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Study of a finite volume scheme for the regularised mean

curvature flow level set equation

Robert Eymard∗, Angela Handlovičová†and Karol Mikula‡

Abstract

We propose a new finite volume numerical scheme for the approximation of regularised mean

curvature flow level set equations, which ensures the maximum principle, and which is shown to

converge to the solution of the problem. The convergence proof uses the monotonicity of the operator,

in order to get the strong convergence of the approximation of the gradient. The regularisation of

the original level set problem is practically meaningful and not restrictive, especially when dealing

with image processing applications. Numerical examples provide indications about the accuracy of

the method.

Keywords: Regularised mean curvature motion equation, convergence of finite volume method,
Leray-Lions operators.

1 Introduction

We consider the following problem: find an approximate solution to the equation

ut − g(|∇u|)div

( ∇u
f(|∇u|)

)
= r, a.e. (x, t) ∈ Ω×]0, T [ (1)

with the initial condition
u(x, 0) = u0(x), a.e. x ∈ Ω, (2)

and the boundary condition
u(x, t) = 0, a.e. (x, t) ∈ ∂Ω × R+, (3)

under some hypotheses on the real functions f , g, the initial data u0, the right hand side r, and on the
domain Ω, which are detailed below. Note that the case of Neumann boundary conditions on a part of
the boundary or on the whole boundary, instead of (3), is interesting as well, and that it does not add
specific difficulties to the present study. The standard mean curvature flow level set equation, which is
obtained by setting r = 0 and

f(x) = g(x) = x, ∀x ∈ R+ (4)

in (1), has numerous applications in science, engineering and technology, ranging from free boundary
problems in material sciences and computational fluid dynamics to filtering and segmentation algorithms
in image processing and computer vision. We refer to [28] for the original mean curvature flow level
set equation, to [1, 3, 5, 23, 30] for some generalisations in various frameworks; in image processing
applications, equation (1-4), called the curvature filter, is generalised and used in adaptive image filtering
[8], image segmentation by the geodesic active contours [5, 23] and the (generalised) subjective surfaces
method [29, 9, 24].
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The analysis of numerical algorithms for solving (1-4) and related problems is a difficult task due to its
nonlinear character and non-divergent form. In [10, 11, 12], the error estimates for geometric quantities
like the regularised normal to the level set of solution and its normal velocity have been established using
the finite element method. Such estimates are very useful for the free boundary problems when dealing
with the motion of one particular level curve or level surface.

On the other hand, e.g. in image processing applications when the evolution of the whole level set
function representing an image intensity is used in practice, the convergence of a numerical approximation
to the solution u itself is an important point. Convergence of a specially designed finite difference scheme
to the viscosity solution of (1-4) is given in [27]. The finite volume schemes may sometimes be preferred
because of the piecewise constant representation of numerical solution [25] and due to natural L∞-
stability of the numerical schemes. A finite volume scheme is proposed by Walkington in [31]. It is based
on the so-called co-volume strategy for solving (1), setting

f(x) = g(x) =
√
x2 + a2, ∀x ∈ R+, (5)

for a small value a > 0. This regularisation is used to prevent from the occurrence of zero denominators
in numerical schemes. This regularisation (5), known as the Evans-Spruck regularisation of the problem,
is used in [15, 7] to show the existence of the viscosity solution to (1-4). Walkington’s scheme is nonlinear
and its linear semi-implicit variant is suggested in [22]. Such semi-implicit scheme is proved to be efficient,
as keeping all theoretical properties of Walkington’s scheme. It is used in solving various practical 2D and
3D (large-scale) image analysis problems [9, 13, 24]. Theoretical properties of the semi-implicit co-volume
scheme for solving such a regularisation of (4) are studied in [22, 26] and [21]. In [22, 26] the L∞ stability
of solution and L1 stability of solution gradient are given and, moreover, in [21], the consistency of the
scheme is proved using the Barles and Souganidis [4] approach for solving nonlinear PDEs. However, the
convergence of the co-volume semi-implicit scheme to the exact solution remains an open problem.

Note that the convergence of finite volume methods for the solution of the stationary version of (1),
has been proven in [2, 14, 19], under the assumptions

(LL1) the function x 7→ x/f(x) is strictly increasing on R+,

(LL2)
dx

c+ xp−1
≤ f(x) ≤ Cx2−p for given c, d, C > 0, p > 1 and all x ∈ R+,

(LL3) g constant.

We get under assumptions (LL1)-(LL2) that the function u 7→ −div (∇u/f(|∇u|)) is a Leray-Lions
operator, whose monotony properties allow for the use of Minty and Leray-Lions tricks for the proof of
the convergence. Note that property (LL1) holds for the choice (5) for f , but not (LL2). On the contrary,
(LL1)-(LL2) hold if we consider for example

f(x) = g(x) = min(
√
x2 + a2, b), ∀x ∈ R+, (6)

for given reals 0 < a ≤ b, setting p = 2, c = 1, d = a and C = b. In the choice (6), the use of the bound
b is in accordance with image processing applications. Indeed, on discrete grids, the gradient norms are
lower than Q

h
, where Q is a quantisation parameter and h is the side length of a pixel. This acts in a

similar way to the convolution used in [6] for regularising the Perona-Malik equation. Nevertheless, the
problem approximated in [2, 14, 19] is stationary and conservative; new difficulties arise in approximating
(1), which is evolutive and nonconservative. In order to be able to overcome these difficulties, we consider
in this paper the following hypotheses, called hypotheses (H) in the following.

1. Ω is a finite connected open subset of R
d, d ∈ N

⋆, with boundary ∂Ω defined by a finite union of
subsets of hyperplanes of R

d,

2. u0 ∈ H1
0 (Ω),

3. r ∈ L2(Ω×]0, T [) for all T > 0,
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4. g ∈ C0(R+; [a, b]), with 0 < a < b,

5. f ∈ C0(R+; [a, b]) is a Lipschitz continuous (non-strictly) increasing function, such that the function
x 7→ x/f(x) is strictly increasing on R+.

It is worth noticing that the functions f and g given by (6) satisfy (H4-5).

Definition 1.1 (Weak solution of (1)-(2)-(3)) Under hypotheses (H), we say that u is a weak
solution of (1)-(2)-(3) if, for all T > 0,

1. u ∈ L2(0, T ;H1
0 (Ω)) and ut ∈ L2(Ω×]0, T [) (hence u ∈ C0(0, T ;L2(Ω))).

2. u(·, 0) = u0

3. the following holds

∫ T

0

∫

Ω

(
ut(x, t)v(x, t)

g(|∇u(x, t)|) +
∇u(x, t) · ∇v(x, t)
f(|∇u(x, t)|)

)
dxdt =

∫ T

0

∫

Ω

r(x, t)v(x, t)

g(|∇u(x, t)|)dxdt,

∀v ∈ L2(0, T ;H1
0 (Ω)).

(7)

Since any function u weak solution of (1)-(2)-(3) in the sense of Definition 1.1 satisfies div
(

∇u
f(|∇u|)

)
∈

L2(Ω×]0, T [), we immediately get the following lemma.

Lemma 1.1 (Property of weak solutions of (1)-(2)-(3)) Under Hypotheses (H), u is a weak solu-
tion of (1)-(2)-(3) in the sense of Definition 1.1 if and only if u satisfies, for all T > 0:

1. u ∈ L2(0, T ;H1
0 (Ω)) and ut ∈ L2(Ω×]0, T [) (hence u ∈ C0(0, T ;L2(Ω))),

2. u(·, 0) = u0,

3. div
(

∇u
f(|∇u|)

)
∈ L2(Ω×]0, T [),

4. ut − g(|∇u|)div
(

∇u
f(|∇u|)

)
= r a.e. in Ω×]0, T [.

We consider in this paper two different time discretisations of a new finite volume scheme for solving
(1) under Hypotheses (H). The main result of this paper, i.e. the strong convergence of both schemes to
a solution of (7), is proven thanks to the following property. Let F be the function defined by

∀s ∈ R+, F (s) =

∫ s

0

z

f(z)
dz ∈

[
s2

2 b
,
s2

2 a

]
. (8)

Then, for any sufficiently regular function u, it holds

d

dt

∫

Ω

F (|∇u(x, t)|)dx =

∫

Ω

∇u(x, t) · ∇ut(x, t)
f(|∇u(x, t)|) dxdt. (9)

Therefore, assuming that this function u is solution of (1) with r = 0 for the sake of simplicity, we get,
by taking v = ut in (7), that ∇u ∈ C0([0, T ];L2(Ω)) and

∫ T

0

∫

Ω

(
ut(x, t)

2

g(|∇u(x, t)|)

)
dxdt+

∫

Ω

F (|∇u(x, T )|)dx =

∫

Ω

F (|∇u0(x)|)dx. (10)

The discrete equivalent of this property is shown in Lemma 3.6 for the fully-implicit scheme (using that
x 7→ x/f(x) is strictly increasing), and in Lemma 3.7 for the semi implicit scheme (using that f is
increasing). Note that the hypothesis that x 7→ x/f(x) is strictly increasing is used in both schemes for
the use of Minty and Leray-Lions tricks; unfortunately, although it is possible to extend some of these
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properties to the case f(x) = x, the convergence study provided in this paper does not hold in this
framework, nor Lemma 1.1.

This paper is organised as follows. In Section 2, we present the discretisation tools. Then in Section
(3), we show some estimates that are crucial in the convergence proof, given in Section (4). Finally,
numerical results are given in Section (5), before an appendix containing a few classical technical results.

2 The finite volume schemes

In order to describe the schemes, we now introduce some notations for the space discretisation.

Definition 2.1 (Space discretisation) Let Ω be a polyhedral open bounded connected subset of R
d,

with d ∈ N \ {0}, and ∂Ω = Ω \ Ω its boundary. A discretisation of Ω, denoted by D, is defined as the
triplet D = (M, E ,P), where:

1. M is a finite family of nonempty connected open disjoint subsets of Ω (the “control volumes”) such
that Ω = ∪p∈Mp. For any p ∈ M, let ∂p = p\p be the boundary of p; let |p| > 0 denote the measure
of p and let hp denote the diameter of p and hD denote the maximum value of (hp)m∈M.

2. E is a finite family of disjoint subsets of Ω (the “edges” of the mesh), such that, for all σ ∈ E, σ
is a nonempty open subset of a hyperplane of R

d, whose (d− 1)-dimensional measure |σ| is strictly
positive. We also assume that, for all p ∈ M, there exists a subset Ep of E such that ∂p = ∪σ∈Epσ.
For any σ ∈ E, we denote by Mσ = {p ∈ M, σ ∈ Ep}. We then assume that, for all σ ∈ E,
either Mσ has exactly one element and then σ ⊂ ∂Ω (the set of these interfaces, called boundary
interfaces, is denoted by Eext) or Mσ has exactly two elements (the set of these interfaces, called
interior interfaces, is denoted by Eint). For all σ ∈ E, we denote by xσ the barycentre of σ. For all
p ∈ M and σ ∈ Ep, we denote by np,σ the unit vector normal to σ outward to p.

3. P is a family of points of Ω indexed by M, denoted by P = (xp)p∈M, such that for all p ∈ M, xp ∈ p
and p is assumed to be xp-star-shaped, which means that for all x ∈ p, the inclusion [xp, x] ⊂ p
holds. Denoting by dpσ the Euclidean distance between xp and the hyperplane including σ, one
assumes that dpσ > 0. We then denote by Dp,σ the cone with vertex xp and basis σ.

4. We make the important following assumption:

dpσnp,σ = xσ − xp, ∀p ∈ M, ∀σ ∈ Ep. (11)

Remark 2.1 The preceding definition applies to triangular meshes if d = 2, with all angles acute, and
to meshes build with orthogonal parallelepipedic control volumes (rectangles if d = 2).

We denote

θD = min
p∈M

min
σ∈Ep

dpσ
hp

. (12)

Definition 2.2 (Space-time discretisation) Let Ω be a polyhedral open bounded connected subset of
R
d, with d ∈ N

⋆ (where N
⋆ denotes the set N \ {0}) and let T > 0 be given. We say that (D, τ) is a

space-time discretisation of Ω×]0, T [ if D is a space discretisation of Ω in the sense of Definition 2.1 and
if there exists NT ∈ N with T = (NT + 1)τ .

Let (D, τ) be a space-time discretisation of Ω×]0, T [. We define the set HD ⊂ R
M×R

E such that uσ = 0
for all σ ∈ Eext. We define the following functions on HD:

Np(u)
2 =

1

|p|
∑

σ∈Ep

|σ|
dpσ

(uσ − up)
2, ∀p ∈ M, ∀u ∈ HD. (13)
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Let us recall that
‖u‖2

1,D =
∑

p∈M

|p|Np(u)2 (14)

defines a norm on HD (see [20]). We then define the set HD,τ of all u = (un+1)n=0,...,NT such that
un+1 ∈ HD for all n = 0, . . . , NT , and we set

‖u‖2
1,D,τ =

NT∑

n=0

τ‖un+1‖2
1,D, ∀u ∈ HD,τ . (15)

We now define two numerical schemes. The fully implicit scheme is defined by

u0
p =

1

|p|

∫

p

u0(x)dx, ∀p ∈ M, (16)

rn+1
p =

∫ (n+1)τ

nτ

∫

p

r(x, t)dxdt, ∀p ∈ M, ∀n ∈ N, (17)

and

|p|
τ g(Np(un+1))

(un+1
p − unp ) −

1

f(Np(un+1))

∑

σ∈Ep

|σ|
dpσ

(un+1
σ − un+1

p ) =
rn+1
p

τ g(Np(un+1))
,

∀p ∈ M, ∀n ∈ N,

(18)

the following relation is given for the interior edges,

un+1
σ − un+1

p

f(Np(un+1)) dpσ
+

un+1
σ − un+1

q

f(Nq(un+1)) dqσ
= 0, ∀σ ∈ Eint with Mσ = {p, q}, ∀n ∈ N, (19)

and the boundary condition is fulfilled thanks to

un+1
σ = 0, ∀σ ∈ Eext, ∀n ∈ N. (20)

The semi-implicit scheme is defined by (16),

u0
σ =

1

|σ|

∫

σ

u0(x)ds(x), ∀σ ∈ E , (21)

(17), (20) and

|p|
τ g(Np(un))

(un+1
p − unp ) −

1

f(Np(un))

∑

σ∈Ep

|σ|
dpσ

(un+1
σ − un+1

p ) =
rn+1
p

τ g(Np(un))
,

∀p ∈ M, ∀n ∈ N,

(22)

where the following relation is given for the interior edges

un+1
σ − un+1

p

f(Np(un)) dpσ
+

un+1
σ − un+1

q

f(Nq(un)) dqσ
= 0, ∀σ ∈ Eint with Mσ = {p, q}, ∀n ∈ N. (23)

The next section is devoted to the study of some estimates satisfies by the discrete solution to both
schemes (fully and semi-implicit). These estimates in particular allow for the proof of the existence of at
least one solution to the fully implicit scheme, and to the existence and uniqueness of the solution to the
semi-implicit scheme. These estimates also give rise to a brief review of a few properties in the case of
Crank-Nicolson versions of these schemes. These properties are confirmed in the numerical tests shown
in section 5.
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3 Properties of the schemes

Before focusing on the estimates satisfied by the approximate solutions, we first present a few properties
which are useful in the convergence study.

3.1 Approximate gradients

We have the following lemmas.

Lemma 3.1 Let Ω be a bounded connected open subset of R
d, with d ∈ N

⋆ and let T > 0. Let
(Dm, τm)m∈N be a sequence of space-time discretisations of Ω in the sense of Definition 2.2 such that
hDm tends to 0 as m −→ ∞. Let (um)m∈N be such that um ∈ HDm,τm , such that ‖um‖1,Dm,τm ≤ C for all
m ∈ N and such that there exists ū ∈ L2(Ω×]0, T [) such that the sequence of functions uDm,τm defined,
for u = um, D = Dm and τ = τm, by

uD,τ (x, t) = un+1
p , for a.e. x ∈ p, t ∈]nτ, (n+ 1)τ ], ∀p ∈ M, ∀n = 0, . . . , NT ,

satisfies uDm,τm −→ ū in L2(Ω×]0, T [) as m −→ ∞.

Then ū ∈ L2(0, T ;H1
0 (Ω)). Moreover, defining Gm ∈ L∞(0, T ;L2(Ω)) by

Gm(x, t) = d
un+1
σ − un+1

p

dpσ
npσ

for a.e. x ∈ Dpσ, and a.e. t ∈]nτ, (n + 1)τ [, then Gm converges to ∇ū for the weak topology of
L2(Ω×]0, T [)d as m −→ ∞.

Proof. We first notice that

‖Gm‖2
L2(Ω×]0,T [)d =

NT∑

n=0

τ
∑

p∈M

∑

σ∈Ep

|σ| dpσ
d

∣∣∣∣∣d
un+1
σ − un+1

p

dpσ
npσ

∣∣∣∣∣

2

,

which provides
‖Gm‖2

L2(Ω×]0,T [)d = d (‖um‖1,Dm,τm)
2
.

Prolonging Gm (and um) by 0 outside Ω×]0, T [, we get that there exists Ḡ ∈ L2(Rd×]0, T [)d such that Gm
(up to a subsequence) converges to Ḡ for the weak topology of L2(Rd×]0, T [)d as m −→ ∞. Moreover,
Ḡ(x, t) = 0 for a.e. x /∈ Ω×]0, T [. Let ψ ∈ C1

c (R
d×]0, T [)d Let us define, for D = Dm and τ = τm,

ψn+1
σ =

1

|σ|τ

∫ (n+1)τ

nτ

∫

σ

ψ(x, t)ds(x)τ, σ ∈ E , n = 0, . . . , NT ,

and ψm by
ψm(x, t) = ψn+1

σ ,

for a.e. x ∈ Dp,σ, all p ∈ M, σ ∈ Ep, a.e. t ∈]nτ, (n+1)τ [ and all n = 0, . . . , NT . Thanks to the regularity
properties of ψ, we get that ψm converges to ψ in L∞(Rd×]0, T [)d as m −→ ∞. Moreover, we have

∫ T

0

∫

Rd

Gm(x, t) · ψm(x, t)dxdt =

NT∑

n=0

τ
∑

p∈M

∑

σ∈Ep

|σ| dpσ
d

d
un+1
σ − un+1

p

dpσ
npσ · ψn+1

σ ,

which gives, thanks to the fact that the terms un+1
σ are multiplied by 0 for all σ ∈ Eint and using∫ (n+1)τ

nτ

∫
p
div ψ(x, t)dxdt = τ

∑
σ∈Ep

|σ|ψn+1
σ · npσ,

∫ T

0

∫

Rd

Gm(x, t) · ψm(x, t)dxdt = −
∫ T

0

∫

Rd

um(x, t)div ψ(x, t)dxdt.
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Passing to the limit in the above expression, we get, using weak/strong convergence for the left hand
side, ∫ T

0

∫

Rd

Ḡ(x, t) · ψ(x, t)dxdt = −
∫ T

0

∫

Rd

ū(x, t)div ψ(x, t)dxdt.

This proves that ∇ū ∈ L2(Rd×]0, T [)d and that ∇ū = Ḡ for a.e. (x, t) ∈ R
d×]0, T [. Since Ḡ(x, t) = 0 for

a.e. x /∈ Ω×]0, T [, we get that ū ∈ L2(0, T ;H1
0 (Ω)). Since ∇ū ∈ L2(Rd×]0, T [)d is uniquely defined, we

get that the whole sequence Gm weakly converges to ∇ū, which concludes the proof. �

Lemma 3.2 Strong convergence of the approximate gradient norm of regular function in-
terpolation.

Let Ω be a bounded connected open subset of R
d, with d ∈ N

⋆ and let T > 0. Let (D, τ) be a space-
time discretisation of Ω×]0, T [ in the sense of Definition 2.2. For any ϕ ∈ C∞

c (Ω×]0, T [), we define the
discrete interpolation of ϕ, denoted v ∈ HD,τ , by vnp = ϕ(xp, nτ) and vnσ = ϕ(xσ, nτ), and we define ND,τ

by
ND,τ (x, t) = Np(v

n+1), for a.e. x ∈ p, t ∈]nτ, (n+ 1)τ ], ∀p ∈ M, ∀n = 0, . . . , NT , (24)

Then ND,τ converges to |∇ϕ| in L∞(Ω×]0, T [) as hD and τ tend to 0.

Proof. We have, for any vector w ∈ R
d,

|p| w =
∑

σ∈Ep

|σ|w · (xσ − xp)np,σ. (25)

Hence we get that

|p| |w|2 =
∑

σ∈Ep

|σ|w · (xσ − xp)np,σ · w =
∑

σ∈Ep

|σ|dpσ(np,σ · w)2,

thanks to condition (11). This provides that

|p| |∇ϕ(xp, t)|2 =
∑

σ∈Ep

|σ|dpσ(np,σ · ∇ϕ(xp, t))
2.

Writing that

np,σ · ∇ϕ(xp, t) =
ϕ(xσ, t) − ϕ(xp, t)

dpσ
+ Cp(t)hD, (26)

with Cp(t) bounded independently of the discretisation, we conclude the proof of the lemma. �

Lemma 3.3 (Strong approximate of the gradient of ϕ) For all ϕ ∈ C∞
c (Ω×]0, T [), we denote by

vnp = ϕ(xp, nτ) and vnσ = ϕ(xσ, nτ). We introduce the approximation

∇n+1
pσ ϕ =

vn+1
σ − vn+1

p

dpσ
npσ + ∇ϕ(xp, (n+ 1)τ) − (∇ϕ(xp, (n+ 1)τ) · npσ)npσ, (27)

and ∇D,τϕ(x, t) = ∇n+1
pσ ϕ for x ∈ Dpσ, t ∈ [nτ, (n+ 1)τ ].

Then ∇D,τϕ strongly converges in L∞(Ω×]0, T [) to ∇ϕ.

Proof. The proof relies on (26). �
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3.2 Estimates and existence of a solution to the fully implicit scheme

Lemma 3.4 (L∞ stability of the schemes) Under Hypotheses (H), let (D, τ) be a space-time discreti-
sation of Ω×]0, T [ in the sense of Definition 2.2. We denote by

|u0|D,∞ = max
p∈M

|u0
p|, (28)

and by

|r|D,τ,∞ = max

{
|rn+1
p |
τ |p| , p ∈ M, n = 0, . . . , NT

}
(29)

(note that, if u0 ∈ L∞(Ω) and r ∈ L∞(Ω×R+), then |u0|D,∞ ≤ ‖u0‖L∞(Ω) and |r|D,τ,∞ ≤ ‖r‖L∞(Ω×]0,T [)).
Let (unp )p∈M,n∈N be a solution of (16), (17), (20) and (21), (22), (23) (semi-implicit scheme) or (18),
(19) (fully implicit scheme). Then it holds:

|unp | ≤ |u0|D,∞ + |r|D,τ,∞ n τ ≤ |u0|D,∞ + |r|D,τ,∞ T, ∀p ∈ M, ∀n = 0, . . . , NT .

Proof. Suppose that for fixed time step (n + 1) the maximum of all un+1
p is achieved at the finite

volume p. Let us write (18) or (22) in the following way:

un+1
p +

τ g(Np(u
m))

|p| f(Np(um))

∑

σ∈Ep

|σ|
dpσ

(un+1
p − un+1

σ ) = unp + rn+1
p , (30)

with m = n+ 1 for (18) and m = n for (22). Since the value un+1
σ satisfies the equality

un+1
σ =

un+1
p f(Nq(u

m))dqσ + un+1
q f(Np(u

m))dpσ

f(Np(um))dpσ + f(Nq(um))dqσ
, (31)

which is a convex linear combination of points un+1
p , un+1

q , we obtain

un+1
p − un+1

σ =
f(Np(u

m))dpσ(u
n+1
p − un+1

q )

f(Np(um))dpσ + f(Nq(um))dqσ
,

which is nonnegative. This leads to
un+1
p ≤ unp + |r|D,τ,∞ τ. (32)

Then, we recursively get the estimate (32), similarly reasoning for the minimum values. �

Note that the existence and uniqueness of a solution to the semi-implicit scheme (21), (17), (20), (22),
(23) is an immediate consequence of Lemma 3.4, since the semi-implicit scheme resumes to a sequence
of square linear systems whose Lemma 3.4 shows that the only solution is null in case of null right hand
side. This is not the case for the fully implicit scheme (16), (17), (20), (18), (19). The next lemma is
devoted to the proof of the existence of at least one solution to the fully implicit scheme.

Lemma 3.5 (Existence of at least one solution to the fully implicit scheme) Under Hypothe-
ses (H), for a given n ∈ N and a given family (unp )p∈M

, there exists at least one u ∈ HD, denoted un+1,
such that (16), (17), (20), (18), (19) holds.

Proof. Let us define the mapping ψ : HD → HD, u 7→ v, such that

|p|
τ g(Np(u))

(vp − unp ) −
1

f(Np(u))

∑

σ∈Ep

|σ|
dpσ

(vσ − vp) =
rn+1
p

τ g(Np(u))
, (33)

for all σ = p|q,
vσ − vp

f(Np(u)) dpσ
+

vσ − vq
f(Nq(u)) dqσ

= 0, (34)
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for all σ ∈ Eext,
vσ = 0. (35)

We get, following the proof of Lemma 3.4, that

|vp| ≤ max
q∈M

|unq | + max
q∈M

|rn+1
q |
|q| , ∀p ∈ M.

Hence, since the application ψ is continuous (the above inequality proving that the linear system
providing v is invertible), applying Brouwer’s fixed point theorem, we get the existence of at least one
solution to the scheme. �

Lemma 3.6 L2(Ω×]0, T [) estimate on ut and L∞(0, T ;HD) estimate, fully implicit scheme.
Let Hypotheses (H) be fulfilled. Let (D, τ) be a space-time discretisation of Ω×]0, T [ in the sense of

Definition 2.2 and let θ ∈]0, θD[, where θD is defined by (12). Let (unp )p∈M,n∈N be a solution of (16),
(17), (20) and (18), (19). Then there exists Cθ > 0, only depending on θ, such that it holds:

1

2

m−1∑

n=0

∑

p∈M

|p|
τg(Np(un+1))

(un+1
p − unp )

2 +
∑

p∈M

|p| F (Np(u
m))

≤
Cθ‖u0‖2

H1(Ω) + ‖r‖2
L2(Ω×]0,T [)

2 a
, ∀m = 1, . . . , NT .

(36)

Proof.

We multiply the scheme by un+1
p − unp and sum over p. We obtain T1 + T2 = T3, where

T1 =
∑

p∈M

|p|
τg(Np(un+1))

(un+1
p − unp )

2,

T2 =
∑

p∈M

1

f(Np(un+1))

∑

σ∈Ep

|σ|
dpσ

(un+1
σ − un+1

p )(un+1
σ − un+1

p − (unσ − unp )),

T3 =
∑

p∈M

rn+1
p

τ g(Np(un+1))
(un+1
p − unp )

where we have used the properties of the finite volume scheme. We first remark that, thanks to Young’s
inequality and to the Cauchy-Schwarz inequality

T3 ≤
∑

p∈M

(rn+1
p )2

2|p| τ g(Np(un+1))
+

1

2
T1 ≤ 1

2a

∫ (n+1)τ

nτ

∫

Ω

r(x, t)2dxdt+
1

2
T1.

Using Definition (8) of function F , we have:

F (Np(u
n+1)) − F (Np(u

n)) =

Np(u
n+1)∫

Np(un)

zdz

f(z)
.

Let us remark that, thanks to Hypothesis (H5),

∀c, d ∈ R+,

∫ d

c

zdz

f(z)
≤ d

f(d)
(d− c). (37)

Indeed, we set, for c, d ∈ R+, Φd(c) = d
f(d) (d−c)−

∫ d
c
zdz
f(z) . We have Φd(d) = 0, and Φ′

d(c) = − d
f(d) + c

f(c) ,

whose sign is that of c− d since z 7→ z/f(z) is increasing. Hence Φd(c) ≥ 0. We can then write

F (Np(u
n+1)) − F (Np(u

n)) ≤ Np(u
n+1)

f(Np(un+1))
(Np(u

n+1) −Np(u
n)).
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Note that the Cauchy-Schwarz inequality implies

∑

σ∈Ep

|σ|
dpσ

(un+1
σ − un+1

p )(unσ − unp ) ≤ |p| Np(u
n)Np(u

n+1),

which in turn implies ∑

p∈M

|p| (F (Np(u
n+1)) − F (Np(u

n)) ≤ T2.

Finally we obtain

1

2

∑

p∈M

|p|
τg(Np(un+1))

(un+1
p − unp )

2 +
∑

p∈M

|p| F (Np(u
n+1))

≤
∑

p∈M

|p| F (Np(u
n)) +

1

2a

∫ (n+1)τ

nτ

∫

Ω

r(x, t)2dxdt,

(38)

and summing this inequality over n = 0, . . . ,m− 1 for all m = 1, . . . , NT , we get that

1

2

m−1∑

n=0

∑

p∈M

|p|
τg(Np(un+1))

(un+1
p − unp )

2 +
∑

p∈M

|p| F (Np(u
m))

≤
∑

p∈M

|p| F (Np(u
0)) +

1

2a

∫ mτ

0

∫

Ω

r(x, t)2dxdt,

where we define u0
σ by (21). We then use the following inequality, proven in [18]: there exists Cθ > 0,

only depending on θ, such that

|p| Np(u0)2 ≤ Cθ‖u0‖2
H1(p), ∀p ∈ M. (39)

We thus get (36). �

Lemma 3.7 L2(Ω×]0, T [) estimate on ut and L∞(0, T ;HD) estimate, semi-implicit scheme. Let
Hypotheses (H) be fulfilled. Let (D, τ) be a space-time discretisation of Ω×]0, T [ in the sense of Definition
2.2 and let θ ∈]0, θD[, where θD is defined by (12). Let (unp )p∈M,n∈N be the solution of (16), (17), (20)
and (21), (22), (23). Then there exists Cθ > 0, only depending on θ, such that it holds:

1

2

m−1∑

n=0

∑

p∈M

|p|
τg(Np(un+1))

(un+1
p − unp )

2 +
∑

p∈M

|p| F (Np(u
m))

+
1

2b

m−1∑

n=0

∑

p∈M

|p| (Np(u
n+1) −Np(u

n))2 ≤
Cθ‖u0‖2

H1(Ω) + ‖r‖2
L2(Ω×]0,T [)

2 a
, ∀m = 1, . . . , NT .

(40)

Proof. We proceed as in the proof of the Lemma 3.6. The differences are the expression of T2 and the
fact that, in T1 and T3, we have terms g(Np(u

n)) instead of g(Np(u
n+1)). This last point does not modify

the way T1 and T3 are handled. Let us turn to the study of T2. We remark that, thanks to Hypothesis
(H5),

∀c, d ∈ R+,

∫ d

c

zdz

f(z)
+

(d− c)2

2f(c)
≤ d

f(c)
(d− c). (41)

Indeed, we set, for c, d ∈ R+, Φc(d) = d
f(c) (d − c) − (d−c)2

2f(c) −
∫ d
c
zdz
f(z) . We have Φc(c) = 0, and Φ′

c(d) =
d
f(c) − d

f(d) , whose sign is that of d− c since f is (non-strictly) increasing. Hence Φc(d) ≥ 0 and we get

F (Np(u
n+1)) − F (Np(u

n)) +
1

2b
(Np(u

n+1) −Np(u
n))2 ≤ Np(u

n+1)

f(Np(un))
(Np(u

n+1) −Np(u
n)).

Then the conclusion follows, as in the proof of Lemma 3.6. �
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Remark 3.1 (Case of the non-regularised level set equation) If we use the hypothesis s/f(s) ≤ a
(which holds for f(s) = s) instead of a ≤ f(s), assumed in this paper, the above computations provide
an L∞(0, T ;L1(Ω)) estimate on the discrete gradient instead of an L∞(0, T ;L2(Ω)) estimate. It would
nevertheless be possible to get some of the results proven during the convergence study, but not all of them.
This is not surprising, since for the level set equation, there is no weak/strong sense, and we should refer
to the viscosity solution sense. Hence the convergence study for f(s) = s remains open.

Consequences on Crank-Nicolson -like versions of the schemes

In this paper, we could as well, for a given α ∈ [ 12 , 1], replace (22) and (23) by

|p|
τ g(Np(un))

(un+1
p − unp ) −

1

f(Np(un))

∑

σ∈Ep

|σ|
dpσ

(ûn+1
σ − ûn+1

p ) =
rn+1
p

τ g(Np(un))
,

ûn+1
p = αun+1

p + (1 − α)unp ,
∀p ∈ M, ∀n ∈ N,

(42)

and
ûn+1
σ − ûn+1

p

f(Np(un)) dpσ
+

ûn+1
σ − ûn+1

q

f(Nq(un)) dqσ
= 0, ∀σ ∈ Eint with Mσ = {p, q}, ∀n ∈ N. (43)

We then define the so-called “α-scheme” version of the above semi-implicit scheme, which provides the
Crank-Nicolson scheme for α = 1

2 and (22), (23) for α = 1. The convergence properties proven in this
paper for α = 1 can be immediately generalised to the case α ∈]12 , 1] for the semi-implicit scheme, since
the crucial property (41) is modified into

∀c, d ∈ R+,

∫ d

c

zdz

f(z)
+ (α− 1

2
)
(d− c)2

f(c)
≤ αd+ (1 − α)c

f(c)
(d− c),

which holds under the same hypothesis f increasing.

On the contrary, if, for a given α ∈ [12 , 1], we replace (18) and (19) by

|p|
τ g(Np(ûn+1))

(un+1
p − unp ) −

1

f(Np(ûn+1))

∑

σ∈Ep

|σ|
dpσ

(ûn+1
σ − ûn+1

p ) =
rn+1
p

τ g(Np(ûn+1))
,

ûn+1
p = αun+1

p + (1 − α)unp ,
∀p ∈ M, ∀n ∈ N,

(44)

and
ûn+1
σ − ûn+1

p

f(Np(ûn+1)) dpσ
+

ûn+1
σ − ûn+1

q

f(Nq(ûn+1)) dqσ
= 0, ∀σ ∈ Eint with Mσ = {p, q}, ∀n ∈ N, (45)

we have to replace property (37) by

∀c, d ∈ R+,

∫ d

c

zdz

f(z)
≤ αd+ (1 − α)c

f(αd+ (1 − α)c)
(d− c),

which is not satisfied for all α ∈ [ 12 , 1] by the example given in (6) (indeed, for α = 1
2 , it implies that the

function s 7→ s/f(s) is concave).

4 Convergence

Thanks to the estimates proven in the above section, we are now in position for proving the convergence
of the scheme, using the monotonicity properties of the operators.
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4.1 Convergence properties for the fully implicit scheme

We consider values (unp )p∈M,n∈N satisfying (16), (17), (20) and (18) and (19). We define the approximate
solution in Ω × R+ by

uD,τ (x, 0) = u0
p, uD,τ (x, t) = un+1

p , for a.e. x ∈ p, ∀t ∈]nτ, (n+ 1)τ ], ∀p ∈ M, ∀n ∈ N, (46)

(note that the above definition holds for all t ∈ R+, and not only for a.e. t ∈ R+)

wD,τ (x, t) = − un+1
p − unp

τ g(Np(un+1))
+

rn+1
p

|p| τ g(Np(un+1))
,

for a.e. x ∈ p, for a.e. t ∈]nτ, (n+ 1)τ [, ∀p ∈ M, ∀n ∈ N,

(47)

zD,τ (x, t) =
un+1
p − unp

τ
, for a.e. x ∈ p, for a.e. t ∈]nτ, (n+ 1)τ [, ∀p ∈ M, ∀n ∈ N, (48)

ND,τ (x, t) = Np(u
n+1), for a.e. x ∈ p, for a.e. t ∈]nτ, (n+ 1)τ [, ∀p ∈ M, ∀n ∈ N, (49)

GD,τ (x, t) = d
un+1
σ − un+1

p

dpσ
npσ,

for a.e. x ∈ Dpσ, for a.e. t ∈]nτ, (n+ 1)τ [, ∀p ∈ M, ∀σ ∈ Ep, ∀n ∈ N,

(50)

(recall that Dpσ is the cone with vertex xp and basis σ and npσ is the normal unit vector to σ outward
to p)

HD,τ (x, t) = d
un+1
σ − un+1

p

dpσf(Np(un+1))
npσ,

for a.e. x ∈ Dpσ, for a.e. t ∈]nτ, (n+ 1)τ [, ∀p ∈ M, ∀σ ∈ Ep, ∀n ∈ N.

(51)

Note that uD,τ is the solution of

− 1

f(Np(un+1))

∑

σ∈Ep

|σ|
dpσ

(un+1
σ − un+1

p ) = |p| wn+1
p , ∀p ∈ M, ∀n ∈ N, (52)

un+1
σ − un+1

p

f(Np(un+1)) dpσ
+

un+1
σ − un+1

q

f(Nq(un+1)) dqσ
= 0, ∀σ = p|q ∈ Eint, ∀n ∈ N, (53)

and
un+1
σ = 0, ∀σ ∈ Eext, ∀n ∈ N. (54)

We then have the following convergence lemma.

Lemma 4.1 (A convergence property of the fully implicit scheme) Let Hypotheses (H) be ful-
filled. Let (Dm, τm)m∈N be a sequence of space-time discretisations of Ω×]0, T [ in the sense of Definition
2.2 such that hDm and τm > 0 tends to 0 as m −→ ∞. We assume that there exists some θ > 0 with
θ < θDm for all m ∈ N, where θD is defined by (12). Let, for all m ∈ N, (unp )p∈M,n∈N be such that (16),
(17), (20) and (18) and (19) hold and let uDm,τm be defined by (46).

Then there exists a subsequence of (Dm, τm)m∈N, again denoted (Dm, τm)m∈N, there exists a function
ū ∈ L∞(0, T ;H1

0 (Ω)) ∩ C0(0, T ;L2(Ω)), such that ūt ∈ L2(Ω×]0, T [), u(., 0) = u0, and uDm,τm tends to
ū ∈ L∞(0, T ;H1

0 (Ω)) in L∞(0, T ;L2(Ω)), and there exist functions H̄ ∈ L2(Ω×]0, T [)d, w̄ ∈ L2(Ω×]0, T [)
such that HDm,τm , defined by (51), weakly converges to H̄ in L2(Ω×]0, T [)d and such that wDm,τm , defined
by (47), weakly converges to w̄ in L2(Ω×]0, T [) as m → ∞. Moreover, zDm,τm , defined by (48), weakly
converges in L2(Ω×]0, T [) to ut, GDm,τm , defined by (50), weakly converges to ∇ū in L2(Ω×]0, T [)d and
NDm,τm , defined by (49), satisfies

lim
m→∞

∫ T

0

∫

Ω

NDm,τm(x, t)2

f(NDm,τm(x, t))
dxdt =

∫ T

0

∫

Ω

H̄(x, t) · ∇ū(x, t)dxdt. (55)
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Proof. From Lemma 3.6 we get that wD,τ remains bounded in L2(Ω×]0, T [) for all m ∈ N. Therefore
there exists a subsequence of (Dm, τm)m∈N, again denoted (Dm, τm)m∈N, and a function w̄ ∈ L2((Ω×]0, T [)
such that wm weakly converges to w̄ in L2(Ω×]0, T [). The same applies on zD,τ , which necessarily
weakly converges in L2(Ω×]0, T [) to ut, which shows that ∂tū ∈ L2(Ω×]0, T [). From the definition
of F and Hypotheses (H) (which imply F (s) ≥ s2/2b), um is bounded in HD. Hence we can apply
Theorem 6.1, which is a generalisation of Ascoli’s theorem and shows that uDm,τm(·, t) converges in
L∞(0, T ;L2(Ω)) to ū ∈ C0(0, T ;L2(Ω)). Thanks to (16), we have ū(·, 0) = u0. We also get, as in [17],
that ū ∈ L∞(0, T ;H1

0 (Ω)).
We have GD,τ bounded in L∞(0, T ;L2(Ω)) from the L∞(0, T ;HD) bound on uD,τ . Hence GD,τ weakly

converges to some Ḡ. Applying the result provided for example in [16], we get that G = ∇u. Similarly,
HD,τ weakly converges to some H̄. One of the difficulties is to identify H̄ with ∇u/f(|∇u|). This will be
done in further lemmas, thanks to the property (55) stated in the present lemma, that we have now to
prove. Note that in the proof below, we drop some indices m for the simplicity of notation.

Let ϕ ∈ C∞
c (Ω×]0, T [) be given. We denote by vnp = ϕ(xp, nτ) and vnσ = ϕ(xσ, nτ). Multiplying (52)

by τvn+1
p , summing on n and p, we get T1m = T2m with

T1m =

NT∑

n=0

τ
∑

p∈M

∑

σ∈Ep

|σ|
dpσ

un+1
σ − un+1

p

f(Np(un+1))
(vn+1
σ − vn+1

p ),

and

T2m =

NT∑

n=0

τ
∑

p∈M

|p| wn+1
p vn+1

p .

Using the approximation ∇D,τϕ of ∇ϕ provided in Lemma 3.3, we can write that

T1m =

∫ T

0

∫

Ω

HD,τ · ∇D,τϕdxdt.

Hence, by weak/strong convergence,

lim
m→∞

T1m =

∫ T

0

∫

Ω

H̄ · ∇ϕdxdt.

We have on the other hand

lim
m→∞

T2m =

∫ T

0

∫

Ω

w̄ϕdxdt.

Hence ∫ T

0

∫

Ω

H̄ · ∇ϕdxdt =

∫ T

0

∫

Ω

w̄ϕdxdt.

Since the above equality holds for all ϕ ∈ C∞
c (Ω×]0, T [), it also holds by density for all v ∈ L2(0, T ;H1

0 (Ω)).
Hence we get ∫ T

0

∫

Ω

H̄ · ∇ūdxdt =

∫ T

0

∫

Ω

w̄ūdxdt. (56)

We now multiply (52) by τun+1
p , sum on n and p. We get T3m = T4m with T3m defined by

T3m =

NT∑

n=0

τ
∑

p∈M

∑

σ∈Ep

|σ|
dpσ

(un+1
σ − un+1

p )2

f(Np(un+1))
=

∫ T

0

∫

Ω

ND,τ (x, t)
2

f(ND,τ (x, t))
dxdt, (57)

and

T4m =

NT∑

n=0

τ
∑

p∈M

|p| wn+1
p un+1

p .
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We have, by weak/strong convergence,

lim
m→∞

T4m =

∫ T

0

∫

Ω

w̄ūdxdt,

which leads, using (56), to

lim
m→∞

T3m =

∫ T

0

∫

Ω

w̄ūdxdt =

∫ T

0

∫

Ω

H̄ · ∇ūdxdt,

which is (55). �

4.2 Convergence properties for the semi-implicit scheme

We consider values (unp )p∈M,n∈N, given by (16), (17), (20) and (21), (22), (23). We define the approximate
solution uD,τ in Ω × R+ by (46), we define

w̃D,τ (x, t) = − un+1
p − unp

τ g(Np(un))
+

rn+1
p

|p| τ g(Np(un))
,

for a.e. x ∈ p, for a.e. t ∈]nτ, (n+ 1)τ [, ∀p ∈ M, ∀n ∈ N,

(58)

we define zD,τ by (48), we define ND,τ by (49) and we define

ÑD,τ (x, t) = Np(u
n), for a.e. x ∈ p, for a.e. t ∈]nτ, (n+ 1)τ [, ∀p ∈ M, ∀n ∈ N, (59)

we define GD,τ by (50), we define HD,τ by (51) and we define

H̃D,τ (x, t) = d
un+1
σ − un+1

p

dpσf(Np(un))
npσ,

for a.e. x ∈ Dpσ, for a.e. t ∈]nτ, (n+ 1)τ [, ∀p ∈ M, ∀σ ∈ Ep, ∀n ∈ N.

(60)

Note that uD,τ is the solution of

− 1

f(Np(un))

∑

σ∈Ep

|σ|
dpσ

(un+1
σ − un+1

p ) = |p| w̃n+1
p ,∀p ∈ M, ∀n ∈ N, (61)

un+1
σ − un+1

p

f(Np(un)) dpσ
+

un+1
σ − un+1

q

f(Nq(un)) dqσ
= 0, ∀σ = p|q ∈ Eint, ∀n ∈ N, (62)

and
un+1
σ = 0, ∀σ ∈ Eext, ∀n ∈ N. (63)

We then have the following convergence lemma.

Lemma 4.2 (A convergence property of the semi-implicit scheme) Let Hypotheses (H) be ful-
filled. Let (Dm, τm)m∈N be a sequence of space-time discretisations of Ω×]0, T [ in the sense of Definition
2.2 such that hDm and τm > 0 tends to 0 as m −→ ∞. We assume that there exists some θ > 0 with
θ < θDm for all m ∈ N, where θD is defined by (12). Let, for all m ∈ N, (unp )p∈M,n∈N be such that (16),
(17), (20) and (21), (22), (23) hold and let uDm,τm be defined by (46).

Then there exists a subsequence of (Dm, τm)m∈N, again denoted (Dm, τm)m∈N, there exists a function
ū ∈ L∞(0, T ;H1

0 (Ω))∩C0(0, T ;L2(Ω)), such that ūt ∈ L2(Ω×]0, T [), u(., 0) = u0, and uDm,τm tends to ū ∈
L∞(0, T ;H1

0 (Ω)) in L∞(0, T ;L2(Ω)), and there exists functions H̄ ∈ L2(Ω×]0, T [)d, w̄ ∈ L2(Ω×]0, T [)
such that HDm,τm , defined by (51), weakly converges to H̄ in L2(Ω×]0, T [)d and such that w̃Dm,τm , defined
by (58), weakly converges to w̄ in L2(Ω×]0, T [) as m → ∞. Moreover, zDm,τm , defined by (48), weakly
converges in L2(Ω×]0, T [) to ut, GDm,τm , defined by (50), weakly converges to ∇ū in L2(Ω×]0, T [)d,

HDm,τm − H̃Dm,τm , defined by (51) and (60), converges to 0 in L1(Ω×]0, T [) , NDm,τm − ÑDm,τm , defined
by (49) and (59), converges to 0 in L2(Ω×]0, T [) and the relation (55) holds.
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Proof. The same compactness properties as that used in the proof of Lemma 4.1 hold. Let us now
focus on the few differences and new points. We have, for x ∈ p and t ∈]nτ, (n+ 1)τ [,

ND,τ (x, t) − ÑD,τ (x, t) = Np(u
n+1) −Np(u

n).

Using (40), we get the existence of C > 0 independent of m such that

‖NDm,τm − ÑDm,τm‖2
L2(Ω×]0,T [) ≤ Cτm,

which provides
lim
m→∞

‖NDm,τm − ÑDm,τm‖L2(Ω×]0,T [) = 0. (64)

Using the Cauchy-Schwarz inequality, we have

∫ T

0

∫

Ω

|H̃Dm,τm(x, t) −HDm,τm(x, t)|dxdt ≤ ‖GD‖L2(Ω×]0,T [)d

∥∥∥∥∥
1

f(ÑDm,τm)
− 1

f(NDm,τm)

∥∥∥∥∥
L2(Ω×]0,T [)d

,

which proves that H̃Dm,τm −HDm,τm , defined by (51) and (60), converges to 0 in L1(Ω×]0, T [)d thanks

to (64). Note that this shows that H̃Dm,τm converges as well to H̄ for the weak topology of L2(Ω×]0, T [).
Let us now turn to the proof of (55). Proceeding as in the proof of (55) in Lemma 4.1, we get (56) and
we conclude that

lim
m→∞

T̃3m =

∫ T

0

∫

Ω

w̄ūdxdt =

∫ T

0

∫

Ω

H̄ · ∇ūdxdt,

defining

T̃3m =

NT∑

n=0

τ
∑

p∈M

∑

σ∈Ep

|σ|
dpσ

(un+1
σ − un+1

p )2

f(Np(un))
,

again dropping some indices m for the simplicity of notation. Let us now prove that T̃3m and T3m have
the same limit. Writing

T̃3m − T3m = −τ
∑

p∈M

|p| Np(u
NT+1)2

f(Np(uNT+1))
+

NT∑

n=0

τ
∑

p∈M

|p| Np(u
n+1)2 −Np(u

n)2

f(Np(un))
+ τ

∑

p∈M

|p| Np(u
0)2

f(Np(u0))
,

we get, using (40) for the study of the first term in the right hand side of the above equation, (64) for
the study of the second term and (39) for the third one, that

lim
m→∞

(T̃3m − T3m) = 0,

which completes the proof of (55). �

4.3 Strong convergence of ND,τ

The problem is now to show the strong convergence in L2(Ω×]0, T [) of ND(uD,τ ) to |∇ū|. This will result
from property (55) (which holds for both the fully implicit and the semi-implicit schemes), from Minty
trick and from Leray-Lions trick. Let us start with the following property:

Lemma 4.3 For all u, v ∈ HD,

∑

p∈M

∑

σ∈Ep

|σ|
dpσ

(
uσ − up
f(Np(u))

− vσ − vp
f(Np(v))

)

)
(uσ − up − vσ + vp) ≥ 0.
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Proof. We have that

∑

σ∈Ep

|σ|
dpσ

(
uσ − up
f(Np(u))

− vσ − vp
f(Np(v))

)

)
(uσ − up − vσ + vp)

=
∑

σ∈Ep

( |σ|
dpσ

(uσ − up)
2

f(Np(u))
+

|σ|
dpσ

(vσ − vp)
2

f(Np(v))
− |σ|
dpσ

(uσ − up)(vσ − vp)

f(Np(u))
− |σ|
dpσ

(uσ − up)(vσ − vp)

f(Np(v))

)
.

Applying the Cauchy-Schwarz inequality, we get

∑

σ∈Ep

|σ|
dpσ

(
uσ − up
f(Np(u))

− vσ − vp
f(Np(v))

)

)
(uσ − up − vσ + vp) ≥

|p| Np(u)2
f(Np(u))

+
|p| Np(v)2
f(Np(v))

−|p| Np(u)Np(v)
f(Np(u))

− |p| Np(u)Np(v)
f(Np(v))

,

which gives
∑

σ∈Ep

|σ|
dpσ

(
uσ − up
f(Np(u))

− vσ − vp
f(Np(v))

)

)
(uσ − up − vσ + vp) ≥

|p|
(

Np(u)

f(Np(u))
− Np(v)

f(Np(v))

)
(Np(u) −Np(v)) .

This last expression is non negative thanks to the hypotheses (H). �

We now continue with the use of Minty trick.

Lemma 4.4 Let Hypotheses (H) be fulfilled. Let (Dm, τm)m∈N be a sequence of space-time discretisations
of Ω×]0, T [ in the sense of Definition 2.2 such that hDm and τm > 0 tends to 0 as m −→ ∞. We assume
that, for all m ∈ N, there exists a family of reals ((unp )p∈M,n∈N, (unσ)σ∈E,n∈N) such that uDm,τm defined
by (46), GDm,τm , defined by (50) and HDm,τm , defined by (51), are such that GDm,τm weakly converges
to ∇ū in L2(Ω×]0, T [)d, with ū ∈ L2(0, T ;H1

0 (Ω)), HDm,τm weakly converges to H̄ in L2(Ω×]0, T [)d as
m → ∞ and we assume that (55) holds with NDm,τm defined by (49). Let ϕ ∈ C∞

c (Ω×]0, T [) be given.
We denote by vnp = ϕ(xp, nτ) and vnσ = ϕ(xσ, nτ) and by

Tm =

NT∑

n=0

τ
∑

p∈M

∑

σ∈Ep

|σ|
dpσ

(
un+1
σ − un+1

p

f(Np(un+1))
− vn+1

σ − vn+1
p

f(Np(vn+1))
)

)
(un+1
σ − un+1

p − vn+1
σ + vn+1

p ). (65)

Then the following holds

lim
m→∞

Tm =

∫ T

0

∫

Ω

(H̄ − ∇ϕ(x, t)

f(|∇ϕ|) )(∇ū−∇ϕ)dxdt, (66)

and ∫ T

0

∫

Ω

H̄ · ∇vdxdt =

∫ T

0

∫

Ω

∇ū
f(|∇ū|) · ∇vdxdt, ∀v ∈ L2(0, T ;H1

0 (Ω)). (67)

Proof. We remark that Tm = T3m − T5m − T6m + T7m, with T3m defined by (57) and

T5m =

NT∑

n=0

τ
∑

p∈M

∑

σ∈Ep

|σ|
dpσ

(
un+1
σ − un+1

p

f(Np(un+1))
)

)
(vn+1
σ − vn+1

p ),

T6m =

NT∑

n=0

τ
∑

p∈M

∑

σ∈Ep

|σ|
dpσ

(
vn+1
σ − vn+1

p

f(Np(vn+1))
)

)
(un+1
σ − un+1

p ),
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T7m =

NT∑

n=0

τ
∑

p∈M

∑

σ∈Ep

|σ|
dpσ

(
vn+1
σ − vn+1

p

f(Np(vn+1))
)

)
(vn+1
σ − vn+1

p ).

We have that ND(vD,τ ) strongly converges in L∞(Ω×]0, T [) to |∇ϕ|, which leads to

lim
m→∞

T5m =

∫ T

0

∫

Ω

H̄ · ∇ϕdxdt

lim
m→∞

T6m =

∫ T

0

∫

Ω

∇ϕ
f(|∇ϕ|) · ∇ūdxdt,

lim
m→∞

T7m =

∫ T

0

∫

Ω

∇ϕ
f(|∇ϕ|) · ∇ϕdxdt.

Hence, gathering the above results, we get (66). We have that Tm ≥ 0 thanks to Lemma 4.3. Hence (66)
provides ∫ T

0

∫

Ω

(H̄ − ∇ϕ(x, t)

f(|∇v|) )(∇ū−∇ϕ)dxdt ≥ 0,

and therefore we get by density

∀v ∈ L2(0, T ;H1
0 (Ω)),

∫ T

0

∫

Ω

(H̄ − ∇v(x, t)
f(|∇v|) )(∇ū−∇v)dxdt ≥ 0. (68)

We can now apply Minty’s trick, taking in (68) v = u− λψ, with λ > 0 and ψ ∈ C∞
c (Ω×]0, T [). We get,

dividing by λ, ∫ T

0

∫

Ω

(H̄ − ∇(u− λψ)

f(|∇(u− λψ)|) )∇ψdxdt ≥ 0.

We can let λ −→ 0 in the above inequality, using Lebesgue’s dominated convergence theorem. We then
get ∫ T

0

∫

Ω

(H̄ − ∇(u)

f(|∇(u)|) )∇ψdxdt ≥ 0.

Since this also holds for −ψ, we get

∫ T

0

∫

Ω

(H̄ − ∇(u)

f(|∇(u)|) )∇ψdxdt = 0.

The above equality can again be extended to all v ∈ L2(0, T ;H1
0 (Ω)), which achieves the proof of (67).

�

We have now the following lemma, which uses Leray-Lions trick.

Lemma 4.5 Under the same hypotheses as Lemma 4.4, NDm,τm converges in L2(Ω×]0, T [) to |∇ū| as
m tends to ∞.

Proof. For a given m ∈ N, we drop the indices m in D, τ in order to lighten the notation. Let
ϕ ∈ C∞

c (Ω×]0, T [), we denote by vnp = ϕ(xp, nτ) and vnσ = ϕ(xσ, nτ). Let us denote

T8m =

NT∑

n=0

τ
∑

p∈M

|p|
(

Np(u
n+1)

f(Np(un+1))
− Np(v

n+1)

f(Np(vn+1))

)(
Np(u

n+1) −Np(v
n+1)

)
.

We have

T8m =

∫ T

0

∫

Ω

(
ND(uD,τ )

f(ND(uD,τ ))
− ND(vD,τ )

f(ND(vD,τ ))

)
(ND(uD,τ ) −ND(vD,τ )) dxdt.
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From the proof of lemma 4.3, we have
0 ≤ T8m ≤ Tm.

We write T8m = T9m − T10m − T11m, with

T9m =

∫ T

0

∫

Ω

(
ND(uD,τ )

f(ND(uD,τ ))
− |∇ū|
f(|∇ū|)

)
(ND(uD,τ ) − |∇ū|) dxdt,

T10m = −
∫ T

0

∫

Ω

( |∇ϕ|2
f(|∇ϕ|) − |∇ū|2

f(|∇ū|)

)
dxdt

+

∫ T

0

∫

Ω

ND(uD,τ )

f(ND(uD,τ ))
(|∇ϕ| − |∇ū|) dxdt

+

∫ T

0

∫

Ω

ND(uD,τ )

( |∇ϕ|
f(|∇ϕ|) − |∇ū|

f(|∇ū|)

)
dxdt,

T11m =

∫ T

0

∫

Ω

( |∇ϕ|2
f(|∇ϕ|) − ND(vD,τ )

2

f(ND(vD,τ ))

)
dxdt

−
∫ T

0

∫

Ω

ND(uD,τ )

f(ND(uD,τ ))
(|∇ϕ| −ND(vD,τ )) dxdt

−
∫ T

0

∫

Ω

ND(uD,τ )

( |∇ϕ|
f(|∇ϕ|) − ND(vD,τ )

f(ND(vD,τ ))

)
dxdt,

We then deduce, using Cauchy-Schwarz inequalities and estimates on the scheme,

0 ≤ T9m ≤ Tm + C‖|∇ϕ| − |∇ū|‖L2(Ω×]0,T [) + C‖|∇ϕ| −ND(vD,τ )‖L2(Ω×]0,T [).

Hence, passing to the limit m→ ∞, since ND(vD,τ ) strongly converges in L∞(Ω×]0, T [) to |∇ϕ|, we get

0 ≤ lim sup
m→∞

T9m ≤
∫ T

0

∫

Ω

(
∇ū

f(|∇ū|) − ∇ϕ
f(|∇ϕ|) )(∇ū−∇ϕ)dxdt+ C‖|∇ϕ| − |∇ū|‖L2(Ω×]0,T [).

Since this holds for any ϕ ∈ C∞
c (Ω×]0, T [), we can let ϕ → ū in L2(0, T ;H1

0 (Ω)). Then the right hand
side of the above inequality tends to 0, and we get

lim
m→∞

∫ T

0

∫

Ω

(
ND(uD,τ )

f(ND(uD,τ ))
− |∇ū|
f(|∇ū|)

)
(ND(uD,τ ) − |∇ū|) dxdt = 0.

Simple conclusion of the proof in the case where
(

c
f(c) − d

f(d)

)
(c− d) ≥ α(c− d)2 (this holds if the

function x 7→ x/f(x) has its derivative greater or equal to α > 0; this is satisfied by the example provided
in (6)). We immediately get the conclusion of the lemma.

More complex conclusion of the proof in the general case. Let us now apply lemma (6.1). We
get that ND(uD,τ ) converges a.e. to |∇ū|. We then remark that, thanks to (55) and (67), we have

lim
m→∞

∫ T

0

∫

Ω

ND(uD,τ )
2

f(ND(uD,τ ))
dxdt =

∫ T

0

∫

Ω

|∇ū|2
f(|∇ū|)dxdt.

We now apply lemma 6.2, which shows that
ND(uD,τ )

2

f(ND(uD,τ ))
converges in L1(Ω×]0, T [) to |∇ū|2

f(|∇ū|) . This L1-

convergence gives the equi-integrability of the family of functions
ND(uD,τ )

2

f(ND(uD,τ ))
, which, in turn, gives that

the family of functions ND(uD,τ )
2 is equi-integrable. Finally, we obtain (using Vitali’s theorem) the

convergence of ND(uD,τ ) to |∇ū| in L2(Ω), as m→ ∞. This completes the proof. �

We can now conclude the convergence of the scheme. We introduce the following strongly convergent
approximation for the gradient of the unknown:

ĜD,τ (x, t) =
1

|p|
∑

σ∈Ep

|σ|(un+1
σ − un+1

p )npσ,

for a.e. x ∈ p, for a.e. t ∈]nτ, (n+ 1)τ [, ∀p ∈ M, ∀n ∈ N.

(69)
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(recall that GD,τ (x, t) is only weakly convergent).

Theorem 4.1 Let Hypotheses (H) be fulfilled. Let (Dm, τm)m∈N be a sequence of space-time discretisa-
tions of Ω×]0, T [ in the sense of Definition 2.2 such that hDm and τm > 0 tends to 0 as m −→ ∞. We
assume that there exists some θ > 0 with θ < θDm for all m ∈ N, where θD is defined by (12). Let, for
all m ∈ N, uDm,τm be such that (16), (17), (20) and (18) and (19) (fully implicit scheme) or (16), (17),
(20) and (21), (22), (23) (semi-implicit scheme) hold.

Then there exists a subsequence of (Dm, τm)m∈N, again denoted (Dm, τm)m∈N, and there exists a
function ū ∈ L∞(0, T ;H1

0 (Ω)), weak solution of (1)-(2)-(3) in the sense of Definition 1.1, such that

uDm,τm tends to ū in L∞(0, T ;L2(Ω)), ĜDm,τm defined by (69) tends to ∇ū in L2(Ω×]0, T [)d and NDm,τm

tends to |∇ū| in L2(Ω×]0, T [).

Proof. We respectively consider the fully implicit and the semi-implicit schemes. We first apply
Lemma (4.1) (resp. Lemma (4.2)), which provide the existence of a subsequence of (Dm, τm)m∈N, again
denoted (Dm, τm)m∈N, and of ū ∈ L∞(0, T ;H1

0 (Ω)) ∩ C0(0, T ;L2(Ω)), such that ūt ∈ L2(Ω×]0, T [),
u(., 0) = u0, and uDm,τm tends to ū ∈ L∞(0, T ;H1

0 (Ω)) in L∞(0, T ;L2(Ω)), and of H̄ ∈ L2(Ω×]0, T [)d,

w̄ ∈ L2(Ω×]0, T [) such that HDm,τm , defined by (51) (resp. H̃Dm,τm defined by (60)), weakly converges
to H̄ in L2(Ω×]0, T [)d and such that wDm,τm , defined by (47) (resp. w̃Dm,τm , defined by (58)), weakly
converges to w̄ in L2(Ω×]0, T [) as m→ ∞.

Using Lemma (4.4), we get that

∫ T

0

∫

Ω

∇ū
f(|∇ū|) · ∇vdxdt =

∫ T

0

∫

Ω

w̄vdxdt, ∀v ∈ L2(0, T ;H1
0 (Ω)), (70)

Thanks to Lemma 4.5, we get that w̄ = (r − ut)/g(|∇u|), and the proof that ū is a weak solution of
(1)-(2)-(3) in the sense of Definition 1.1 is complete.

Let us turn to the proof of the strong convergence of ĜDm,τm . Let us first remark that, thanks to (25),

the expression of ĜD,τ , applied to the interpolation of some regular function ϕ, is strongly consistent
with ∇ϕ.

We can then follow the reasoning of [20] in order to prove the strong convergence of ĜDm,τm to ∇ū.
Indeed, let ϕ ∈ C∞

c (Ω×]0, T [) be given (this function is devoted to approximate ū in L2(0, T ;H1
0 (Ω))).

We define, for m ∈ N, p ∈ Mm and σ ∈ Em, the values vnp = ϕ(xp, nτ) and vnσ = ϕ(xσ, nτ), which are
used in the definition of

∇̂Dm,τmϕ(x, t) =
1

|p|
∑

σ∈Ep

|σ|(vn+1
p − vn+1

σ )npσ,

for a.e. x ∈ p, for a.e. t ∈]nτ, (n+ 1)τ [, ∀p ∈ M, ∀n ∈ N.

(71)

Thanks to the Cauchy-Schwarz inequality, we have

∫ T

0

∫

Ω

|ĜDm,τm(x, t) −∇ū(x, t)|2dxdt ≤ 3 (T12m + T13m + T14m),

with T12m =
∫ T
0

∫
Ω
|ĜDm,τm(x, t)−∇̂Dm,τmϕ(x, t)|2dxdt, T13m =

∫ T
0

∫
Ω
|∇̂Dm,τmϕ(x, t)−∇ϕ(x, t)|2dxdt,

and T14m =
∫ T
0

∫
Ω
|∇ϕ(x, t)−∇ū(x, t)|2dxdt. In a similar way as in Lemma 3.2, we have limm→∞ T13m =

0. Using the Cauchy-Schwarz inequality, we have

T12m ≤ d〈uDm,τm − vDm,τm , uDm,τm − vDm,τm〉, (72)

defining 〈·, ·〉 by

〈u, v〉 =

NT∑

n=0

τ
∑

p∈M

∑

σ∈Ep

|σ|
dpσ

(un+1
σ − un+1

p )(vn+1
σ − vn+1

p ).
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Developing equation (72), we obtain

T12m ≤ d (〈uDm,τm , uDm,τm〉 − 2〈uDm,τm , vDm,τm〉 + 〈vDm,τm , vDm,τm〉).

Since, from the definitions (50) and (27), we have

〈uDm,τm , vDm,τm〉 =

∫ T

0

∫

Ω

GDm,τm(x, t) · ∇Dm,τmϕ(x, t)dxdt,

using the convergence properties of GDm,τm and ∇Dm,τmϕ, we obtain

lim
m→∞

〈uDm,τm , vDm,τm〉 =

∫ T

0

∫

Ω

∇ū(x, t) · ∇ϕ(x, t)dxdt.

Since 〈vD,τ , vD,τ 〉 =
∫ T
0

∫
Ω
ND,τ (x, t)

2dxdt, Lemma 3.2 states that

lim
m→∞

〈vDm,τm , vDm,τm〉 =

∫ T

0

∫

Ω

|∇ϕ(x, t)|2dxdt.

Since 〈uD,τ , uD,τ 〉 =
∫ T
0

∫
Ω
ND,τ (x, t)

2dxdt, we get from Lemma 4.5 that

lim
m→∞

〈uDm,τm , uDm,τm〉 =

∫ T

0

∫

Ω

|∇ū(x, t)|2dxdt.

Gathering the above results, we get that

lim
m→∞

〈uDm,τm − vDm,τm , uDm,τm − vDm,τm〉 =

∫ T

0

∫

Ω

|∇ū−∇ϕ|2dxdt,

which yields

lim sup
m→∞

T12m ≤ d

∫ T

0

∫

Ω

|∇ū−∇ϕ|2dxdt.

From the above results, we obtain that

∫ T

0

∫

Ω

|ĜDm,τm(x, t) −∇ū(x, t)|2dxdt ≤ 3(d+ 1)

∫ T

0

∫

Ω

|∇ϕ(x, t) −∇ū(x, t)|2dxdt+ T15m,

with (noting that ϕ is fixed) limm→∞ T15m = 0. Let ε > 0; we may choose ϕ such that
∫ T
0

∫
Ω
|∇ϕ(x, t)−

∇ū(x, t)|2dxdt ≤ ε, and we may then choose m large enough so that T15m ≤ ε. This completes the proof
that

lim
m→∞

∫ T

0

∫

Ω

|ĜDm,τm(x, t) −∇ū(x, t)|2dxdt = 0. (73)

�

5 Numerical experiments

In this section we present two numerical examples to illustrate the properties of the proposed finite
volume schemes. In both examples we use the semi-implicit and fully implicit scheme and compute the
errors and experimental order of convergence (EOC) in several functional spaces. In the tables below n
is number of finite volumes along each boundary side which means that n2 is a total number of finite
volumes, because we consider square domain Ω = [−1.25, 1.25] × [−1.25, 1.25] . We compute the errors
of the solution in L2(0, T ; Ω), denoted by E2, L∞(0, T ;L2(Ω)) denoted by E∞ and for the gradient of
the solution in L2(0, T ; Ω)denoted by EG2 and L∞(0, T ;L2(Ω)) denoted by EG∞. We refined the grid
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from n = 10 to n = 320, taking for b a large value, e.g. greater than C 320 where C is a range of initial
condition.

Example 1. In this example we compare a numerical solution with the exact solution

u(x, y, t) =
x2 + y2

2
+ t (74)

to the equation

ut√
|∇u|2 + 0.5

− div

(
∇u√

|∇u|2 + 0.5

)
= − 0.5

(x2 + y2 + 0.5)
3
2

, (75)

with non-homogeneous (exact) Dirichlet boundary conditions in time interval [0, T ] = [0, 0.3125].

The results for the semi-implicit and fully implicit schemes are summarised in tables below. In this
example time step τ fulfils the relation τ = h2 (natural for solving parabolic PDEs), where h = 1

n
is

the size of the side of finite volume. For computing the linear system in every discrete time step we use
the Gauss-Seidel iterative solver. The iterations are stopped when the square of relative residual drops
below a prescribed tolerance TOL. For the semi-implicit scheme and TOL = 10−15 we need about 30-40
iterations in each time step and the results are presented in Table 1. For the fully-implicit scheme and
TOL = 10−12, for the Gauss-Seidel solver as well as for nonlinear iterative procedure, we need about
20-30 Gauss-Seidel iterations and about 30-40 nonlinear iterations. The results are presented in Table 2.
We test also α scheme (42)-(43)-(44)-(45) with α = 0.6, TOL = 10−10 both for semi-implicit and fully
implicit schemes, the results are given in Tables 3 and 4. We can observe that the fully implicit scheme
is about three times more precise than semi-implicit one. The α scheme slightly improves the accuracy
of the semi-implicit one and does not significantly modify that of the fully implicit scheme. All schemes
have the same experimental order of convergence which is, for the coupling τ = h2, equal to 2 for the
solution error and equal to 1 for the gradient error. We also tested the α schemes with α = 0.5 instead
of 0.6 and τ = h. We got a very poor order of convergence close to 0.8 for the semi-implicit scheme and
a divergent behaviour for the fully implicit one, that is compatible with the expectations of the end of
Section 3.

n τ E2 EOC E∞ EOC EG2 EOC EG∞ EOC
10 6.25e-02 5.006e-02 - 1.753e-01 - 4.513e-01 - 9.622e-01 -
20 1.5625e-02 1.806e-02 1.471 4.312e-02 2.024 2.232e-01 1.016 4.412e-01 1.125
40 3.90625e-03 5.405e-03 1.740 1.244e-02 1.793 9.712e-02 1.199 1.831e-01 1.269
80 9.76563e-04 1.456e-03 1.892 3.267e-03 1.929 4.079e-02 1.253 7.431e-02 1.3001
160 2.44141e-04 3.739e-04 1.962 8.285e-04 1.979 1.757e-02 1.215 3.162e-02 1.233
320 6.10352e-05 9.451e-05 1.984 2.083e-04 1.992 7.932e-03 1.147 1.422e-02 1.153

Table 1: Example 1, error reports and EOCs for the semi-implicit scheme

n τ E2 EOC E∞ EOC EG2 EOC EG∞ EOC
10 6.25e-02 3.885e-02 - 7.253e-02 - 3.401e-01 - 6.615e-01 -
20 1.5625e-02 1.010e-02 1.944 1.834e-02 1.983 1.511e-01 1.171 2.772e-01 1.255
40 3.90625e-03 2.532e-03 1.995 4.551e-03 2.011 6.686e-02 1.176 1.202e-01 1.205
80 9.76563e-04 6.315e-04 2.003 1.132e-03 2.007 3.077e-02 1.120 5.509e-02 1.126
160 2.44141e-04 1.574e-04 2.004 2.821e-04 2.004 1.465e-02 1.071 2.622e-02 1.071
320 6.10352e-05 3.931e-05 2.002 7.043e-05 2.002 7.135e-03 1.038 1.277e-02 1.038

Table 2: Example 1, error reports and EOCs for the fully implicit scheme
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n τ E2 EOC E∞ EOC EG2 EOC EG∞ EOC
10 6.25e-02 2.570e-02 - 5.113e-02 - 3.241e-01 - 6.298e-01 -
20 1.5625e-02 8.367e-03 1.620 1.879e-02 1.445 1.386e-01 1.225 2.680e-01 1.232
40 3.90625e-03 2.512e-03 1.737 5.562e-03 1.756 5.739e-02 1.272 1.063e-01 1.339
80 9.76563e-04 6.832e-04 1.879 1.482e-03 1.908 2.363e-02 1.280 4.282e-02 1.312
160 2.44141e-04 1.770e-04 1.948 3.801e-04 1.963 1.009e-02 1.230 1.812e-02 1.241
320 6.10352e-05 4.497e-05 1.978 9.608e-05 1.984 4.522e-03 1.158 8.099e-03 1.162

Table 3: Example 1, error reports and EOCs for the α semi-implicit scheme, α = 0.6

n τ E2 EOC E∞ EOC EG2 EOC EG∞ EOC
10 6.25e-02 2.962e-02 - 5.820-02 - 2.189e-01 - 4.703e-01 -
20 1.5625e-02 8.325e-03 1.831 1.715e-02 1.763 8.358e-02 1.390 1.852e-01 1.344
40 3.90625e-03 2.255e-03 1.884 4.661e-03 1.880 3.580e-02 1.223 7.788e-02 1.250
80 9.76563e-04 5.878e-04 1.940 1.210e-03 1.946 1.662e-02 1.107 3.477e-02 1.164
160 2.44141e-04 1.499e-04 1.971 3.076e-04 1.975 8.043e-03 1.047 1.625e-02 1.097
320 6.10352e-05 3.785e-05 1.986 7.753e-05 1.988 3.963e-03 1.021 7.821e-03 1.055

Table 4: Example 1, error reports and EOCs for the α fully implicit scheme, α = 0.6

Example 2. Now we use the exact solution [27]

u(x, y, t) = min{x
2 + y2 − 1

2
+ t, 0} (76)

to the level set equation (4)
ut

|∇u| − div

( ∇u
|∇u|

)
= 0, (77)

with zero Dirichlet boundary conditions, in time interval [0, T ] = [0, 0.3125]. The initial condition and
exact and numerically computed solution (n = 40) are plotted in Figures 1, 2.
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Figure 1: Example 2: Initial condition

In this example we have to use the Evans-Spruck type regularisation, the solution contains flat regions
and a singular circular curve with gradient jump, so we cannot expect second order accuracy. However
as we see from the tables, the numerical schemes converge also in this singular case and naturally, EOC
is equal (or close to) 1 for the solution error. Again the fully implicit scheme is about three times more
precise than semi-implicit one in the solution error, but not in the gradient error. First we have chosen
constant value of the regularisation parameter a = 10−6 and τ = h2, the results for semi-implicit, fully
implicit and α semi-implicit schemes are given in Table 5, 6 and 7. Then we used also the coupling
a = h2, the results for semi-implicit and fully implicit schemes are in Tables 8, 9, this coupling provides
a slightly better EOC.
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Figure 2: Example 2, the exact (left) and numerical solutions (right) at time 0.3125.

n τ E2 EOC E∞ EOC EG2 EOC EG∞ EOC
10 6.25e-02 5.109e-02 - 1.156e-01 - 2.653e-01 - 5.393e-01 -
20 1.5625e-02 2.965e-02 0.785 7.054e-02 0.713 2.174e-01 0.287 4.522e-01 0.254
40 3.90625e-03 1.596e-02 0.892 3.836e-02 0.879 1.719e-01 0.339 3.442e-01 0.393
80 9.76563e-04 8.393e-03 0.930 2.002e-02 0.938 1.381e-01 0.317 2.709e-01 0.346
160 2.44141e-04 4.341e-03 0.951 1.037e-02 0.950 1.096e-01 0.332 2.139e-01 0.341
320 6.10352e-05 2.270e-03 0.935 5.433e-03 0.932 8.7131e-02 0.332 1.693e-01 0.338

Table 5: Example 2, error reports and EOCs for semi-implicit scheme, a = 10−6

6 Conclusions

The properties proven in this paper show that the fully implicit and the semi-implicit schemes have
interesting mathematical and numerical properties. But it now remains to show that these convergence
properties can also be extended to the non-regularised situation where f and g are given by (4).

Appendix

Lemma 6.1 Let b be a continuous strictly increasing function from R to R. Let (βn)n∈N be a sequence
in R and β ∈ R such that (b(βn) − b(β))(βn − β) −→ 0 as n −→ ∞. Then, βn −→ β as n −→ ∞.

Proof. We first remark that the mapping s 7→ (b(γ + sδ) − b(γ))δ is increasing, for all δ, γ ∈ R.
This will be used to prove that the sequence (βn)n∈N is bounded. Indeed, if the sequence (βn)n∈N is
unbounded, we can assume, up to a subsequence, that |βn| −→ ∞ as n −→ ∞ and then, once again up
to a subsequence, that |βn − β| ≥ 1 for all n ∈ N and βn−β

|βn−β|
−→ γ as n −→ ∞ (for some γ ∈ R with

|γ| = 1). Therefore, one has:

(b(βn) − b(β))(βn − β) ≥
(
b(β +

βn − β

|βn − β| ) − b(β)

)
βn − β

|βn − β| .

Then, passing to the limit as n −→ ∞,

0 = lim
n−→∞

(b(βn) − b(β))(βn − β) ≥ (b(β + γ) − b(β)) · γ > 0.

which is impossible.
Since the sequence (βn)n∈N is bounded, we can assume, up to a subsequence, that βn −→ γ, as

n −→ ∞, for some γ ∈ R. Then, since (b(βn) − b(β))(βn − β) −→ 0, one has (b(γ) − b(β))(γ − β) = 0,
which gives γ = β and the convergence of the whole sequence (βn)n∈N to β follows.

�
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n τ E2 EOC E∞ EOC EG2 EOC EG∞ EOC
10 6.25e-02 1.583e-02 - 3.304e-02 - 1.683e-01 - 3.512e-01 -
20 1.5625e-02 8.462e-03 0.904 1.938e-02 0.770 1.559e-01 0.111 3.658e-01 -0.059
40 3.90625e-03 4.442e-03 0.930 9.959e-03 0.961 1.367e-01 0.186 3.004e-01 0.284
80 9.76563e-04 2.404e-03 0.886 5.333e-03 0.901 1.126e-01 0.280 2.542e-01 0.241
160 2.44141e-04 1.320e-03 0.865 3.033e-03 0.814 9.231e-02 0.287 1.865e-01 0.447
320 6.10352e-05 8.110e-04 0.702 1.920e-03 0.660 7.603e-02 0.280 1.490e-01 0.324

Table 6: Example 2, error reports and EOCs for fully implicit scheme, a = 10−6

n τ E2 EOC E∞ EOC EG2 EOC EG∞ EOC
10 6.25e-02 5.074e-02 - 1.091e-01 - 2.722e-01 - 5.404e-01 -
20 1.5625e-2 2.985e-02 0.765 6.891e-02 0.663 2.227e-01 0.259 4.587e-01 0.236
40 3.90625e-03 1.582e-02 0.916 3.748e-02 0.879 1.743e-01 0.384 3.471e-01 0.402
80 9.76563e-04 8.345e-03 0.923 1.973e-02 0.925 1.386e-01 0.331 2.712e-01 0.356
160 2.44141e-04 4.323e-03 0.949 1.027e-02 0.942 1.098e-01 0.336 2.137e-01 0.343
320 6.10352e-05 2.264e-03 0.933 5.403e-03 0.927 8.717e-02 0.333 1.692e-01 0.337

Table 7: Example 2, error reports and EOCs for α semi-implicit scheme with α = 0.6, a = 10−6

Lemma 6.2 Let (Fn)n∈N be a sequence nonnegative functions in L1(Ω). Let F ∈ L1(Ω) be such that
Fn −→ F a.e. in Ω and

∫
Ω
Fn(x)dx −→

∫
Ω
F (x)dx, as n −→ ∞. Then, Fn −→ F in L1(Ω) as n −→ ∞.

Proof. The proof of this lemma is very classical. Applying the Dominated Convergence Theorem
to the sequence (F − Fn)

+ leads to
∫
Ω
(F (x) − Fn(x))

+dx −→ 0 as n −→ ∞. Then, since |F − Fn| =
2(F − Fn)

+ − (F − Fn), we conclude that Fn −→ F in L1(Ω) as n −→ ∞.
�

Theorem 6.1 (A variant of Ascoli’s theorem) Let Ω be a polyhedral open bounded connected subset
of R

d, with d ∈ N \ {0} and T > 0. Let u0 ∈ H1
0 (Ω) be given. Let (um,Dm, τm)m∈N be a sequence such

that, for all m ∈ N, (Dm, τm) is a space-time discretisation of Ω×]0, T [ in the sense of Definition 2.2,
um ∈ HDm,τm and hDm and τm tend to 0 as m −→ ∞. For all m ∈ N, setting D = Dm and τ = τm, we
define the functions uD,τ (x, t), for all t ∈ [0, T ] and a.e. x ∈ Ω by

uD,τ (x, 0) = u0
p =

1

|p|

∫

p

u0(x)dx,

uD,τ (x, t) = un+1
p , for a.e. x ∈ p, ∀t ∈]nτ, (n+ 1)τ ], ∀p ∈ M, ∀n = 0, . . . , NT ,

(78)

and the function zD,τ by

zD,τ (x, t) =
un+1
p − unp

τ
, for a.e. x ∈ p, for a.e. t ∈]nτ, (n+ 1)τ [, ∀p ∈ M, ∀n ∈ N, (79)

with u0
p defined by (78). We assume that there exists C > 0 (hence independent of m) such that

‖un+1
m ‖1,Dm ≤ C for all n = 0, . . . , NTm and ‖zDm,τm‖2

L2(Ω×]0,T [) ≤ C .

Then there exists ū ∈ C0(0, T ;L2(Ω)) with ū(·, 0) = u0 and a subsequence of (um,Dm, τm)m∈N, again
denoted (um,Dm, τm)m∈N, such that

lim
m→∞

sup
t∈[0,T ]

‖uDm,τm(t) − u(t)‖L2(Ω) = 0. (80)

Proof.
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n τ E2 EOC E∞ EOC EG2 EOC EG∞ EOC
10 6.25e-02 5.717e-02 - 1.288e-01 - 2.602e-01 - 5.252e-01 -
20 1.5625e-02 3.159e-02 0.856 7.513e-02 0.780 2.143e-01 0.280 4.436e-01 0.244
40 3.90625e-03 1.634e-02 0.951 3.929e-02 0.935 1.711e-01 0.325 3.422e-01 0.374
80 9.76563e-04 8.385e-03 0.963 2.001e-02 0.973 1.381e-01 0.310 2.710e-01 0.337
160 2.44141e-04 4.253e-03 0.979 1.013e-02 0.985 1.101e-01 0.445 2.146e-01 0.336
320 6.10352e-05 2.150e-03 0.984 5.101e-03 0.987 8.789e-02 0.206 1.707e-01 0.666

Table 8: Example 2, error reports and EOCs for semi-implicit scheme, a = h2

n τ E2 EOC E∞ EOC EG2 EOC EG∞ EOC
10 6.25e-02 3.455e-02 - 8.102e-02 - 1.967e-01 - 3.917e-01 -
20 1.5625e-2 1.199e-02 1.527 2.936e-02 1.465 1.631e-01 0.270 3.888e-01 0.010
40 3.90625e-03 5.032e-03 1.253 1.165e-02 1.333 1.394e-01 0.227 3.071e-01 0.341
80 9.76563e-04 2.397e-03 1.070 5.321e-03 1.131 1.123e-01 0.311 2.372e-01 0.372
160 2.44141e-04 1.185e-03 1.017 2.636e-03 1.013 9.079e-02 0.307 1.822e-01 0.381
320 6.10352e-05 5.937e-04 0.997 1.330e-03 0.987 7.284e-02 0.318 1.432e-01 0.348

Table 9: Example 2, error reports and EOCs for fully implicit scheme, a = h2

We first remark that, for m ∈ N, denoting D = Dm and τ = τm and for all t1 ∈](n1 − 1)τ, n1τ ] and
t2 ∈](n2 − 1)τ, n2τ ], for n1, n2 = 0, . . . , NT with n2 > n1 and a.e. x ∈ p, we have

(uD,τ (x, t1) − uD,τ (x, t2))
2 ≤

(
n2−1∑

n=n1

|un+1
p − unp |

)2

≤ (n2 − n1)τ

n2−1∑

n=n1

(un+1
p − unp )

2

τ
.

Hence we get that

∫

Ω

(uDm,τm(x, t1) − uDm,τm(x, t2))
2dx ≤ C (|t2 − t1| + τm), ∀t1, t2 ∈ [0, T ], ∀m ∈ N. (81)

The proof can now follow that of Ascoli’s theorem. Let (tk)k∈N be a dense sequence in [0, T ]. For
t = t0, if tO > 0, we can use the result given in [17] since ‖un+1

m ‖1,Dm ≤ C for all n = 0, . . . , NT :

‖uDm,τm(· + ξ, t0) − uDm,τm(·, t0)‖2
L2(Ω×]0,T [) ≤ C|ξ|(|ξ| + 4hDm), ∀ξ ∈ R

d.

Hence we can extract, thanks to Kolmogorov’s theorem, a subsequence of (um,Dm, τm)m∈N, denoted by
(uψ0(m),Dψ0(m), τψ0(m))m∈N, where ψ0 is an increasing injection from N to N, such that uDψ0(m),τψ0(m)

(·, t0)
converges in L2(Ω) to some function. Note also that, thanks to (78), uDm,τm(·, 0) converges in L2(Ω)
to u0. Similarly, for t = t1, one extracts, again thanks to Kolmogorov’s theorem, a subsequence
of (uψ0(m),Dψ0(m), τψ0(m))m∈N, denoted (uψ1(m),Dψ1(m), τψ1(m))m∈N such that uDψ1(m),τψ1(m)

(·, t1) con-

verges in L2(Ω) to some function. We reproduce this mechanism by induction for all k ∈ N, allowing
to consider the diagonal sequence (uψm(m),Dψm(m))m∈N, which is then such that uDψm(m),τψm(m)

(·, tk)
converges in L2(Ω) as m → ∞ for all k ∈ N (recall that the sequence (uψm(m),Dψm(m), τψm(m))m∈N

is extracted from (uψk(m),Dψk(m), τψk(m))m∈N,m≥k). We now denote, for simplicity, (um,Dm, τm)m∈N

instead of (uψm(m),Dψm(m), τψm(m))m∈N.
Then the property (81) allows to show that, for all t ∈ R+, (uDm,τm(t))m∈N is a Cauchy sequence

in L2(Ω). Indeed, for ε ∈]0, 1[, one first chooses k ∈ N such that |t − tk| ≤ ε2, then n0 ∈ N such
that τm ≤ ε2 for all n ≥ n0, and ‖uDn,τn(tk) − uDp,τp(tk)‖L2(Ω) ≤ ε for all n, p ≥ n0. The inequality
‖uDn,τn(t)−uDp,τp(t)‖L2(Ω) ≤ ‖uDn,τn(t)−uDn,τn(tk)‖L2(Ω)+‖uDn,τn(tk)−uDp,τp(tk)‖L2(Ω)+‖uDp,τp(tk)−
uDp,τp(t)‖L2(Ω) ≤ (2

√
2C + 1)ε for all n, p ≥ n0 follows.
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One then defines, for all t ∈ R+, ū(t) as the limit of (uDm,τm(t))m∈N. Passing to the limit m→ ∞ in
(81) provides

‖ū(t2) − ū(t1)‖2
L2(Ω) ≤ C |t2 − t1|, ∀t1, t2 ∈ [0, T ], ∀T > 0, (82)

which shows that u ∈ C0(R+;L2(Ω)). Then (80) is again an easy consequence of (81). Indeed, let
T ≥ 0 and ε > 0 be given. Since, for all k = 0, . . . , ⌊T/ε2⌋ (where ⌊x⌋ denotes the greater integer
lower of equal to x), the sequence (uDm,τm(kε2))m∈N converges to u(kε2), let n0 ∈ N be such that
‖uDm,τm(kε2) − u(kε2)‖L2(Ω) ≤ ε for all k = 0, . . . , ⌊T/ε2⌋ and all m ≥ n0, and such that τm ≤ ε2

for all m ≥ n0. Then, for all t ∈ [0, T ] and m ≥ n0, letting k = ⌊t/ε2⌋, we get using (82) and
(81), ‖ū(t) − uDm,τm(t)‖L2(Ω) ≤ ‖ū(t) − ū(kε2)‖L2(Ω) + ‖ū(kε2) − uDm,τm(kε2)‖L2(Ω) + ‖uDm,τm(kε2) −
uDm,τm(t)‖L2(Ω) ≤ (

√
C + 1 +

√
2C)ε, which concludes the proof of (80). �
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