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Estimating the order of vanishing at infinity

of Drinfeld quasi-modular forms.

Federico Pellarin

September 26, 2010

Abstract. We introduce and study certain deformations of Drinfeld quasi-modular forms by using
rigid analytic trivialisations of corresponding Anderson’s t-motives. We show that a sub-algebra of these
deformations has a natural graduation by the group Z2

×Z/(q−1)Z and an homogeneous automorphism,
and we deduce from this and other properties multiplicity estimates.
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1 Introduction, results.

Let E4, E6 be the Eisenstein series of weights 4, 6 respectively, rescaled so that they have limit 1
as the imaginary part of the variable tends to infinity; let us denote by M the two-dimensional
C-algebra C[E4, E6]. We have M = ⊕wMw, where Mw denotes the C-vector space of classical
modular forms SL2(Z) of weight w.

Let E2 be the so-called “false” Eisenstein series of weight 2 (rescaled), and let us consider,
for l, w non-negative integers with w > 0 even, the non-zero finite dimensional C-vector space

M̃≤l
w =Mw ⊕Mw−2E2 ⊕ · · · ⊕ El

2Mw−2l

of classical quasi-modular forms of weight w and depth ≤ l.
The local behaviour at infinity of quasi-modular forms yields an embedding M̃≤l

w → C[[q]]

where q = e2πiz, z ∈ H being the variable in the complex upper-half plane. Let f be in M̃≤l
w \{0}.

Then, we may write f = qν∞(f)g with g a unit of C[[q]], for an integer ν∞(f) ≥ 0 which is uniquely
determined; this is the order of vanishing at infinity of f .

A simple resultant argument suffices to show that

ν∞(f) ≤ 3 dimC M̃
≤l
w . (1)
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Now, let q = pe (1) be a power of a prime number p with e > 0 an integer, let Fq be the
finite field with q elements. Let us write A = Fq[θ] and K = Fq(θ), with θ an indeterminate
over Fq, and define an absolute value | · | on K by |a| = qdegθ a, a being in K, so that |θ| = q.
Let K∞ := Fq((1/θ)) be the completion of K for this absolute value, let Kalg.

∞ be an algebraic
closure of K∞, let C be the completion of Kalg.

∞ for the unique extension of | · | to Kalg.
∞ , and let

Kalg. be the algebraic closure of K in C.
Following Gekeler in [11], we denote by Ω the rigid analytic space C \K∞ and write Γ for

GL2(A), group that acts on Ω by homographies. In this setting we have three functions E, g, h :

Ω → C, holomorphic in the sense of [9, Definition 2.2.1], such that, for all γ =

(
a b
c d

)
∈ Γ and

z ∈ Ω:

g(γ(z)) = (cz + d)q−1g(z),

h(γ(z)) = (cz + d)q+1 det(γ)−1h(z),

E(γ(z)) = (cz + d)2 det(γ)−1

(
E(z)−

c

π̃(cz + d)

)
(2)

where γ(z) = (az + b)/(cz + d) and π̃ is a fundamental period of Carlitz module, defined by the
convergent product:

π̃ := θ(−θ)
1

q−1

∞∏

i=1

(1− θ1−qi)−1 ∈ K∞((−θ)
1

q−1 ) \K∞,

a choice of a (q − 1)-th root of −θ having been made once and for all (2).
The functional equations above tell that g, h are Drinfeld modular forms, of weights q − 1,

q + 1 and types 0, 1 respectively. For w integer and m ∈ Z/(q − 1)Z, we denote by Mw,m the
C-vector space of Drinfeld modular forms of weight w and type m.

After (2), the function E is not a Drinfeld modular form. In [11], Gekeler calls it “False
Eisenstein series” of weight 2 and type 1; it is easy to show that E, g, h are algebraically inde-
pendent. For l, w non-negative integers and m a class of Z/(q − 1)Z, we introduce the C-vector
space of Drinfeld quasi-modular forms of weight w, type m and depth ≤ l:

M̃≤l
w,m =Mw,m ⊕Mw−2,m−1E ⊕ · · · ⊕Mw−2l,m−lE

l.

Let eCar : C → C be the Carlitz exponential function (see below, (13)) and let us write
u : Ω → C for the “parameter at infinity” of Ω, that is, the function u(z) = 1/eCar(π̃z); the

C-algebra M̃ embeds in C[[u]] (cf. [11]).

If w,m, l are such that the finite dimensional vector space M̃≤l
w,l does not vanish, any f non-

zero in M̃≤l
w,l can be written, for u = u(z), as f(z) = uν∞(f)φ with φ a unit of the ring C[[u]]

(convergence when |u| is small enough) for some non-negative integer ν∞(f) uniquely determined;
the order of vanishing at infinity of f .

The aim of this paper is to prove the following analog of (1):

Theorem 1 Let l be a positive integer. There exist two constants c1, c2, with c1 depending on
l, q and c2 depending on q, with the following property. If w ≥ c1 and M̃≤l

w,m 6= (0) then, for all

f ∈ M̃≤l
w,m \ {0},

ν∞(f) ≤ c2 dimC M̃
≤l
w,m.

1The double use of the letter q in this paper will not be a source of confusion; other harmless abuses of notation
will appear in this paper.

2See [21, Section 2.1], where the notation π is adopted; there is an analogy with the number 2πi.
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Our result is completely explicit; if l > 0 and f ∈ M̃≤l
w,m is a non-zero Drinfeld quasi-modular

form, we will prove that

ν∞(f) ≤ 16q3(3 + 2q)2lw, (3)

provided that

w ≥ 4l
(
2q(q + 2)(3 + 2q)l + 3(q2 + 1)

)3/2
, (4)

which obviously implies the Theorem by a simple computation of the dimension of M̃≤l
w,m.

In [3] we conjectured that for all z ∈ Ω at least three of the four numbers u(z), E(z), g(z), h(z)
are algebraically independent over K. If true, this statement would be an analog of Nesterenko’s
celebrated theorem on the algebraic independence of values of Eisenstein’s series and the pa-
rameter at infinity (see [18, Chapter 3, Theorem 1.1] and [17]). In the attempt of proving this
conjecture, it turned out very difficult to adopt Nesterenko’s original scheme of proof. Indeed,
Drinfeld quasi-modular forms, while sharing several superficial similarities with classical quasi-
modular forms, essentially behave in a different way. The main difficulties encountered are the
following:

Absolute values of cofficients of u-expansions of Drinfeld quasi-modular forms grow “too rapidly”
depending on the index; if f =

∑
i ciu

i is such a form, then the estimate |ci| ≪ eci is best
possible (in the classical case, we would have |ci| ≪ ic).

The algebra M̃ is endowed with higher derivatives (this was studied in the joint work [3]);
however, this structure alone does not seem to easily deliver a suitable analogue of the
separation property [5, Lemma, p. 212], useful for multiplicity estimates in differential
algebras.

These difficulties suggest that the algebra M̃ is not an appropriate environment to study the
arithmetic of values of Drinfeld quasi-modular forms. Theorem 1 could superficially look like a
mere copy of the elementary inequality (1). Before our proof, it was however very resistant to
any attempt to prove it. The main motivation of this paper is to find new structures allowing to
prove Theorem 1.

In this paper, we introduce a new class of functions (deformations of Drinfeld quasi-modular
forms), endowed with certain automorphic properties and a “Frobenius structure”. The theory
we introduce is strongly influenced by that of Anderson’s t-motives. The idea of appealing to
Anderson’s theory is very natural; however, a new entity occurs here, making this paper useful:
the functions we deal with have automorphic properties; they generate an algebra graded by the
group Z2 ×Z/(q− 1)Z. Similar objects in the classical theory do not seem to be already known.

The main properties of our functions are listed in Proposition 2 below for the sake of com-
modity (this proposition will not be applied directly). With the help of all these properties and
a transcendence proof, we deduce Theorem 1.

In order to present Proposition 2 we require some further preparation.
Let t be an independent indeterminate, let us temporarily denote by T the subring of formal

series of C[[t]] converging for all t ∈ C such that |t| < r for a certain real number r > q (3). In
Section 3 we will construct a function

E : Ω → T

such that, for t ∈ C and z ∈ Ω with |t| and |u| small enough (and with u = u(z)), the value
E(z)(t) is that of a convergent double series in C[[t, u]]. More precisely, we will show (Proposition

3Later, we will see that r ≥ qq and we will then use the notation T<qq .
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11) the existence of polynomials ci ∈ Fq[t, θ] such that there is a locally convergent expansion

E(z)(t) = u
∑

i≥0

ci(t)u
i(q−1) ∈ uFq[t, θ][[u

q−1]]. (5)

We identify E with the formal series at the right-hand side of (5).
We will use the following extension of Anderson’s Fq[t]-linear map τ : C[[t, u]] → C[[t, u]]:

τ
∑

m,n≥0

cm,nt
mun :=

∑

m,n≥0

cqm,nt
muqn

the cm,n’s being in C.
Let F be the formal series τE ∈ uFq[t, θ][[u

q(q−1)]]; it converges locally at (0, 0), and extends
to a well defined function Ω → T. Let us denote by M† the algebra T[g, h,E,F ], that we will
often identify with its image in C[[t, u]]. We have the following Proposition (4):

Proposition 2 The algebra M† ⊂ C[[t, u]] enjoys the following properties.

1. The dimension of M† is four, so that the formal series g, h,E,F are algebraically indepen-
dent over C((t)) and define a basis of M†.

2. The basis (g, h,E,F ) of M† above is constituted by formal series in Fq[t, θ][[u]] (it is integral
over Fq[t, θ]).

3. The algebra M† is graded by the group G = Z2 × Z/(q − 1)Z. In other words, M† =

⊕(µ,ν,m)∈GM
†
µ,ν,m. We further have M†

0,0,0 = T and M†
µ,0,m = Mµ,ν ⊗C T. For this

graduation, the “degrees” of g, h,E and F are respectively the following elements of G:
(q − 1, 0, 0), (q + 1, 0, 1), (1, 1, 1) and (q, 1, 1).

4. For any f ∈ M†
µ,ν,m, the formal series ε(f) = f |t=θ is a well defined Drinfeld quasi-

modular form of M̃≤ν
µ+ν,m and we have a surjective C-linear map ε : M† → M̃ such that

ε(E) = E; in this sense, E is a deformation of E.

5. The algebra M† is stable under the action of τ : more precisely, τ induces Fq[t]-linear maps
M†

µ,ν,m → M†
qµ,ν,m.

6. Let f be in M†, let us assume that f =
∑

i≥0 ciu
i with ci ∈ Fq[t, θ]. Then, degt ci ≤ c log i

where c is a constant depending on f only.

The properties described in Proposition 2, a variant of Siegel’s Lemma (Proposition 32) and
a transcendence construction will be used to prove Theorem 1.

2 Anderson’s functions

In this section we recall some tools introduced in [11, Section 2], [1, 2] and described in [21,
Section 2 and Section 4.2].

As A-lattice of rank r > 0 we mean a free sub-A-module of C of rank r, discrete in the
sense that, given a compact subset of C, only finitely many elements of it lie in. Let Λ ⊂ C be

4It results from the combination of the six Propositions 9, 10, 11, 20, 21 and 24, and elementary considerations.
The Proposition is stated to ease the access of the paper, but later, we will require the full statement of the six
propositions above. Throughout these six propositions, many other properties of the functions E,F and of the
algebra M† will be highlighted.
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an A-lattice of rank r and let us consider, for ζ ∈ C, the exponential function associated to Λ,
defined by the product:

eΛ(ζ) := ζ
∏

ω∈Λ\{0}

(
1−

ζ

ω

)
, (6)

which converges for all ζ ∈ C. For λ ∈ C×, the product expansion (6) implies:

eλΛ(ζ) = λeΛ(λ
−1ζ). (7)

There exist elements 1 = α0(Λ), α1(Λ), α2(Λ), . . . ∈ C, depending on Λ only, such that:

eΛ(ζ) =
∑

n≥0

αn(Λ)ζ
qn , (8)

the series having infinite radius of convergence (cf. [11, 13]).
The construction of the exponential function by (6) is the main tool to prove that the category

whose objects are homothecy classes of A-lattices of rank r and morphisms are inclusions, is
dually equivalent to the category whose objects are isomorphism classes of Drinfeld A-modules
of rank r and morphisms are isogenies (see [11, Section (2.6)] or [21, Section 2]). For Λ as above,
there is a Drinfeld A-module φΛ such that

φΛ(a)eΛ(ζ) = eΛ(aζ) (9)

(for all ζ ∈ C and a ∈ A), which is uniquely determined by its value φΛ(θ) ∈ EndFq−lin.(Ga(C))
in θ. This value is a polynomial of degree r in τ , which we recall, is the Frobenius endomorphism
τ : c 7→ cq. On the other side, to any Drinfeld A-module φ of rank r, a lattice Λφ of rank r
can be associated, so that the functors Λ 7→ φΛ and φ 7→ Λφ are inverse of each other up to
isomorphisms.

Let t be a new indeterminate. With Λ an A-lattice of rank r > 0 and eΛ as in (6), let us
consider ω ∈ Λ \ {0} and introduce, following Anderson in [1], the formal series:

sΛ,ω(t) :=
∞∑

i=0

eΛ

( ω

θi+1

)
ti.

For a positive real number r, we denote by T<r the sub-C-algebra of C[[t]] whose elements
are formal series

∑
i≥0 cit

i that converge for any t ∈ C with |t| < r. We denote by T>0 the
sub-C-algebra of C[[t]] whose series converge in some open disk containing 0, and we notice that
all the series of T<qq converge at t = θ. We also denote by T∞ the sub-C-algebra of series that
converge everywhere in C.

If r1 > r2 > 0, we have

T>0 ⊃ T<r2 ⊃ T<r1 ⊃ T∞.

The Tate algebra of formal series of C[[t]] converging for all t such that |t| ≤ 1 will be denoted
by T; it is contained in T<1 and contains T<1+ǫ for all ǫ > 0.

It is easy to verify that, with Λ and ω ∈ Λ as above, sΛ,ω ∈ T<q ⊂ T. If Λ ⊂ Kalg.
∞ , it can be

proved that sΛ,ω(t) ∈ Kalg.
∞ [[t]].

We extend the operator τ from C to C[[t]] as follows:

f =
∑

n≥0

cnt
n 7→ τf :=

∑

n≥0

cqnt
n.

5



We will also write f (k) for τkf , k ∈ Z (the operator τ−1 is well defined). One checks that τ sends
T<r in T<rq . The extension τ so constructed defines Fq-automorphisms of T>0,T and T∞.

We write A = Fq[t],K = Fq(t). If a = a(θ) ∈ A we also write a = a(t) ∈ A. If Λ is an
A-lattice of rank r and if φΛ is the Drinfeld A-module of rank r in (9), then, for all a1, a2 ∈ A
and ω1, ω2 ∈ Λ,

φΛ(a1)sΛ,ω1
+ φΛ(a2)sΛ,ω2

= sΛ,a1ω1+a2ω2
= a1sΛ,ω1

+ a2sΛ,ω2
. (10)

These identities, which hold in T, are proved in [21, Section 4.2.2].
From (7) it immediately follows that, for λ ∈ C×,

sλΛ,λω(t) = λsΛ,ω(t). (11)

We also have the series expansion (cf. [21, Section 4.2.2])

sΛ,ω(t) =

∞∑

n=0

αn(Λ)ω
qn

θqn − t
, (12)

uniformly convergent in every compact subset of C \ {θ, θq, . . .}, and sΛ,ω(t)− ω/(θ− t) extends
to a rigid holomorphic function for |t| < qq. We will then often say that sΛ,ω has a simple pole

of residue −ω in t = θ. Notice that other poles occur at t = θq, θq
2

, . . ., but we will never need
to focus on them in this paper.

Example: rank one case. For Λ = π̃A (rank 1), the exponential function (8) is:

eCar(ζ) =
∑

n>0

ζq
n

dn
, (13)

where d0 := 1 and di := [i][i − 1]q · · · [1]q
i−1

, recalling that [i] = θq
i

− θ if i > 0. The relations
(9) become, for all a ∈ A,

φCar(a)eCar(ζ) = eCar(aζ),

where φCar is Carlitz’s module defined by

φCar(θ) = θτ0 + τ ∈ EndFq-lin.(Ga)

(see Section 4 of [11]).
We will write sCar = sπ̃A,π̃. The function sCar has a simple pole in θ with residue −π̃.
By (10) (cf. [21, Section 4.2.5]), the following τ -difference equation holds:

s
(1)
Car(t) = (t− θ)sCar. (14)

After [9, Theorem 2.2.9], T is a principal ideal domain. This property can be used to verify
that the subfield of constants Lτ := {l ∈ L, τ l = l}, where L is the fraction field of T, is equal
to K := Fq(t) (see also [19, Lemma 3.3.2]). We deduce, just as in the proof of [19, Lemma
3.3.5], that the τ -difference equation f (1) = (t− θ)f has, as a complete set of solutions in L, the
Fq(t)-vector space Fq(t)sCar. In fact, for all a = a(θ) ∈ A, we have sπ̃A,aπ̃ = asCar.

Comparing with (13) we also point out, for further references in this paper, that (12) becomes
in this case:

sCar(t) =

∞∑

n=0

π̃qn

dn(θq
n − t)

, |t| < q. (15)
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2.1 Anderson’s functions for elliptic Drinfeld modules

We recall and deepen some tools described in [21, Section 4.2.5] (see also [8, 19]). Let z be in
Ω, and consider the A-lattice Λ = Λz = A+ zA of rank 2, with associated exponential function
ez = eΛ. Let us consider the Drinfeld module φz defined by

φz : θ 7→ φz(θ) = θτ0 + g̃(z)τ1 + ∆̃(z)τ2, (16)

where g̃(z) = π̃q−1g(z), ∆̃(z) = π̃q2−1∆(z), with ∆ = −hq−1. Then,

φz(a)ez(ζ) = ez(aζ) (17)

for all a ∈ A and ζ ∈ C ([11, Section 5], [21, Section 4.2.5], see also [19]).
We can write, for ζ ∈ C,

ez(ζ) =

∞∑

i=0

αi(z)ζ
qi , (18)

for functions αi : Ω → C with α0 = 1. By (17) we deduce, with the initial values α0 = 1, α−1 = 0,
the recursive relations

αi =
1

[i]
(g̃αq

i−1 + ∆̃αq2

i−2), i > 0. (19)

This implies that the function αi(z) is a modular form of weight qi − 1 and type 0 for all i ≥ 0.
There exist elements ci,m ∈ C such that

αi(z) =
∑

m≥0

ci,mu
m, i ≥ 0, (20)

with convergence for z ∈ Ω such that |u| is small enough. The following lemma tells that a
non-zero disk of convergence can be chosen independently on i.

Lemma 3 We have, for some B > 0,

ci,0 =
1

di
π̃qi−1, i ≥ 0, (21)

and
|ci,m| ≤ q−qiBm, (i,m ≥ 0). (22)

Proof. Let us write g̃ =
∑

i≥0 γ̃iu
i and ∆̃ =

∑
i≥0 δ̃iu

i with γ̃i, δ̃i ∈ C. The recursive relations
(19) imply, for i > 1, m ≥ 0 and j, k non-negative integers:

ci,m =
1

[i]


 ∑

j+qk=m

γ̃jc
q
i−1,k +

∑

j+q2k=m

δ̃jc
q2

i−2,k


 ,

from which we deduce at once (21) because γ̃0 = π̃q−1 and δ̃0 = 0.
We now need to provide upper bounds for the |ci,m|’s, with explicit dependence on i,m.

Looking at [11, Definition (5.7), (iii)], there existsB ≥ q such that, for all i ≥ 0, max{|γ̃i|, |δ̃i|} ≤

Bi. We know that α0 = 1 and that |c1,m| ≤ q−qBm. After induction and the equality |[i]| = qq
i

(i > 0), we deduce (22).

In all the following, we shall write:

s1(z, t) = sΛz ,z(t), s2(z, t) = sΛz ,1(t).

7



These are functions Ω×Bq → C, where, for r > 0, Br is the set {t ∈ C, |t| < r}.
In fact the definition of the functions sΛ,ω tells that s1, s2 ∈ Hol(Ω)[[t]], where Hol(Ω)

denotes the C-algebra of rigid holomorphic functions Ω → C. After (18) and (12) we see that,
for any couple (z, t) ∈ Ω×Bq, the following convergent series expansions hold:

s1(z, t) =

∞∑

i=0

αi(z)z
qi

θqi − t

s2(z, t) =
∞∑

i=0

αi(z)

θqi − t
.

Our notations stress the dependence on two variables z ∈ Ω, t ∈ Bq. For these functions, we
will also write, occasionally, s1(z), s2(z), to stress the dependence on z ∈ Ω. We can also fix z ∈ Ω
and study the functions s1(z, ·), s2(z, ·), or look at the functions s1(·, t), s2(·, t) : Ω → T<q with
formal series as values. In the next section, we provide the necessary analysis of the functions
s1(z, ·), s2(z, ·). Hence, we fix now z ∈ Ω.

2.1.1 The si’s as functions of the variable t, with z fixed.

At θ, the functions si(z, ·) have simple poles. Their respective residues are, according to Section

2, −z for the function s1(z, ·) and −1 for s2(z, ·). Moreover, we have s
(1)
1 (z, θ) = η1 and

s
(1)
2 (z, θ) = η2, where η1, η2 are the quasi-periods of Λz (see [21, Section 4.2.4] and [10, Section

7]).
Let us consider the matrix function:

Ψ̂(z, t) :=

(
s1(z, t) s2(z, t)

s
(1)
1 (z, t) s

(1)
2 (z, t)

)
.

By [21, Section 4.2.3] (see in particular equation (15)), we have:

Ψ̂(z, t)(1) = Θ̃(z) · Ψ̂(z, t), where Θ̃(z) =

(
0 1
t−θ

∆̃(z)
− g̃(z)

∆̃(z)

)
, (23)

yielding the following τ -difference linear equation of order 2:

s
(2)
2 =

t− θ

∆̃
s2 −

g̃

∆̃
s
(1)
2 . (24)

Remark 4 By [1], there is a fully faithful contravariant functor from the category of Drinfeld
A-modules overKalg. to the category of Anderson’s A-motives overKalg.. Part of this association
is sketched in [21, Section 4.2.2], where the definition of A-motive is given and discussed (see also
[8]); it is based precisely on Anderson’s functions sΛ,ω. In the language introduced by Anderson,

Ψ̂ is a rigid analytic trivialisation of the A-motive associated to the Drinfeld module φ = φΛ.

We will also use the following fundamental lemma, whose proof depends on Gekeler’s paper
[10].

Lemma 5 (“Deformation of Legendre’s identity”) We have, for all z ∈ Ω and t with |t| <
q:

det(Ψ̂) = π̃−1−qh(z)−1sCar(t). (25)

8



Proof. Let f(z, t) be the function det(Ψ̂(z, t))h(z)π̃1+q, for z ∈ Ω and t ∈ Bq. We have:

f (1)(z, t) = −(t− θ)∆̃(z)−1 det(Ψ̂(z, t))h(z)qπ̃q+q2 = (t− θ)f(z, t).

For fixed z ∈ Ω, we know that s
(k)
i (z, ·) ∈ T<qqk ⊂ T for all k ≥ 0. Hence, f(z, ·) ∈ T for all

z ∈ Ω. By arguments used in the remark on the K-vector space structure of the set of solutions
of (14), f(z, t) is equal to λ(z, t)sCar(t), for some λ(z, t) ∈ A; the matter is now to compute λ,
which does not depend on z ∈ Ω as it follows easily by fixing t = t0 ∈ Bq transcendental over Fq

and observing that f(z, t0) is holomorphic over Ω with values in a discrete set.
Now, for z fixed as t→ θ,

lim
t→θ

Ψ̂(z, t)−

(
− z

t−θ − 1
t−θ

η1 η2

)
=

(
∗ ∗
0 0

)
,

η1, η2 being the quasi-periods (periods of second kind) of the lattice Aω1 + Aω2 (respectively
associated to ω1 and ω2) [10, Section 7, Equations (7.1)], with generators ω1 = z, ω2 = 1,
where the asterisks denote continuous functions of the variable z. Hence, we have limt→θ(t −

θ) det(Ψ̂(z, t)) = −zη2 + η1. By [10, Theorem 6.2], −zη2 + η1 = −π̃−qh(z)−1.
At once:

−π̃−qh(z)−1 =

= lim
t→θ

(t− θ) det(Ψ̂(z, t))

= λ(θ)π̃−q−1h(z)−1 lim
t→θ

(t− θ)sCar(t)

= −λ(θ)π̃−qh(z)−1,

which implies that λ = λ(θ) = 1 (θ is transcendental over Fq). Our Lemma follows.

In the next section, we study the functions s1, s2 as functions Ω → T<q.

2.1.2 The si’s as functions Ω → T<q.

We observe, by the definitions of s1, s2, and by the fact, remarked in (19), that αi is a modular

form of weight qi − 1 and type 0 for all i, and by (10), that for all γ =

(
a b
c d

)
∈ Γ:

s2(γ(z), t) =

∞∑

i=0

(cz + d)q
i−1 αi(z)

θqi − t

= (cz + d)−1sΛz,cz+d(z)

= (cz + d)−1(cs1(z, t) + ds2(z, t)).

Similarly,

s1(γ(z), t) =

∞∑

i=0

(cz + d)q
i−1αi(z)(γ(z))

qi

θqi − t

= (cz + d)−1sΛz ,az+b(z)

= (cz + d)−1(as1(z, t) + bs2(z, t)).
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Let us write

Σ(z, t) :=

(
s1(z, t)

s2(z, t)

)
.

We have proved:

Lemma 6 For all γ =

(
a b
c d

)
∈ Γ, and for all z ∈ Ω, we have the following identity of series

in T<q:
Σ(γ(z), t) = (cz + d)−1γ · Σ(z, t), (26)

where γ is the matrix

(
a b

c d

)
∈ Γ.

2.1.3 Behaviour of s2 at the infinity cusp and u-expansion

We use the results of the previous subsections to see how the function s2 behaves for z approach-
ing the cusp at infinity of the rigid analytic space Γ\Ω. Here we will prove two lemmas.

Lemma 7 There exists a real number r > 0 such that for all (z, t) ∈ Ω× C with |u| = |u(z)| <
r, |t| < r, we have:

s2(z, t) = π̃−1sCar(t) +
∑

m≥1

κm(t)um, (27)

where for m ≥ 1,

κm(t) =
∑

i≥1

ci,m
θqi − t

=
∑

j≥0

tj
∑

i≥1

ci,mθ
−qi(1+j) ∈ T<qq ,

the ci,m’s being the coefficients in the expansions (20).

Proof. For z ∈ Ω such that |u| < B−1 with B as in (22), and for |t| < q, (12) yields:

s2(z, t) =
1

θ − t
+
∑

i≥1

αi(z)

θqi − t

=
1

θ − t
+
∑

i≥1

∑

m≥0

ci,mu
m 1

θqi − t

=
1

θ − t
+
∑

i≥1

ci,0
1

θqi − t
+
∑

m≥1

um
∑

i≥1

ci,m

θqi − t

= π̃−1
∑

i≥0

π̃qi

di

1

θqi − t
+
∑

m≥1

κm(t)um

= π̃−1sCar(t) +
∑

m≥1

κm(t)um,

where, in the second equality we have substituted the u-expansions of the αi’s in our formulas,
in the third we have separately considered constant terms, in the fourth equality, we have used
(21), in the fifth we have recognised the shape of sCar (15), and we have noticed, by using (22),
that for all t ∈ C such that |t| ≤ q, |κm(t)| ≤ Bmq−1.

10



Later, we will need to do some arithmetic with the u-expansion (27). To this purpose, it is
advantageous to set:

d(z, t) := π̃sCar(t)
−1s2(z, t),

function for which (24) becomes:

d = (t− θq)∆d(2) + gd(1). (28)

We will need part of the following lemma.

Lemma 8 We have

d =
∑

i≥0

ci(t)u
(q−1)i ∈ 1 + uq−1Fq[t, θ][[u

q−1]]. (29)

More precisely,

d = 1 + (θ − t)uq(q−1) + (θ − t)u(q
2−q+1)(q−1) + · · · ∈ 1 + (t− θ)uq−1Fq[t, θ][[u

q−1]],

where the dots · · · stand for terms of higher order in u.

Let i be a positive integer. We have

−∞ ≤ degt ci ≤ logq2 i,

where logq2 is the logarithm in base q2, with the convention degt 0 = −∞.

Proof. For simplicity, we write v = uq−1. It is clear, looking at Lemma 7, that d is a series in
T<qq [[v]]. We have the series expansions (cf. [11, Section 10]):

g = 1− [1]v + · · · =
∞∑

n=0

γnv
n ∈ A[[v]],

∆ = −v(1− vq−1 + · · · ) =
∞∑

n=0

δnv
n ∈ uA[[v]],

We deduce, from (28), that

cm = (t− θq)
∑

i+q2j=m

δic
(2)
j +

∑

i+qj=m

γic
(1)
j , (30)

which yields inductively that ci belongs to Fq[t, θ], because the coefficients of the u-expansions
of ∆ and g are A-integral. The statement on the degrees of the coefficients of the ci’s, is also a
simple inductive consequence of (30) and the following two facts: that degt δi, degt γi ≤ 0, and

that degt c
(k)
i = degt ci for all i, k (t is τ -invariant).

The explicit formula for the coefficients ci with i ≤ q2 − q + 1 is an exercice that we leave to
the reader, which needs [11, Corollaries (10.3), (10.11)]. The explicit computation can be pushed
easily to coefficients of higher order, but we skip it as we will not need these explicit formulas at
all in this paper. The fact that the coefficients ci belong to the ideal generated by t− θ for i ≥ 1
follows from the computation of the residues in 2.1.1.

11



3 The function E

The function of the title is defined, for z ∈ Ω and t ∈ Bq, by:

E(z, t) = −h(z)d(1)(z, t) = −(t− θ)−1π̃qh(z)s−1
Car(t)s

(1)
2 (z, t),

with d the function of Lemma 8. This section is entirely devoted to the description of its main
properties. Three Propositions will be proved here.

In Proposition 9 we use the arguments of 2.1.1 to show that, just as d, E satisfies a linear
τ -difference equation of order 2 with coefficients isobaric in C[[t]][g, h] (5).

In Proposition 10, where we use this time the arguments developed in 2.1.2, we analyse the

functional equations relating the values of E at z and γ(z), where γ =

(
a b
c d

)
∈ Γ; they involve

the factors of automorphy:

Jγ(z) = cz + d, Jγ(z) = c
s1(z, t)

s2(z, t)
+ d,

with values convergent in C[[t]].
Proposition 11 follows from what we did in 2.1.3 and describes the third important feature of

the function E; the existence of a u-expansion in Fq[t, θ][[u]]. For Drinfeld quasi-modular forms,
the degree in θ of the n-th coefficient of the u-expansion grows pretty rapidly with n in contrast
of the classical framework. The function E does not make exception to this principle. However,
the degree in t of the n-th coefficient grows slowly, and this property is used crucially in the proof
of the multiplicity estimate. Another important property studied in this section is that E(z, θ)
is a well defined function Ω → C and is equal to Gekeler’s function E.

3.1 linear τ-difference equations

Proposition 9 For all z ∈ Ω, the function E(z, ·) can be developed as a series of T<qq . More-
over, The following linear τ-difference equation holds in T<qq , for all z ∈ Ω:

E(2) =
1

t− θq2
(∆E + gqE(1)). (31)

Proof. After having chosen a (q−1)-th root of −θ, let us write, following Anderson, Brownawell,
and Papanikolas in [2, Section 3.1.2],

Ω(t) := (−θ)
−q
q−1

∞∏

n=1

(
1−

t

θqn

)
∈ (T∞ ∩K∞((−θ)

1
q−1 )[[t]]) \K∞(t)alg.

It is plain that

Ω(−1)(t) = (t− θ)Ω(t).

Thanks to the remark on the K-vector space structure of the set of solutions of (14) and after
the computation of the constant of proportionality, we get

sCar(t) =
1

Ω(−1)(t)
. (32)

5This phenomenon holds with more generality and should be compared with a result of Stiller in [22].
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At once, we obtain that the function sCar has no zeros in the domain C \ {θ, θq, . . .} from which
it follows that ((t − θ)sCar)

−1 ∈ T<qq . Moreover, for all z ∈ Ω, we have s2 ∈ T<q so that

s
(1)
2 ∈ T<qq . Multiplying the factors that define the function E, we then get, for all z ∈ Ω, that

E(z, ·) ∈ T<qq , which gives the first part of the proposition (and in fact, it can be proved that
d,E(z, ·) ∈ T∞ for all z ∈ Ω, but we skip on this property since it will not be needed in the
present paper).

In order to prove the second part of the proposition, we remark, from (28) (or what is the
same, (24)), that

s
(3)
2 =

t− θq

∆̃q
s
(1)
2 −

g̃q

∆̃q
s
(2)
2 , or equivalently, d(3) =

1

(t− θq2)∆q
(d(1) − gqd(2)).

By the definition of E and the τ -difference equation (14) we find the relation:

E(k) = −(t− θq
k

)−1(t− θq
k−1

)−1 · · · (t− θ)−1π̃qk+1

hq
k

s−1
Cars

(k+1)
2 ,

= −hq
k

d(k+1) (33)

for k ≥ 0. Substituting the above expression for d(3) in it, we get what we expected.

3.2 Factors of automorphy, modularity

In the next proposition, the function E is viewed as a function Ω → T>0 (it can be proved
that it defines, in fact, a function Ω → T∞). In order to state the proposition, we first need a
preliminary discussion.

If ω 6∈ θΛ, then eΛ(ω/θ) 6= 0 and sΛ,ω(t) ∈ T×
>0 (group of units of T>0), so that, for every z

fixed, s2(z, ·)−1 ∈ T×
>0 (6). Hence, we have a well defined map

ξ : Ω → T×
>0

z 7→ s1(z,t)
s2(z,t)

,

and we can consider the map

(γ, z) =

((
a b
c d

)
, z

)
∈ Γ× Ω 7→ Jγ(z) := cξ + d ∈ T>0.

Since c, d are relatively prime, we have cz + d 6∈ θΛz implying that cs1 + ds2 = sΛz ,cz+d ∈ T×
>0.

Therefore, for all γ ∈ Γ and z ∈ Ω, Jγ ∈ T×
>0.

Moreover, by (26) we have, for all γ ∈ Γ and z ∈ Ω,

ξ(γ(z)) = γ(ξ(z)) ∈ C((t)), (34)

so that, for γ, δ ∈ Γ and z ∈ Ω,

Jγδ(z) = Jγ(δ(z))J δ(z). (35)

the map J : Γ×Ω → T×
>0 is our “new” factor of automorphy, to be considered together with

the more familiar factor of automorphy

Jγ(z) := cz + d.

6The radius of convergence, in principle depending on z, seems difficult to compute.
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Let us also write, for γ =

(
a b
c d

)
∈ Γ:

Lγ(z) =
c

cz + d
,

Lγ(z) =
c

cs1 + ds2
.

We remark that for all γ ∈ Γ, Lγ(z) belongs to T>0 because s2Jγ(z) ∈ T×
>0. Moreover, the

functions Jγ and (θ − t)−1Lγ are deformations of Jγ and Lγ respectively, for all γ ∈ Γ. Indeed,
we recall that (t − θ)s2(z, t) → −1 and (t − θ)s1(z, t) → −z as t → θ. Hence, limt→θ

s1

s2
= z.

This implies that
lim
t→θ

Jγ(z) = Jγ(z). (36)

In a similar way we see that
lim
t→θ

(t− θ)−1Lγ(z) = −Lγ(z). (37)

We further define the sequence of functions (g⋆k)k≥0 by:

g⋆−1 = 0, g⋆0 = 1, g⋆1 = g, g⋆k = (t− θq
k−1

)g⋆k−2∆
qk−2

+ g⋆k−1g
qk−1

, k ≥ 2,

so that for all k ≥ 0, we have the identity g⋆k(z, θ) = gk(z), the function introduced in [11,
Equation (6.8)].

We have:

Proposition 10 For all z ∈ Ω, γ ∈ Γ and k ≥ 0 the following identity of formal series of T>0

holds:

E(k)(γ(z), t) = det(γ)−1Jγ(z)
qkJγ(z)× (38)(

E(k)(z, t) +
g⋆k(z)

π̃(t− θ)(t− θq) · · · (t− θqk)
Lγ(z)

)
.

Proof. From the deformation of Legendre’s identity (25) we deduce that

s
(1)
1 =

1

s2
(s1s

(1)
2 − π̃−1−qh−1sCar). (39)

Let γ =

(
a b
c d

)
∈ Γ. Applying τ on both left and right hand sides of

s2(γ(z)) = J−1
γ Jγs2(z) = J−1

γ (cs1(z) + ds2(z)), (40)

consequence of Lemma 6, we see that

s
(1)
2 (γ(z)) = J−q

γ (cs
(1)
1 + ds

(1)
2 ).

We now eliminate s
(1)
1 from this identity and (39), getting identities in T>0. Indeed,

cs
(1)
1 + ds

(1)
2 =

=
c

s2
(s1s

(1)
2 − π̃−1−qh(z)−1sCar(t)) + ds

(1)
2

= s
(1)
2

(
c
s1

s2
+ d

)
− π̃−1−qh(z)−1sCar(t)s

−1
2

=

(
c
s1

s2
+ d

)(
s
(1)
2 − π̃−1−qh(z)−1sCar(t)

c

cs1 + ds2

)
,
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that is,

s
(1)
2 (γ(z)) = J−q

γ Jγ

(
s
(1)
2 (z)−

π̃−1−qsCar(t)

h(z)
Lγ

)
. (41)

This functional equation is equivalent to the following functional equation for d(1) (in T>0):

d(1)(γ(z)) = J−q
γ Jγ

(
d(1)(z)−

1

π̃(t− θ)h(z)
Lγ

)
. (42)

This already implies, by the definition of E and the modularity of h:

E(γ(z)) = det(γ)−1JγJγ

(
E(z) +

1

π̃(t− θ)
Lγ

)

which is our proposition for k = 0.
We point out that (26) implies the functional equation, for all γ ∈ Γ:

d(γ(z)) = J−1
γ Jγd(z). (43)

The joint application of (43), (40), (42) and (23) and induction on k imply, for all k ≥ 0 and
γ ∈ Γ, the functional equation in T>0:

d(k)(γ(z)) = J−qk

γ Jγ

(
d(k)(z)−

g⋆k−1

π̃h(z)qk−1(t− θ)(t − θq) · · · (t− θqk−1 )
Lγ

)
, (44)

where we have also used the functional equation (14). By (33), we end the proof of the proposi-
tion.

3.3 u-expansions

Proposition 11 We have

E(z, t) = u
∑

n≥0

cn(t)u
(q−1)n ∈ uFq[θ, t][[u

q−1]],

where the formal series on the right-hand side converges for all t, u with |t| ≤ q and |u| small.
The terms of order ≤ q(q − 1) of the u-expansion of E are:

E = u(1 + u(q−1)2 − (t− θ)u(q−1)q + · · · ). (45)

Moreover, for all n > 0, we have the following inequality for the degree in t of cn(t):

degt cn ≤ logq n,

where logq denotes the logarithm in base q and where we have adopted the convention degt 0 =
−∞.

Proof. This is a simple consequence of Lemma 8 and the definition of E.

Remark 12 Let us introduce the function

µ = π̃1−qs
(1)
2 /s2 ∈ C[[t, uq−1]].
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By (23), µ satisfies the non-linear τ -difference equation:

µ(1) =
(t− θ)

∆
µ−1 −

g

∆
.

Hence, µ = (t − θ)∆−1(µ(1) + g/∆)−1. Although not needed in this paper, we point out that
this functional equation gives the following continued fraction development, which turns out to
be convergent for the u-adic topology:

µ =
(t− θ)

g +
∆(t− θq)

gq +
∆q(t− θq

2

)

gq2 +
∆q2(t− θq

3

)

· · ·

∈ Fq[t, θ][[v]]. (46)

This property should be compared with certain continued fraction developments in [15, Section
4, 5], or the continued fraction developments described after [14, Theorem 2].

4 Bi-weighted automorphic functions

In this section we introduce a class of bi-weighted automorphic functions that we call almost A-
quasi-modular forms. We will see that they generate a T>0-algebra M̃ with natural embedding

in C[[t, u]]. Thanks to the two kinds of factor of automorphy described below, M̃ is also graded
by the group G = Z2 × Z/(q − 1)Z. We will not pursue, in this paper, any investigation on the

structure of M̃; this will be objective of another work.
We will show, with the help of the results of Section 3, that g, h,E,F ∈ M̃ with F = τE. It

will be proved that for this graduation, the degrees (in Z2 × Z/(q − 1)Z) of these functions are
respectively the following elements of G: (q−1, 0, 0), (q+1, 1, 0), (1, 1, 1) and (q, 1, 1) and we will

show from this that they are algebraically independent over C((t)) (also E belongs to M̃, but
we will not use this property). Since they take values in T<qq , we will study with some detail
the four dimensional T<qq -algebra

M† := T<qq [g, h,E,F ].

Proposition 9 implies that τ acts on M†: If f ∈ M† is homogeneous of degree (µ, ν,m) then
τf is also homogeneous of degree (qµ, ν,m).

We will see that if f ∈ M† is homogeneous of degree (µ, ν,m), the function

Ω → C
ε(f ) : z 7→ f(z)|t=θ

is a well defined Drinfeld quasi-modular form of weight µ+ν, typem and depth ≤ ν. An example
is given by Lemma 15: ε(E) = E.

4.1 Preliminaries on the functions Jγ and Lγ

Let us consider three matrices in Γ:

A =

(
a b
c d

)
, B =

(
α β
γ δ

)
, C = A · B =

(
∗ ∗
x y

)
∈ Γ. (47)
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Lemma 13 We have the following identities in T>0:

LA(B(z)) = det(B)−1JB(z)
2(LC(z)− LB(z)),

LA(B(z)) = det(B)−1JB(z)JB(z)(LC(z)−LB(z)).

Proof. We begin by proving the first formula, observing that c = det(B)−1(xδ − yγ):

JB(z)
2(LC(z)− LB(z)) =

= (γz + δ)2
(

x

xz + y
−

γ

γz + δ

)

= det(B)
c(δ + γz)

(cα+ dγ)z + (cβ + dγ)

= det(B)
c

(cα+dγ)z+(cβ+dγ)
δ+γz

= det(B)
c

cαz+β
γz+δ + d

= det(B)LA(B(z)).

As for the second formula, we set

L̃A =
c

cξ + d
,

where we recall that ξ = s1

s2
. By using (34) and the obvious identity det(B) = det(B), we compute

in a similar way:

JB(z)
2(L̃C(z)− L̃B(z)) =

= (γz + δ)2
(

x

xξ + y
−

γ

γξ + δ

)

= det(B)
c

cαξ+β

γξ+δ
+ d

= det(B)L̃A(B(z)).

Hence,

L̃A(B(z)) = det(B)−1JB(z)
2(L̃C(z)− L̃B(z)).

But

L̃A(z) = s2(z)LA(z),

so that

L̃A(B(z)) = s2(B(z))LA(B(z))

= (γs1(z) + δs2(z))LA(B(z))

= s2(z)JB(z)
−1JB(z)LA(B(z)),

where s1, s2 are considered as functions Ω → T>0, from which we deduce the expected identity.
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4.2 Almost A-quasi-modular forms.

We recall that for all z ∈ Ω and γ ∈ Γ, we have Jγ ,Jγ , Lγ ,Lγ ∈ T>0.
Let r be a positive real number and f : Ω → T<r a map. We will say that f is regular if the

following properties hold.

1. There exists ε > 0 such that, for all t0 ∈ C, |t0| < ε, the map z 7→ f(z, t0) is holomorphic
on Ω.

2. For all a ∈ A, f(z + a) = f(z). Moreover, there exists c > 0 such that for all z ∈ Ω with
|u(z)| < c and t with |t| < c, there is a convergent expansion

f(z, t) =
∑

n,m≥0

cn,mt
num,

where cn,m ∈ C.

Definition 14 (Almost A-quasi-modular forms) Let f be a regular function Ω → T<r, for
r a positive real number. We say that f is an almost-A-quasi-modular form of weight (µ, ν), type
m and depth ≤ l if there exist regular functions f i,j : Ω → T<r, 0 6 i + j 6 l, such that for all
γ ∈ Γ and z ∈ Ω the following functional equation holds in T>0:

f(γ(z), t) = det(γ)−mJµ
γ J

ν
γ


 ∑

i+j≤l

f i,jL
i
γL

j
γ


 . (48)

The radius of convergence ρ(f) of an almost A-quasi-modular form f : Ω → T>0 is the supre-
mum of the set of the real numbers r such that the maps f ,f i,j appearing in (48) simultaneously
are well defined maps Ω → T<r.

We will say that µ = µ(f ), ν = ν(f ),m = m(f) are respectively the first weight, the second
weight and the type of f .

4.2.1 Some remarks.

It is obvious that in (48), f = f0,0 (use γ = identity matrix).
If λ ∈ T>0, then the map z 7→ λ trivially is an almost A-quasi-modular form of weight (0, 0),

type 0, depth ≤ 0. The radius ρ(λ) is then just the radius of convergence of the series λ.
Examples of almost A-quasi-modular forms are Drinfeld quasi-modular forms. To any Drin-

feld quasi-modular form of weight w, type m, depth ≤ l is associated an almost A-quasi-modular
form of weight (w, 0), type m, depth ≤ l whose radius is infinite.

The T>0-algebra T>0[g, h] is graded by the couples (w,m) ∈ Z × Z/(q − 1)Z of weights and
types, and the isobaric elements are all almost A-quasi-modular forms with the second weight 0.

The function s2 is, by Lemmas 6 and 7, an almost A-quasi-modular form of weight (−1, 1),
depth 0, type 0. The radius is q, by the results of Section 2.1.

If f is an almost A-quasi-modular form of weight (µ, ν), type m, depth ≤ l and radius of
convergence > q, then ε(f) := f |t=θ is a well defined holomorphic function Ω → C. It results
from (36) and (37) that ε(f) is a Drinfeld quasi-modular form of weight µ+ν, type m and depth
≤ l.

The function f := s2 is not well defined at t = θ because its radius of convergence is q, and
we know from (27) that there is divergence at θ. However, the function f := (t − θ)s2, which
is an almost A-quasi-modular of same weight, type and depth as s2, has convergence radius q

q.
Therefore, ε(f) is well defined, and is the constant function −1 by the results of Subsection 2.1.1.
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From (41) we see that the function s
(1)
2 is not an almost A-quasi-modular form. The non-zero

function ε(s
(1)
2 ) is well defined and we have already mentioned the results of Gekeler in [10] that

allow to compute it.
Let us write φ = ε(E), which corresponds to a well defined series of uC[[uq−1]] by (45). We

obtain, by using (38), (36) and (37) with k = 0, that

φ(γ(z)) = det(γ)−1(cz + d)2
(
φ(z)− π̃−1 c

cz + d

)
.

This is the collection of functional equations of the Drinfeld quasi-modular form E (2), whose
u-expansion begins with the term u. Applying [3, Theorem 1] we obtain:

Lemma 15 We have, for all z ∈ Ω:

ε(E) = E(z, θ) = E(z).

It is easy to verify, as a confirmation of this result, that the first coefficients of the u-expansion
of E given in (45) agree, substituting t by θ, with the u-expansion of E that we know already
after [11, Corollary (10.5)]:

E = u(1 + v(q−1) + · · · ).

More generally, Propositions 9, 10 and 11 imply that for all k ≥ 0, E(k) is an almost A-
quasi-modular form of weight (qk, 1) type 1 and depth ≤ 1 with convergence radius ≥ qq, so that

ε(E(k)) is well defined, and is a Drinfeld quasi-modular form of weight qk +1, type 1 and depth
≤ 1.

4.2.2 Grading by the weights, filtering by the depths.

For µ, ν ∈ Z,m ∈ Z/(q− 1)Z, l ∈ Z≥0, we denote by M̃≤l
µ,ν,m the T>0-module of almost A-quasi-

modular forms of weight (µ, ν), type m and depth ≤ l. We have

M̃≤l
µ,ν,mM̃≤l′

µ′,ν′,m′ ⊂ M̃≤l+l′

µ+µ′,ν+ν′,m+m′ .

We also denote by M̃ the T>0-algebra generated by all the almost A-quasi-modular forms. We
prove below that this algebra is graded by the group G = Z2×Z/(q− 1)Z, filtered by the depths
(Proposition 20), and contains five algebraically independent functions E, g, h,E,F (Proposition
21).

Let K be any field extension of Fq(t, θ). The key result of this section is the following
elementary lemma.

Lemma 16 The subset Θ = {(d, d), d ∈ A} ⊂ A2(K) is Zariski dense.

Proof. Let us assume by contradiction that the lemma is false and let Θ be the Zariski closure
of Θ. Then, we can write

Θ =
⋃

i∈I

Θi ∪
⋃

j∈J

Θ̃j,

where the Θi’s are irreducible closed subsets of A2(K) of dimension 1, the Θ̃j’s are isolated points
of A2(K), and I,J are finite sets.

From Θ = Θ + (d, d) for all d ∈ A we deduce Θ = Θ + (d, d). The translations of A2(K) by

points such as (d, d) being bijective, they induce permutations of the sets {Θi} and {Θ̃j}, from
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which we easily deduce that J = ∅. Therefore, the ideal of polynomials R ∈ K[X,Y ] such that
R(Θ) ⊂ {0} is principal, generated by a non-zero polynomial P .

Now, if b ∈ A, mb(Θ) ⊂ Θ, where mb(x, y) := (bx, by). Hence, P (mb(X,Y )) ∈ (P ) and there
exists κb ∈ K× such that

P (bX, bY ) = κbP (X,Y ).

Let us write:

P (X,Y ) =
∑

α,β

cα,βX
αY β,

and choose b 6∈ Fq. If cα,β 6= 0, then κb = b−αb
−β

. If P is not a monomial, we have, for

(α, β) 6= (α′, β′), cα,β , cα′,β′ 6= 0, so that b−αb
−β

= b−α′

b
−β′

, yielding a contradiction, because
b 6∈ Fq.

If P is a monomial, however, it cannot vanish at (1, 1) ∈ Θ; contradiction.

Lemma 17 Let us suppose that for elements ψα,β ∈ C((t)) and for a certain element z ∈ Ω we
have an identity: ∑

α,β

ψα,βJ
α
γ J

β
γ = 0, (49)

in C((t)), for all γ =

(
a b
1 d

)
∈ Γ with determinant 1, the sum being finite. Then, ψα,β = 0 for

all α, β.

Proof. Let us suppose by contradiction the existence of a non-trivial relation (49). We have,
with the hypothesis on γ, Jγ = z + d,Jγ = ξ + d ∈ C((t)), so that the relation of the lemma
implies the existence of a relation:

∑

α,β

ℓα,βd
αd

β
= 0, d ∈ A,

with ℓα,β ∈ K = C((t)) not all zero, and all, but finitely many, vanishing. Lemma 16 yields a
contradiction.

Another useful lemma is the following. The proof is again a simple application of Lemma 16
and will be left to the reader.

Lemma 18 If the finite collection of functions fi,j : Ω → T>0 is such that for all z ∈ Ω and for
all γ ∈ Γ, ∑

i,j

fi,j(z)L
i
γL

j
γ = 0,

then the functions fi,j are all identically zero.

Lemma 19 Let f be an almost A-quasi-modular form of type m with 0 ≤ m < q − 1. Then,
with v = uq−1,

f(z) = um
∑

i≥0

ci(t)v
i.
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Proof. It follows the same ideas of the remark on p. 23 of [12]. Let us consider γ =

(
λ 0
0 1

)
∈ Γ

with λ ∈ F×
q . We have γ(z) = λz, det(γ) = λ, Jγ = Jγ = 1, Lγ = Lγ = 0, so that f (λz) =

λ−mf(z), for all z ∈ Ω. Now, if f =
∑

i ci(t)u
i, since eCar is Fq-linear, we get u(λz) = λ−1u(z)

and if ci 6= 0, then i ≡ m (mod q − 1).

Proposition 20 The T>0-algebra generated by the almost A-quasi-modular forms is graded by
weights and types, hence by the group G = Z2 × Z/(q − 1)Z, and filtered by the depths:

M̃ =
⊕

(µ,ν,m)∈G

∞⋃

l=0

M̃≤l
µ,ν,m.

Proof. We begin by proving the property concerning the grading by the group Z2 ×Z/(q − 1)Z.
Let us consider distinct triples (µi, νi,mi) ∈ Z2 ×Z/(q − 1)Z, i = 1, . . . , s, non-negative integers

l1, . . . , ls and non-zero elements f i ∈ M̃≤li
µi,νi,mi

. Then, we claim that
∑s

i=1 f i 6= 0. To see this,
we assume by contradiction that for some forms f i as in the proposition, we have the identity
in T>0:

s∑

i=1

f i = 0. (50)

Recalling Definition 14 (identity (48)), we have, for all i = 1, . . . , s, γ =

(
a b
c d

)
∈ Γ, z ∈ Ω:

f i(γ(z), t) = det(γ)−miJµi
γ Jνi

γ

∑

j+k≤l

f i,j,k(z, t)L
j
γL

k
γ ,

for certain functions f i,j,k : Ω → T>0.

Let us suppose first that γ is of the form

(
a b
1 d

)
with ad−b = 1. We recall that s2(z)

−1 ∈ T×
>0

for all z. Therefore, for all z ∈ Ω, (50) becomes the identity of formal series in T>0:

s∑

i=1

∑

j+k≤li

f i,j,ks
−k
2 (z + d)µi−j(ξ + d)νi−k = 0. (51)

By Lemma 17, (51) is equivalent to the relations:
∑

i,j,k

φi,j,k = 0, for all (α, β) ∈ Z2 (52)

where φi,j,k := f i,j,ks
−k
2 and the sum runs over the triples (i, j, k) with i ∈ {1, . . . , s} and j, k

such that µi − j = α and νi − k = β, with obvious vanishing conventions on some of the φi,j,k’s.
Let µ be the maximum value of the µi’s, and let us look at the relations (52) for α = µ. Since

for all µi < µ we get α = µ > µi − j for all j ≥ 0, for such a choice of α we get:
∑

i,k

φi,0,k = 0, for all β ∈ Z, (53)

where the sum is over the couples (i, j) with i such that µi = µ and νi − k = β. Now, let E be
the set of indices i such that µi = µ and write ν for the maximum of the νi with i ∈ E . If j is
such that µj = µ, and if ν 6= νj , then for all k ≥ 0, ν > νj − k, so that for β = ν, (53) becomes

∑

i

φi,0,0 = 0,
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where the sum runs this time over the i’s such that (µi, νi) = (µ, ν). But φi,0,0 = f i,0,0 = f i for
i = 1, . . . , s. Since the types of the f i’s with same weights are distinct by hypothesis, Lemma 19
implies that for all i such that (µi, νi) = (µ, ν), f i = 0. This contradicts our initial assumptions
and proves our initial claim. Combining with Lemma 18, we end the proof of the proposition.

Proposition 21 The functions

E, g, h, s2, s
(1)
2 : Ω → T>0

are algebraically independent over the fraction field of T>0.

Proof. Assume by contradiction that the statement of the proposition is false. SinceE, g, h, s2, s
(1)
2 ∈

M̃ are almost A-quasi-modular forms, by Proposition 20, there exist (µ, ν),m ∈ Z, and a non-
trivial relation (where the sum is finite):

∑

i,j≥0

Pi,jE
is

(1)
2

j = 0,

with Pi,j ∈ T>0[g, h, s2] ∩ M̃≤l
µ−2i+qj,ν−j,m−i (for some l ≥ 0). By Proposition 20, any vector

space of almost A-quasi-modular forms of given weight and depth is filtered by the depths.
Comparing with the functional equations (41) and [3, Functional equation (11)], and applying
Lemma 18, we see that all the forms Pi,j vanish. There are three integers α,m, n and a non
trivial polynomial relation P among g, h, s2, with coefficients in T>0:

n∑

s=0

Qss
s
2 = 0,

where Qs ∈ T>0[g, h] ∩ M̃≤l
α+s,0,m (s = 0, . . . , n), and for some s, Qs is non-zero. Since ν(Qs) =

0 for all s such that Qs 6= 0 and ν(s2) = 1, The polynomial P , evaluated at the functions

E, g, h, s2, s
(1)
2 is equal to Qss2 for Q ∈ T>0[g, h] \ {0} and s ∈ Z, quantity that cannot vanish

because g, h are algebraically independent over T<qq : contradiction.

5 Estimating the multiplicity

We prove Theorem 1 in this section.

5.1 Preliminaries

Let us denote by M† the T<qq -algebra T<qq [g, h,E,F ], where F := E(1); its dimension is 4,
according to Proposition 21 and Proposition 10. By Proposition 20, this algebra is graded by
the group Z2 × Z/(q − 1)Z:

M† =
⊕

(µ,ν),m

M†
µ,ν,m,

where M†
µ,ν,m = M̃µ,ν,m ∩M†.

The operator τ acts on M† by Proposition 9. More precisely, we have the homomorphism of
Fq[t]-modules

τ : M†
µ,ν,m → M†

qµ,ν,m.

Let us write h = π̃hs−1
Cars2 = hd.
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Lemma 22 The formula h = (t−θq)F−gE holds, so that h ∈ M†
q,1,1 and M† = T<qq [g, h,E,h].

Proof. From the definition of E and (28), we find:

(t− θq)F − gE =

= −(t− θq)hqd(2) + ghd(1)

= (−h)q(−hq−1)−1(d − gd(1)) + ghd(1)

= hd = h.

This makes it clear that h belongs to M†
q,1,1 and that M† = T<qq [g, h,E,h].

We denote by εµ,ν,m or again ε the map which sends an almost A-quasi-modular form f of
weight (µ, ν), type m, with radius > q to the Drinfeld quasi-modular form ε(f ) of weight µ+ ν,
type m. This map is clearly a C-algebra homomorphism.

Lemma 23 We have ε(h) = h.

Proof. This follows from the limit limt→θ s
−1
Cars2 = π̃−1 and the definition of d.

More generally, we have the following result.

Proposition 24 For all (µ, ν),m, the map

ε : M†
µ,ν,m → M̃≤ν

µ+ν,m

is well defined and the inverse image of 0 is the T<qq -module (t− θ)M†
µ,ν,m.

Proof. Let f be an element of M†
µ,ν,m. Then, by Lemma 22,

f =

ν∑

i=0

φih
ν−iEi,

where φi ∈Mµ−νq+i(q−1),m−ν ⊗C T<qq . Since limt→θ s
−1
Cars2 = π̃−1, we have ε(h) = h by Lemma

23. Moreover, by Lemma 15, ε(E) = E, and

ε(f) =

ν∑

i=0

ε(φi)h
ν−iEi,

so that ε(f) = 0 if and only if ε(φi) = 0 for all i. But for all i, φi is a polynomial in g, h
with coefficients in T<qq . If ε(φi) = 0, then φi is a linear combination

∑
a,b ca,bg

ahb with
ca,b ∈ T<qq such that ca,b(θ) = 0. Since T<qq ⊂ T, it is a principal ideal domain and the last
condition is equivalent to φi ∈ (t − θ)(M ⊗C T<qq ). Hence, ε(f) = 0 if and only if, for all i,
φi ∈ (t− θ)(M ⊗C T<qq ). The proposition follows.

5.2 Multiplicity estimate in M†

By Proposition 11, E = u+ · · · ∈ uFq[t, θ][[u
q−1]]. Hence,

E(k) = uq
k

+ · · · ∈ uq
k

Fq[t, θ][[u
(q−1)qk ]], k ≥ 0,
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and there is an embedding M† → T<qq [[u]]. It will be sometimes useful to fix an embedding of
T<qq in K, an algebraic closure of C((t)); we will then often consider elements of M† as formal
series if K[[u]] (especially in this subsection). Anderson’s operator τ : C((t)) → C((t)) extends in
a natural way to an Fq(t)-linear operator τ : K → K (we will keep using the notation τkf = f (k)).
If f =

∑
n≥n0

cn(t)u
n is a formal series of K[[u]], then, Anderson’s operator further extends as

follows:
f (k) =

∑

n≥n0

c(k)n (t)uq
kn, k ∈ Z. (54)

Let f =
∑

n≥n0
cn(t)u

n be in K[[u]], with cn0
6= 0. We write ν∞(f) := n0. We also set ν∞(0) :=

∞. Obviously, ν∞(f (k)) = qkν∞(f) for all k ≥ 0. We recall that ν∞(g) = 0, ν∞(h) = ν∞(E) = 1
and ν∞(F ) = q. Since ν∞(s2) = 0, we also get ν∞(h) = 1. In the following, we will write
M†

µ,ν,m(K) = M†
µ,ν,m ⊗T<qq

K and Mw,m(K) = Mw,m ⊗C K. It is evident that the K-algebra

M†(K) =
∑

µ,ν,m M†
µ,ν,m(K) is again graded by the group Z2 × Z/(q − 1)Z; similarly for the

algebra M(K) =
∑

w,mMw,m(K).

We begin with a rather elementary estimate, for f ∈ M† of weight (µ, 0).

Lemma 25 If f ∈ M†
µ,0,m(K) is non-zero, then ν∞(f) ≤ µ

q+1 .

Proof. A weight inspection shows that M†
µ,0,m(K) = K[g, h]µ,m. We can write f = hν∞(f)b, with

b ∈ K[g, h] and h not dividing b. Therefore, ν∞(f ) ≤ µ
q+1 .

In the next proposition, we study the case of f of weight (µ, ν) with ν > 0.

Proposition 26 Let f be a non-zero element of M†
µ,ν,m(K) with ν 6= 0. Then,

ν∞(f) ≤ µν.

It is not difficult to show that the statement of this proposition cannot be improved (this can be

checked with the functions E(k) in mind).
Before proving the proposition, we need to state and prove a lemma.

Lemma 27 Let f ∈ M†
µ,ν,m(K), f ′ ∈ M†

µ′,ν′,m′(K). By Lemma 22, f ,f ′ can be written in an

unique way as polynomials in K[g, h,E,h]. Let l, l′ be the degrees in E of f ,f ′ respectively.
Then (Resultant),

φ := ResE(f ,f
′) = hνl′+ν′l−ll′φ0,

where φ0 ∈Mw∗,m∗(K), with

w∗ = µl′ + µ′l − ll′ − q(νl′ + ν′l − ll′), m∗ := ml′ +m′l − (νl′ + ν′l).

Proof. With an application of an obvious variant of [20, Lemme 6.1] (7) we see that

φ ∈ M†
µl′+µ′l−ll′,νl′+ν′l−ll′,ml′+m′l−ll′(K).

At the same time, φ ∈ K[g, h,h]. Since ν(g) = ν(h) = 0 and ν(h) = 1, we have φ0 :=

φ/hνl′+ν′l−ll′ ∈M(K). The computation of the weight and type of φ0 is obvious, knowing that
µ(h) = q.

7The first formula after the statemement of the above cited lemma, mistakenly typed, must be replaced with

p(R) = p(F ) degX0
(G) + p(G) degX0

(F )− p(X0) degX0
(F ) degX0

(G).
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Proof of Proposition 26. Let f be in M†
µ,ν,m(K), with ν > 0. Assume first that f , as a polynomial

in g, h,E,h, is irreducible. If f belongs to K[g, h,h] then f = φhν with φ ∈ Mµ−qν,0,m−ν(K)
and

ν∞(f ) ≤ ν∞(φ) + νν∞(h)

≤
µ− qν

q + 1
+ ν

≤
µ+ ν

q + 1
≤ µν.

We now suppose that f 6∈ K[g, h,h]; there are two cases left.

Case (i). We suppose that f divides f (1) ∈ M†
qµ,ν,m(K) as a polynomial in g, h,E,h. For weight

reasons, f (1) = af with a ∈Mµ(q−1),0(K) and a 6= 0. We also have ν∞(f (1)) = qν∞(f ) by (54),
so that, by Lemma 25, (q − 1)ν∞(f ) = ν∞(a) ≤ (q − 1)(q + 1)−1µ. Hence, in this case, we get
the stronger inequality (8)

ν∞(f ) ≤
µ

q + 1
.

Case (ii). In this case, f and f (1) are relatively prime. Since f is irreducible, degE(f ) = l =

ν > 0, so that f ,f (1) depend on E, and their resultant φ with respect to E is non-zero. We
apply Lemma 27 with f ′ = f (1), finding

φ = hν2

φ0,

with φ0 ∈ M(q+1)ν(µ−ν),m∗(K), for a certain m∗ that can be computed with Lemma 27. By
Lemma 25 again, ν∞(φ0) ≤ ν(µ− ν). Since ν∞(h) = 1, ν∞(φ) ≤ ν(µ− ν) + ν2 = µν. Now, the
number ν∞(φ) is an upper bound for ν∞(f ) by Bézout identity for the resultant.

We have proved the proposition if f ∈ M†
µ,ν,m(K) is irreducible. If f is not irreducible, we

can write f =
∏r

i=0 f i with f0 ∈ M†
µ0,0,m0

(K), f i ∈ M†
µi,νi,mi

(K) irreducible for all i > 0 with
νi > 0, and

∑
i µi = µ,

∑
i νi = ν,

∑
imi ≡ m (mod q − 1). Since ν∞(f ) =

∑
i ν∞(f i), we get,

applying Lemma 25,

ν∞(f ) ≤
µ0

q + 1
+
∑

i>0

µiνi ≤ µν.

5.3 Reduced forms

Let f be in M†. Since ε(f) ∈ M̃ ⊂ C[[u]], it is legitimate to compare the quantities ν∞(f) and
ν∞(ε(f)). We have the inequality:

ν∞(f ) ≤ ν∞(ε(f )), (55)

but the equality is not guaranteed in general, because the leading term of the u-expansion of f
can vanish at t = θ.

8It can be proved that f is, in this case, a modular form multiplied by an element of K, but we do not need
this information here.
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Definition 28 A function f in M† is reduced if ν∞(f ) = ν∞(ε(f)), that is, if the leading
coefficient of the u-expansion of f does not vanish at t = θ.

The next lemma provides a tool to construct reduced almost A-quasi-modular forms, useful
in the sequel.

Lemma 29 Let f ∈ M†
µ,ν,m be such that f =

∑
n≥n0

bnu
n, with bn ∈ Fq[t, θ] for all n and

bn0
6= 0. Then, for all k > logq(degt bn0

), the function f (k) is reduced.

Proof. We have b
(k)
n0

(θ) = bn0
(θq

−k

)q
k

= 0 if and only if t − θ1/q
k

divides the polynomial bn0
(t)

in Kalg.[t]. This polynomial having coefficients in K, we have b
(k)
n0

(θ) = 0 if and only if the

irreducible polynomial tq
k

− θ divides bn0
(t). However, this is impossible if k > logq(degt bn0

).

5.4 Construction of the auxiliary forms.

We recall the u-expansion of E whose existence is proved in Proposition 11:

E = u
∑

i≥0

ci(t)v
i,

where c0 = 1, ci ∈ Fq[t, θ] for all i > 0 and v = uq−1.

Proposition 30 The following properties hold.

(i) Let α, β, γ, δ be non-negative integers and let us write f = gαhβEγF δ ∈ M†
µ,ν,m, with µ =

α(q− 1)+ β(q+1)+ γ+ qδ, ν = γ+ δ and β+ γ+ δ ≡ m (mod q− 1), m ∈ {0, . . . , q− 2}.
Let us write

f = um
∑

n≥0

an(t)v
n

with an ∈ Fq[t, θ] (this is possible after Proposition 11 and the integrality of the coefficients
of the u-expansions of g, h). Then, for all n ≥ 0,

degt an(t) ≤ ν logq max{1, n}.

(ii) Let λ be a positive real number. Let f1, . . . ,fσ be a basis of monic monomials in g, h,E,F of
the K-vector space M†

µ,ν,m(K). Let x1, . . . , xσ be polynomials of Fq[t, θ] with max0≤i≤σ degt xi ≤
λ. Then, writing

f =

σ∑

i=1

xif i = um
∑

n≥0

bn(t)v
n

with bn ∈ Fq[t, θ] with 0 ≤ m ≤ q − 2, we have, for all n ≥ 0:

degt bn ≤ λ+ ν logq max{1, n}.

Proof. Since by definition F = E(1), we have

F = uq
∑

n≥0

c(1)n vqn = u
∑

r≥0

drv
r,

where dr = 0 if q ∤ r − 1 and dr = c
(1)
(r−1)/q otherwise. Now, the operator τ leaves the degree in t

invariant. Therefore, by Proposition 11 degt dr ≤ logq max{1, r/q} ≤ logq max{1, r}.
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Let us consider the u-expansions:

g =
∑

n≥0 γnv
n, E = u

∑
n≥0 cnv

n,

h = u
∑

n≥0 ρnv
n, F = u

∑
n≥0 dnv

n,

with γn, ρn ∈ A, cn, dn ∈ Fq[t, θ] for all n, we can write:

f = um
′ ∑

n≥0

κnv
n,

where m′ = β+ γ+ δ and for all n, κn =
∑∏

x γix
∏

y ρjy
∏

s cks

∏
z drz , the sum being over the

vectors of Zα+β+γ+δ
≥0 of the form

(i1, . . . , iα, j1, . . . , jβ , k1, . . . , kγ , r1, . . . , rδ)

whose sum of entries is n, and with the four products running over x = 0, . . . , α, y = 0, . . . , β,
s = 0, . . . , γ and z = 0, . . . , δ respectively. Since the coefficients of the u-expansions of g, h do
not depend on t and γ + δ = ν, we obtain degt κn ≤ ν logq max{1, n}.

If m′ = m+ k(q − 1) with k ≥ 0 integer, and 0 ≤ m < q − 1. We can write

f = um
′
∑

n≥0

c′nv
n = um

∑

n≥0

cnv
n,

where cn = c′n−k, with the assumption that c′n−k = 0 if the index is negative. The inequalities
degt c

′
n ≤ ν logq max{1, n} for n ≥ 0 imply that degt cn is submitted to the same bound, proving

the first part of the proposition. The second part is a direct application of the first and ultrametric
inequality.

5.4.1 Dimensions of spaces

Lemma 31 We have, for all m and µ, ν ∈ Z such that µ ≥ (q + 1)ν ≥ 0,

σ(µ, ν)− ν − 1 ≤ dimK M†
µ,ν,m(K) ≤ σ(µ, ν) + ν + 1,

where

σ(µ, ν) =
(ν + 1)

(
µ− ν(q+1)

2

)

q2 − 1
.

Therefore, if µ > ν(q+1)
2 + q2 − 1, we have dimK M†

µ,ν,m(K) > 0.

Proof. By [12, p. 33], we know that

δ(k,m) := dimC Mk,m =

⌊
k

q2 − 1

⌋
+ dimC Mk∗,m,

where k∗ is the remainder of the euclidean division of k by q2 − 1. In the same reference, it is
also proved that dimC Mk∗,m = 0 unless k∗ ≥ m(q + 1), case where dimC Mk∗,m = 1, so that, in
all cases, 0 ≤ dimC Mk∗,m ≤ 1.

A basis of M†
µ,ν,m(K) is given by:

(bk)k=1,... dimM
†
µ,ν,m(K) = (φi,sh

sEν−s)s=0,...,ν,i=1,...,σ(s), (56)
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with, for all s, (φi,s)i=1,...,σ(s) a basis ofMµ−s(q−1)−ν,m−ν (hence σ(s) = δ(µ−s(q−1)−ν,m−ν)).
We have (taking into account the hypothesis on µ which implies µ − s(q − 1) − ν > 0 for all
0 ≤ s ≤ ν):

dimM†
µ,ν,m(K) =

ν∑

s=0

δ(µ− ν − s(q − 1),m− ν)

=

ν∑

s=0

⌊
µ− s(q − 1)− ν

q2 − 1

⌋
+ dimC M(µ−ν−s(q−1))∗,m−ν.

But
ν∑

s=0

µ− s(q − 1)− ν

q2 − 1
= σ(µ, ν).

Moreover, µ > ν(q+1)
2 + q2 − 1 if and only if σ(µ, ν) > ν + 1, from which we deduce the lemma

easily.

5.4.2 Applying a variant of Siegel’s Lemma

We now prove the following:

Proposition 32 Let µ, ν ∈ Z≥0 be such that

µ ≥ (q + 1)ν + 2(q2 − 1) (57)

with ν ≥ 1, let m be an integer in {0, . . . , q − 2}. There exists an integer r > 0 such that

r ≤ 4qµν logq(µ+ ν + q2 − 1) + ν (58)

and, in M̃≤ν
r,m, a quasi-modular form fµ,ν,m such that

1

q(q + 1)
µν2 logq(µ+ ν + q2 − 1) ≤ ν∞(fµ,ν,m) ≤ 4qµν2 logq(µ+ ν + q2 − 1). (59)

We will need the following variant of Siegel’s Lemma whose proof can be found, for example,
in [16, Lemma 1] (see also [7]).

Lemma 33 Let U, V be positive integers, with U < V . Consider a system (60) of U equations
with V indeterminates:

V∑

i=1

ai,jxi = 0, (1 ≤ j ≤ U) (60)

where the coefficients ai,j are elements of K[t]. Let d be a non-negative integer such that
degt ai,j ≤ d for each (i, j). Then, (60) has a non-zero solution (xi)1≤i≤V ∈ (K[t])V with
degt xi ≤ Ud/(V − U) for each i = 1, . . . , V .

Proof of Proposition 32. We apply Lemma 33 with the parameters V = dimM†
µ,ν,m(K), U =

⌊V/2⌋. We know that V > 0 because of (57) and Lemma 31.
If f = bi as in (56), Writing

bi = um
∑

j≥0

ai,jv
j , ai,j ∈ A[t] (61)
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with 0 ≤ m < q − 1, Proposition 30 says that for all i and for all j ≥ 0,

degt ai,j ≤ ν logq max{1, j}. (62)

Lemma 33 yields polynomials x1, . . . , xV ∈ K[t], not all zero, such that if we write

f =
∑

i

xibi = um
∑

n≥n0

bnv
n, 0 ≤ m < q − 1 (63)

with bn ∈ K[t] for all n and bn0
6= 0, we have the following properties. The first property is the

last inequality below:

m+ (q − 1)n0 = ν∞(f ) ≥ m+ (q − 1)U

≥ (q − 1)(σ(µ, ν)− ν − 1)/2− 1

≥
(ν + 1)(µ− ν(q+1)

2 − q2 + 1)

2(q + 1)
− 1

≥
1

4(q + 1)
(ν + 1)µ− 1, (64)

where we have applied Lemma 31 and (57). The second property is that, in (63),

degt bn ≤ 2ν(logq(µ+ ν + q2 − 1) + logq max{1, n}), n ≥ 0, (65)

which follows from the following inequalities, with d = ν logq max{1, U}

degt xi ≤ Ud/(V − U)

≤ ν logq max{1, U}

≤ ν logq((σ(µ, ν) + ν + 1)/2)

≤ ν(logq(ν + 1) + logq(µ+ q2 − 1)− logq(q
2 − 1))

≤ 2ν logq(µ+ ν + q2 − 1),

and Proposition 30.
By Proposition 26, we have m + (q − 1)n0 = ν∞(f ) ≤ µν so that n0 ≤ µν

q−1 , where n0 is

defined in (63). Hence, by (65),

degt bn0
≤ 4ν logq(µ+ ν + q2 − 1). (66)

Lemma 29 implies that for every integer k such that

k ≥ logq(4ν) + logq logq(µ+ ν + q2 − 1), (67)

the function fk := ε(f (k)) satisfies ν∞(fk) = ν∞(f (k)) = qkν∞(f). Let k be satisfying (67). We
have, by (64), Proposition 26 and (54):

1. fk ∈ M̃≤ν
µqk+ν,m

,

2.
(

(ν+1)µqk

4(q+1) − 1
)
≤ ν∞(fk) ≤ µνqk.

Let us define the function

κ(µ, ν) := ⌊logq(4ν) + logq logq(µ+ ν + q2 − 1)⌋+ 1

and write: fµ,ν,m := fκ(µ,ν). This Drinfeld quasi-modular form satisfies the properties announced
in the proposition.
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5.5 Proof of Theorem 1

Let f be a Drinfeld quasi-modular form of weight w and depth l. We can assume, without loss of
generality, that f , as a polynomial in E, g, h with coefficients in C, it is an irreducible polynomial.
We can also assume, by Gekeler, [11, Formula (5.14)] and, [4, Theorem 1.4], that l > q.

Let W be a real number ≥ 1 and let α be the function of a real variable defined, for µ ≥ 0, by
α(µ) = µl logq(µ+Wl + q2 − 1); we have α(µ+ 1) ≤ 2α(µ). Since (the dash ′ is the derivative)
α′(µ) ≥ l logq(Wl+ q2 − 1) > 1 for all l ≥ q and µ ≥ 0, for all w ≥ 0 integer, there exist µ ∈ Z≥0

such that
α(µ) ≤ w < α(µ+ 1), (68)

and we choose one of them, for example the biggest one. Let us suppose that (4) holds and, at
once, set

ν =Wl,

with
W = q(2 + 4(q + 1)) = 2q(3 + 2q).

We define β(l) to be the right hand side of (4), as a function of l ≥ q. Condition (4) implies

µ ≥
β(l)

2l logq(µ+Wl + q2 − 1)
.

Since logq(x) ≤ 2x1/2 for all x ≥ 1 and q ≥ 2, we get

(µ+Wl+ q2 − 1)3/2 ≥
β(l)

4l
,

that is,

µ ≥

(
β(l)

4l

)2/3

−Wl − q2 + 1.

But replacing β(l) by its value yields µ ≥ (q+1)ν+2(q2− 1), which is the condition (57) needed
to apply Proposition 32.

Let us write L := logq(µ+ ν + q2 − 1) so that α(µ) = µlL. By Proposition 32, there exists a

form fµ,ν,m ∈ M̃≤ν
r,m such that l(fµ,ν,m) ≤ ν and

w(fµ,ν,m) ≤ 4(q + 1)µνL
(q(q + 1))−1µν2L ≤ ν∞(fµ,ν,m) ≤ 4qµν2L

(69)

We have two cases.

Case (i). If f |fµ,ν,m, then
ν∞(f) ≤ ν∞(fµ,ν,m) ≤ 4qµν2L. (70)

Case (ii). If f ∤ fµ,ν,m, then ρ := ResE(f, fµ,ν,m) is a non-zero modular form, whose weight w(ρ)
and type m(ρ) can be computed with the help of [4, Lemma 2.5] (we do not need an explicit
computation of m(ρ)):

w(ρ) = wν + w(fµ,ν,m)l − 2lν

≤ wν + 4l(q + 1)µνL − 2lν

≤ ν(w + 4(q + 1)µlL)

< ν(α(µ + 1) + 4(q + 1)µlL)

< ν(2α(µ) + 4(q + 1)µlL)

< (2 + 4(q + 1))νµlL. (71)
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Let us suppose that ν∞(f) > (q(q + 1))−1µν2L. Then, by Bézout identity for the resultant
and (69), ν∞(ρ) ≥ (q(q + 1))−1µν2L. At the same time, by Gekeler, [11, Formula (5.14)],

ν∞(ρ) ≤ w(ρ)
q+1 , yielding the inequality W < q(2 + 4(q + 1)) which is contradictory with the

definition of W .
Therefore, in case (ii), we have that ν∞(f) ≤ 4qµν2L. Ultimately, we have shown that, in

both cases (i), (ii),

ν∞(f) ≤ 4qµν2L

≤ 4qµW 2l2L

≤ 4qW 2lw,

which is the estimate (3).

Remark 34 The dependence on l in condition (4) can be relaxed, adding conditions on q. For
all ǫ > 0 there exists a constant c > 0 such that for all q > c, assuming that w ≫ǫ l

2+ǫ, then,
the inequality (3) holds. We do not report the proof of this fact here.
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References

[1] G. Anderson. t-motives, Duke Math. J. 53 (1986), 457-502.

[2] G. Anderson, D. Brownawell & M. Papanikolas, Determination of the algebraic relations
among special Γ-values in positive characteristic, Ann. of Math. 160 (2004), 237-313.

[3] V. Bosser & F. Pellarin. Differential properties of Drinfeld quasi-modular forms. Int. Math.
Res. Notices. Vol. 2008.

[4] V. Bosser & F. Pellarin. On certain families of Drinfeld quasi-modular forms. to appear in
J. Number Theory (2009), doi:10.1016/j.jnt.2009.04.014.

[5] D. Brownawell & D. Masser. Multiplicity estimates for analytic functions I. J. Reine angew.
Math. 314 (1980), pp. 200-216.

[6] D. Brownawell & D. Masser. Multiplicity estimates for analytic functions II. Duke Math. J.
Volume 47, Number 2 (1980), pp. 273-295.

[7] P. Bundschuh. Transzendenzmaße in Körpern, Laurentreihen. J. reine angew. Math. 299-300
(1978), pp. 411-432.

[8] Chieh-Yu Chang & M. Papanikolas. Algebraic relations among periods and logarithms of
rank 2 Drinfeld modules. Preprint.
http://arxiv.org/abs/0807.3157

[9] J. Fresnel, & M. van der Put. Rigid Analytic Geometry and its Applications. Birkhäuser,
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