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[1] A mono-shear-band bifurcation analysis is extended to the formation of shear-band
network affecting a finite brittle body. This analysis, along with the results of
numerical simulations, suggests the following description of the bifurcation process. It
starts when the hardening modulus h reaches a critical value hmax which has proved to be
the same as that previously obtained from mono-band analysis. The deformation pattern is
penetrative at this stage and presents two conjugated sets of dense, parallel
intermittent bands with accelerated and decelerated inelastic deformation. At the next
stage the response of the material outside the bands with accelerated deformation becomes
elastic (elastic unloading). The size of the elastic zones rapidly grows and the spacing
l between the ‘‘active’’ localization bands (incipient fractures) correspondingly increases
to a value defined by the constitutive and stress-state parameters. Both the analytical
solution and numerical models show that l is very sensitive to h: l = 1 at h = hmax

and l tends to the bend thickness when h ! hmin < hmax. If h reduces rapidly below hmin,
the deformation ‘‘jumps’’ into the post-localization state and the material becomes
completely crushed. Thus there exists only a narrow range of h values for which the
deformation bifurcation, and hence the formation of regular band/fracture network, is
possible. The obtained analytical solutions show how the band spacing depends on other
constitutive parameters and on the stress-state.

Citation: Chemenda, A. I. (2007), The formation of shear-band/fracture networks from a constitutive instability: Theory and

numerical experiment, J. Geophys. Res., 112, B11404, doi:10.1029/2007JB005026.

1. Introduction

[2] There are numerous laboratory (Figures 1a and 1c) and
field (Figures 1d and 1e) examples of a surprisingly regular
organization of fracture/band patterns in different materials.
This kind of organization was also reproduced numerically
[e.g., Poliakov et al., 1994]. The likely mechanism for the
formation of such regular sets of parallel fractures is the bulk
loss of stability of the material. The physical nature of this
instability can lie in the nonlinearity of the material proper-
ties and their change (e.g., degradation) during inelastic
deformation. Such a material can undergo uniform straining
only until a certain degree of its damage, after which the
deformation cannot be homogeneous anymore and localizes
in certain zones, such as planar bands. The prediction of the
conditions for localization and of the characteristics of the
resulting macro-fractures (e.g., their spatial organization)
can be based on the complete micromechanical description,
which considers the formation and interaction of micro-
cracks, grain rotations, pore collapse, etc. There is, however,
a simpler and more elegant way to approach this problem by
assuming the concept of deformation bifurcation within the
frame of macroscopic ‘‘smooth’’ description of constitutive

properties [Rice, 1973]. The bifurcation results from a
constitutive (internal or material) instability associated with
instabilities in mathematical solutions to incremental defor-
mation boundary-value problems.
[3] The bifurcation theory has been developed byHadamard

[1903], Thomas [1961], Hill [1962], and Mandel [1964,
1966]. They obtained the bifurcation condition as a partic-
ular case of ‘‘stationary discontinuity (or acceleration/plastic
wave)’’ corresponding to slip surfaces, Luders lines or
localization bands. The condition relates the orientation of
a band with elasto-plastic stiffness moduli (4th order stiff-
ness tensor) that depend on the constitutive formulation.
Rudnicki and Rice [1975] (hereafter RR) tied the bifurcation
theory to the realistic constitutive model for geomaterials.
From the bifurcation condition they derived both the orien-
tation of a shear band in the stress space (Figure 2) and the
critical hardening modulus (at which strain localization
should start) as functions of the constitutive and stress-state
parameters. This paper gave rise to the numerous studies of
deformation localization (see Vardoulakis and Sulem [1995]
and Bésuelle and Rudnicki [2004] for a review).
[4] The above shear-band bifurcation theory deals in fact

with formation (initiation) of one infinitely long localization
band within an infinite body. In reality, however, instead of
one band we observe the formation of band (fracture)
networks (Figure 1) within a finite (frequently layered)
body. The band/fracture networks are clearly characterized
by certain dominant (for each case) spacing. This parameter

JOURNAL OF GEOPHYSICAL RESEARCH, VOL. 112, B11404, doi:10.1029/2007JB005026, 2007

1Géosciences Azur, Université de Nice-Sophia Antipolis and CNRS,
Valbonne, France.

Copyright 2007 by the American Geophysical Union.
0148-0227/07/2007JB005026$09.00

B11404 1 of 10



is extremely important for the reservoir applications dealing
with reservoir permeability (fracture/double porosity, hy-
draulic barriers, etc.). The definition of band spacing is
obviously beyond the limits of mono-band analysis. Gara-
gash [Garagash, 1981; Garagash and Nikolaevsky, 1989]
extended such analysis onto a parallel set of infinitely long
shear bands based on the virtual work principle. He
obtained the RR’s critical condition for hardening modulus
as a limit case corresponding to the infinite spacing between
the bands in the regime of elastic unloading outside them.
[5] The next step in approaching the real conditions

should be an analysis of the formation of two parallel
conjugated band sets (as seen in Figure 1) within a finite
body. Such an analysis is attempted in the present paper.
The same approach is used as in the classical bifurcation
theory. The difference consists in the velocity field during
the loss of the constitutive stability which has been designed
to correspond to a regular band network in Figure 3a. The
form of this field is derived from the experimentally
inspired assumption that during bifurcation the deformation
pattern represents a spatially repeating structure which can
be composed of one elementally sell (Figure 3) whose size
defines the dominant band spacing. The analysis is then
limited to this cell. The velocity field within it is obtained
from another assumption, that at the moment of bifurcation
the deformation within the cell is completely due to the
internal energy redistribution with no external energy input
to the cell. The obtained bifurcation equation, containing the
spacing parameter, has been analyzed for two cases
corresponding respectively to the continuous and discontin-
uous bifurcation (with inter-band unloading in the latter
case). For the first case we obtained the same as RR’s

critical conditions for the hardening modulus and the band
orientation, with the spacing parameter being canceled out.
In the second case this parameter has been found as a
function of all constitutive parameters including the hard-
ening modulus. These analytical results have been tested on
and supported by the final-difference numerical models.

2. Summary of the Mono-Shear-Band
Bifurcation Theory

[6] The general concept of bifurcation from homoge-
neous deformation as a result of instability in the constitu-
tive description has been developed by Hadamard [1903],

Figure 1. Shear-band (fracture) networks in laboratory samples (a to c) and field (d and e). (a) Paraffin
and (b) marble cylinder samples deformed under axi-symmetric compression; (c) iron bar submitted to a
flexure; (d) Upper-Cretaceous sand, north-east of Carpentras, Southern France (courtesy of Ch.
Wibberley; geological details are in [Wibberley et al., 2007]); (e) Upper-Cretaceous sandstone, Orange,
Provence (France) (courtesy of E. Saillet). Samples in Figures 1a to 1c (photos are from Nadai [1950])
have centimetric size (the exact dimensions are not indicated).

Figure 2. Localization band in an infinite body: mono-
shear-band localization model. si are the principal stresses.
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Thomas [1961], Hill [1962], and Mandel [1964, 1966]. The
constitutive instability is viewed as a formation of a narrow
planer band of deformation localization within an infinite
body at a certain stage of its initially uniform deformation
under uniform stressing [Berg, 1970, Rice, 1973]. Outside
the band the velocity field remains uniform and within it
varies only in the direction normal to the band. The
difference between the deformation rate outside the band,
Dij
(2), and inside it, Dij

(1), can be presented

Dij ¼ D
1ð Þ
ij � D

2ð Þ
ij ¼ 1

2
njgi n � xð Þ þ nigj n � xð Þ
� �

ð1Þ

where gi are non-zero only within the band (Dij has
vanishing intermediate principal value), xi are the principal
axes, and n (ni) is the unit normal to the band (i = 1, 2, 3).
The condition of the continuity of the traction rate at the
band interfaces can be written

ni _sij ¼ ni _s 1ð Þ
ij � _s 2ð Þ

ij

� �
¼ 0 ð2Þ

where _sij
(r) (r = 1, 2) are the material time derivatives of true

(Cauchy) stress at the internal (r = 1) and external (r = 2)
sides of the band, respectively. The strain and deformation
rates are related by a linear, homogeneous tensor relation

_s rð Þ
ij ¼ L

rð Þ
ijklD

rð Þ
kl : ð3Þ

[7] For the case when the incremental elasto-plastic
stiffness tensor Lijkl is the same within and outside the band
(3) becomes

_sij ¼ LijklDkl: ð4Þ

[8] Combining (1), (2), and (4) yields a set of linear,
homogeneous in g’s equations

niLijklnl
� �

gk ¼ 0;

which have nontrivial solution when

det jniLijklnlj ¼ 0: ð5Þ

[9] This characteristic equation represents the condition
for the deformation bifurcation when a non-uniform (with
gi 6¼ 0) continuation of deformation is possible. The bifur-
cation condition relates the orientation (ni) of the band with
moduli Lijkl. Hill [1962] obtained this condition by using in
(2) the intrinsic derivative of the first Piola-Kirchhoff stress
_pij and in (4) the convected derivative of the contravariant
Kirchhoff stress _aij instead of _sij. Replacement of _pij and _aij

by _sij in (2) and (4) means that we neglect the rotational
effects and consider that the acting stresses are small
compared to the stiffness moduli (although for the field (1)
equation (2) is simply equivalent to ni _pij = 0 [RR; Rice,
1976]).
[10] To complete the bifurcation analysis and to find the

critical relations between the orientation ni of the band plan,
the constitutive parameters and the stress-state, one has to

specify the modulus tensor Lijkl which depends on the
choice of constitutive model.

2.1. Constitutive Equations

[11] Consider simple isotropic-hardening model with
smooth both yield f (sij) and plastic potential F(sij) func-
tions. Assume two-invariant Drucker-Prager functions

f ¼ �t þ as � k ð6Þ

F ¼ �t þ bs ð7Þ

where a is the internal friction coefficient; k is the internal
cohesion; b is the dilation factor; �t = (1

2
sijsij)

1/2 is the
intensity of shear stress approximately equal to the maximal
shear stress; sij = sij � dijs is the stress deviator, dij is the
Kronecker delta, and s = 1

3
sii is the mean stress (i, j = 1, 2, 3).

Figure 3. Regular shear-band network. (a) Localization
pattern composed of two conjugated sets of parallel shear
bands; (b) elementary cell. d is the shear band thickness and
l is the inter-band distance. 1, 2, and 3 denote zones with
different deformation fields. ei are the unit vectors.
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The total incremental strain represents the sum of increments
of elastic and inelastic strains:

deij ¼ deeij þ depij ; ð8Þ

where elastic strains are related to stresses by Hook’s
equations:

deeij ¼
ds
K

dij þ
dsij

2G
: ð9Þ

[12] The inelastic strain increments follow from the
plastic potential function

depij ¼ dl
@F
@sij

¼ dl
sij

2�t
þ 1

3
bdij

� �
: ð10Þ

[13] Here K and G are the bulk and shear modulus,
respectively, and dl is non-negative scalar function to be
found. For the relative incremental inelastic volume change,
equations (10) yield

dep ¼ depii ¼ bdl: ð11Þ

[14] The dilation relation between the inelastic volumetric
and shear deformation [Reynolds, 1885] can be presented in
the following form [Nikolaevskiy, 1967]

dep ¼ bd�g p ð12Þ

where d�g p = (2deij
p deij

p)1/2 and deij
p = deij

p � 1
3
dij dekk

p . Using
(11) and (12) in (10) results in

depij ¼ d�g p sij

2�t
þ 1

3
bdij

� �
: ð13Þ

[15] The closing relation follows from the Prager consis-
tency equation for the yield function

df ¼ @f

@sij

dsij þ
@f

@�gp
d�g p ¼ 0: ð14Þ

[16] Considering that the properties change during inelas-
tic deformation and that the material can either harden or
weaken, assume that a and k are functions of �g p: a (�g p) and
k(�g p), where �g p =

R
(2deij

p deij
p )1/2. It follows then from (14)

that

d�t þ ads � Hd�g p ¼ 0; ð15Þ

where H = dk
d�g p � s da

d�g p is the plastic hardening modulus.
[17] Combining (8), (9), (13), and (15) relate directly the

incremental stress dsij and incremental strain deij (or the
stress and deformation rates) and obtain for the stiffness
tensor [RR]

Lijkl ¼ G

(
dikdjl þ dildkj
� �

þ K

G
� 2

3

� �
dkldij

� �

� G

H þ Gð Þ þ abK
Nij þ

K

G
bdij

� �
Nkl þ

K

G
adkl

� �)
ð16Þ;

where Nij =
sij
�t .

2.2. Critical Hardening Modulus and Orientation of
a Shear Band

[18] Submitting (16) into (5) and solving the resulting
equation for H, RR found

H ¼ 3
GniNijnj þ bK
� �

GnkNklnl þ aKð Þ
4Gþ 3Kð Þ

þ G niNijnkNkj

� �
� niNijnj
� �2h i

� Gþ abKð Þ: ð17Þ

[19] They searched out the plane corresponding to the
maximal H over all orientations ni. This plan was proven to
be parallel to the intermediate principal direction s2 and
inclined to s3 direction under angle y defined as

tg2y ¼ �
2 1þ nð Þ aþ bð Þ � 3 1� 2nð ÞN þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4� 3N2

ph i
2 1þ nð Þ aþ bð Þ � 3 1� 2nð ÞN �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4� 3N2

ph i ;
ð18Þ

where N =
s2

�t
is the stress-state parameter, s2 is the

intermediate principal deviatoric stress, and n = 3K�2G
6Kþ2G

is the
Poisson ratio. (The compressive stress is negative and s3 <
s2 < s1). The critical hardening modulus follows from (17)
and (18)

hcr ¼
Hcr

G
¼ 1þ n

9 1� nð Þ b � að Þ2� 1þ n
2

N þ aþ b
3

� �2

: ð19Þ

Conditions (18) and (19) are valid for [Perrin and Leblond,
1993] (see also [Issen and Rudnicki, 2000]),

N 1� 2nð Þ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4� 3N 2

p
� 2

3
n þ 1ð Þ aþ bð Þ � N 1� 2nð Þ

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4� 3N 2

p
: ð20Þ

[20] RR also obtained corrections of y and hcr for the
co-rotational terms in the stress derivative by replacing in (2)
and (4) the material time derivative by the invariant to

rigid body spins Jaumann derivative s
r
ij of the Cauchy stress

(s
r
ij = _sij � Wik skj + sik Wkj, where Wij =

1
2
(ui,j � uj,i), and ui

is the velocity field in the Eulerian coordinates, the subscript
comma denoting spatial differentiation. The obtained cor-
rections for both parameters are on the order of �t/G and can
be essential when the predicted by (19) Hcr is as small as to
be comparable to the maximal shear stress (see also [Rice,
1976]).

3. Formation of Shear-Band Network

[21] Consider now the condition for bifurcation of the
homogeneous deformation field into the regular deforma-
tion pattern in Figure 3. This pattern is formed under
initially uniform stressing by two conjugated families of
parallel shear bands. The pattern is symmetric with respect
to two principal directions x1 and x3, and parallel to x2. The
band network is characterized by the existence of an
elementary cell (Figure 3) of which the whole pattern can
be composed. It is sufficient thus to obtain the bifurcation
condition for this cell.
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3.1. Deformation Rate Field Within the Elementary
Cell at the Onset of Bifurcation

[22] Assume that the onset of bifurcation occurs at fixed
boundaries of the body (without external energy supply). In
this case the boundaries of an elementary cell can be
considered as fixed as well. Divide the elementary cell into
three zones with different velocity fields (Figure 3b). On the
basis of the symmetry of the problem consider that in all
zones the deformation is uniform and in zone (2) the
material undergoes only stretching/shortening in two prin-
cipal directions x1 and x3

D
2ð Þ
kl ¼ Bkdkl k; l ¼ 1; 3 ð21Þ

[23] The velocity vectors in points A, C, D, and B in
Figure 3b are, respectively

�������A ¼ ��������C ¼ lB3

2n3
e3; �������D ¼ ��������B ¼ lB1

2n1
e1 ð22Þ

[24] Using (22) and assuming that the deformation in
zone (1) is uniform, one obtains for the deformation rate in
this zone

D
1ð Þ
kl ¼ CklmBm; ð23Þ

where

C111 ¼
n23 5c� 1ð Þ � c� 1

2c
; C113 ¼

n21 1� cð Þ
2c

;

C131 ¼
n23 3c� 1ð Þ � 2c

2cn1n�1
3

; C133 ¼
n23 1� 3cð Þ þ c� 1

2cn3n�1
1

C311 ¼
n23 3c� 1ð Þ � 2c

2cn1n�1
3

; C331 ¼
n23 1� cð Þ

2c
;

C313 ¼
n23 1� 3cð Þ þ c� 1

2cn3n�1
1

; C333 ¼
n23 1� 5cð Þ þ 4c� 2

2c
;

k, l, m = 1, 3, c = d
l is the band spacing parameter, and

ni 6¼ 0: ð24Þ

[25] For zone (3) it can be supposed Dkl
(3) = � Bk

c dkl, but we
do not need it for the following as the analysis can be
limited to zones (1) and (2).
[26] Since the deformation field is uniform in these zones,

the equilibrium equations are met in both and the stress can
change only at the band boundary in the direction perpen-
dicular to it. Therefore the equations of continuing equilib-
rium can be written

_sij;i ¼
@ _sij

@ nixið Þ
@ nixið Þ
@xi

¼
@ ni _sij

� �
@ nixið Þ ¼ 0:

[27] This leads to condition (2), which thus holds valid
for our velocity field. Submitting (21) and (23) into (3) and
the result into (2) yields

ni L
1ð Þ
ijklCklm � L

2ð Þ
ijmp

� �
Bm ¼ 0

(i, j, k, l, m = 1, 3, and p = m). The corresponding
characteristic equation (bifurcation condition) is

det jni L
1ð Þ
ijklCklm � L

2ð Þ
ijmp

� �
j ¼ 0: ð25Þ

3.2. Continuous Bifurcation

[28] For this case Lijkl
(1) = Lijkl

(2) = Lijkl and equation (25) after
submission of (16) and the expressions for Cklm from (23)
becomes

2 3z2c2 � z2c� c� 1
� �

z2 þ zQ Lijkl
� �

þ R Lijkl

� �h i
¼ 0 ð26Þ

where

x ¼ n23 � n21 ¼ cos 2y ð27Þ

and the coefficients Q(Lijkl) and R(Lijkl) are

Q ¼ 2 3N 1� 2nð Þ � 2 n þ 1ð Þ aþ bð Þ½ �
3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4� 3N2

p

R ¼ 72 1� 2nð Þhþ 9N2 5� 4nð Þ þ 4 n þ 1ð Þ 8ab þ 3N aþ bð Þ½ �
9 4� 3N2ð Þ

[29] The problem is thus reduced to the analysis of a
quadratic equation

z2 þ Qz þ R ¼ 0: ð29Þ

[30] The deformation bifurcation is possible when this
equation has real roots, i.e., when

Q2 � 4R � 0 ð30Þ

[31] Submitting (28) into this inequality yields

h ¼ H

G
� hcr ¼

1þ n
9 1� nð Þ b � að Þ2� 1þ n

2
N þ aþ b

3

� �2

ð31Þ

[32] The obtained maximal normalized hardening modu-
lus hcr corresponding to the onset of deformation localiza-
tion during progressive loading of the material was proven
thus to be the same as in (19). At h = hcr the left part of (30)
vanishes and the solution of (29) defining the orientation of
the localization bands becomes

z ¼ �Q

2
¼ 2 1þ nð Þ aþ b þ 3Nð Þ � 9N

3
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4� 3N2

p : ð32Þ

[33] This expression is equivalent to (18). According to
(24) and (27) the critical condition (31) is valid for�1 < z < 1,
which yields the same condition as (20), but without
equalities

N 1� 2nð Þ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4� 3N 2

p
<

2

3
n þ 1ð Þ aþ bð Þ

< N 1� 2nð Þ þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4� 3N2

p
: ð33Þ

ð28Þ
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[34] We thus obtained a quite surprising result: despite
using the velocity field corresponding to two conjugated
families of the localization bands within a finite body
instead of field (1) corresponding to a single localization
band within an infinite body, both the critical condition for
the localization and the band orientation are the some in
both cases.
[35] Although the band spacing parameter c is present in

equation (26) it does not enter the final equation (29) and
therefore the expressions (31) and (32). The fact that the
spacing is not defined could mean that the shear banding at
the initial (first) stage of deformation bifurcation is pene-
trative and affects the whole body.
[36] The constitutive response is the same throughout the

body at the onset of bifurcation. On the other hand, since the
deformation occurs more rapidly within the localization
bands than outside, the damage accumulation (property
change) within the bands is also more rapid. If the bound-
aries of the elementary cell are fixed (the average deforma-
tion of the elementary cell is zero or small), the acceleration
of the deformation (loading) along the localization bands

will be associated with the deformation deceleration
(unloading) outside the bands. Therefore at the next stage
of bifurcation the constitutive response outside the bands
will become elastic which corresponds to the discontinuous
bifurcation. Note, that the possibility of the transition from
the continuous to discontinuous bifurcation has been dis-
cussed by Rice and Rudnicki [1980] in the single-band
context.

3.3. Elastic Unloading Outside Shear Bands

[37] In the following we assume that the orientation of the
localization bands is acquired at first, continuous stage of
bifurcation as defined by (32), and that the hardening
modulus reduces rapidly (instantaneously) to some value
h � hcr. This corresponds to rather brittle material behavior
with elastic unloading outside the localization bands. For
this case L

ijkl

(1) = Lijkl from (16) and

L
2ð Þ
ijkl ¼ G dikdjl þ dildkj

� �
þ K

G
� 2

3

� �
dkldij

� ��
ð34Þ

Figure 4. Contour plots of the obtained solution c(a, b, n, N, h): (a) c(N, h) for a = 0.5, b = 0, and n =
0.3; (b) c(b, h) for a = 0.5, N = 0.577, and n = 0.3; (c) c(a, h) for b = �0.5, N = 0.577, and n = 0.3;
(d) c(a, h) for b = 0.5, N = 0.577, and n = 0.3.
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(we consider here that the elastic properties do not change
during deformation). Submitting these expressions for the
stiffness tensors into (25) yields:

det jAjmj ¼ 0 ð35Þ

where

A11 ¼ �k1L
1ð Þ
1111 þ k2L

1ð Þ
1133 þ 2k3k4L

1ð Þ
1313 þ k8L

2ð Þ
1111;

A13 ¼ k5L
1ð Þ
1111 þ k6L

1ð Þ
1133 þ 2k7L

1ð Þ
1313 þ k8L

2ð Þ
1133;

A31 ¼ �2k4L
1ð Þ
1313 � k1L

1ð Þ
3311 þ k2L

1ð Þ
3333 þ k8L

2ð Þ
3311;

A33 ¼ �2k�1
3 k7L

1ð Þ
1313 þ k5L

1ð Þ
3311 þ k6L

1ð Þ
3333 þ k8L

2ð Þ
3333;

k1 ¼ z 5c� 1ð Þ � 3 c� 1ð Þ; k2 ¼ z � 1ð Þ c� 1ð Þ;

k3 ¼
z � 1

z þ 1
; k4 ¼ z 3c� 1ð Þ þ cþ 1; k5 ¼ z þ 1ð Þ 1� cð Þ;

k6 ¼ z 5c� 1ð Þ þ 3 c� 1ð Þ; k7 ¼ z 3c� 1ð Þ � c� 1; k8 ¼ �4c

and z is given by (32). Equation (35) has been solved
analytically for c(a, b, n, N, h) and h(a, b, n, N, c) using
Mathcad software. The obtained solutions are valid for the
range (33). They are very cumbersome (occupy several
pages each), therefore we present them only graphically
(Figures 4 and 5). The structure of the solution for h is h =
hcr + c}(c, a, b, n, N). It has compact explicit form only
for c = 0 and c = 1:

hc¼0 ¼ hcr ¼
1þ n

9 1� nð Þ b � að Þ2� 1þ n
2

N þ aþ b
3

� �
ð36Þ

hc¼1 ¼ hcr þ
n þ 1ð Þ b � að Þ
3 1� nð Þ

N

4
þ a n þ 1ð Þ
3 2n � 1ð Þ

� �
þ 3

4
N2 � 1 ð37Þ

[38] For h = hc=0 the solution c(a, b, n, N, h) yields c = 0.
It follows that when the elastic unloading occurs at h = hc=0,
the distance between the localization bands is infinite mean-
ing that under this condition only one band (fracture) will be
initiated within an infinite body. With the reduction of h (at
other parameters constant) the distance between the bands/
fractures reduces (spacing parameter c increases). The band/
fracture pattern reaches ‘‘saturation’’ at h = hc=1 when the
band thickness is equal to the inter-band distance. At c > 1
the material is completely crushed and regular fracture
pattern formed previously (if any) should be ‘‘erased’’. There
exists thus a limited band for the h values, hmin = hc=1 � h�
hc=0 = hmax, for which the formation of the regular fracture
pattern is possible (Figure 5).

4. Numerical Test

[39] The best way to check the validity of the obtained
results is to test them against experimental data, but the
appropriate data are not available. Therefore we proceeded
to numerical test. Accurate numerical simulation of consti-
tutive instability (as of any other spontaneous physical
instability) is a delicate exercise. It requires application of
a ‘‘time-marching’’ explicit solution scheme. Such a scheme
is implemented in the dynamic finite difference calculation
code FLAC3D. This code also uses mixed-discretization
zoning technique which is believed to ensure accurate
modeling of plastic collapse loads and plastic flow [Marti
and Cundall, 1982]. Therefore FLAC3D has been chosen
for the numerical tests presented below.

4.1. Setup of Numerical Models

[40] A square 2-D model has properties corresponding to
the above constitutive formulation with a constant harden-
ing modulus. The model is uniformly pre-stressed close to

Figure 5. Plots of critical hardening moduli versus N, a, and b. 1, Range where no localization (macro-
fracturing) is possible; 2, range where regular localization banding (macro-fracturing) is possible; 3,
range corresponding to the complete crushing of the material. The curves also are shown for c = 0.6
the maximal c value at which the deformation localization is ‘‘resolved’’ in the numerical models (see
Figure 9). The curves for hc=0 and hc=1 are from (36) and (37), respectively. (a) a = 0.3, b = 0, and n =
0.3; (b) b = 0, N = 0.577, and n = 0.3, and (c) a = 0.3, N = 0.577, and n = 0.3.
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the yield surface and then subjected to the velocity bound-
ary conditions (Figure 6a) at plane-strain state. The only
difference between the numerical runs is the h value.

4.2. Results

[41] After some elastic straining the yield surface has
been reached and initially homogeneous inelastic deforma-
tion started. The deformation bifurcation always begins in
the continuing loading regime and results in formation of a
regular penetrative network of conjugated bands with ac-
celerated and decelerated inelastic deformation (Figure 6b).

At the next stage the response of the material outside the
bands with accelerated deformation becomes elastic (elastic
unloading). The size of the elastic zones rapidly grows and
the distance between the ‘‘active’’ localization bands corre-
spondingly increases to a certain value depending on h.
[42] The maximal h at which the deformation bifurcation

was clearly observed is about h � �0.08. The bifurcation
started after �g p attained a value of �gld

p
= 2 � 10�6. The

deformation pattern during elastic unloading stage reached a
stationary state when �g p attained a value of about �gunld

p =
1.2 � 10�3 (the simulation continued to �g p = 3 � 10�2).
Other models in Figure 7 with smaller h have been run until
the same deformation �g p = �gunld

p . In all cases the scenario
was the same, but for smaller h the bifurcation started at
smaller �gld

p
and resulted in a denser band network. Contin-

uation of deformation over �gunld
p resulted mainly in propa-

gating the existing bands and did not modify much the
average band spacing (Figure 8).

5. Discussion

[43] The spacing parameter c obtained in the above
numerical models strongly depends on the hardening
modulus h in accordance with the theoretical prediction
(Figure 9). The maximal h value, hmax, at which the
bifurcation occurs in the numerical trials clearly depends
on, and increases with the mesh resolution toward an
asymptotic value. In our simulations hmax � �0.08. This
value can be probably further reduced to approach the
predicted value hcr = �0.04 by refining the model, but this
was not our objective. On the other hand, in unloading
regime, hmax can never reach hcr even theoretically since in
this case the distance between the bands should be infinite.
[44] The minimal h value at which a regular deformation

pattern has been obtained in numerical models is near h =
�0.6, with the corresponding spacing parameter c = 0.6.
The theoretical curve in Figure 9 goes to c = 1 for which
hmin = �0.86 and the band thickness d is equal to the inter-
band distance l.
[45] It is seen in Figure 7 that d increases when h grows

from hmin to hmax. The band segments’ length increases with
h as well. Since the constitutive formulation being used
involves no inherent length scale, d does not represent an
actual thickness of the localization band in a real material
(even if it has exactly the same properties as the numerical
model). The absolute value of d in numerical models is
directly related to the grid element size Dlm and is equal to
qm Dlm where qm depends on h and practically does not
depend on Dlm. In Figures 7a, 7b, 7c, and 7d, qm is equal to
ca. 6, 4, 3.3, and 3, respectively. In reality d is equal to qr
(a few to several) grain sizes Dlr as follows from numerous
experimental studies (some references can be found for
example in [Bésuelle and Rudnicki, 2004]). Curiously, both
qm and qr vary approximately within the same range and
it looks like qm � qr. In other words, the band thickness in
a numerical model seems to approximately scale with
the band thickness in reality, with the scaling factor being
Dlr/Dlm.
[46] The absolute value of d in the numerical models thus

does not have real physical meaning, only the relative
thickness does. Relative, for example, to the inter-band
distance l: d/l (this ratio is equal to the spacing parameter

Figure 6. (a) Set up of 2-D numerical models and
(b) accumulated inelastic deformation �g p pattern at the
onset of bifurcation when the whole model is in elasto-
plastic state. Constitutive parameters a = 0.5, b = 0, n = 0.3,
N = 0.21, and h = � 0.2 do not change during deformation.
The model is initially pre-stressed close to the yield surface
and then subjected to the slow velocity boundary condi-
tions: u1 = u3 = 10�3 m/s such that N value remained
practically constant during deformation. The model size is
7 � 7 cm (200 � 200 numerical grid elements).
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c used in the above theoretical analysis) or to the band
length. Reduction of d with h reduction in numerical models
(Figure 7) also has a real physical significance, meaning that
the closer the h value is to hmin, the thinner the band is, not
only in the numerical models, but also in reality. In the latter
case at sufficiently small h a localization band will appear as
a fracture (a shear fracture).
[47] It follows that if h reduces progressively during the

loading of a real material, d will reduce as well. If h can be
reduced to a sufficiently small value (if the material is
sufficiently brittle) then the localization band will become a
narrow zone (fracture) located within the band of a damaged
material. In other words, the thickness of the active part of
the initially wide band will reduce with deformation as long
as h reduces.

6. Conclusions

[48] Extending shear-band bifurcation analysis from one
band in an infinite body (Figure 2) to band network in a
finite body (Figure 3a) along with the results of numerical

simulations suggests the following description of this pro-
cess in a brittle material. The bifurcation starts at normalized
hardening modulus h = hmax, where hmax was proven to be
the same as that obtained previously from mono-band
analysis. The deformation pattern is represented at this stage
by two conjugated sets of parallel bands of accelerated and
decelerated inelastic deformation. This pattern affects the
whole body, is penetrative, and as follows from the theo-
retical analysis, is not characterized by any specific spacing.
On the other hand, numerical models show that at this
stage the band thickness is close to the inter-band distance
(Figure 6b). At the next stage of bifurcation the response of
material outside the localization (loading) bands becomes
elastic (elastic unloading). Therefore there is no longer
accumulation of inelastic deformation and hence of damage
outside the loading bands. On the contrary, the inelastic
deformation within these bands is accelerated resulting in
increasing damage and hence texture contrast of the material
within and outside the bands. This is due to the texture
contrast that the bands (incipient fractures) can become
distinctive in real conditions in Figure 1. The distance
between the bands (spacing l) rapidly increases (i.e., the
area of elastically deforming/unloading zones becomes
larger). This distance is very sensitive to h such that l =
1 at h = hmax and l tends to zero (to the band thickness)

Figure 7. Distribution of loading bands and unloading zones for different h at �g p = 1.2 � 10�3.
(a) h = � 0.1, c = 0.05; (b) h = �0.2, c = 0.2; (c) h = �0.35, c = 0.23; (d) h = � 0.5, c = 0.42. The other
parameters are the same for all models and specified in the caption to Figure 6. 1, Elasto-plastic state; 2,
elastic state. (The spacing parameter c has been calculated automatically as a ratio of the total area with
elasto-plasic state to the total area with elastic state).

Figure 8. �g p pattern in the model in Figure 7c run to
larger deformation �g p = 0.15.

Figure 9. Relation between the spacing parameter c and
the hardening modulus h: comparison of theoretical and
numerical results for a = 0.5, b = 0, n = 0.3 , and N = 0.21.
1, Theoretical curve; 2, points obtained from the numerical
models.
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when h is reduced to a certain minimal value hmin depending
on the constitutive parameters and the stress-state (Figure 5).
If h is always larger than hmax, the bifurcation does not occur
at all. If h is reduced rapidly below hmin, the deformation
‘‘jumps’’ into the post-localization state and the material
becomes completely crushed as is observed, for example,
during deformation of glass. The l value depends also on the
stress-state and is generally smaller for smaller Lode-type
parameter jNj and larger for the stress-state approaching the
axi-symmetric loading when jNj !

ffiffiffiffiffiffiffiffi
1=3

p
. The obtained

solution shows how l depends on other parameters as well.
For example, in the case of axi-symmetric compression and
negative dilation factor b, l decreases with an increase in the
internal friction a (at h = const), while for positive b this
tendency reserves. For a = 0.5, l rapidly increases with
increase in b (Figure 4).
[49] Although the above results were obtained within the

frame of bifurcation analysis dealing only with the onset of
constitutive instability, the numerical models show that the
above conclusions remain valid for larger deformation
(compare, for example, Figures 7c and 8). These results
can be used for estimating the spacing l of the fracture
network from the material properties and the information
about the stress-state. Of course such estimation will be very
approximate and will reflect only ‘‘genuine’’ or primitive
fracturing which is not affected by the heterogeneities in the
material properties and boundary conditions. The boundary
effects are especially important in the rock mechanics
experiments. According to the reported results, the locali-
zation/fracturing (the second stage of bifurcation with inter-
band unloading) within the rock sample should start at the
hardening modulus small enough (h < hmax) for the spacing
l to be smaller than the sample size. The sample failure
should follow this stage. However, in reality the deforma-
tion may localize well before this because of the stress
concentration caused by the boundary effects due in partic-
ular to non-zero friction along the sample boundaries.
[50] Finally, the knowledge of solution c(a, b, n, N, h)

and in particular of two critical hardening moduli hmax and
hmin is important when setting up the numerical models of a
process that involves a constitutive instability. Without this
knowledge and the corresponding adjustment of the mesh
resolution, boundary conditions, and dynamic dumping
parameters, the instability may be not ‘‘caught’’ by the
model.
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many helpful discussions on the bifurcation theory, and to two reviewers for
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