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Abstract. Given an arbitrary graph G and a number k, it is well-known by a result of Seymour
and Thomas [20] that G has treewidth strictly larger than k if and only if it has a bramble
of order k + 2. Brambles are used in combinatorics as certificates proving that the treewidth
of a graph is large. From an algorithmic point of view there are several algorithms computing
tree-decompositions of G of width at most k, if such decompositions exist and the running time
is polynomial for constant k. Nevertheless, when the treewidth of the input graph is larger than
k, to our knowledge there is no algorithm constructing a bramble of order k + 2. We give here
such an algorithm, running in O(nk+4) time. Moreover, for classes of graphs with polynomial
number of minimal separators, we define a notion of compact brambles and show how to compute
compact brambles of order k + 2 in polynomial time, not depending on k.

1 Introduction

Motivation. Treewidth is one of the most extensively studied graph parameters, mainly
because many classical NP-hard optimisation problems become polynomial and even linear
when restricted to graphs of bounded treewidth. In many applications of treewidth, one needs
to compute a tree-decomposition of small width of the input graph. Although determining
the treewidth of arbitrary graphs is NP-hard [2], for small values of k one can decide quite
efficiently if the treewidth of the input graph is at most k. The first result of this flavour is a
rather natural and simple algorithm due to Arnborg, Corneil and Proskurowski [2] working in
O(nk+2) time (as usual n denotes the number of vertices of the input graph and m denotes
the number of its edges). Using much more sophisticated techniques, Bodlaender [5] solves the
same problem by an algorithm running in O(f(k)n) time, where f is an exponential function.
The treewidth problem has been also studied for graph classes, and it was shown [10, 11]
that for any class of graphs with polynomial number of minimal separators, the treewidth
can be computed in polynomial time. In particular the problem is polynomial for several
natural graph classes e.g. circle graphs, circular arc graphs or weakly chordal graphs. All cited
algorithms are able to compute optimal tree-decompositions of the input graph.

In the last years, tree decompositions have been used for practicle applications which
encouraged the developement of heuristic methods for tree-decompositions of small width [3,
12] and, in order to validate the quality of the decompositions, several authors also developed
algorithms finding lower bounds for treewidth [9, 8, 7, 12].

Indeed, one of the main difficulties with treewidth is that we do not have simple certificates
for large treewidth. We can easily argue that the treewidth of a graph G is at most k: it is
sufficient to provide a tree-decomposition of width at most k, and one can check in linear time
that the decomposition is correct. On the other hand, how to argue that the treewidth of G
is (strictly) larger than k? For this purpose, Seymour and Thomas introduced the notion of
brambles, defined below. The goal of this article is to give algorithms for computing brambles.



Some definitions. A tree decomposition of a graph G = (V,E) is a tree TD such that each node
of TD is a bag (vertex subset of G) and satisfies the following properties: (1) each vertex of G
appears in at least one bag, (2) for each edge of G there is a bag containing both endpoints of
the edge and (3) for any vertex x of G, the bags containing x form a connected subtree of TD.
The width of the decomposition is the size of its largest bags, minus one. The treewidth of G is
the minimum width over all tree decompositions of G.

Without loss of generality, we restrict to tree decompositions such that there is no bag
contained into another. We say that a tree decomposition TD is finer than another tree
decomposition TD′ if each bag of TD is contained in some bag of TD′. Clearly, optimal tree
decompositions are among minimal ones, with respect to the refining relation. A set of vertices
of G is a potential maximal clique if it is the bag of some minimal tree decomposition. Potential
maximal cliques of a graph are incomparable with respect to inclusion [10]. More important,
the number of potential maximal cliques is polynomially bounded in the number of minimal
separators of the graph [11], which implies that for several graph classes (circle, circular arc,
weakly chordal graphs...) the number of potential maximal cliques is polynomially bounded in
the size of the graph.

A bramble of order k of G = (V,E) is a function β mapping each vertex subset X of size at
most k − 1 to a connected component β(X) of G−X. We require that, for any subsets X,Y
of V of size at most k − 1, the components β(X) and β(Y ) touch, i.e. they have a common
vertex or an edge between the two.3

Theorem 1 (Treewidth-bramble duality, [20]). A graph G is of treewidth strictly larger
than k if and only if it has a bramble of order k + 2.

Very roughly, if a graph has treewidth larger than k, for each possible bag X of size at
most k+ 1 the bramble points toward a component of G−X which cannot be decomposed by
a tree-decomposition of width at most k (restricted to X ∪β(X)) using X as a bag. Treewidth
can be also stated in terms of a cops-and-robber game, and tree decompositions of width k

correspond to winning strategies for k + 1 cops, while brambles of order k + 2 correspond to
escaping strategies for the robber, if the number of cops is at most k + 1 (see e.g. [6]).

Since optimal tree decompositions can be obtained using only potential maximal cliques
as bags, we introduce now compact brambles as follows. Instead of associating to any set X
of size less than k a component β(X) of G−X, we only do this for the sets which are also
potential maximal cliques. It is not hard to prove that, in Theorem 1, we can replace brambles
by compact brambles. Indeed if the treewidth of G is larger than k then there is a bramble
of order k + 2, which can be restricted to a compact bramble of the same order. Conversely,
suppose that there exists a compact bramble of order k + 2 and a tree decomposition of width
at most k. Consider a minimal, optimal tree decomposition of G. According to [20], there is a
bag X of this decomposition intersecting each set β(Y ) of the bramble. By our choice X is a
potential maximal clique of size at most k + 1, thus X intersects β(X) – a contradiction.

Our results. After the seminal paper of Seymour and Thomas proving Theorem 1, there
were several results, either with shorter and simpler proofs [4] or for proving other duality
theorems of similar flavour, concerning different types of tree-like decompositions, e. g. branch-
decompositions, path-decompositions or rank-decompositions (see [1] for a survey). Unified
versions of these results have been given recently in [1] and [16]. We point out that all these

3 Here we use one of the equivalent definitions of brambles, see e.g. [6] and the Conclusion for further discussions.
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proofs are purely combinatorial: even for a small constant k, it is not clear at all how to use
these proofs for constructing brambles on polynomial time (e.g. the proofs of [20, 4] start by
considering the set of all connected subgraphs of the input graph). Nevertheless the recent
construction of [16] gives a simpler information on the structure of a bramble (see Theorem 4).
Based on their framework which we extend, we build up the following algorithmic result:

Theorem 2. There is an algorithm that, given a graph G and a number k, computes either a
tree decomposition of G of width at most k, or a bramble of order k + 2, in O(nk+4) time.

There is an algorithm that, given a graph G, computes a tree-decomposition of width at
most k or a compact bramble of order k+ 2 in O(n4r2) time, where r is the number of minimal
separators of the graph.

These brambles can be used as certificates that allow to check, by a simple algorithm, that
a graph has treewidth larger than k. The certificates are of polynomial size for fixed k, and
the compact brambles are of polynomial size for graph classes with a polynomial number of
minimal separators, like circle, circular-arc or weakly chordal graphs (even for large k). Also,
in the area of graph searching (see [15] for a survey), in which it is very common to give
optimal strategies for the cops, our construction of brambles provides a simple escape strategy
for the robber.

The paper is organized as follows. In Section 2 we introduce an extended version of the
framework of [16] and their version of the duality theorem. In Section 3 we give the algorithm
constructing the brambles. In the Conclusion we discuss extentions of these results and further
research.

2 Treewidth, partitioning trees and the generalized duality theorem

For our purpose, it is more convenient to view tree decompositions as recursive decompositions
of the edge set of the graph, thus we rather use the notion of partitioning trees. The notion
is very similar to branch-decompositions [19] except that in our case internal nodes have
arbitrary degree; in branch-decompositions, internal nodes are of degree three.

Definition 1 (partitioning trees). A partitioning tree of a graph G = (V,E) is a pair
(T, τ) where T is a tree and τ is a one-to-one mapping of the edges of G on the leaves of T .

Given an internal node i of T , let µ(i) be the partition of E where each part corresponds
to the edges of G mapped on the leaves of a subtree of T obtained by removing node i.

We denote by δ(µ(i)) the border of the partition, i.e. the set of vertices of G appearing in
at least two parts of µ(i); δ(µ(i)) is also called the bag associated to node i. Let width(T, τ)
be the max |δ(µ(i))| − 1, over all internal nodes i of T . The treewidth of G is the minimum
width over all partitioning trees of G.

One can easily transform a partitioning tree (T, τ) into a tree decomposition such that
the bags of the tree-decompositions are exactly the sets δ(µ(i)). Indeed consider the tree
decomposition with the same tree, associate to each internal node i the bag δ(µ(i)) and to
each leaf j the bag {xj , yj} where xjyj is the edge of G mapped on the leaf j. It is a matter
of routine to check that this tree decomposition satisfies all conditions of tree decompositions.

Conversely, consider a tree decomposition TD of G, we describe a partitioning tree (T, τ)
obtained from TD without increasing the width. Initially T is a copy TD. For each edge e of
G, add a new leaf mapped to this edge, and make it adjacent to one of the nodes of T such
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that the corresponding bag contains both endpoints of the edge. Eventually, we recursively
remove the leaves of T which correspond to nodes of TD (thus there is no edge of G mapped
on these leaves). In the end we obtain a partitioning tree of G, and again is not hard to check
that (see e.g. [17]) for each internal node i of T , we have that δ(µ(i)) is contained in the bag
X(i) corresponding to node i in TD.

Consequently, the treewidth of G is indeed the minimum width over all partitioning trees
of G.

Given a graph which is not necessarily of treewidth at most k, we want to capture the
“best decompositions” one can obtain with bags of size at most k. For this purpose we define
partial partitioning trees. Roughly speaking, partial partitioning trees of width at most k
correspond to tree decompositions such that all internal bags are of size at most k + 1 – the
leaves are allowed to have arbitrary size.

Definition 2 (partial partitioning trees). Given a graph G = (V,E), a partial partition-
ing tree is a couple (T, τ), where T is a tree and τ is a one-to-one function from the set of
leaves of T to the parts of some partition (E1, . . . , Ep) of E. The bags δ(µ(i)) of the internal
vertices are like in the case of partitioning trees. The bag of the leaf labeled Ei is the set of
vertices incident to Ei. The partition (E1, . . . , Ep) is called the displayed partition of (T, τ).

The width of a partial partitioning tree is max |δ(µ(i))| over all internal nodes of T .4

Partitioning trees are exactly partial partitioning trees such that the corresponding dis-
played partition of the edge set is a partition into singletons. Given an arbitrary graph, our
aim is to characterize displayed partitions corresponding to partial partitioning trees of width
at most k. Actually we only consider connected partial partitioning trees, and also the more
particular case when the labels of the internal nodes are potential maximal cliques, and we
will see that this classes contain the optimal decompositions.

The connected partial partitioning trees (strongly related to a similar notion on tree
decompositions) are defined as follows. Let X be a set of vertices of G. We say that the set of
edges F is a flap for X if F is formed by a unique edge with both endpoints in X or if there
is a connected component of G−X, induced by a vertex subset C of G, and F corresponds
exactly to the set of edges of G incident to C (so the edges of F are either between vertices of
C or between C and its neighborhood NG(C)). Given a partial partitioning tree (T, τ) and an
internal node r which will be considered as the root, let T (i) denote the subtree of T rooted
in node i. We denote by E(i) the union of all edge subsets mapped on the leaves of T (i). We
say that (T, τ) is a connected partial partitioning tree if and only if, for each internal node j
and any son i of j, the edge subset E(i) forms a flap for δ(µ(j)).

Due to space restrictions, all proofs of this section are given in Appendix A.

Lemma 1. Given an arbitrary partial partitioning tree (T, τ) of G, there always exists a
connected partial partitioning tree (T ′, τ ′) such that each edge subset mapped on a leaf of T ′

is contained in an edge subset mapped on a leaf of T and each bag of (T ′, τ ′) is contained in
some bag of (T, τ).

Let P be a set of partitions of E. We define a new, larger set of partitions P↑ as follows.
Initially, P↑ = P. Then, for any partition µ = (E1, E2, . . . , Ep) ∈ P

↑ and any partition
ν = (F1, F2, . . . , Fq, Fq+1, . . . Fr) ∈ P such that Fq+1 ∪ . . . ∪ Fr = E1, we add to P↑ the

4 We emphasys again that a partial partitioning tree might be of small width even if its leaves are mapped on
big edge sets.
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partition µ ⊕ ν = (E2, . . . , Ep, Fq+1, . . . , Fr). The process is iterated until it converges. In
terms of partial partitioning trees, each partition ν ∈ P is the displayed partition of a partial
partitioning tree with a unique internal node. Initially elements of P↑ correspond to these star-
like partial partitioning trees. Then, given any partial partitioning tree Tµ corresponding to an
element µ = (E1, E2, . . . , Ep) ∈ P

↑ and a star-like partial partitioning tree Tν corresponding
to an element ν = (F1, F2, . . . , Fq, Fq+1, . . . Fr) ∈ P, if the leaf E1 of the first tree is exactly
Fq+1 ∪ . . . ∪ Fr, then we glue the two trees by identifying the leaf E1 of Tµ with the internal
node of Tν and then removing the leaves F1, . . . , Fq of Tν . Thus µ⊕ν is the displayed partition
of the new tree. See Figure 1 for an example of this recursive gluing on partial partitioning
trees. (A similar but simpler grammar is used in [16].)

The proof of the following statement is an easy consequence of the definitions:

Lemma 2. Let T be a partial partitioning tree obtained by recursive gluing. The root of
T corresponds to the internal node of the first star-like partial partitioning tree used in
the recursive gluing. Let x be an internal node of T , and denote by µx the partition of P
corresponding to the star-like tree with internal node x – which might be different from the
partition µ(x) introduced in Definition 1. Then for any son y of x, E(y) is a part of µx. (Recall
that E(y) denotes the union of parts of E mapped on leaves of the subtree T (y) of T rooted in
y.) If x is the root, then the sets E(y) for all sons y of x are exactly the parts of µx.

Conversely, let T be a (rooted) partial partitioning tree such that, for each internal node x
there is a partition µx ∈ P such that for any son y of x, E(y) is a part of µx, and, moreover,
if x is the root then its sons correspond exactly to the parts of µx. Then T is obtained by gluing
the partitions µx, starting from the root and in a breadth-first search order.

Let Pk−flap be the set of partitions µ of E such that δ(µ) is of size at most k + 1 and the
elements of µ are exactly the flaps of δ(µ). The set Pk−pmc is the subset of Pk−flap such that

for any µ ∈ Pk−pmc, its border δ(µ) is a potential maximal clique. Thus the sets P↑k−flap and

P↑k−pmc correspond to partial partitioning trees of width at most k.

By Lemma 2, for any graph G, P↑k−flap is the set of displayed partitions of connected partial

partitioning trees of width at most k. Moreover, P↑k−pmc is the set of displayed partitions of
connected partitioning trees of width at most k and such that the bags of all internal vertices
are potential maximal cliques. Consequently, we have:

Lemma 3. G is of treewidth at most k if and only if P↑k−flap contains the partition into

singletons, and if and only if P↑k−pmc contains the partition into singletons.

Clearly Pk−flap is of size O(nk+1) and Pk−pmc is of size at most the number of potential
maximal cliques of the graph.

Lemma 4. Given a set of partitions P and the corresponding set P↑, we say that P↑ is
orientable if, for any partition µ ∈ P↑ and any part F of µ, there is a partition ν ∈ P↑ finer
than µ (i.e. each part of ν is contained in a part of µ) and a partial partitioning tree Tν
displaying ν in which the leaf mapped on F is adjacent to the root.

The sets of partitions P↑k−flap and P↑k−pmc are orientable.

Following [16], we define P-brambles, associated to any set P of partitions of E.

Definition 3 (bramble). Let P be an arbitrary set of partitions of E. A P-bramble is a set
B of pairwise intersecting subsets of E, all of them of size at least 2, and such that for any
partition µ = (E1, . . . , Ep) ∈ P, there is a part Ei ∈ B.
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(c) The corresponding partial partitioning trees in P.

Fig. 1. The partial partitioning tree in P↑ can be obtained by gluing the given partial
partitioning trees in P in this order: ψ ⊕ ρ ⊕ ω ⊕ φ ⊕ σ (see Lemma 2 and definition of ⊕
operator).

With this definition, one can see that a bramble of order k + 2 corresponds exactly to a
Pk−flap-bramble, and a compact bramble of order k + 2 corresponds to a Pk−pmc-bramble.

We say that a set of partitions P↑ is refining if for any partitions (A,A2, . . . , Ap) and
(B,B2, . . . , Bq) in P↑, with A and B disjoints, there exists a partition (C1, . . . , Cr) in P↑ such
that each part Ci is contained in some Aj , 2 ≤ j ≤ p, or in some Bl, 2 ≤ l ≤ q.

In [16], the authors show that for the set Pk defined by the partitions of E having borders

of size at most k + 1 (without any other restriction), P↑k is refining. Using Lemma 1, we can

easily deduce that P↑k−flap is refining. On the other hand, much more efforts are required to

prove that P↑k−pmc is also refining (see Appendix A).

Theorem 3. For any graph G, the sets of partitions P↑k−flap and P↑k−pmc are refining.

The following result implies the “hard part” of Theorem 1. Indeed, by applying Theorem 4
to P↑k−flap, we have that any graph of treewidth greater than k has a bramble of order k+2. For
the sake of completion and for better understanding, we give the proof of [16] in Appendix A.

Theorem 4 ([16]). Let P be a set of partitions of E and suppose that P is refining and does
not contain the partition into singletons. Let B be a set of subsets of E such that:
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1. Each element of B is of size at least 2 and it is a part of some µ ∈ P;
2. For each µ = (E1, . . . , Ep) ∈ P, there is some part Ei ∈ B;
3. B is upper closed, i.e. for any F ∈ B, and any superset F ′ with F ⊂ F ′ ⊆ E such that F ′

is the part of some µ′ ∈ P, we also have F ′ ∈ B;
4. B is inclusion-minimal among all sets satisfying the above conditions.

Then B is a P-bramble.

3 The algorithm

Our goal is to apply Theorem 4 in order to obtain a P↑k−flap-bramble and a P↑k−pmc-bramble.
Note that the sets Pk−flap and Pk−pmc are not refining, so we cannot use them directly.

We make an abuse of notation and say that a flap of P↑ is a subset of E appearing as the
part of some µ ∈ P↑. Consequently the flaps of P↑ are exactly the flaps of P. Thus, once we
have computed a P↑k−flap-bramble (resp. a P↑k−pmc-bramble), by restricting it to Pk−flap (resp.
Pk−pmc) we obtain a bramble (resp. a compact bramble) of order k + 2. The difficulty is that
the complexity of our algorithm should be polynomial in the size of Pk−flap (resp. Pk−pmc),

while the sets P↑k−flap and P↑k−pmc may be of exponential size even for small k.
We give now our main algorithmic result. It is stated in a general form, for an arbitrary

set of partitions P such that P↑ is refining and orientable.

Theorem 5 (main theorem). Let P be a set of partitions of E. Suppose that P↑ is refining,
orientable and does not contain the partition into singletons. Then there is an algorithm
constructing a P↑-bramble (and in particular a P-bramble), whose running time is polynomial
in the size of E and of P.

The following algorithm is a straightforward translation of Theorem 4 applied to P↑, so
the output Bf is indeed a P↑-bramble.

Bramble(P)
begin
B ← the set of the flaps of P;
Bf ← ∅;
foreach F ∈ B of size one do

Remove F from B;
end foreach
foreach F ∈ B taken in inclusion order do

if there is a partition µ ∈ P↑ such that F is the unique non-removed flap of the
partition or ∃F ′ ∈ Bf : F ′ ⊆ F then

Add F to Bf ;
else

Remove F from B;
end if

end foreach
return Bf ;

end

Unfortunately the size of P↑ may be exponential in the size of P and E, and hence the
algorithm does not satisfy our complexity requirements because of the test “if there is a
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partition µ ∈ P↑ such that F is the unique non-removed flap of the partition”, which works
on P↑. We would like it to work on P instead. Thus we replace this test by a marking process
working on P instead of P↑ but giving the same bramble (recall that the flaps of P↑ are
exactly the flaps of P). Let us introduce some definitions for the marking. A flap F is said to
be removed if it has already been removed from the final P-bramble (instruction “Remove F
from B′′). Intuitively these removed flaps induce some forcing among other flaps: some of the
flaps must be added to the final bramble, some others cannot be added to the final bramble.
Thus whenever a flap is removed, we call the algorithm UpdateMarks. We use two types of
markings on the flaps: forbidden and forced. We prove that a flap F will be marked as forced
if and only if there is some partition µ ∈ P↑ such that all flaps of µ, except F , are removed.
Thus, in Algorithm Bramble, it suffices to test the mark of the flaps.

UpdateMarks
begin

// marking forbidden flaps;
while ∃ a flap F and a partition (F1, . . . , Fp, Fp+1, . . . , Fq) ∈ P such that
( ∪pi Fi) = F and ∀ i, 1 ≤ i ≤ p, Fi is removed or Fi is forbidden do

Mark F as forbidden (if not already marked);
end while
// marking forced flaps;
while ∃ (F, F2, . . . , Fp) ∈ P such that ∀ i, 2 ≤ i ≤ p : Fi is removed or Fi is
forbidden do

Mark F as forced (if not already marked);
end while

end

All throughout the algorithm we have the following invariants.

Lemma 5. A flap F is marked as forbidden if and only if there exists a subtree T (x) of a
partial partitioning tree T displaying some partition in P↑ such that:

– Each flap mapped on a leaf of T (x) is removed;
– The union of these flaps is exactly F .

Proof. Suppose first that such a tree exists. We show that the flap F corresponding to the
edges mapped on the leaves of T (x) is marked as forbidden. Each internal node y of T (x)
corresponds to a partition µy of P . The edges E(y) of G mapped on the leaves of T (y) form a
flap, by construction of T (see also Lemma 2). Consider these internal nodes of T (x), in a
bottom up order, we prove by induction that all flaps of such type are marked as forbidden.
By induction, when node y is considered, for each of its sons y1, . . . , yp, either the son is
a leaf and hence the corresponding flap is removed, or E(yi) has been previously marked
as forbidden. Then Algorithm UpdateMarks forbids the flap E(y). Consequently, E(x) is
marked as forbidden.

Conversely, let F be any flap marked as forbidden, we construct a partial partitioning
tree T with a node x as required. We proceed by induction on the inclusion order over the
forbidden flaps. When a flap F becomes forbidden, it is the union of some flaps F1, . . . , Fp, each
of them being forbidden or removed, and such that (F1, . . . , Fp, Fp+1, . . . , Fq) is an element
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of P. By induction hypothesis, to each Fi, i ≤ p, we can associate a tree Ti (which is a
subpart of a partial partitioning tree) such that the flaps mapped on the leaves of Ti form a
partition of Fi and they are all removed. Notice that, if Fi is a removed flap, then the tree Ti
is only a leaf. Consider now a tree T (x) formed by a root x, corresponding to the partition
(F1, . . . , Fp, Fp+1, . . . , Fq) ∈ P, and linked to the roots of T1, . . . , Tp. Consider any partition
(F, F ′1, . . . , F

′
r) ∈ P (such a partition exists, since F is a flap). Note that ∪jF

′
j = ∪i≥p+1Fi.

The final tree T is obtained by choosing a root z, corresponding to (F, F ′1, . . . , F
′
r), to which

root we glue the subtree Tx by adding the edge xz, and for each flap F ′j we add a leaf adjacent
to the root z mapped on F ′j . Thus the final tree T is a gluing between the tree rooted on
x and the tree rooted on z. By construction, for each internal node y of this tree, the sets
E(y′) for the sons y′ of y are parts of some partition µy ∈ P. By Lemma 2, the tree T is a
partial partitioning tree displaying an element of P↑. Clearly all leaves of T (x) are mapped on
removed flaps. ⊓⊔

Lemma 6. A flap F is marked as forced if and only if there is a partition in P↑ such that F
is the only non-removed flap of the partition.

Proof. Let us show that F is the unique non-removed flap of some partition in P↑ if and
only if there is a partial partitioning tree T displaying a (possibly another) partition in P↑

such that all leaves but F correspond to removed flaps and, moreover, the leaf mapped on
F is adjacent to the root of T . Clearly if such a tree exists, the partition µ displayed by the
partial partitioning tree has F as the unique non-removed flap. Suppose now that F is a
unique non-removed flap of some partition µ′ ∈ P↑. By the fact that P↑ is orientable, there is
a partial partitioning tree T displaying some partition µ, finer than µ′, and such that the leaf
of T mapped on F is adjacent to the root of the tree. Thus every flap Fi of µ other than F is
contained in some flap F ′j of µ′. Since flap F ′j has been removed by algorithm Bramble, flap
Fi has also been removed (in a previous step, unless the trivial case Fi = F ′j): indeed flap Fi
has been treated by the algorithm before F ′j , and if Fi is not removed it means that it has
been added to the bramble Bf , and hence the algorithm will not remove any superset of Fi –
contradicting the fact that F ′j is now removed. We conclude that all flaps of µ, except F , have
been removed.

It remains to prove that a flap F is marked as forced if and only if there is a partial
partitioning tree T displaying a partition in P↑, such that all leaves but F correspond to
removed flaps and, moreover, the leaf mapped on F is adjacent to the root of T .

First, if such a tree exists, let z be its root. Then z corresponds to a partition (F, F2, . . . , Fp)
in P, and each flap Fi corresponds to a subtree Ti of T − z. By Lemma 5, every flap Fi,
2 ≤ i ≤ p, is removed or forbidden. Then Algorithm UpdateMarks marks the flap F as
forced.

Conversely, suppose that Algorithm UpdateMarks marks the flap F as forced. Let
(F, F2, . . . , Fp) be the partition in P which has triggered this mark, so all flaps Fi are removed
or forbidden. Thus to each such flap corresponds a subtree Ti of some partial partitioning tree,
such that the leaves of Ti form a partition of Fi and they are all removed flaps. The tree T ,
formed by a root x linked to the roots of each Ti, plus a leaf (mapped on F ) adjacent to z
satisfies our claim. ⊓⊔

Let us discuss now the time complexity of our algorithm. This complexity is the maximum
between:

1. the overall complexity of the calls of UpdateMarks;
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2. the complexity of the tests "∃F ′ ∈ Bf : F ′ ⊆ F " of the Bramble algorithm.

Clearly both parts are polynomial in the total number of flaps, the number of elements of P
and the size of the graph. The number of flaps is itself at most m|P|, since each partition has
at most m parts. It is easy to see that the overall complexity is quadratic in the size of P,
times a small polynomial in the size of the graph. This achieves the proof of Theorem 5.

Nevertheless let us go into a little more details, which will allow us to prove that, when
we apply our algorithm to Pk−flap and Pk−pmc, we obtain better complexity, as claimed in
Theorem 2. In particular the running time will be linear in the size of Pk−flap (resp. Pk−pmc),
times a small polynomial in n. The overall complexity of UpdateMarks is given by the
complexity of updating the forbidden flaps. Let us say that a couple (F, µ), formed by a flap
F and a partition µ ∈ P is a good couple if µ is of the form (F1, . . . , Fp, Fp+1, . . . , Fq) with
F = F1 ∪ . . .∪Fp. We use the following data structure. Each flap Fi points towards each good
couple (Fi, µi). To each good couple (Fi, µi) we associate the list of all flaps F ′j which are parts
of µi and contained in Fi, and we call it the list of good subflaps; this list is of size at most
m. Whenever a flap F ′j is triggered as forbidden or removed, it warns all good couples (Fi, µi)
to which it is associated (in the list of good subflaps). When, for a couple (Fi, µi), all good
subflaps of the associated list have become removed or forbidden, the flap Fi is also marked as
forbidden and the process continues. By Lemma 5 and by induction on the inclusion order
of the flaps, the algorithm correctly marks the forbidden flaps as required. The complexity
of the whole marking process of forbidden flaps is O(m · number of good couples). Thus
the overall complexity of UpdateMarks is also O(m · number of good couples) plus the
complexity of computing our data structure of good couples and good associated subflaps,
which is also the number of good couples, multiplied by a small polynomial in the size of the
graph. We discuss below this complexity for each particular case.

We also have to test, in Algorithm Bramble, whether a flap F contains some flap F ′ ∈ Bf .
For this purpose we construct a directed acyclic graph Gflaps such that each node of this graph
is a (non-trivial) flap of P and the transitive closure of the graph is the inclusion relation
between flaps. Whenever a flap F ′ is put into Bf , it marks all flaps F such that there exists a
path from F ′ to F in Gflaps as forced by inclusion. With standard techniques, this marking
is linear in the size of Gflaps, so it remains to ensure that the number of arcs of Gflaps is
moderate, which we also prove on each particular case (for further details, see Appendix B).

Theorem 5 has been stated in its most general form, and as we shall discuss in the
conclusion it can be used for other parameters than treewidth. In the case of treewidth,
algorithm Bramble and the UpdateMarks procedure can be further refined in order to
obtain brambles and compact brambles of order k + 2, for graphs of treewidth larger than k.
The running time will be, as announced in Theorem 2, O(nk+4) for brambles and O(n4r2) for
compact brambles, where r is the number of minimal separators of the input graph.

We point out that Algorithm UpdateMarks can be seen as a gereralization of the
algorithms of [2, 10, 14]. Indeed the algorithm of Arnborg et al. [2], deciding whether a graph
has treewidth at most k in O(nk+2), behaves like when we call UpdateMarks on the set
Pk−flap, only once, right after removing all trivial flaps (formed by a unique edge). Thus a
graph is of treewidth at most k if and only if, after this run, the flap formed by the whole edge
set (which is the unique flap of the trivial partition) is marked as forbidden. In a similar way,
if we apply algorithm UpdateMarks on Pk−pmc (to which we must add the trivial partition
of E), it behaves like the algorithms of [10, 14]. Therefore it is not surprising that the data
structures used in [2, 14] can also be used in our case in order to fasten the marking algorithm.
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In both cases the key idea is that the number of good couples (or at least good couples that

we really need to use) is moderate. The number of good couples is O(nk+3) for P↑k−flap and

O(n · number of potential maximal cliques) for P↑k−pmc. Moreover, the graph Gflaps can

be computed in O(nk+4) for P↑k−flap, and in O(n4r2) for P↑k−pmc. Due to space restrictions,
the proofs are given in Appendix B.

4 Conclusion

We have presented in this article an algorithm computing brambles of large order for arbitrary
graphs. The running time for the algorithm is O(nk+4) for computing a bramble of order
k + 2, and of course we cannot expect drastic improvements since the size of the bramble
itself is of order Ω(nk+1). There are other equivalent definitions for brambles. One of the
most popular ones consists in defining a bramble of G as a set of pairwise touching connected
sugraphs of G (we recall that two subgraphs touch if they share a vertex or if there is an
edge between the two). The order of the bramble is the minimum size of a hitting set, i.e.
of a vertex subset intersecting each of these connected subgraphs. It is clear that the two
definitions are equivalent (see also [6]). The latter definition allows, but only in some particular
cases, to consider brambles of smaller size. For planar p× p grids, the “crosses” (a line plus
column) form a bramble of order p; see also [7] for other constructions. Treewidth can be
defined in terms of graph searching as a game between cops and a robber. As in many games,
we can consider the graph of all possible configurations (here it has Θ(nk+2) vertices) and
it is possible to compute [13] which are winning configurations for the cops (treewidth at
most k) and which are winning for the robber (treewidth larger than k). This can also be
considered as a certificate for large treewidth, but clearly more complicated than brambles.
Eventually, one can also argue that graphs of treewidth at most k can be characterized by f(k)
obstructions for some function f – so the size does not depend on k. This is a consequence
of the Robertson and Seymour’s famous graph minor theorem, and also directly from the
fact that the treewidth problem is fixed parameter tractable. Nevertheless, this function f(k)
can be extremely huge. To our knowledge, the problem of defining good obstructions to tree
decompositions – in the sense that these obstructions should be of moderate size and easy to
manipulate – is largely open.

Another interesting question is whether our algorithm for computing brambles can be
used for other tree-like decompositions. As we noted, other parameters (branchwidth, path-
width, rankwidth...) fit into the framework of [1, 16] of partitioning trees and we can define

P↑k−xxx−width-brambles in similar ways. The problem is that the size of “basic partitions” (the
equivalent of our set Pk−flap) may be exponential in n even for small k. Due to results of [17,
18], for branchwidth we can also restrict to connected decompositions and thus our algorithm
can be used in this case with similar complexity as for treewidth.

Acknowledgement. I.Todinca wishes to thank Fedor Fomin for fruitful discussions on this
subject.
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A Proofs for Section 2

Proof of Lemma 1. Let (T, τ) be an arbitrary partial partitioning tree of G. Let us construct
the desired connected partial partitioning tree (T ′, τ ′).

Take an internal node i of T other than the root, j its father, and consider the edge subset
E(i) (the union of all edge subsets mapped on the leaves of T (i)). If this set forms a flap for
δT (µ(j)), there is nothing to do. If not, then it forms several flaps C1, . . . , Cp, each of these
flaps Cl containing one ore more leaves e1

l , . . . , e
q
l of T (i). For each flap Cl, take the subtree

T (i)(l) of T (i) with only the leaves el, and re-root it to i. In this new tree T ′, i has as many
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sons as the number of flaps Cl formed by the edge subset E(i) in T . The set δT ′(µ(j)) in
T ′ is the same as the set δT (µ(j)) in T . Indeed, the set of edges mapped on the leaves of
linked subtrees T (i)(l) are flaps, so they are mutually disjoints, and hence no edge is added to
δT ′(µ(j)). Moreover, for every flap Cl, the set of edges shared with some other flaps in some
E′(i) (other than E(i)) does not change. So the width of the partial partitioning tree (T ′, τ ′)
being constructed does not increase. By doing this for every internal node of T , we obtain
a connected partial partitioning tree (T ′, τ ′) such that each bag is contained in some bag of
(T, τ), and such that (T, τ) and (T ′, τ ′) have the same width. ⊓⊔

We point out that the connected partial partitioning trees are strongly related to connected
tree decompositions:

Definition 4. We say that a tree decomposition TD is connected if it can be rooted such that,
for each node y other than the root, the set C(y) of vertices appearing in bags of the subtree
TD(y), but not appearing in the bag X(x) of the father x of y, induces a connected subgraph
in G.

Actually C(y) is one of the components of G − X(x). Any tree decomposition can be
transformed into a connected one, such that the bags of the latter are contained in the bags of
the first [2]. Moreover the leaf bags of the connected tree decomposition are contained into
leaf bags of the initial one.

Some properties of potential maximal cliques. Tree decompositions of a graph G are
often expressed in terms of triangulations. A graph H with the same vertex set as G is called a
triangulation of G if the edge set of G is contained in the edge set of H and H is chordal (i.e.
each cycle of length at least four of H has an edge between non-consecutive vertices). Every
chordal graph has a tree decomposition such that the bags of the decomposition correspond
to the maximal cliques of H. Conversely, consider a tree decomposition TD of G such that no
bag is strictly contained into another. If we complete each bag into a clique (i.e. we add, in
the graph G, all missing edges inside the bag), we obtain a triangulation HTD of G and the
maximal cliques of H are exactly the bags of G. Therefore the treewidth of G can be defined
as the minimum clique-size of H minus one, over all triangulations H of G. Clearly, we can
restrict to minimal triangulations. A triangulation H of G is said to be minimal if no strict
subgraph of H is a triangulation of G.

A set of vertices K of G is called a potential maximal clique [10] if there is a minimal
triangulation H of G such that K induces a maximal clique in H. In other terms, the potential
maximal cliques correspond to the bags of minimal triangulations.

Let G[K] denote the subgraph of G induced by K. Denote by C(K) = (C1, . . . , Cp) the
connected components of G −K and let Si = N(Ci) be the neighborhood of Ci in G. The
following statement is a simple characterization of potential maximal cliques.

Theorem 6 ([10]). Let K be a set of vertices of G. Then K is a potential maximal clique if
and only if:

– For any Ci ∈ C(K), its neighborhood Si is strictly contained in K;
– The graph G[K]{S1,...,Sp}, obtained from G[K] by completing each Si into a clique, is a

complete graph.

Potential maximal cliques are strongly related to minimal separators. A set of vetices S of
G is a minimal separator if there are at least two distinct connected components C and D of
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G− S such that S = N(C) = N(D). Indeed, if K is a potential maximal clique, then the sets
Si as above are exactly the minimal separators of G, contained in K [10].

Moreover the number of potential maximal cliques of a graph is related to the number of
minimal separators.

Theorem 7 ([11]). Let G be a graph with n vertices, π be the number of potential maximal
cliques of G and r be the number of its minimal separators. Then π ≤ nr2 + nr + 1 and,
moreover, all potential maximal cliques can be computed in O(n4r2) time.

Several classes of graphs are known for having a “small” number of minimal separators
and potential maximal cliques, in the sense that these quantities are polynomial in the size
of the graph. For example, permutation graphs have O(n) minimal separators and potential
maximal cliques, circular and circular-arc and weakly chordal graphs have O(n2) minimal
separators and O(n3) potential maximal cliques – see [10] for a survey.

We also know [14] that, given a graph, the treewidth can be computed in O(n3π) time, or
in O(n4r2) time.

Discussion on Lemma 4. To prove that P↑k−flap is orientable, we use the same ideas as in

the proof of Lemma 1. We want to prove that for any partition µ ∈ P↑k−flap and any part F of

µ, there is a partition ν ∈ P↑k−flap finer than µ and a partial partitioning tree Tν displaying ν
in which the leaf mapped on F is adjacent to the root.

Note that the partial partitioning tree of any partition in P↑k−flap is connected, since every
part of any partition in Pk−flap is a flap. Let Tµ be a (connected) partial partitioning tree

displaying µ ∈ P↑k−flap. The construction in the proof of Lemma 1 can be done for any chosen
initial root. Thus one can construct a (connected) partial partitioning tree Tν displaying a
partition ν finer than µ, and such that the root of Tν is adjacent to the leaf mapped on F .
Moreover the bags corresponding to internal nodes of Tν are exactly the bags corresponding to
internal nodes of Tµ, and hence the displayed partition ν of Tν is exactly the initial partition

µ (in P↑k−flap). In particular this proves that P↑k−pmc is also orientable. ⊓⊔

Proof of Theorem 3. Let G = (V,E) be a graph. Let Pk be the set of partitions of E

having borders of size at most k + 1. By [16], P↑k is refining.
Pk−flap is a subset of Pk. Indeed, every partition in Pk−flap has borders of size at most

k + 1, with the extra restriction that every part of the partition is a flap. Thus, by the
construction of P↑ sets, P↑k−flap is a subset of P↑k .

Let (A,A1, . . . , Ap) and (B,B1, . . . , Bq) be two partitions in P↑k−flap, which are also in

P↑k , such that A ∩ B = ∅. Let (TA, τA) and (TB, τB) be two partial partitioning trees, with

displayed partitions (A,A1, . . . , Ap) and (B,B1, . . . , Bq) respectively. As P↑k is refining, there

exists a partition (C1, . . . , Cr) ∈ P
↑
k finer than (A1, . . . , Ap, B1, . . . , Bq). Consider a partial

partitioning tree (T, τ) with (C1, . . . , Cr) as its displayed partition. By Lemma 1, there exists
a connected partial partitioning tree (T ′, τ ′) such that each edge subset mapped on a leaf of T ′

is contained in an edge subset mapped on a leaf of T and each bag of (T ′, τ ′) is contained in

some bag of (T, τ). The displayed partition of (T ′, τ ′) is in P↑k−flap, and hence P↑k−flap contains

a partition finer than (A1, . . . , Ap, B1, . . . , Bq). Thus P↑k−flap is refining.

Unfortunately, for proving that P↑k−pmc is refining, we don’t have the equivalent of Lemma 1
to simply deduce this from previous results. Indeed, there are small examples showing that in
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Lemma 1, we cannot add the extra condition that any internal bag of (T ′, τ ′) is a potential
maximal clique.

We sketch here the proof that P↑k−pmc is refining. Actually we describe with more details

one of the techniques proving that P↑k−flap is refining, then we adapt this proof to the case of
potential maximal cliques.

Firstly, let us have a closer look at the relationship between a connected partial partitioning
tree Tµ displaying a partition µ ∈ P↑k−pmc and the associated tree decomposition. Consider this
tree decomposition associated to Tµ and remove trivial leaf bags (corresponding to a trivial leaf
flap). The new tree decomposition TDµ has the following properties: (1) all its internal bags
are potential maximal cliques, and (2) for each leaf bag X, the intersection S between X and
its neighbour X ′ is a minimal separator of G, and X \X ′ is a connected component of G−X ′

such that S = NG(X \X ′) (this can be easily deduced from Theorem 6). A tree-decomposition
of graph G satisfying these two properties will be called internally-minimal. Conversely, by
transforming an internally-minimal tree decomposition into a partial partitioning tree, we
obtain a tree displaying an element of P↑k−pmc.

Note that each leaf bag of the tree decomposition TDµ is either a potential maximal clique
of size at most k+ 1, or the set of vertices incident to a non-trivial flap of µ. Conversely, when
we transform an internally-minimal tree decomposition TD into a partition µ ∈ P↑k−pmc, each
not-trivial flap of µ corresponds to a leaf bag of the tree decomposition (the bag is formed by
the vertices of G incident to the flap).

The following statement, which can be found by a little digging in the proofs of [4], can be
considered as the equivalent of Theorem 3 to tree decompositions.

Theorem 8 (gluing theorem [4]). Let TD1 and TD2 be two tree decompositions of G.
Consider a leaf bag X of TD1 and a leaf bag Y of TD2. Suppose that X and Y are non-
crossing, in the sense that X (resp. Y ) intersects at most one component of G − Y (resp.
G−X).

Then there is a tree decomposition TD of G, whose decomposition tree is obtained from
the union TD1 and TD2 by identifying the two leaves X and Y , and such that any bag Z of
TD is at least as small as the corresponding bag of TD1 or TD2.

Proof. Let S be a minimum-size X,Y -separator of G (i.e. ∀x ∈ X, ∀y ∈ Y , x and y are not
connected in G − S). By Menger’s theorem, there is a set PX (resp. PY ) of disjoint paths
of G, linking each vertex of S to some vertex of X (resp. of Y ). Let DX (resp. DY ) be the
union of connected components of G− S intersecting X (resp. Y ). First we construct a tree
decomposition TD′1 of G−DX , having the same tree as TD1, such that each bag of TD′1 is
smaller than the corresponding bag of TD1 and such that the leaf whose bag is X in TD1

has bag S in TD′1. Let X(i) be some bag of TD1, corresponding to some node i. In TD′1,
the corresponding bag X ′(i) is obtained from X(i) as follows. First we remove from X(i) all
vertices of DX . Then for any vertex y ∈ DX ∩X(i) such that y is on one of the paths of PX ,
we replace y by the endpoint of this path in S. It is easy to check that |X ′(i)| ≤ |X(i)|, that
bag X is replaced by S and one can check (see [4] for details) that TD′1 is a tree decomposition
of G−DX . We point out that for each bag X(i), the vertices of X ′(i) \X(i) are exactly the
vertices s of S such that X(i) separates s and X in the graph G.

The same operation is performed in order to transform TD2 into a tree decomposition
TD′2, where bag Y has been replaced by S. Eventually TD′1 and TD′2 are glued by identifying
the two bags S. ⊓⊔
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We now apply the gluing theorem to two internally-minimal tree decompositions TD1 and
TD2. The tree decomposition TD is not necessarily internally-minimal, but as we shall see it
can be refined into an internally-minimal one. Our first remark is that the minimum-size X,Y -
separator S of G (see the proof of Theorem 8 for the notations) is also a minimal separator. More
precisely, DX (resp. DY ) is a connected component of G− S and NG(DX) = NG(DY ) = S.

Let i be a leaf of TD1 (different from the leaf used for the gluing), we investigate the
structure of the bag XTD(i) in the tree decomposition TD. Since TD1 is internally-minimal,
the bag XTD1

(i) is the disjoint union of a minimal separator S(i) and a connected component
C(i) of G − S(i) such that S(i) = NG(C(i)). Recall that, after gluing, the bag XTD(i) is
obtained from the bag XTD1

(i) by removing the vertices of XTD1
(i) which are in DX and

by adding the vertices of S such that XTD1
(i) separates X from these vertices in graph

G. Actually in this case there are no added vertices, so we also have that the leaf bags of
TD are contained in the leaf bags of TD1 and TD2 (not only of smaller size). Let U(i) be
the set of vertices of XTD(i) ∩ (S ∪ S(i)). These are the only vertices of XTD(i) which can
have neighbors outside XTD(i), in the graph G. Thus XTD(i) \ U(i) is a union of connected
components D1(i), . . . , Dp(i) of G− U(i). For any such component Dj(i), its neighborhood
W j(i) = NG(Dj(i)) is a minimal separator of G (see e.g. [11]). We transform the tree
decomposition TD in a new one, by giving the bag U(i) to node i and adding, for each
component Dj(i), 1 ≤ j ≤ p, a new leaf ij with bag Dj(i) ∪W j(i). By doing this on all leaves
i of the tree decomposition TD we obtain a new tree decomposition TD′, finer that TD, such
that each leaf bag of TD′ is contained in some leaf bag of TD. Moreover, TD′ has well-formed
leaves, in the following sense: each leaf bag of TD′ is a union of a minimal separator W and a
connected component D of G−W , such that NG(D) = W . We show how to transform such a
tree decomposition into an internally-minimal one, by preserving the set of leaves. For each
leaf bag D ∪W we delete from G the set D and we complete the minimal separator W into a
clique (the sets D are pairwise disjoint). Let G− be the graph obtained by these operations.
Also note that TD′, minus its leaves of type D ∪W , is a tree decomposition of G−. Take now
a minimal triangulation of G− such that each bag of the corresponding tree decomposition
TD− is contained in some internal bag of TD′. It is not hard to check, using Theorem 6, that
each potential maximal clique of G− is also a potential maximal clique of G (see also [10]).
We construct an internally-minimal tree decomposition TD′′ of G as follows. Fix a root of
TD− and transform it into a connected tree decomposition. For any leaf bag D ∪W of TD′,
take the highest node of TD− which contains W ; such a node exists, since W induces a clique
in G−. Add a leaf to this node, with bag D ∪W . Consequently, TD′′ is internally-minimal.
The leaves of TD′′ of type W ∪D are contained in some leaf of TD′ (and of TD); there might
also be some other leaves, corresponding to nodes of TD−, in which case the corresponding
bags are potential maximal cliques of G.

We are now ready to prove that P↑k−pmc is refining. Let µ1 = (A,A1, . . . , Ap) and µ2 =

(B,B1, . . . , Bq) be two partitions in P↑k−pmc, with A ∩ B = ∅. Let TD1 and TD2 be two
internally-minimal tree decompositions corresponding to partial partitionning trees of these
partitions (after removing trivial bags, unless A and/or B are trivial, in which case we also
keep leaf bags corresponding to these trivial flaps). We apply the gluing theorem on the
bags corresponding to flaps A and B and, using the previous observations, we eventually
obtain an internally-minimal tree decomposition TD. Each leaf bag of TD is either a potential
maximal clique of size at most k + 1 of G, or it is of type W ∪D and moreover the bag is
included in a leaf bag of TD1 or TD2. In the latter case, the flap FD formed by the edges
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of G incident to component D is included in some Ai, 1 ≤ i ≤ p or some Bj , 1 ≤ j ≤ q.

Therefore the partition µ ∈ P↑k−pmc corresponding to the tree decomposition TD is a refining
of (A1, . . . , Ap, B1, . . . , Bq).

This achieves the proof of Theorem 3. ⊓⊔

Proof of Theorem 4. We give here the proof of [16].
Let us note first that B always exists: indeed take the set B0 corresponding to all parts

of elements of P, except the singletons. It satisfies all conditions of the theorem, except the
minimality. Thus it is sufficient to extract an inclusion-minimal B ⊆ B0 satisfying conditions 2
and 3. We prove that such inclusion-minimal B is a P-bramble.

Suppose that B is not a P-bramble. Let A, B be two minimal disjoint sets in B. Since
B is minimal, there exists two partitions (A′, A2, . . . , Ap), (B

′, B2, . . . , Bq) ∈ P
↑ with only

A′, B′ ∈ B and such that A′ ⊆ A, B′ ⊆ B. As P↑ is refining, there exists a partition
(C1, . . . , Cr) finer than (A2, . . . , Ap, B2, . . . , Bq). As B contains a part of every partition in
P↑, B contains some Ci, which is a subset of some Aj (or Bk). Thus, as B is upper closed, it
contains this Aj (or Bk) – a contradiction. ⊓⊔

B The Bramble algorithm: complexity details

Let us detail first the case of “usual” brambles, when we work with Pk−flap. Recall that our
UpdateMarks algorithm must ensure that, like in Lemma 5, a flap F will be marked as
forbidden if and only if there is a partial partitioning tree T with a subtree T (x) such that all
flaps mapped on leaves of T (x) are removed and the union of these flaps is F . We want to
restrict to particular types of partitioning trees, which will allow to prove that we can use
O(nk+3) good couples.

Let us sketch some of the results of Arnborg et al. [2], on tree decompositions. Recall that
we can restrict to connected tree decompositions (see Definition 4 in Appendix A). Given a
rooted tree decomposition TD and a node x of TD, we denote by CTD(x) the set of vertices
of G appearing in the bags of the subtree TD(x), but not in the bag of the father of x. A
connected tree decomposition TD is transformed again into a connected tree decomposition
TD′, such that each bag of TD′ is contained in some bag of T ′, each component CTD(x) is
also a component CTD′(x

′) for some node x′ of TD′, the bag roots of the two trees are the
same and, most important, we have the following technical condition: for each node y of TD′

other than the root, its bag XTD′(y) is formed by the neighborhood of CTD′(y) in the graph
G, plus one vertex. In terms of partial partitioning trees, if we denote by E(y) the set of edges
having at least one endpoint in CTD′(y), this means that the bag XTD′(j) is the border of the
partition (E(j), E \ E(j)) of E, plus one vertex. This last result can be read as follows:

Lemma 7. Let T be a connected partitioning tree corresponding to some element of P↑k−flap.
We can transform the tree T into another connected partitioning tree T ′, corresponding to the
same element of P↑k−flap which has the following properties:

1. The roots of T ′ and T have the same associated partition;
2. For each node x of T different from the root, there is a node x′ of T ′ such that ET (x) =

ET ′(x
′) and the flaps mapped on the leaves of T (x) are exactly the flaps mapped on the

leaves of T ′(x) (ET (x) denotes the union of flaps mapped on leaves of T (x) in the tree T );
3. For each internal node y of T ′, different from the root, we have that δ(µT ′(y)) is exactly

δ((ET ′(y), E \ ET ′(y))) plus one vertex.
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By Lemma 7, in our algorithm UpdateMarks it is sufficient to consider good couples of
type (ET ′(y), µT ′(y)) as described in the lemma. Thus we restrict to good couples (F, µ) such
that δ(µ) corresponds to δ(F,E \ F ) plus one vertex; moreover we may assume that flap F is
non-trivial (not reduced to a single edge) since trivial flaps are removed at the initialization
step. We claim that the number of such flaps is O(nk+3). The number of elements of Pk−flap
is O(nk+1), since we only consider partitions µ = (F1, . . . , Fp) where |δ(µ)| ≤ k + 1 and each
part is either an edge with boths ends in δ(µ), or it is formed by the set of edges of the input
graph G, incident to a connected component of G− δ(µ). For any partition µ, the number
of non-trivial flaps is at most n, thus the number of all useful flaps is m+O(nk+2). To each
non-trivial flap F we associate at most n good couples of the form δ(F,E \F ) plus one vertex,
which achieves the proof on the number of good couples. For each good couple (F, µ) there are
at most m good associated subflaps (flaps of µ, contained in F ). But here again we only need
to memorize the non-trivial ones, which reduces the list to at most n elements. Altogether,
the UpdateMarks algorithms works in O(nk+3) time, and computing the list of good flaps
and the associated good (non-trivial) subflaps can be done in O(nk+4) time.

It remains to discuss how we test, in Algorithm Bramble, whether a flap F contains some
flap F ′ ∈ Bf . Recall that we want to construct a graph Gflap such that the vertex set of Gflap
is the set of all flaps of Pk−flap and the arcs are such that the transitive closure of Gflap gives
the inclusion order on the set of flaps. Again using the same ideas as [2], we can show that for
any two flaps F ′ ⊂ F , there is a flap F ′′ such that F ′ ⊆ F ′′ ⊂ F and, moreover, F is a flap
associated to a partition µ, where δ(µ) is formed by δ(F,E \F ) plus one vertex. Thus the arcs
of the graph Gflap will only be put between flaps (F ′′, F ) with this property. Again for a flap
F we consider at most n partition µ, each of them giving at most n flaps F ′, hence flap F has
at most n2 incoming arcs. The size of Gflap is O(nk+3) and the time complexity for computing
this graph is O(nk+4). Altogether, computing a bramble of order k + 2 costs O(nk+4) time.

A very similar argument holds for potential maximal cliques. Recall that any partial
partitioning tree of width at most k can be transformed into a connected partitioning tree
of width at most k and such that, for each internal node, the border of the corresponding
partition (i.e. the bag of the node) is a potential maximal clique. By [14], the number of good
couples (F, µ) is at most nπ, where π is the number of potential maximal cliques of the input
graph. By [11], a graph G with r minimal separators has O(nr2) potential maximal cliques,
and these potential maximal cliques can be enumerated in O(n2r2) time. Using the arguments
of [14], our data structures (the good couples and their associated lists of good subflaps, as well
as the graph Gflap whose transitive closure is the inclusion order over flaps) can be computed
within the required time bounds.
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