut of the film being given, we write χλ(t) and χλ(t) for the upper and lower level
sets of ut. The histogram of ut, i.e. the distribution of its grey levels, is denoted by ht. The
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corresponding cumulative distribution function (or cumulative histogram) is denoted by Ht. If ut
is defined on a discrete grid Ω with |Ω| = N2 and takes its values in {0, . . . , L}, the cumulative
histogram Ht : R→ {0, . . . , N2} is given by:

Ht(λ) = |{x ∈ Ω|ut(x) ≤ λ}| =
λ∑
µ=0

ht(µ),

where | · | denotes the cardinality of a set.
This definition leads to the following interpretations:

• For any x ∈ Ω, Ht(ut(x)) is the rank of x, when the grey levels of ut are ordered increas-
ingly.

• Let k be an integer, we define H−1
t (k) = min{λ ∈ {0, . . . , L} ; Ht(λ) ≥ k}. If x is a pixel

of rank k in ut, then H−1
t (k) is the grey level of x.

• Let G be an increasing discrete function on {0, . . . , L}, taking its values in {0, . . . , N2}.
Let us define G−1(k) = min{λ ∈ {0, . . . , L} ; G(λ) ≥ k}. If we assume that Ht is onto,
then vt = G−1 ◦ Ht(ut) and ut share the same geometry, and the cumulative histogram
of vt is given by the function G. In practice, the hypothesis that Ht is onto is almost
never satisfied, and the cumulative histogram of G−1 ◦Ht(ut) will only be very close to
G. Roughly speaking, this means that we can map the grey level distribution of an image
onto the grey level distribution of any other image by an adequate contrast change.

2.2. Midway equalization between two images. In this section, we recall the definition
of the midway equalization between two images. Let u1 and u2 be two discrete images defined
on a grid Ω containing |Ω| = N2 pixels and taking their values in {0, . . . , L}. Let h1 and h2

denote their respective grey level histograms. In order to average the contrast between u1 and u2

(i.e. to equalize their respective grey level histograms on a common one), one could just apply
a contrast change to each image such that the grey level distribution of both images would fit
(h1 + h2)/2. This solution is generally not satisfactory. Indeed, if u1 (resp. u2) has a unimodal
grey level histogram, centered at m1 (resp. m2 6= m1), the average histogram (h1 +h2)/2 contains
two modes: one at m1 and the other at m2. It would be much more natural to define a midway
histogram between them as a unimodal histogram centered at (m1 +m2)/2.

(a) Before midway equalization.

(b) After midway equalization.

Fig. 2.2. Top: two images and their respective cumulative histograms. Bottom: the images and their cumu-
lative histograms after the midway equalization.

As it was shown in [16], the “good” midway histogram between h1 and h2 can be defined as
6



the harmonic mean between the cumulative histograms H1 and H2,

H1/2 =
(
H−1

1 +H−1
2

2

)−1

.

The properties of this midway distribution are the following:
• the images H−1

1/2 ◦H1(u1) and H−1
1/2 ◦H2(u2) have the same cumulative histogram H1/2.

• if there exists an image u0 and two contrast changes f and g such that u1 = f(u0) and
u2 = g(u0), then H1/2 is the cumulative histogram of (u1 + u2)/2.

• action on level sets: grey levels having the same rank in both images are averaged together.
Remark 1: In practice, in order to equalize the histograms of two images, one can for instance

create two vectors of length N2 containing respectively the ordered grey levels of u1 and u2, then
compute the mean of these two vectors, and finally assign to each pixel of each image the grey
level of the element in the averaged vector which has the same rank as the considered pixel.

Remark 2: If we consider h1 and h2 as densities of two distributions ν1 and ν2, then in
the theory of optimal transportation, the Wasserstein distance between ν1 and ν2 is defined as∫
|H−1

1 −H−1
2 | (see [48]). Now, consider the geodesic between ν1 and ν2 for the previous distance

and define ν1/2 as the middle of this geodesic. Then H1/2 is the cumulative distribution function
of ν1/2.

2.3. A scale-time correction for global flicker. An extension of the midway equalization
to image sequences, called Scale-Time Equalization (STE), can be used to stabilize the flicker
globally. In [17], Delon has shown the following proposition, which gives the canonical form of a
flicker reduction operator when some simple hypotheses are assumed.

Proposition 2.1. [17] Let (ut) be a film and (Ht) the discrete cumulative histograms of the
frames. Let STE be an operator acting on films and satisfying the following properties:

- STE acts like a contrast change on each frame,
- for any λ, the action of STE on the lower level sets χλ(t) of the frames does not depend

on the action of STE on the upper level sets χλ(t),
- STE acts on spatially constant films (i.e. films such that each frame is a constant image,

but the constant can vary in time) like a linear scale space (that is like a convolution with
a Gaussian kernel, see [28]).

Then, there is a scale parameter σ such that the operator STE fits the histogram of ut on the
“midway” histogram Ht whose inverse is defined by

H−1
t (k) =

∫
1√

2πσ2
e−(t−s)2/2σ2

H−1
s (k) ds. (2.1)

The corresponding operator on u can be written

STE[ut](x) =
1√

2πσ2

∫
e−(t−s)2/2σ2

H−1
s ◦ Ht(ut(x))︸ ︷︷ ︸

rank of x in ut︸ ︷︷ ︸
grey level of the pixel of same rank as x in us

ds. (2.2)

Observe that this correction does not depend of the origin of the film: the operator commutes
with translations and symmetries in time. Let us also mention that the operator STE is very
similar to the stabilization procedures that have been proposed independently by Pitie et. al in
[35] and by Forbin and Vlachos in [21]. However, the main property here is that the derivation
of the STE operator has been obtained following an axiomatic point of view: as it is stated by
Proposition 2.1, when some simple axioms are required for a global flicker stabilization operator,
then STE becomes the unique possible solution.

3. Motion based flicker reduction without prior estimation. As explained in the
introduction, the Scale Time Equalization is easy to perform and gives good results as long as
the flicker acts globally on a sequence. However, such a global method cannot handle local flicker
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effects as the ones observed in the examples of Figure 1.1. In this section, we define a local,
motion-based, flicker stabilization operator, called LStab. This operator relies on a similarity
measure between image patches, defined in Section 3.1.

3.1. A similarity measure robust to contrast changes. Usually, when one wants to
estimate motion in a movie, one computes the pixel correspondences based on the assumption that
grey levels are preserved (this is the usual “grey level constancy constraint” along trajectories).
Unfortunately, when the movie is damaged by local contrast changes, the grey level of a given object
in the movie can vary in time. We mentioned in the introduction several approaches [3, 10, 26, 11]
that have been proposed to estimate motion in such drastic conditions, using robust or invariant
similarity measures. In this paper, we also propose to rely on a similarity measure D between
patches (small squares of pixels) built to be robust to contrast changes. This measure will at the
same time provide an estimation of motion (not necessarily highly accurate) and be used to weight
the different terms in the stabilization operator presented in Section 3.2. For these reasons, the
measure D of similarity between two image patches I and J should satisfy the following properties :

(i) Symmetry : D(I, J) = D(J, I),
(ii) Robustness to affine and increasing contrast changes: ∀a > 0 and ∀b, D(I, aI + b) should

be equal to 0,
(iii) Ability to discriminate: we want D(I, J) to be “large” when J doesn’t look like any aI+b.

In the following, we will consider three different similarity measures satisfying all the first and
second properties above, and compare them in relation to the third property. These similarity
measures are :

• Dangle : the angular measure is the L2 distance between gradient orientations. For an
image I, let x → θI(x) = Arg(∇I(x)) ∈ [0, 2π) denote the orientation of the gradient of
I at any pixel x. These orientations are invariant to any change of contrast (indeed, if
g : R→ R is increasing, then ∇g(I) = g′(I)∇I, and thus θg(I) = θI). We then define the
“angular measure” between two image patches I and J (defined on the same domain Λ)
by

Dangle(I, J)2 =‖ eiθI − eiθJ ‖22=
1
|Λ|

∑
x∈Λ

‖ eiθI(x) − eiθJ (x) ‖2 .

Such a distance has been used for instance by Lisani and Morel in [29] to detect changes
in satellite images or by Caselles et al in [10, 11] for motion estimation. This distance has
the property of being invariant under any increasing change of contrast on I or J .

• Dcorr : the correlation measure is the L2 distance between image patches normalized by
their empirical mean and variance. Let I =

∑
x∈Λ I(x)/|Λ| (resp. J) denote the empirical

mean grey level of I (resp. of J) on the domain Λ, S2
I =

∑
x∈Λ(I(x)− I)2/|Λ| (resp. S2

J)
denote the empirical variance and Cov(I, J) =

∑
x∈Λ(I(x)− I)(J(x)− J)/|Λ| denote the

empirical covariance between I and J . Then the correlation measure is given by

Dcorr(I, J)2 =
1
2

∥∥∥∥I − ISI
− J − J

SJ

∥∥∥∥2

2

= 1− Corr(I, J) = 1− Cov(I, J)
SISJ

,

• Daff : the “affine” similarity measure is defined as

Daff(I, J) = max
(

min
a≥0,b

‖ I − aJ − b ‖2, min
a≥0,b

‖ J − aI − b ‖2
)
.

Daff can be exactly computed by the formula:

Daff(I, J)2 = max(S2
I , S

2
J)×min(1, 1− Corr(I, J)|Corr(I, J)|),

where S2
I , S2

J and Corr(I, J) are defined as above in the case of the correlation measure.
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Fig. 3.1. Four patches, from left to right: I1, I2, J1 and J2. The first two patches I1 and I2 both represent
a constant zone up to a contrast change and an additive noise. The last two patches J1 and J2 both represent the
same edge zone up to a contrast change and an additive noise.

Remark 1: We have used here the word “similarity measure” instead of “distance” because
the usual properties of the mathematical definition of a distance are not satisfied (mainly the fact
that we can have D(I, J) = 0 without having I = J).

Remark 2: The measure Daff could be generalized to

Dmonotone(I, J) = max
(

min
g increasing

‖I − g(J)‖, min
g increasing

‖g(I)− J‖
)
,

which can be easily computed via the pool adjacent violators algorithm [2]. For the sake of
simplicity, we stick in this paper with the affine formulation.

As explained at the beginning of the section, an “ideal” similarity measure should be at the
same time invariant to local contrast changes and discriminant. However, these two goals are
somewhat contradictory: the more invariance a similarity measure has, the less important its
discrimination power tends to be. To find the optimal measure, a good trade-off should be found
between the two criteria. Now, the three measures defined above, Dangle, Dcorr and Daff , are
all robust or invariant to affine contrast changes. In the following proposition, we study their
discriminative power when comparing two image patches with the same geometry (two constant
zones, or two edge zones with a change of contrast), or two patches with dissimilar geometries (a
flat zone and an edge zone). Such patches are shown on Figure 3.1.

Proposition 3.1 (Choice of a similarity measure). Let Λ denote the domain on which
the image patches are defined: it is assumed to be a square of n × n pixels. Let I1 (resp. I2)
be a random image patch, whose pixel grey levels are i.i.d. random variables with the normal
distribution N (c1, σ2) (resp. N (c2, σ2)), where c1, c2 and σ are constants. I1 and I2 can be seen
as noisy constant patches. Now, let J1 (resp. J2) be a random image patch, whose pixel grey levels
are independent, and such that for all 1 ≤ k ≤ n/2, J1(k, l) (resp. J2(k, l)) follows the N (α1, σ

2)
(resp. N (α2, σ

2)) distribution, and for all n/2 < k ≤ n, J1(k, l) (resp. J2(k, l)) follows the
N (β1, σ

2) (resp. N (β2, σ
2)) distribution, where α1, α2, β1 and β2 are constants. J1 and J2 can

be seen as noisy edge patches. Then the asymptotic behavior (in the sense of the a.s. convergence
when n→∞) of the three similarity measures defined above is summarized in the following table:

D2(I1, I2) D2(I1, J1) D2(J1, J2)
D2

angle 2 (±
√

2
n

) 2 (±
√

2
n

) 2− 2µ(C1/σ,C2/σ)
n

D2
corr 1 1 1− C1C2√

C2
1+4σ2

√
C2

2+4σ2

D2
aff σ2 C2

1
4 + σ2

(
σ2 + max(C

2
1

4 ,
C2

2
4 )
)
·min(1, 1− C1C2|C1C2|

(4σ2+C2
1 )(4σ2+C2

2 )
)

where C1 = β1 − α1 (resp. C2 = β2 − α2) is the contrast of the edge in J1 (resp. J2), and
µ(C1/σ,C2/σ) is a function of C1/σ and C2/σ which takes its values between −1 and 1.

Proof.
• We first start with the angular measure Dangle. We will assume here that the gradient of

any discrete image I is computed by simple differences on a four pixels neighborhood, that is:

∇I(k, l) =
1
2

(
I(k + 1, l) + I(k + 1, l + 1)− I(k, l)− I(k, l + 1)
I(k, l + 1) + I(k + 1, l + 1)− I(k, l)− I(k + 1, l)

)
.
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Using complex numbers notations, we write

2∇I(k, l) = (1 + i)(I(k + 1, l + 1)− I(k, l) + i(I(k, l + 1)− I(k + 1, l))).

Now, observe that if X1, X2, X3 and X4 are four i.i.d. N (0, 1) random variables, then X4 −
X1 + i(X3 − X2) = ReiΘ, where Θ is uniform on [0, 2π) and R has the probability density
r → 1

2r exp(−r2/4) on R+. Thus, if I is a noisy constant image patch (like I1 or I2), the ori-
entations θI(k, l) are uniformly distributed on [0, 2π). If I is a noisy edge patch (like J1 or J2),
the orientations θI(k, l) are uniform on [0, 2π) when the point (k, l) does not belong to the edge
(i.e. when k 6= n/2). When the pixel (k, l) belongs to the edge (i.e. when k = n/2), then
θI(k, l) = Arg(C + iσReiΘ) = Arg(Cσ + iReiΘ), where C is the contrast of the edge and where R
and Θ follow the laws given above.

Let us now compute the angular measure Dangle between two generic image patches I and J :
D2

angle(I, J) = 1
n2

∑
k,l |eiθI(k,l) − eiθJ (k,l)|2 = 2− 2

n2

∑
k,l cos(θI(k, l)− θJ(k, l)). If Θ is a random

variable uniformly distributed on [0, 2π), then E(cos Θ) = 1
2π

∫ 2π

0
cos θ dθ = 0 and Var(cos Θ) =

1
2π

∫ 2π

0
cos2 θ dθ = 1

2 . Now, if I1 and I2 are two noisy constant image patches, θI1(k, l)−θI2(k, l) is
uniformly distributed on [0, 2π). It follows that the expected value of their squared angular distance
is E(D2

angle(I1, I2)) = 2, and its variance is of the order of 4
n4n

2Var(cos Θ) = 2/n2. If I1 is a noisy
constant patch and J1 is a noisy edge patch, then θI1(k, l)− θJ1(k, l) is also uniformly distributed
on [0, 2π), thanks to the fact that θI1 is uniformly distributed on [0, 2π) and independent of θJ1 .
Consequently, their angular similarity measure has exactly the same property as Dangle(I1, I2).
Finally, assume that J1 and J2 are two noisy edge patches, with respective contrasts C1 and C2

across their edges. Consider the two random variables Φ1 = Arg(C1/σ + iR1e
iΘ1) and Φ2 =

Arg(C2/σ + iR2e
iΘ2), where R1, R2, Θ1 and Θ2 are independent random variables following

the laws defined above. Let us denote µ(C1/σ,C2/σ) = E(cos(Φ1 − Φ2)). The computation of
this function µ is not straightforward: it involves special Bessel type functions. However, notice
that when the normalized contrasts C1/σ and C2/σ increase, the laws of Φ1 and Φ2 get more
concentrated around 0 and µ gets closer to 1. Finally, to compute the expected angular similarity
measure between J1 and J2, we just write

E(D2
angle(J1, J2)) = 2− 2

n
µ(C1/σ,C2/σ)

• The computation of the two other similarity measures Dcorr and Daff is simpler. In the
following, the →a.s. sign denotes the almost sure convergence when n → ∞. Observe that the
image patch I1 can be written I1(k, l) = c1 + σXk,l, where the Xk,l’s are i.i.d. with the N (0, 1)
distribution. In the same way, I2 can be written I2(k, l) = c2 + σYk,l, where the Yk,l’s are i.i.d.
with the N (0, 1) distribution. It follows that

I1 =
1
n2

∑
k,l

(c1 + σXk,l) = c1 + σX →a.s. c1, S2
I1 = σ2S2

X →a.s. σ
2,

and Cov(I1, I2) =
σ2

n2

∑
k,l

(Xk,l −X)(Yk,l − Y )→a.s. 0.

Thus, when n→∞, D2
corr(I1, I2)→a.s. 1 and D2

aff(I1, I2)→a.s. σ
2.

For the patch J1, it can be written J1(k, l) = α1 + σZk,l for 1 ≤ k ≤ n/2 and J1(k, l) =
β1 + σZk,l for n/2 < k ≤ n, where the Zk,l’s are i.i.d. with the N (0, 1) distribution. As a
consequence,

J1 =
1
n2

∑
(k,l);k≤n/2

(α1 + σZk,l) +
1
n2

∑
(k,l);k>n/2

(β1 + σZk,l) =
α1 + β1

2
+ σZ →a.s.

α1 + β1

2
, and
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S2
J1

=
1
n2

 ∑
(k,l);k≤n/2

(
α1 − β1

2
+ σ(Zk,l − Z))2 +

∑
(k,l);k>n/2

(
β1 − α1

2
+ σ(Zk,l − Z))2


=
C2

1

4
+ σ2 − C1

σ

n2

 ∑
(k,l);k≤n/2

Zk,l −
∑

(k,l);k>n/2

Zk,l

→a.s.
C2

1

4
+ σ2.

In the same way, it can be shown that

Cov(I1, J1) = −C1

2
σ

n2

 ∑
(k,l);k≤n/2

Xk,l −
∑

(k,l);k>n/2

Xk,l

+
σ2

n2

∑
k,l

(Xk,l −X)(Zk,l − Z)→a.s. 0

and Cov(J1, J2)→a.s.
C1C2

4
.

Fig. 3.2. Similarity map for a constant patch. Top: two consecutive images of a movie. Top left: patch I
delimited by the white frame. Top right: neighborhood to which belongs the center of the patch J. Bottom, from
left to right: similarity map (J → D(I, J)) for the similarity measures L2, Dangle, Dcorr and Daff . For each
map, the white grey level corresponds to the maximal value obtained on the neighborhood and the black grey level
corresponds to the minimal one. We notice here that the similarity measure Daff is the only one which is at the
same time discriminant (the “distance” between the constant patch and an edge patch is large) and robust to affine
contrast changes.

If we look at the first two columns in the table of Proposition 3.1, we notice that both the
angular similarity measure and the correlation measure are unable to discriminate between a
constant image patch and an edge zone. Whereas for the affine similarity measure, we statistically
have that D2

aff(I1, J1) > D2
aff(I1, I2), which means that it is able to discriminate between constant

zones and edge zones. Thus, the conclusion is the following:
Corollary 3.1. The affine similarity measure Daff is the only one of the three considered

similarity measures which is able to discriminate between an edge patch and a constant patch.
An experimental way to check this result is to compute similarity maps on real images. This

is illustrated by Figures 3.2 and 3.3. For a given patch, we compute the similarity measures to
all neighboring patches for four different measures: L2, Dangle, Dcorr and Daff . The similarity
maps thus obtained are an experimental check of Proposition 3.1 on more realistic patches. In
particular, we notice on the figures that the measures Dcorr and Dangle are not very discriminant:
patches in flat zones are similar to almost all other patches, whatever their geometry. On the
other hand, the similarity measure Daff is able to select only the patches which have the same
geometry as the considered patch I.
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Fig. 3.3. Similarity map for an edge patch. Top: two consecutive images of a movie. Top left: patch I
delimited by the white frame. Top right: neighborhood to which belongs the center of the patch J. Bottom, from
left to right: similarity map (J → D(I, J)) for the similarity measures L2, Dangle, Dcorr and Daff . For each
map, the white grey level corresponds to the maximal value obtained on the neighborhood and the black grey level
corresponds to the minimal one. Notice again that the similarity measure Daff is the only one which is both
discriminant and robust to affine contrast changes.

The conclusions of both the theoretical analysis and the experimental study are the same:
among the considered similarity measures, the “optimal” one is Daff . Thus, in all the following,
we will use D = Daff to measure the similarity between image patches.

3.2. Motion based flicker reduction. In this section, we present an operator for local
contrast stabilization, called LStab (for Local Stabilization), that relies on the similarity measure
Daff .

Let u be a discrete movie damaged by some flicker (local or not). Let Λ be a square of pixels
centered at 0. For x ∈ Ω, we consider the patch ut(x + Λ) centered in x. Let Λx denote the set
{x+ Λ}. The similarity measure Daff introduced in Section 3.1 is robust to contrast changes, and
thus can be used to roughly estimate the motion in the presence of flicker. Observe that we do
not look for an highly accurate motion estimation, but only for an indication of motion. For this
reason, the measure Daff will be used without any regularity constraint. For each pixel x in ut,
its matching point ϕt,s(x) in us is estimated by comparing ut(x+ Λ) and us(y + Λ) for all y in a
suitable neighborhood:

ϕt,s(x) = Argminy∈Wt,s(x)Daff(ut(x+ Λ), us(y + Λ)), (3.1)

where Wt,s(x) is a search window in us. In other words, the best corresponding patch is obtained
by block-matching using the distance Daff between patches. Obviously, we get in particular
ϕt,t(x) = x. In practice, the choice of Wt,s(x) is crucial and will be discussed in details in Section
3.5 (in particular, we will see how the size of this window should be related to the size of the
patches). Let us mention however that this window can either be static and written x+W , with
W a neighborhood of 0, or be updated at each frame and written Wt,s(x) = ϕt,s−1(x) + W if
s > t and Wt,s(x) = ϕt,s+1(x) +W if s < t. In this case, the estimation of ϕt,s(x) depends on the
estimation of ϕt,s−1(x) (or ϕt,s+1(x) if s < t).

Relying on this estimation, our weighted motion-based local contrast stabilization operator
LStab is defined as:

LStab[ut](x) =
1

Z̃t,x

∫
s

e−(t−s)2/2σ2
wt,x(s, ϕt,s(x)) H−1

s,Λϕt,s(x)
(Ht,Λx(ut(x))︸ ︷︷ ︸

rank of x in the patch ut(Λx)

)

︸ ︷︷ ︸
grey level of the pixel of same rank as x in us(Λϕt,s(x))

ds, (3.2)
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where Ht,Λx denotes the cumulative histogram of the patch ut(Λx) and where wt,x is a weight
function given by wt,x(s, y) = ρ

(
D2

aff(ut(x+ Λ), us(y + Λ))
)
, with ρ : R+ → R+ decreasing, and

Z̃t,x a normalizing constant which ensures that the total sum of all weights is equal to 1, i.e.

Z̃t,x =
∫
s

e−(t−s)2/2σ2
wt,x(s, ϕt,s(x)) ds.

It may happen that the Argmin operator in (3.1) is ambiguous and returns several points. In this
case, one can simply use all of them in Equation (3.2).

The interest of balancing the different values by the weights wt,x(s, y) seems pretty clear if we
think of a situation where the sequence changes a lot between the current frame t and the frame
s : in this case, any motion estimation algorithm will still find a best correspondence to the patch
ut(x + Λ) in the frame us, but this best correspondence will not make a lot of sense. When we
stabilize brightness fluctuations along motion trajectories, using these weights allows to discard
patches which are too different from the current patch.

In practice, we used in our experiments the decreasing function ρ(x) = e−
x2

h2 , where h is a
parameter that has to be tuned by the user. This parameter plays the same role as the value of the
threshold in soft thresholding denoising methods: when h is “large”, all weights become almost
equal, and thus the mean will mix everything together. On the other hand when h is “small”,
only points which look very similar to x will have a non negligible weight in the sum. We will
again discuss the way to set the value of h in the experimental section at the end of the paper.
Observe that other decreasing functions could be used for g, such as a hard thresholding function
for example.

One could argue at this point that the motion estimation performed by Equation (3.1) is not
always accurate. Indeed, because of the redundancy of images, and because the similarity measure
we use is robust to affine contrast changes, a pixel can have several “good” matches, and it is then
uneasy to find the right one among them. It is particularly true in textured sequences such as the
ones presented in Figures 4.5, 4.6, 4.7. The naive motion estimation provided by Equation (3.1)
could thus be strengthened by regularity constraints, such as the ones used in classical motion
estimation algorithms. However, we will see in the experimental section at the end of the paper
that this flicker stabilization procedure provides very satisfying results, without needing a more
complex and more precise motion estimation.

3.3. Multi-patch based flicker stabilization. Following the previous remark, we propose
another stabilization operator, called SLStab (for Semi-Local Stabilization), which takes into ac-
count all the possible correspondences of a patch in order to stabilize the contrast, and not only
the best correspondence. This operator is inspired by the NL-means method [7] introduced by
Buades, Coll and Morel for movie denoising and which is known for the good results it provides.
In SLStab, the grey level distribution of a patch ut(x+ Λ) is replaced by a weighted mean (in the
sense of Equation (2.1)) of the distributions of all patches us(y + Λ). The mean is taken only for
y ∈Wt,s(x) where Wt,s(x) is defined as above, and weighted by the weights wt,x(s, y), in order to
favour patches which are similar to ut(x+ Λ).

More precisely, the weighted multi-patch stabilization operator SLStab can be written

SLStab[ut](x) =
1
Zt,x

∫
s

Ct,x(s)
∫
y∈Wt,s(x)

wt,x(s, y)H−1
s,Λy

(Ht,Λx(ut(x))) dy ds, (3.3)

where
• Ct,x(s) is a normalizing constant which controls the total weight of us. In practice, as it

was the case in Equation (2.1), we just set

Ct,x(s) =
e−(t−s)2/2σ2∫
y
wt,x(s, y) dy

.

Another possibility is to normalize each frame in such a way that its total weight is
maxy wt,x(s, y): this can be useful whenever there is a change of sequence in the movie;
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• Zt,x is the final renormalization constant: it ensures that the total sum of all weights is 1,

Zt,x =
∫
s

Ct,x(s)
∫
y

wt,x(s, y) dy ds.

One of the main interests of this method relying on weighted patches is that it does not rely
as heavily on motion estimation as the weighted motion one. If the search window Wt,s(x) is
fixed, the method does not rely on any motion estimation at all. If this can seem meaningless for
“classical” motion sequences, it makes perfectly sense for biological or textured image sequences,
such as the ones shown in Figures 4.5, 4.6, 4.7. Indeed, these sequences show non-rigid objects,
which undergo non-rigid distortions. For these kind of movies, the concept of motion trajectories
is not completely relevant anymore.

3.4. Links between LStab and SLStab. The operator LStab can be seen as the limit of
SLStab when we introduce a real parameter p that we let go to infinity. More precisely, if we
define the operator SLStab(p) by

SLStab(p)[ut](x) =
1

Z
(p)
t,x

∫
s

e−(t−s)2/2σ2∫
y
wpt,x(s, y) dy

∫
y∈{Wt,s(x)}

wp+1
t,x (s, y)H−1

s,Λy
(Ht,Λx(ut(x))) dy ds,

where

Z
(p)
t,x =

∫
s

e−(t−s)2/2σ2∫
y
wpt,x(s, y) dy

∫
y∈{Wt,s(x)}

wp+1
t,x (s, y) dy ds,

then SLStab(0) = SLStab and SLStab(p)[ut](x) goes to LStab[ut](x) as p goes to infinity. This
amounts to change the parameter h2 used in the weight function w in two different ways depending
on the considered sum: it is changed into h2/(p + 1) in the weighted sum of grey levels and it
is changed into h2/p in the normalization per frame. This result is analogous to the fact that in
some sense “the L∞ norm is the limit of the Lp norm as p goes to infinity”.

3.5. Setting the parameters. The different parameters ( the parameter h in the decreasing

function ρ(x) = e−
x2

h2 , the size of Λ and the size of W ) used in the previous stabilization procedures
are important and should be chosen carefully.

On the size of the patches |Λ|. If |Λ| is too large, the patches can contain different moving
objects and the estimation of the similarity measure Daff(ut(x+ Λ), us(y+ Λ)) can be unreliable.
However, if |Λ| is too small, the information in the patches can be poor and the measure Daff(ut(x+
Λ), us(y + Λ)) can not be trusted either. A good choice for the size |Λ| is clearly related to the
resolution of the frames and the size of the objects moving in the sequences. In all the experiments
presented in this paper, Λ was set as a 21× 21 square window.

On the choice of the parameter h. The parameter h is related to the values taken by the
similarity measure Daff on the image. Since the weights are given by exp(−Daff(·, ·)2/h2), h can
be seen as a soft threshold. It can also be seen as a regularization scale for the flicker. If h is large,
then all weights in (3.3) will be close to 1. In this case, the flicker is efficiently stabilized, but some
artefacts can appear since patches which can have very dissimilar geometries are mixed together.
Conversely, when h is small, only patches which are very similar to the considered frame will have
non negligible weights in the sum. But then, flicker is not as efficiently stabilized. In practice, we
observed that values of h between 10 and 30 (the distance Daff between patches being normalized
by the size of the patches) generally yield good results on most sequences.

On the size of the search window |W |. The size of the search window W should be large
enough to follow a pixel in the presence of a large motion. On the other hand, if W is too large,
there is a risk that patches corresponding to different objects, with the same geometry but different
contrast, will be mixed together. Now, a very simple and elementary requirement for the choice
of W (and for the whole approach in general) is that if a movie u does not contain any motion
nor any flicker (which means that all frames are the same - let v denote one of these frames), then
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it should be invariant under the operators LStab and SLStab. To satisfy such a requirement, we
need to ensure that for any pixel x, a patch v(y + Λ) with its center y in the window x+W and
which is similar (according to the similarity measure Daff) to the patch v(x + Λ) will not create
“new” grey level values at x when equalizing the grey level histograms. In other words, if we
consider the operator T defined on a single image v by

T v(x) =

∫
x+W

w(x, y)H−1
Λy

(HΛx(v(x))) dy∫
x+W

w(x, y) dy
, (3.4)

where w(x, y) = exp(−Daff2(v(x+ V ), v(y + V ))/h2), then we should have T v ' v.
Proposition 3.2. In order to avoid any “ringing” effect in the neighborhood of edges, we

have to set

W ⊂ 2Λ.

Proof. Let v be the image of a noisy edge, as defined in Proposition 3.1. We assume that the
image domain is {−N, . . . ,−1, 0, 1, . . . , N}2 and that v is given by: v(x) = v(x1, x2) = α+ σn(x)
if x1 < 0, and v(x) = β + σn(x) if x1 ≥ 0, where α and β are two grey levels, σ is the standard
deviation of the noise, and the n(x) are i.i.d. N (0, 1).

We then consider a patch v(x+ Λ) where Λ = {−K, . . . ,−1, 0, 1, . . . ,K}2. By symmetry, we
will just compute what happens on the right side of the edge (i.e. in the domain x1 ≥ 0). Let
r(x) = HΛx(v(x)). By definition, it is the rank of v(x) in the set of all v(x + z) with z ∈ Λ. If
x = (x1, x2) with x1 ≥ K, then the patch v(x+ Λ) doesn’t intersect the edge. It is thus an almost
constant patch (up to the additive noise), and then r(x) is uniformly distributed between 1 and
|Λ| = (2K + 1)2.

The affine similarity measure between v(x + Λ) and another patch v(y + Λ) can be easily
computed (in a way similar to what we did in the proof of Proposition 3.1), and we obtain that:
D2

aff(v(x + Λ), v(y + Λ)) ' σ2 when v(y + Λ) is another constant patch (that is when y1 ≥ K or
y1 < −K). And D2

aff(v(x + Λ), v(y + Λ)) ' py(1 − py)(b − a)2 + σ2 when v(y + Λ) is a patch
containing the edge and where py = (K − y1)/(2K + 1) is the proportion of ' α values in the
patch.

On the other hand, we can also compute the expected values for H−1
Λy

(HΛx(v(x))) and get:

H−1
Λy

(HΛx(v(x))) = H−1
Λy

(r(x)) =

 α if y1 < −K,
β if y1 ≥ K,

αpy + β(1− py) otherwise.

Let now W be the neighborhood used in the definition of the operator T in Equation (3.4).
We will denote it by W = {−m, . . . ,−1, 0, 1, . . . ,m}2.

If m > 2K, then there will exist points x such that K ≤ x1 < m −K. For all these points,
since x1 −m < −K their neighborhood x + W will contain points y such that y1 < −K. Thus,
since the similarity measure between v(x+ Λ) and all other patches v(y + Λ) such that y1 < −K
or y1 ≥ K is the same and smaller than the similarity measure to edge patches, the grey level
T v(x) will be a weighted mean of α and β values, and will not remain close to v(x) ' β. This
effect can clearly be observed on Figure 3.5. Thus, in order to avoid creating such artefacts, we
have to set m ≤ 2K, in other words W ⊂ 2Λ.

On the other hand, points x which are such that the patch v(x + Λ) contains the edge will
have an almost unchanged grey level because there are no patches in the image which will have
the same geometry but with very different grey level values.

The typical edge profiles that we obtain after applying Equation (3.4) is shown on Figure 3.4.

4. Experiments and discussion. This section presents the results of the proposed sta-
bilization procedures on several sequences, containing real or synthetic flicker. For the sake of
completeness, most of these sequences and their corresponding results are available at http:
//www.tsi.enst.fr/~delon/Demos/Flicker_stabilization/.
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Fig. 3.4. Result of Equation (3.4) when W is larger than Λ. In this experiment, the size of Λ is 15×15 pixels
and the size of the search window W is 37× 37. Left: profile of a pure edge v. Middle: profile of T v when h = 10.
This profile shows some “ringing phenomenon”. Right: profile of T v when h = 100. In this case, since h is large,
all patches have an almost equal weight, whatever their geometry.

Fig. 3.5. Left: image v of a noisy edge (size 67× 67 pixels). Right: image T v when the size of Λ is 15× 15
pixels and the size of the search window W is 37× 37. The search window is too large compared to the size of the
patches, and some artefacts appear: in particular, we can notice some kind of “ringing phenomenon” around the
edge.

4.1. Implementation. Equations (3.2) and (3.3) can be implemented independently on each
pixel x of ut. However, the computation of the weighted motion for the neighborhood Λx of each
pixel x in Ω can take time. In order to accelerate the process, the stabilization procedure can
be implemented by blocks. The domain Ω is divided into a fixed grid of overlapping blocks Λi,
i = 1, . . . , NB . Equation (3.2) (or (3.3)) is then used on each of these blocks to stabilize the flicker
of all pixels contained in the block (and not only the central pixel of the block). If a pixel x belongs
to several blocks Λi1 , . . . ,Λix , the restored grey levels obtained at x for each Λij are averaged to
obtain the final restored value at x. This averaging regularization is a way to avoid block effects.

The following experiments are obtained using this block-based implementation. In these ex-
periments, the block (or patch) Λ is always chosen as a square of size 21×21. The overlap between
these blocks is chosen as half the size of a block, i.e. as 10 here. The search window W is also
chosen as 21 × 21 in most of the experiments, which is large enough for the motion observed in
the sequences presented here and which permits to satisfy the condition of Proposition 3.2. The
temporal standard deviation σ is set to 5, which in practice means that the temporal neighborhood
taken into account in the restoration of ut is approximately [t − 2σ, t + 2σ] = [t − 10, t + 10] (10
images before t and 10 images after t).

4.2. Effects on flicker-free sequences. A crucial property of a flicker stabilization proce-
dure is its ability to leave intact sequences which do not contain any flicker. Figure 4.1 illustrates
this property. On the left, one can see a frame extracted from a sequence containing several
artifacts but no visible flicker. After applying the operator LStab (Equation (3.2)) to the whole
sequence with h = 10, the same frame in the modified sequence is shown in the center of the figure.
The difference between both frames is shown on the right, rescaled from its range [0, 15] to [0, 255]
for better visualization. The two images are almost identical and the mean grey level difference
between both images is 0.79. If the sequence is stabilized with h = 30, the mean grey level differ-
ence becomes 0.91, which is still quite small. Although this mean difference remains moderate, a
slight difference can be perceived at some very specific locations. These zones correspond to small
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Fig. 4.1. Left: a frame of a sequence containing no visible flicker. Center: same frame, after applying the
operator LStab (Equation (3.2)) with h = 10 to the whole sequence. Right: difference between both frames, rescaled
from [0, 15] to [0, 255] for better visualization.

blotches, caused by dirts on the film support. These blotches are present in this frame but do
not correspond to any information in other frames of the movie. They tend to disappear under
the stabilization procedure, since the grey level distribution of their neighborhood is mixed with
neighborhoods in other frames which do not contain blotches. As a consequence, these blotches
appear clearly when we compute the difference between the original sequence and the regularized
one.

4.3. Synthetic flicker. One of the worst difficulties of old film restoration is that most of the
films suffer from several defects (blotches, scratches, flicker) at the same time. As it can be noticed
on the example of Figure 4.1, the restoration of a single defect is not completely independent of the
presence of the others. For this reason, we begin our experiments with two sequences containing
no such defects. The first sequence, called flag is build from a single 247× 188 frame, to which we
added independent samples of a white Gaussian noise random image. This sequence, on purpose,
does not contain any motion. The second sequence is the classical sequence taxi 1, generally used
in motion estimation benchmarks. In this sequence, the size of the frames is 256× 191.

To each sequence, we added two kinds of synthetic flicker. The first one consists in a random
multiplicative and local flicker, placed on random positions along the sequence. More precisely,
each frame ut of size Nc ×Nr becomes

∀(k, l) ∈ Ω, ũt(k, l) = ut(k, l)×
(

1 + Ste
− (k−Xt)2+(l−Yt)2

r2

)
, (4.1)

where St, Xt and Yt are independent and St ∼ U [−0.3, 0.3], Xt ∼ U [0, Nc], Yt ∼ U [0, Nr]; and
where the radius r is fixed to 100. This flicker has no motion coherence (see Figure 4.2 (a)
and 4.3 (a)). The frames become randomly locally darker or lighter. The second kind of flicker
consists in a multiplicative dark transparent strip moving from the top left to the down right of
the frames as the movie is played. More precisely, a frame ut becomes

∀(k, l) ∈ Ω, ũt(k, l) = ut(k, l)×
(

0.6 + 0.4e−
w

0.5+k+l−(t+1)γ

)
, (4.2)

where w is the width of the strip and γ is the speed of the flicker motion. The width w is set
to 60 for both sequences and the speed s is set to 40 for the flag sequence and to 15 for the taxi
sequence. This flicker is motion-coherent (see Figures 4.2 (c) and 4.3 (c)).

The four resulting sequences and the results of the LStab operator (Equation (3.2)) using the
implementation described in Section 4.1 can be seen at the address http://www.tsi.enst.fr/

~delon/Demos/Flicker_stabilization/. All the parameters are set as described in Section 4.1

1This sequence is available at http://i21www.ira.uka.de/image_sequences/.
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(a) Random local flicker.

(b) Same frames after flicker stabilization with LStab, h = 30.

(c) Motion-coherent local flicker.

(d) Same frames after flicker stabilization with LStab, h = 30.

Fig. 4.2. (a) Four frames of the flag sequence, affected by the random flicker given by Equation (4.1). (b)
Same frames after using the operator LStab (Equation (3.2)) to remove the flicker. (c) Four frames of the flag
sequence, affected by a motion-coherent flicker given by Equation (4.2) (a dark strip that goes through the images).
(d) Same frames after using the operator LStab to remove the flicker. One can notice that in both cases, since we
only perform changes of contrast, there is no spatial smoothing, and thus the noisy texture of the movie remains
intact.

and h is set to 30. Some frames extracted from the different sequences and the corresponding
frames in their restored versions can also be seen on Figures 4.2 and 4.3. Observe that the
restored sequences are not identical and depend strongly on the flicker that we try to eliminate.
For instance, the contrast of the frames in Figure 4.2 (b) (resp. Figure 4.3 (b)) is larger than
the contrast of the frames in 4.2 (d) (resp. Figure 4.3 (d)). Since the flicker has destroyed some
contrast information, we cannot hope to recover completely the contrast of the original sequence,
but only to filter it enough to make it barely noticeable. Observe also on the flag sequence how
the flicker disappears while the noisy texture remains intact. This is due to the fact that only
changes of contrast are performed, without spatial smoothing.

It is generally not easy to evaluate the performance of a flicker stabilization method because
in most cases there is no available ground truth. However, in the case of a synthetic flicker, we
can compare a frame of the original sequence with the same frame in the flickering sequence and
with the same frame after flicker stabilization. In order to measure the ability of the stabiliza-
tion procedure to recover the geometrical information of the original sequence, we compare the
topographic map of an original frame with the one of the corresponding restored frame. This is
illustrated by Figure 4.4. On the center, we notice that the local flicker has modified some level
lines. In particular, it has created level lines which are parallel to the dark transparent strip (see
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(a) Random local flicker.

(b) Same frames after flicker stabilization with LStab, h = 30.

(c) Motion-coherent local flicker.

(d) Same frames after flicker stabilization with LStab, h = 30.

Fig. 4.3. (a) Four frames of the taxi sequence with an additional random local flicker, given by Equation (4.1).
(b)Same frames after applying the operator LStab to remove the flicker. (c) Four frames of the taxi sequence with
an additional local flicker, looking like a dark transparent strip moving across the frames, given by Equation (4.2).
(d) Same frames after applying the operator LStab to remove the flicker.

below the white car, on the right of the black car). We also see that the most contrasted level
lines, which correspond to the salient objects in the image are not modified. On the right of the
figure, we show the level lines after flicker stabilization by LStab. The level lines created by the
flicker have disappeared in this restored frame.

4.4. Biological sequences. In this section, we test the LStab and SLStab operators on
three biological sequences. The first sequence, called Drosophila, represents a Drosophila wing
imaginal disc (kindly provided to us by F. Graner, F. Llense and Y. Belläıche, from Institut Curie,
Paris). It has been acquired thanks to a spinning disk microscope, camera Roper HQ2. The
second sequence, called Cells, provided by Marion Ghibaudo and Benôıt Ladoux (MSC Lab., Paris
Diderot University) is a movie of an array of fluorescent micropillars, on which cells exert forces.
The motion of the pillars is estimated by biologists [18] to measure the different forces exerted by
the cells. The last sequence, called Physarum, was provided by Marc Durand (MSC Lab., Paris
Diderot University) and shows a physarum polycephalum, which is moving in quest of food. The
three movies contain naturally strong flicker-like effects, which cannot be entirely explained by
their acquisition protocols. We show in Figures 4.5, 4.6 and 4.7 the results on these sequences of
the combination STE+SLStab (equation (2.2) followed by equation (3.3), with h = 10). The same
kind of results could be obtained by using the operator LStab instead of SLStab. In all cases, the
flicker effects are completely stabilized, which permits a better visual estimate of the fine motions
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Fig. 4.4. Left: level lines of a frame of the original taxi sequence. The figure shows all level lines at a sample
rate of 5 grey levels. Center: level lines of the same frame in the sequence containing the motion-coherent flicker.
We notice that the local flicker has modified some level lines. In particular, it has created level lines which are
parallel to the dark transparent strip (see below the white car, on the right of the black car). We also see that the
most contrasted level lines, which correspond to the salient objects in the image are not modified. Right: level lines
of the same frame in the sequence restored thanks to the operator LStab (Equation (3.2)). The level lines created
by the flicker have disappeared in this restored frame.

and distortions in the sequences. Observe that in these sequences, the sole application of the
global correction STE removes most of the visible flicker effects, but is not adequate to remove all
the fine local contrast changes. This is particularly obvious on the Physarum sequence shown in
motion (see http://www.tsi.enst.fr/~delon/Demos/Flicker_stabilization/).

(a) Three frames from the original Drosophila sequence.

(b) Same frames in the sequence stabilized with STE + SLStab, h = 10.

Fig. 4.5. (a) Three images of the Drosophila sequence showing important flicker-like effects. (b) Same frames
after the successive applications of the operators STE and SLStab (Equation (3.3)), with h = 10 and a search
window of size 11× 11. Other parameters are set as described in Section 4.1.

4.5. Sequences extracted from old movies. We finally show the results of the LStab
operator on four sequences extracted from old movies. Some frames extracted from the original
and stabilized sequences are shown on Figures 4.8, 4.9, 4.10 and 4.11.

The first two sequences, called Boat and GreatWall, are extracts of the movie Our Shrinking
20

http://www.tsi.enst.fr/~delon/Demos/Flicker_stabilization/


(a) Three frames from the original Cells sequence.

(b) Same frames in the sequence stabilized with STE + SLStab, h = 10.

Fig. 4.6. (a) Three images from the Cells sequence [18] showing important flicker-like effects. (b) Same
frames after the successive applications of the operators STE and SLStab (Equation (3.3)), with h = 10. Other
parameters are set as described in Section 4.1.

world (1946), available on the website www.archive.org . The first sequence is 93 frames long
and contains small movements in the foreground, with a static, although unsteady, background.
The second sequence is 150 frames long and consists in a tilting of the camera on the Great
Wall. They both present challenging local flicker degradations, which can not be removed by a
global correction. We chose these two sequences to confront our stabilization scheme with state of
the art flicker removal procedures. Indeed, according to the results kindly provided by G.Forbin
at http://personal.ee.surrey.ac.uk/Personal/G.Forbin/results/, these degradations are
not entirely stabilized by recent methods as the ones of [36, 20]. Figures 4.8 and 4.9 illustrate
the results of the STE + LStab combination on these sequences, with h = 10. For a complete
and fair comparison, the results of our stabilization scheme on the whole sequences are available
at http://www.tsi.enst.fr/~delon/Demos/Flicker_stabilization/. Observe that on these
two sequences, the scheme introduced in this paper show similar or better results than the ones
presented in [36, 20]. For instance, with these last two approaches, some important contrast
changes could still be observed on the pyramid, on the right part of the Boat sequence, while
these contrast changes have completely disappeared with our approach. Figure 4.8(c) shows the
absolute differences between the frames 9 and 67 of the sequence, before and after the stabilization.
Notice how the differences are distributed over the whole image domain before the stabilization,
and only restricted to motion edges after.

In the third sequence (see Figure 4.10), which is 80 frames long, the flicker is a mix of global
contrast changes and of a dark transparent strip going through the images from right to left when
the movie is being played (the strip is placed on the face of the man on the middle frame in the
figure). This sequence can thus be compared to the synthetic sequences created in the previous
section with the motion-coherent flicker. After applying the LStab operator, with h = 30, the
other parameters being set as described in Section 4.1, the flicker is not visible anymore.

The last sequence is a short extract of 101 frames from the movie Les Aventures des Pieds
Nickelés, Emile Cohl/Eclair (1917-1918, copyright: Marc Sandberg). In this sequence, shown
on Figure 4.11 (a), the flicker has a strong global component, although local variations can also
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(a) Frames 1, 42 and 170 from the Physarum sequence.

(b) Frames 1, 42 and 170 from the Physarum sequence, after stabilization with STE + SLStab, h = 10.

Fig. 4.7. (a) Three frames from the Physarum sequence. (b) Same frames after the successive applications of
the operators STE and SLStab (Equation (3.3)), with h = 10. Other parameters are set as described in Section 4.1.

be perceived along the sequence. As a consequence, we applied first the global operator STE
(Equation (2.2)) to this sequence, with a large value of σ to get rid of these strong global contrast
changes along the sequence. After this global stabilization, local and fast fluctuations remained
visible, taking the shape of large bright spots at different locations on the frames. This is illustrated
by Figure 4.12 (a), which shows the absolute difference between two successive frames of the
sequence after the global correction. The visible differences are not only due to motion (or film
shaking in this case) but appear also as large bright spots at different places. As shown in
Figures 4.11 (b) and 4.12 (b), applying LStab with h = 30 to this sequence enabled us to remove
these spots and the remaining flicker.

5. Conclusion. In this paper, a new procedure to stabilize flicker-like effects in image se-
quences has been proposed. The method relies on a similarity measure between image patches that
has been demonstrated to be at the same time robust to affine contrast changes and discriminant.
This similarity measure permits to roughly estimate the motion in the movie despite the presence
of flicker. The main stabilization operator introduced in this paper, called LStab, makes use of
this similarity measure to find the correspondences of a given patch and replaces the grey level
distribution of the patch by a weighted mean of the grey level distributions of all these correspond-
ing patches, the weights being chosen as a decreasing function of the similarity measures between
patches. The ability of this operator to deal with strong flicker has been demonstrated on several
synthetic and real examples. In particular, since this operator only performs contrast changes on
image patches, and does not involve spatial smoothing, it is able to preserve fine spatial features
such as noise or textures in the frames.

The perspectives of this work are twofold. First, we plan to study in more detail the theoretical
aspects of the method. In particular, the different operators introduced (LStab and SLStab for
movies, and T for a single image) should certainly find statistical interpretations, in the same vein
as what has been done for the NL-means operator [7]. Another perspective lies in the adaptation
of this work to color sequences. Among the questions that color sequences raise, let us mention the
choice of a measure of similarity between color patches equivalent to Daff and the generalization of
the scale time equalization (STE) to 3D color histograms. This perspective could certainly benefit
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(a) Frames 9, 67 and 93 from the original sequence.

(b) Same frames in the sequence stabilized with STE + LStab, h = 10.

(c) Absolute differences between the frames 9 and 67, before and after stabilization.

Fig. 4.8. (a) Three images of the sequence Boat, suffering from a strong local flicker. (b) Same frames
after flicker stabilization by Operator LStab (Equation (3.2)), with h = 10. Other parameters are set as described
in Section 4.1. (c) On the left, absolute difference between the first and second frames of line (a). Because of
flicker-like effects, large differences can be observed everywhere. On the right, absolute difference between the first
and second frames of line (b). The only differences are located around the edges and are due to motion.

from recent developments in optimal transportation theory and will require future investigation.
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