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Estimating the order of vanishing at infinity

of Drinfeld quasi-modular forms.

Federico Pellarin

April 5, 2010

Abstract. In this paper we study automorphic properties of certain deformations of
Drinfeld quasi-modular forms (defined in [3]) motivated by the quest of multiplicity

estimates, important tool in transcendence and algebraic independence, in the realm of
analytic functions over algebraically closed, complete fields containing global fields of
positive characteristic.

The main consequence of our results on such deformations is a multiplicity estimate

for Drinfeld quasi-modular forms. Our result seems inaccessible by dealing directly with

iterative higher derivations on Drinfeld quasi-modular forms and requires transcendence

constructions in its proof, unlike classical multiplicity estimates in characteristic zero.
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1 Introduction, results.

Foreword about the classical theory. For w, l non-negative integers, let M̃≤l
w be the

C-vector space generated by the classical quasi-modular forms (for SL2(Z)) which
have weight w and depth ≤ l (1).

In [19], Kaneko and Koike highlight the following hypothesis; for all w, l such

that M̃≤l
w 6= (0) the image of the function

ν∞ : M̃≤l
w \ {0} → Z≥0,

which associates to every form its order of vanishing at infinity (2), is equal to the

interval [0, . . . , dimC M̃
≤l
w − 1].

Writing νmax
∞ (w, l) = max{ν∞(f) : f ∈ M̃≤l

w \ {0}}, we obviously get from this
hypothesis:

lim
w→∞

dimC M̃
≤l
w

νmax
∞ (w, l)

= 1, l ≥ 0 fixed. (1)

Since it can be easily verified that

lim
w→∞

dimC M̃
≤l
w

(l + 1)(w − l)
=

1

12
,

the truth of Kaneko and Koike’s hypothesis would imply, for all l ≥ 0:

lim
w→∞

νmax
∞ (w, l)

(l + 1)(w − l)
=

1

12
. (2)

The conjectural limit (2) yields, for w big enough depending on l, a rather

sharp upper bound for ν∞(f), with f ∈ M̃≤l
w \ {0} confirmed by experimental

evidence.
In [4] it was noticed, for f 6= 0 a classical quasi-modular form of weight w and

depth ≤ l, that at least,

ν∞(f) ≤
(l + 1)(w − l)

6
. (3)

The main theorem of the paper is a slightly weaker analog of inequality (3)
in the framework of Drinfeld quasi-modular forms; finding a reasonable substitute
of Kaneko and Koike’s hypothesis in the drinfeldian framework remains an open
problem.

Drinfeldian theory. Let q = pe be a power of a prime number p with e > 0 an
integer, let Fq be the finite field with q elements. Let us write A = Fq[θ] and

1A definition can be found in the paper by Kaneko and Zagier [20].
2Terminology explained, for example, in [4].
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K = Fq(θ), with θ an indeterminate over Fq, and define an absolute value | · | on
K by |a| = qdegθ a, a being in K, so that |θ| = q. Let K∞ := Fq((1/θ)) be the
completion of K for this absolute value, let Kalg.

∞ be an algebraic closure of K∞,
let C be the completion of Kalg.

∞ for the unique extension of | · | to Kalg.
∞ , and let

Kalg. be the algebraic closure of K in C.
Following Gekeler in [13], we denote by Ω the rigid analytic space C \K and

write Γ for GL2(A), group that acts on Ω by homographies. In this setting we
have three functions E, g, h : Ω → C, holomorphic in the sense of [11, Definition

2.2.1], such that, for all γ =

(
a b
c d

)
∈ Γ and z ∈ Ω:

g(γ(z)) = (cz + d)q−1g(z),

h(γ(z)) = (cz + d)q+1 det(γ)−1h(z),

E(γ(z)) = (cz + d)2 det(γ)−1

(
E(z)−

c

π̃(cz + d)

)
(4)

where γ(z) = (az + b)/(cz + d) and

π̃ := θ(−θ)
1

q−1

∞∏

i=1

(1− θ1−qi)−1 ∈ K∞((−θ)
1

q−1 ) \K∞,

a choice of a (q − 1)-th root having been made once and for all (3).
The functional equations above tell that g, h are Drinfeld modular forms, of

weights q − 1, q + 1 and types 0, 1 respectively. More precisely, the function g
is proportional to a variant of an Eisenstein series (constructed by Goss in [15]),
while h is proportional to a variant of a Poincaré series (constructed by Gekeler in
[13]).

The function E is not a Drinfeld modular form. In [13], Gekeler calls it “False
Eisenstein series” of weight 2 and type 1; it is often considered as a reasonable
substitute of the normalised (complex) Eisenstein series E2 of weight 2, although
it “vanishes at infinity” (see later), because it provides a good way to compute
quasi-periods of lattices of rank 2 (see [12]).

The C-algebra M̃ := C[E, g, h] has dimension 3. Weights and types of E, g, h

associated to the functional equations (4) determine a graduation of M̃ by the
group Z× Z/(q − 1)Z. A degree is a couple of integers (w,m) ∈ Z × Z/(q − 1)Z.
By convention, we identify the classm with its unique representative in the interval
[0, q− 1[. A polynomial f ∈ M̃ \ {0} is a Drinfeld quasi-modular form of weight w
and type m if it is homogeneous (or isobaric) of degree (w,m).

3See [27, Section 2.1], where the notation π is adopted; there is an analogy with the number
2πi.
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The algebra M̃ is also filtered by the depths. The depth l(f) of a non-zero

polynomial f ∈ M̃ is by definition its degree degE f . By convention, the zero

polynomial of M̃ is a quasi-modular form of weight w, type m and depth l for all
w,m, l. In all the following, we denote by M̃≤l

w,m the finite-dimensional C-vector
space of Drinfeld quasi-modular forms of weight w, type m and depth ≤ l; we
recall that if w 6≡ 2m (mod q − 1), then M̃≤l

w,m = (0). Obviously, if f 6= 0 is
quasi-modular, then w(f) ≥ 2l(f).

Let eCar : C → C be the Carlitz exponential function (see below, (22)) and
let us write u : Ω → C for the “parameter at infinity” of Ω, that is, the function
u(z) = 1/eCar(π̃z).

The C-algebra M̃ embeds in C[[u]] (cf. [13]). If f ∈ M̃ , then, for u = u(z)
with |u| small enough, we have a converging u-expansion

f(z) =

∞∑

i=0

ciu
i, ci ∈ C. (5)

Let us write, with f as in (5), ν∞(f) := inf{i such that ci 6= 0} with the convention
inf ∅ = ∞. If f 6= 0, then ν∞(f) <∞.

The main result of this paper is the following:

Theorem Let w, l,m be integers, with 0 ≤ m < q − 1, l > 0, let f ∈ M̃≤l
w,m be a

non-zero Drinfeld quasi-modular form. If

w ≥ 4l
(
2q(q + 2)(3 + 2q)l + 3(q2 + 1)

)3/2
, (6)

Then we have the estimate:

ν∞(f) ≤ 16q3(3 + 2q)2lw. (7)

Our Theorem does not overlap with [4, Theorem 1.4] (joint work with Bosser), a
rather precise estimate which, however, holds for Drinfeld quasi-modular forms of
depth ≤ q2 only.

Our methods imply explicit estimates for the order of vanishing of any non-
zero quasi-modular forms, but the unconditional estimates obtained so far are not
as precise as (7). With the same hypotheses on f as the Theorem, but without
assuming (6), we will also prove, in the present paper, that:

ν∞(f) ≤ 6q4(4q + 5)3(q2 + 1)l2w(12 + logq w), (8)

where logq denotes the logarithm in base q. Recently, in collaboration with Bosser,
we have obtained a better (but still not optimal) unconditional estimate whose
proof will appear in another work. In the next subsection we will explain why our
Theorem is not “far away from the truth”.
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1.1 A conjectural upper bound for ν∞

Let w,m, l be such that M̃≤l
w,m 6= (0). What is the image of the map ν∞ : M̃≤l

w,m \

{0} → Z and how big can ν∞(f) be, with f ∈ M̃≤l
w,m non-zero?

If M̃≤l
w,m 6= (0) we write

νmax
∞ (w,m, l) = max{ν∞(f) : f ∈ M̃≤l

w,m \ {0}}

and we first look at the case l = 0. In this case, we write Mw,m = M̃≤0
w,m. Let

M = ⊕w,mMw,m = C[g, h] be the graded C-algebra of Drinfeld modular forms, of
dimension 2. It is easy to show (the brackets ⌊·⌋ denote the lower integer part)
that if dimC Mw,m 6= 0,

⌊
νmax
∞ (w,m, 0)

q − 1

⌋
= dimC Mw,m − 1, (9)

so that, for all f ∈ Mw,m \ {0}, the image of ν∞ on the union ∪mMw,m \ {0} is
equal to the interval [0, . . . , ⌊ w

q+1
⌋] and

ν∞(f) ≤
w

q + 1
, (10)

which also is the best possible bound linear in w (4).

Different phenomena arise in the vector spaces M̃≤l
w,m for l > 0. In this case, it

is unclear how to extend (9) and compute the image of ν∞.

An example and a conjecture. The dimension of M̃≤l
w,m can be computed inductively

with the formulas of [14, p. 33]; one deduces that for l, m fixed,

lim
w→∞

dimC M̃
≤l
w,m

w − l
=

l + 1

q2 − 1
, (11)

the limit being taken over the w’s such that w ≡ 2m (mod q − 1). For example,

if q = 2, one gets the explicit formula dimC M̃
≤1
w,0 = ⌊2w

3
⌋ for all w.

We consider more carefully the case of depth ≤ 1. In [4] (see also Section
6 of the present paper) we have constructed a family of Drinfeld quasi-modular

forms (xk)k≥0 with xk ∈ M̃≤1
qk+1,1

\ M extremal in the sense that it attains, in
the indicated vector space, the biggest possible order of vanishing at infinity; we
have also proved that ν∞(xk) = qk for all k. From this construction, one can in

4Riemann-Roch’s Theorem over the rigid analytic curve compactification of Γ\Ω also implies
(10), see [13, (5.14)].
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fact furnish a normalised extremal quasi-modular form fw,m,1 in every non-trivial

vector space M̃≤1
w,m (5). If for example q = 5, m = 1, the sequence (f4n+2,1,1)n≥0 is:

−x0,−
x1
[1]
,−g

x1
[1]
, . . . ,−g4

x1
[1]︸ ︷︷ ︸

5 terms

,−
x2

[1][2]
,−g

x2
[1][2]

, . . . ,−g24
x2

[1][2]︸ ︷︷ ︸
25 terms

. . . ,

where [i] := θq
i

− θ (if w is not of the form 4n + 2, the space M̃≤1
w,1 is trivial).

For general q and m it can be proved, by using the forms xk’s, that the sequences
(f(q−1)n+2m,m,1)n≥0 involve quasi-modular forms which are monomials λgahbxk (λ ∈
C×, a, b, k ≥ 0; see Section 6 for details on the normalisations). An accurate study
of these forms (that we skip here), implies that for all q,m:

0 < lim inf
w→∞

dimC M̃
≤1
w,m

νmax
∞ (w,m, 1)

< lim sup
w→∞

dimC M̃
≤1
w,m

νmax
∞ (w,m, 1)

<∞,

the limits being taken in sequences with w such that dimC M̃
≤1
w,m 6= 0. This means

that there is no close analog of (1) and Kaneko and Koike’s hypothesis in the
Drinfeldian framework.

The infimum limit precisely occurs in the sequence of spaces M̃≤1
qk+1,1

, for

k ≥ 0. Induction on k ≥ 0 starting with the equality dimC M̃
≤1
2,1 = 1 yields

the computation of the dimensions: if q = 2 a formula quoted above yields

dimC M̃
≤1
2k+1,1

= ⌊2(2k+1)
3

⌋ and if q 6= 2 we get

dimC M̃
≤1
qk+1+1,1

= q dimC M̃
≤1
qk+1,1

+ rk,

where r2s = −q + 2 and r2s+1 = −2q + 3. Hence, for all q,

lim
k→∞

dimC M̃
≤1
qk+1,1

νmax
∞ (qk + 1, 1, 1)

=
2

q2 − 1
.

Combining with (11) we find that for all w big enough with M̃≤1
w,m 6= (0) and

f ∈ M̃≤1
w,m \ {0}, ν∞(f) ≤ w − 1 (that is, ≤ l(w − l) with l = 1).

These arguments have been extended with the help of several experiments to
some higher depths and seem to justify the following (cf. [4]):

Conjecture Let q and l > 0 be fixed. For all m, for all w big enough such that
M̃≤l

w,m 6= (0), and for all f ∈ M̃≤l
w,m \ {0},

ν∞(f) ≤ l(w − l). (12)

5A formal series
∑

i≥i0
ciu

i ∈ L[[u]] (L being a field) with ci0 6= 0 is normalised if its leading
coefficient ci0 is one.
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This upper bound cannot be improved, as the choice of f varying in the family
(xk) indicates (for k ≥ 0), with the xk’s the functions introduced in [4]. Other
evidences of the truth of this conjecture appear in this paper, notably in relation
with reduced forms as defined in Section 5.3 (see Remark 27).

1.2 Methods of proof

Inequality (3) is a very simple multiplicity estimate. Multiplicity estimates are
important tools in transcendence and algebraic independence techniques. A much
deeper result was obtained by Nesterenko [24, Chapter 10, Theorem 1.3], and was
the key tool in his theorem on the algebraic independence of values of normalised
Eisenstein series and the function e2πiz. The theory of multiplicity estimates in
differential polynomial algebras gave general results when the base field is alge-
braically closed of zero characteristic; see for example [5, 6, 23].

A sketch of proof of inequality (3) is given in the introduction of [4]. If
f ∈ C[E2, E4, E6] is a non-zero (classical) quasi-modular form (6), Ramanujan’s
differential system implies that (d/dz)f is again a non-zero quasi-modular form.
The bound follows easily remarking that if f and (d/dz)f are coprime, then the
resultant

ResE2(f, (d/dz)f) (13)

of the polynomials f, (d/dz)f ∈ C[E2, E4, E6] with respect to E2 is a non-zero
modular form whose weight is controlled by elementary considerations and whose
order of vanishing at infinity is controlled by the well known suitable analog of
(10).

If f and (d/dz)f are not coprime, one combines the resultant argument with
a variant of the separation property of Brownawell and Masser [5, Lemma, p. 212]
which holds in this case thanks to existence of the parabolic form ∆ = e2πiz + · · ·
of weight 12, non-vanishing on the upper-half plane (see Nesterenko’s Lemma 5.2
of [24, Chapter 10]).

Reasonable analogues in positive characteristic of differential algebras are the
so-called iterative differential, or hyperdifferential algebras (cf. [22]); very little
is known on multiplicity estimates in this framework; something which is really
missing in this context is a suitable variant of the separation property.

In a joint paper with Bosser, we proved [3, Theorem 2] that the algebra M̃ is
hyperdifferential, endowed with a hyperdifferential structure D, that is, a collection
of C-linear operators D = (Dn)n≥0 satisfying certain properties among which

Leibniz’s formula. For this hyperdifferential algebra (M̃,D), there is not a suitable
separation property analog (see [4]).

6The E2i’s denote normalisations of classical Eisenstein series of weights 2i.
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To overcome the above-mentioned difficulties and to prove our Theorem, the
main idea of this paper is to work with certain deformations of Drinfeld quasi-
modular forms, that we call almost A-quasi-modular forms (7), introduced in
this paper with an underlying connection to Anderson’s t-motives, also called
A-motives.

In Section 2 we review and develop tools which have essentially been introduced
by Anderson in [1], concerning rigid analytic trivialisations of A-motives associated
to rank 2 Drinfeld A-modules. We use the exposition in [27] as a basis to build
the necessary background to proceed further.

While spaces of Drinfeld quasi-modular forms embed in C[[u]] and are spanned
by forms with coefficients in Fq[θ], the spaces of almost A-quasi-modular forms we
are interested in embed in C[[t, u]], with t a new indeterminate and are spanned
by forms with coefficients in Fq[t, θ] (

8). When it makes sense, replacing t by θ
in an almost A-quasi-modular form gives a Drinfeld quasi-modular form (care is
required to check convergence of our series).

In particular, we will construct a particular almost A-quasi-modular form E ∈
Fq[t, θ][[u]] such that, replacing t by θ, it specialises to the quasi-modular form E.
This and several crucial properties of E will be described in Section 3.

The Fq-linear Frobenius map F : C[[t, u]] → C[[t, u]] (defined by F (x) = xq for
all x ∈ C[[t, u]]) splits as

F = τχ = χτ,

where τ is Anderson’s Fq[[t]]-linear map defined by

τ
∑

m,n≥0

cm,nt
mun :=

∑

m,n≥0

cqm,nt
muqn

the cm,n’s being in C, and χ is Mahler’s C[[x]]-linear map, defined by

χ
∑

m,n≥0

cm,nt
mun :=

∑

m,n≥0

cm,nt
qmun,

with analogous cm,n’s.

The C[[t]]-algebra of almost A-quasi-modular forms embeds in C[[t, u]] but is
not stable under the action of τ and χ. At least, it contains “large” sub-algebras
which are stable under the action of τ . Thanks to the results of Section 3, we will
construct, in Section 4, one of them; a four dimensional sub-algebra M† of almost
A-quasi-modular forms which is at once:

7The reader might find this terminology rather heavy. It has been chosen because in forth-
coming works, we will also need to deal with A-quasi-modular forms and A-modular forms.

8These forms do not seem to have a counterpart in the classical framework yet.
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– Graded by the group Z2 × Z/(q − 1)Z (a degree will be a triple (µ, ν,m), with
(µ, ν) the weight, m the type).

– Stable under the action of τ , in a way which is compatible with the graduation.

– Endowed with a set of generators contained in Fq[t, θ][[u]], whose coefficients cn
of their u-expansions have the property that the degrees in t grow “slowly”
as n increases, unlike the degrees in θ.

The Theorem will be proved in Section 5 by using the properties above, avoiding
resultants such as (13), in two steps. The first step is made by a multiplicity
estimate in M† itself (Proposition 24), with the use of resultants like

ResE(f , τf ), (14)

with f ∈ M†, which essentially land in C[[t]][g, h], after rescaling by a well con-
trolled A-quasi-modular form. The required variant of Brownawell and Masser’s
separation property is easy to obtain, and the use of the grading by Z2×Z/(q−1)Z
is essential at this stage.

The second step will use transcendental techniques (9). With a variant of
Siegel’s lemma we construct a collection of non-trivial auxiliary forms fµ,ν,m ∈ M†

of weight (µ, ν) and type m with certain technical conditions on µ, ν ∈ Z and
m ∈ Z/(q − 1)Z. These forms vanish with high order at infinity, but we can
bound from above this order by Proposition 24. Let f be a non-modular Drinfeld
quasi-modular form. The proof of our Theorem ends with the study of a second
resultant which lands in Drinfeld modular forms:

ResE(f, ε(τ
kfµ,ν,m)),

making good choice of the parameters µ, ν,m. Here, we also need to choose k
not too big; this choice will be made possible by the crucial property highlighted
above, that the u-expansions of the generators of M† have their coefficients whose
degrees in t grow slowly as the index increases.

The paper ends with Sections 6 and 7, which are independent. In Section 6
we describe a link to extremal quasi-modular forms as defined in [4]. To motivate
Section 7, we point out that after having discovered the benefits of the graduation
by Z2×Z/(q−1)Z ofM†, we have, for a while, searched for similar structures above
classical quasi-modular forms. We believe that this theme should be investigated
in the sequel. The reader might be interested in the collection of fragments of
result we know in this domain, appearing there.

9This explains the presence of the logq factor in (8) and the condition (6).
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2 Anderson’s functions

In this section we recall some tools introduced in [13, Section 2], [1, 2] and described
in [27, Section 2 and Section 4.2].

As A-lattice of rank r > 0 we mean a free sub-A-module of C of rank r, discrete
in the sense that, given a compact subset of C, only finitely many elements of it
lie in. Let Λ ⊂ C be an A-lattice of rank r and let us consider, for ζ ∈ C, the
exponential function associated to Λ, defined by the product:

eΛ(ζ) := ζ
∏

ω∈Λ\{0}

(
1−

ζ

ω

)
, (15)

which converges for all ζ ∈ C. For λ ∈ C×, the product expansion (15) implies:

eλΛ(ζ) = λeΛ(λ
−1ζ). (16)

There exist elements 1 = α0(Λ), α1(Λ), α2(Λ), . . . ∈ C, depending on Λ only, such
that:

eΛ(ζ) =
∑

n≥0

αn(Λ)ζ
qn, (17)

the series having infinite radius of convergence (cf. [13, 16]).
The construction of the exponential function by (15) is the main tool to prove

that the category whose objects are homothecy classes of A-lattices of rank r and
morphisms are inclusions, is dually equivalent to the category whose objects are
isomorphism classes of Drinfeld A-modules of rank r and morphisms are isogenies
(see [13, Section (2.6)] or [27, Section 2]). For Λ as above, there is a Drinfeld
A-module φΛ such that

φΛ(a)eΛ(ζ) = eΛ(aζ) (18)

(for all ζ ∈ C and a ∈ A), which is uniquely determined by its value φΛ(θ) ∈
EndFq−lin.(Ga(C)) in θ. This value is a polynomial of degree r in τ , which we
recall, is the Frobenius endomorphism τ : c 7→ cq. On the other side, to any
Drinfeld A-module φ of rank r, a lattice Λφ of rank r can be associated, so that
the functors Λ 7→ φΛ and φ 7→ Λφ are inverse of each other up to isomorphisms.

Let t be a new indeterminate. With Λ an A-lattice of rank r > 0 and eΛ as
in (15), let us consider ω ∈ Λ \ {0} and introduce, following Anderson in [1], the
formal series:

sΛ,ω(t) :=
∞∑

i=0

eΛ

( ω

θi+1

)
ti.

For a positive real number r, we denote by T<r the sub-C-algebra of C[[t]] whose
elements are formal series

∑
i≥0 cit

i that converge for any t ∈ C with |t| < r. We

10



denote by T>0 the sub-C-algebra of C[[t]] whose series converge in some open disk
containing 0, and we notice that all the series of T<qq converge at t = θ. We also
denote by T∞ the sub-C-algebra of series that converge everywhere in C.

If r1 > r2 > 0, we have

T>0 ⊃ T<r2 ⊃ T<r1 ⊃ T∞.

The Tate algebra of formal series of C[[t]] converging for all t such that |t| ≤ 1 will
be also denoted by T; it is contained in T<1 and contains T<1+ǫ for all ǫ > 0.

It is easy to verify that, with Λ and ω ∈ Λ as above, sΛ,ω ∈ T<q ⊂ T. If
Λ ⊂ Kalg.

∞ , it can be proved that sΛ,ω(t) ∈ Kalg.
∞ [[t]].

We extend the operator τ from C to C[[t]] as follows:

f =
∑

n≥0

cnt
n 7→ τf :=

∑

n≥0

cqnt
n.

We will also write f (k) for τkf , k ∈ Z (the operator τ−1 is well defined). One
checks that τ sends T<r in T<rq . The extension τ so constructed defines Fq-
automorphisms of T>0,T and T∞.

We write A = Fq[t], K = Fq(t). If a = a(θ) ∈ A we also write a = a(t) ∈ A. If
Λ is an A-lattice of rank r and if φΛ is the Drinfeld A-module of rank r in (18),
then, for all a1, a2 ∈ A and ω1, ω2 ∈ Λ,

φΛ(a1)sΛ,ω1 + φΛ(a2)sΛ,ω2 = sΛ,a1ω1+a2ω2 = a1sΛ,ω1 + a2sΛ,ω2. (19)

These identities, which hold in T, are proved in [27, Section 4.2.2].
From (16) it immediately follows that, for λ ∈ C×,

sλΛ,λω(t) = λsΛ,ω(t). (20)

We also have the series expansion (cf. [27, Section 4.2.2])

sΛ,ω(t) =

∞∑

n=0

αn(Λ)ω
qn

θqn − t
, (21)

uniformly convergent in every compact subset of C \ {θ, θq, . . .}, and sΛ,ω(t) −
ω/(θ − t) extends to a rigid holomorphic function for |t| < qq. We will then often
say that sΛ,ω has a simple pole of residue −ω in t = θ. Notice that other poles
occur at t = θq, θq

2
, . . ., but we will never need to focus on them in this paper.

Example: rank one case. For Λ = π̃A (rank 1), the exponential function (17) is:

eCar(ζ) =
∑

n>0

ζq
n

dn
, (22)
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where d0 := 1 and di := [i][i − 1]q · · · [1]q
i−1

, recalling that [i] = θq
i

− θ if i > 0.
The relations (18) become, for all a ∈ A,

φCar(a)eCar(ζ) = eCar(aζ),

where φCar is Carlitz’s module defined by

φCar(θ) = θτ 0 + τ ∈ EndFq-lin.(Ga)

(see Section 4 of [13]).
We will write sCar = sπ̃A,π̃. The function sCar has a simple pole in θ with

residue −π̃.
By (19) (cf. [27, Section 4.2.5]), the following τ -difference equation holds:

s
(1)
Car(t) = (t− θ)sCar. (23)

After [11, Theorem 2.2.9], T is a principal ideal domain. This property can
be used to verify that the subfield of constants Lτ := {l ∈ L, τ l = l}, where L is
the fraction field of T, is equal to K := Fq(t) (see also [25, Lemma 3.3.2]). We
deduce, just as in the proof of [25, Lemma 3.3.5], that the τ -difference equation
f (1) = (t − θ)f has, as a complete set of solutions in L, the Fq(t)-vector space
Fq(t)sCar. In fact, for all a = a(θ) ∈ A, we have sπ̃A,aπ̃ = asCar.

Comparing with (22) we also point out, for further references in this paper,
that (21) becomes in this case:

sCar(t) =

∞∑

n=0

π̃qn

dn(θq
n − t)

, |t| < q. (24)

2.1 Anderson’s functions for elliptic Drinfeld modules

We recall and deepen some tools described in [27, Section 4.2.5] (see also [8, 25]).
Let z be in Ω, and consider the A-lattice Λ = Λz = A + zA of rank 2, with
associated exponential function ez = eΛ. Let us consider the Drinfeld module φz

defined by
φz : θ 7→ φz(θ) = θτ 0 + g̃(z)τ 1 + ∆̃(z)τ 2, (25)

where g̃(z) = π̃q−1g(z), ∆̃(z) = π̃q2−1∆(z), with ∆ = −hq−1. Then,

φz(a)ez(ζ) = ez(aζ) (26)

for all a ∈ A and ζ ∈ C ([13, Section 5], [27, Section 4.2.5], see also [25]).
We can write, for ζ ∈ C,

ez(ζ) =
∞∑

i=0

αi(z)ζ
qi, (27)
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for functions αi : Ω → C with α0 = 1. By (26) we deduce, with the initial values
α0 = 1, α−1 = 0, the recursive relations

αi =
1

[i]
(g̃αq

i−1 + ∆̃αq2

i−2), i > 0. (28)

This implies that the function αi(z) is a modular form of weight qi − 1 and type
0 for all i ≥ 0. There exist elements ci,m ∈ C such that

αi(z) =
∑

m≥0

ci,mu
m, i ≥ 0, (29)

with convergence for z ∈ Ω such that |u| is small enough. The following lemma
tells that a non-zero disk of convergence can be chosen independently on i.

Lemma 1 We have

ci,0 =
1

di
π̃qi−1, i ≥ 0, (30)

and
|ci,m| ≤ q−qiBm, (i,m ≥ 0). (31)

Proof. Let us write g̃ =
∑

i≥0 γ̃iu
i and ∆̃ =

∑
i≥0 δ̃iu

i with γ̃i, δ̃i ∈ C. The
recursive relations (28) imply, for i > 1, m ≥ 0 and j, k non-negative integers:

ci,m =
1

[i]


 ∑

j+qk=m

γ̃jc
q
i−1,k +

∑

j+q2k=m

δ̃jc
q2

i−2,k


 ,

from which we deduce at once (30) because γ̃0 = π̃q−1 and δ̃0 = 0.
We now need to provide upper bounds for the |ci,m|’s, with explicit dependence

on i,m.
Looking at [13, Definition (5.7), (iii)], there exists B ≥ q such that, for all

i ≥ 0, max{|γ̃i|, |δ̃i|} ≤ Bi. We know that α0 = 1 and that |c1,m| ≤ q−qBm. Now,

After induction and the equality |[i]| = qq
i

(i > 0), we deduce (31) from these
identities.

In all the following, we shall write:

s1(z, t) = sΛz ,z(t), s2(z, t) = sΛz ,1(t).

These are functions Ω× Bq → C, where, for r > 0, Br is the set {t ∈ C, |t| < r}.
In fact the definition of the functions sΛ,ω tells that s1, s2 ∈ Hol(Ω)[[t]], where

Hol(Ω) denotes the C-algebra of rigid holomorphic functions Ω → C. After (27)
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and (21) we see that, for any couple (z, t) ∈ Ω×Bq, the following convergent series
expansions hold:

s1(z, t) =

∞∑

i=0

αi(z)z
qi

θqi − t

s2(z, t) =

∞∑

i=0

αi(z)

θqi − t
.

Our notations stress the dependence on two variables z ∈ Ω, t ∈ Bq. For these
functions, we will also write, occasionally, s1(z), s2(z), to stress the dependence
on z ∈ Ω. We can also fix z ∈ Ω and study the functions s1(z, ·), s2(z, ·), or look
at the functions s1(·, t), s2(·, t) : Ω → T<q with formal series as values. In the next
section, we provide the necessary analysis of the functions s1(z, ·), s2(z, ·). Hence,
we fix now z ∈ Ω.

2.1.1 The si’s as functions of the variable t, with z fixed.

At θ, the functions si(z, ·) have simple poles. Their respective residues are, ac-
cording to Section 2, −z for the function s1(z, ·) and −1 for s2(z, ·). Moreover,

we have s
(1)
1 (z, θ) = η1 and s

(1)
2 (z, θ) = η2, where η1, η2 are the quasi-periods of Λz

(see [27, Section 4.2.4] and [12, Section 7]).
Let us consider the matrix function:

Ψ̂(z, t) :=

(
s1(z, t) s2(z, t)

s
(1)
1 (z, t) s

(1)
2 (z, t)

)
.

By [27, Section 4.2.3] (see in particular equation (15)), we have:

Ψ̂(z, t)(1) = Θ̃(z) · Ψ̂(z, t), where Θ̃(z) =

(
0 1
t−θ

∆̃(z)
− g̃(z)

∆̃(z)

)
, (32)

yielding the following τ -difference linear equation of order 2:

s
(2)
2 =

t− θ

∆̃
s2 −

g̃

∆̃
s
(1)
2 . (33)

Remark 2 By [1], there is a fully faithful contravariant functor from the category
of Drinfeld A-modules overKalg. to the category of Anderson’s A-motives overKalg..
Part of this association is sketched in [27, Section 4.2.2], where the definition of
A-motive is given and discussed (see also [8]); it is based precisely on Anderson’s

functions sΛ,ω. In the language introduced by Anderson, Ψ̂ is a rigid analytic
trivialisation of the A-motive associated to the Drinfeld module φ = φΛ.

14



We will also use the following fundamental lemma, whose proof depends on
Gekeler’s paper [12].

Lemma 3 (“Deformation of Legendre’s identity”) We have, for all z ∈ Ω
and t ∈ T<q:

det(Ψ̂) = π̃−1−qh(z)−1sCar(t). (34)

Proof. Let f(z, t) be the function det(Ψ̂(z, t))h(z)π̃1+q, for z ∈ Ω and t ∈ Bq. We
have:

f (1)(z, t) = −(t− θ)∆̃(z)−1 det(Ψ̂(z, t))h(z)qπ̃q+q2 = (t− θ)f(z, t).

For fixed z ∈ Ω, we know that s
(k)
i (z, ·) ∈ T<qqk ⊂ T for all k ≥ 0. Hence,

f(z, ·) ∈ T for all z ∈ Ω. By arguments used in the remark on the K-vector space
structure of the set of solutions of (23), f(z, t) is equal to λ(z, t)sCar(t), for some
λ(z, t) ∈ A; the matter is now to compute λ, which does not depend on z ∈ Ω
as follows easily by fixing t = t0 ∈ Bq transcendental over Fq and observing that
f(z, t0) is holomorphic over Ω with values in a discrete set.

Now, for z fixed as t→ θ,

lim
t→θ

Ψ̂(z, t)−

(
− z

t−θ
− 1

t−θ

η1 η2

)
=

(
∗ ∗
0 0

)
,

η1, η2 being the quasi-periods (periods of second kind) of the lattice Aω1+Aω2 (re-
spectively associated to ω1 and ω2) [12, Section 7, Equations (7.1)], with generators
ω1 = z, ω2 = 1, where the asterisks denote continuous functions of the variable
z. Hence, we have limt→θ(t − θ) det(Ψ̂(z, t)) = −zη2 + η1. By [12, Theorem 6.2],
−zη2 + η1 = −π̃−qh(z)−1.

At once:

−π̃−qh(z)−1 =

= lim
t→θ

(t− θ) det(Ψ̂(z, t))

= λ(θ)π̃−q−1h(z)−1 lim
t→θ

(t− θ)sCar(t)

= −λ(θ)π̃−qh(z)−1,

which implies that λ = λ(θ) = 1 (θ is transcendental over Fq). Our Lemma follows.

In the next section, we study the functions s1, s2 as functions Ω → T<q.
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2.1.2 The si’s as functions Ω → T<q.

We observe, by the definitions of s1, s2, and by the fact, remarked in (28), that αi

is a modular form of weight qi − 1 and type 0 for all i, and by (19), that for all

γ =

(
a b
c d

)
∈ Γ:

s2(γ(z), t) =
∞∑

i=0

(cz + d)q
i−1 αi(z)

θqi − t

= (cz + d)−1sΛz ,cz+d(z)

= (cz + d)−1(cs1(z, t) + ds2(z, t)).

Similarly,

s1(γ(z), t) =

∞∑

i=0

(cz + d)q
i−1αi(z)(γ(z))

qi

θqi − t

= (cz + d)−1sΛz ,az+b(z)

= (cz + d)−1(as1(z, t) + bs2(z, t)).

Let us write

Σ(z, t) :=

(
s1(z, t)

s2(z, t)

)
.

We have proved:

Lemma 4 For all γ =

(
a b
c d

)
∈ Γ, and for all z ∈ Ω, we have the following

identity of series in T<q:

Σ(γ(z), t) = (cz + d)−1γ · Σ(z, t), (35)

where γ is the matrix

(
a b

c d

)
∈ Γ.

2.1.3 Behaviour of s2 at the infinity cusp and u-expansion

We use the results of the previous subsections to see how the function s2 behaves
for z approaching the cusp at infinity of the rigid analytic space Γ\Ω. Here we
will prove two lemmas.

Lemma 5 There exists a real number r > 0 such that for all (z, t) ∈ Ω× C with
|u| = |u(z)| < r, |t| < r, we have:

s2(z, t) = π̃−1sCar(t) +
∑

m≥1

κm(t)u
m, (36)
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where for m ≥ 1,

κm(t) =
∑

i≥1

ci,m
θqi − t

=
∑

j≥0

tj
∑

i≥1

ci,mθ
−qi(1+j) ∈ T<qq ,

the ci,m’s being the coefficients in the expansions (29).

Proof. For z ∈ Ω such that |u| < B−1 with B as in (31), and for |t| < q, (21)
yields:

s2(z, t) =
1

θ − t
+
∑

i≥1

αi(z)

θqi − t

=
1

θ − t
+
∑

i≥1

∑

m≥0

ci,mu
m 1

θqi − t

=
1

θ − t
+
∑

i≥1

ci,0
1

θqi − t
+
∑

m≥1

um
∑

i≥1

ci,m
θqi − t

= π̃−1
∑

i≥0

π̃qi

di

1

θqi − t
+
∑

m≥1

κm(t)u
m

= π̃−1sCar(t) +
∑

m≥1

κm(t)u
m,

where, in the second equality we have substituted the u-expansions of the αi’s in
our formulas, in the third we have separately considered constant terms, in the
fourth equality, we have used (30), in the fifth we have recognised the shape of
sCar (24), and we have noticed, by using (31), that for all t ∈ C such that |t| ≤ q,
|κm(t)| ≤ Bmq−1.

Later, we will need to do some arithmetic with the u-expansion (36). To this
purpose, it is advantageous to set:

d(z, t) := π̃sCar(t)
−1s2(z, t),

function for which (33) becomes:

d = (t− θq)∆d(2) + gd(1). (37)

We will need part of the following lemma.
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Lemma 6 We have

d =
∑

i≥0

ci(t)u
(q−1)i ∈ 1 + uq−1Fq[t, θ][[u

q−1]]. (38)

More precisely,

d = 1 + (θ − t)uq(q−1) + (θ − t)u(q
2−q+1)(q−1) + · · · ∈ 1 + (t− θ)uq−1Fq[t, θ][[u

q−1]],

where the dots · · · stand for terms of higher order in u.

Let i be a positive integer, let ki be the unique integer such that q2ki ≤ i < q4ki.
Then,

−∞ ≤ degt ci ≤ ki ≤ logq2 i,

where logq2 is the logarithm in base q2, with the convention degt 0 = −∞.

Proof. For simplicity, we write v = uq−1. It is clear, looking at Lemma 5, that d
is a series in T<qq [[v]]. We have the series expansions (cf. [13, Section 10]):

g = 1− [1]v + · · · =
∞∑

n=0

γnv
n ∈ A[[v]],

∆ = −v(1− vq−1 + · · · ) =
∞∑

n=0

δnv
n ∈ uA[[v]],

We deduce, from (37), that

cm = (t− θq)
∑

i+q2j=m

δic
(2)
j +

∑

i+qj=m

γic
(1)
j , (39)

which yields inductively that ci belongs to Fq[t, θ], because the coefficients of the
u-expansions of ∆ and g are A-integral. The statement on the degrees of the
coefficients of the ci’s, is also a simple inductive consequence of (39) and the

following two facts: that degt δi, degt γi ≤ 0, and that degt c
(k)
i = degt ci for all i, k

(t is τ -invariant).

The explicit formula for the coefficients ci with i ≤ q2−q+1 is an exercice that
we leave to the reader, which needs [13, Corollaries (10.3), (10.11)]. The explicit
computation can be pushed easily to coefficients of higher order, but we skip it
as we will not need these explicit formulas at all in this paper. The fact that the
coefficients ci belong to the ideal generated by t − θ for i ≥ 1 follows from the
computation of the residues in 2.1.1.
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3 The function E

The function of the title is defined, for z ∈ Ω and t ∈ Bq, by:

E(z, t) = −h(z)d(1)(z, t) = −(t− θ)−1π̃qh(z)s−1
Car(t)s

(1)
2 (z, t),

with d the function of Lemma 6. This section is entirely devoted to the description
of its main properties. Three Propositions will be proved here.

In Proposition 7 we use the arguments of 2.1.1 to show that, just as d, E satis-
fies a linear τ -difference equation of order 2 with coefficients isobaric in C[[t]][g, h]
(10).

In Proposition 8, where we use this time the arguments developed in 2.1.2,
we analyse the functional equations relating the values of E at z and γ(z), where

γ =

(
a b
c d

)
∈ Γ; they involve the factors of automorphy:

Jγ(z) = cz + d, Jγ(z) = c
s1(z, t)

s2(z, t)
+ d,

with values convergent in C[[t]].
Proposition 9 follows from what we did in 2.1.3 and describes the third im-

portant feature of the function E; the existence of a u-expansion in Fq[t, θ][[u]].
For Drinfeld quasi-modular forms, the degree in θ of the n-th coefficient of the u-
expansion grows pretty rapidly with n in contrast of the classical framework. The
function E does not make exception to this principle. However, the degree in t of
the n-th coefficient grows slowly, and this property is used crucially in the proof
of the multiplicity estimate. Another important property studied in this section is
that E(z, θ) is a well defined function Ω → C and is equal to Gekeler’s function
E.

3.1 linear τ-difference equations

Proposition 7 For all z ∈ Ω, the function E(z, ·) can be developed as a series of
T<qq . Moreover, The following linear τ -difference equation holds in T<qq , for all
z ∈ Ω:

E(2) =
1

t− θq2
(∆E + gqE(1)). (40)

Proof. After having chosen a (q−1)-th root of −θ, let us write, following Anderson,
Brownawell, and Papanikolas in [2, Section 3.1.2],

Ω(t) := (−θ)
−q
q−1

∞∏

n=1

(
1−

t

θqn

)
∈ (T∞ ∩K∞((−θ)

1
q−1 )[[t]]) \K∞(t)alg.

10This phenomenon holds with more generality and should be compared with a result of Stiller
in [28].
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It is plain that

Ω(−1)(t) = (t− θ)Ω(t).

Thanks to the remark on the K-vector space structure of the set of solutions of
(23) and after the computation of the constant of proportionality, we get

sCar(t) =
1

Ω(−1)(t)
. (41)

At once, we obtain that the function sCar has no zeros in the domain C \{θ, θq, . . .}
from which it follows that ((t− θ)sCar)

−1 ∈ T<qq . Moreover, for all z ∈ Ω, we have

s2 ∈ T<q so that s
(1)
2 ∈ T<qq . Multiplying the factors that define the function E,

we then get, for all z ∈ Ω, that E(z, ·) ∈ T<qq , which gives the first part of the
proposition (and in fact, it can be proved that d,E(z, ·) ∈ T∞ for all z ∈ Ω, but
we skip on this property since it will not be needed in the present paper).

In order to prove the second part of the proposition, we remark, from (37) (or
what is the same, (33)), that

s
(3)
2 =

t− θq

∆̃q
s
(1)
2 −

g̃q

∆̃q
s
(2)
2 , or equivalently, d(3) =

1

(t− θq2)∆q
(d(1) − gqd(2)).

By the definition of E and the τ -difference equation (23) we find the relation:

E(k) = −(t− θq
k

)−1(t− θq
k−1

)−1 · · · (t− θ)−1π̃qk+1

hq
k

s−1
Cars

(k+1)
2 ,

= −hq
k

d(k+1) (42)

for k ≥ 0. Substituting the above expression for d(3) in it, we get what we expected.

3.2 Factors of automorphy, modularity

In the next proposition, the function E is viewed as a function Ω → T<qq (it can
be proved that it defines, in fact, a function Ω → T∞). In order to state the
proposition, we first need a preliminary discussion.

If ω 6∈ θΛ, eΛ(ω/θ) 6= 0 and sΛ,ω(t) ∈ T×
>0 (group of units of T>0), so that, for

every z fixed, s2(z, ·)
−1 ∈ T×

>0 (11). Hence, we have a well defined map

ξ : Ω → T×
>0

z 7→ s1(z,t)
s2(z,t)

,

11The radius of convergence, in principle depending on z, seems difficult to compute.
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and we can consider the map

(γ, z) =

((
a b
c d

)
, z

)
∈ Γ× Ω 7→ Jγ(z) := cξ + d ∈ T>0.

Since c, d are relatively prime, we have cz + d 6∈ θΛz implying that cs1 + ds2 =
sΛz ,cz+d ∈ T×

>0. Therefore, for all γ ∈ Γ and z ∈ Ω, Jγ ∈ T×
>0.

Moreover, by (35) we have, for all γ ∈ Γ and z ∈ Ω,

ξ(γ(z)) = γ(ξ(z)) ∈ C((t)), (43)

so that, for γ, δ ∈ Γ and z ∈ Ω,

Jγδ(z) = Jγ(δ(z))J δ(z). (44)

the map J : Γ×Ω → T×
>0 is our “new” factor of automorphy, to be considered

together with the more familiar factor of automorphy

Jγ(z) := cz + d.

Let us also write, for γ =

(
a b
c d

)
∈ Γ:

Lγ(z) =
c

cz + d
,

Lγ(z) =
c

cs1 + ds2
.

We remark that for all γ ∈ Γ, Lγ(z) belongs to T>0 because s2Jγ(z) ∈ T×
>0. More-

over, the functions Jγ and (θ− t)−1Lγ are deformations of Jγ and Lγ respectively,
for all γ ∈ Γ. Indeed, we recall that (t− θ)s2(z, t) → −1 and (t− θ)s1(z, t) → −z
as t→ θ. Hence, limt→θ

s1
s2

= z. This implies that

lim
t→θ

Jγ(z) = Jγ(z). (45)

In a similar way we see that

lim
t→θ

(t− θ)−1Lγ(z) = −Lγ(z). (46)

We further define the sequence of functions (g⋆k)k≥0 by:

g⋆−1 = 0, g⋆0 = 1, g⋆1 = g, g⋆k = (t− θq
k−1

)g⋆k−2∆
qk−2

+ g⋆k−1g
qk−1

, k ≥ 2,

so that for all k ≥ 0, we have the identity g⋆k(z, θ) = gk(z), the function introduced
in [13, Equation (6.8)].

We have:
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Proposition 8 For all z ∈ Ω, γ ∈ Γ and k ≥ 0 the following identity of formal
series of T>0 holds:

E(k)(γ(z), t) = det(γ)−1Jγ(z)
qkJγ(z)× (47)(

E(k)(z, t) +
g⋆k(z)

π̃(t− θ)(t− θq) · · · (t− θqk)
Lγ(z)

)
.

From the deformation of Legendre’s identity (34) we deduce that

s
(1)
1 =

1

s2
(s1s

(1)
2 − π̃−1−qh−1sCar). (48)

Let γ =

(
a b
c d

)
∈ Γ. Applying τ on both left and right hand sides of

s2(γ(z)) = J−1
γ Jγs2(z) = J−1

γ (cs1(z) + ds2(z)), (49)

consequence of Lemma 4, we see that

s
(1)
2 (γ(z)) = J−q

γ (cs
(1)
1 + ds

(1)
2 ).

We now eliminate s
(1)
1 from this identity and (48), getting identities in T>0:

cs
(1)
1 + ds

(1)
2 =

=
c

s2
(s1s

(1)
2 − π̃−1−qh(z)−1sCar(t)) + ds

(1)
2

= s
(1)
2

(
c
s1

s2
+ d

)
− π̃−1−qh(z)−1sCar(t)s

−1
2

=

(
c
s1

s2
+ d

)(
s
(1)
2 − π̃−1−qh(z)−1sCar(t)

c

cs1 + ds2

)
,

that is,

s
(1)
2 (γ(z)) = J−q

γ Jγ

(
s
(1)
2 (z)−

π̃−1−qsCar(t)

h(z)
Lγ

)
. (50)

This functional equation is equivalent to the following functional equation for d(1)

(in T>0):

d(1)(γ(z)) = J−q
γ Jγ

(
d(1)(z)−

1

π̃(t− θ)h(z)
Lγ

)
. (51)

This already implies, by the definition of E and the modularity of h:

E(γ(z)) = det(γ)−1JγJγ

(
E(z) +

1

π̃(t− θ)
Lγ

)
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which is our proposition for k = 0.
We point out that (35) implies the functional equation, for all γ ∈ Γ:

d(γ(z)) = J−1
γ Jγd(z). (52)

The joint application of (52), (49), (51) and (32) and induction on k imply, for all
k ≥ 0 and γ ∈ Γ, the functional equation in T>0:

d(k)(γ(z)) = J−qk

γ Jγ

(
d(k)(z)−

g⋆k−1

π̃h(z)qk−1(t− θ)(t− θq) · · · (t− θqk−1)
Lγ

)
, (53)

where we have also used the functional equation (23). By (42), we end the proof
of the proposition.

3.3 u-expansions

Proposition 9 We have

E(z, t) = u
∑

n≥0

cn(t)u
(q−1)n ∈ uFq[θ, t][[u

q−1]],

where the formal series on the right-hand side converges for all t, u with |t| ≤ q
and |u| small. The terms of order ≤ q(q − 1) of the u-expansion of E are:

E = u(1 + u(q−1)2 − (t− θ)u(q−1)q + · · · ). (54)

Moreover, for all n > 0, we have the following inequality for the degree in t of
cn(t):

degt cn ≤ logq n,

where logq denotes the logarithm in base q and where we have adopted the conven-
tion degt 0 = −∞.

Proof. This is a simple consequence of Lemma 6 and the definition of E.

Remark 10 Let us introduce the function

µ = π̃1−qs
(1)
2 /s2 ∈ C[[t, uq−1]].

By (32), µ satisfies the non-linear τ -difference equation:

µ(1) =
(t− θ)

∆
µ−1 −

g

∆
.
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Hence, µ = (t − θ)∆−1(µ(1) + g/∆)−1. Although not needed in this paper, we
point out that this functional equation gives the following continued fraction de-
velopment, which turns out to be convergent for the u-adic topology:

µ =
(t− θ)

g +
∆(t− θq)

gq +
∆q(t− θq

2
)

gq2 +
∆q2(t− θq

3
)

· · ·

∈ Fq[t, θ][[v]]. (55)

This property should be compared with the connection of Atkin’s polynomials
with certain continued fraction developments in [20, Section 4, 5], or the continued
fraction developments described after [18, Theorem 2].

4 Bi-weighted automorphic functions

In this section we define almost A-quasi-modular forms. We will see that they
generate a T>0-algebra M̃ with natural embedding in C[[t, u]]. Thanks to the two

kinds of factor of automorphy described below, M̃ is also graded by the group
Z2 × Z/(q − 1)Z.

Presently, we do not have full structure information on M̃ but we will show,
with the help of the results of Section 3, that g, h,E,F ∈ M̃ with F = τE. It
will be proved that for this graduation, the degrees (in Z2 × Z/(q − 1)Z) of these
functions are respectively (q− 1, 0, 0), (q+1, 1, 0), (1, 1, 1) and (q, 1, 1) and we will
show from this that they are algebraically independent over C((t)) (also E belongs

to M̃, but we will not use it). Since they take values in T<qq , we will study with
some detail the four dimensional T<qq-algebra

M† := T<qq [g, h,E,F ].

Proposition 7 implies that τ acts on M†: If f ∈ M† is homogeneous of degree
(µ, ν,m) then τf is also homogeneous of degree (qµ, ν,m).

We will see that if f ∈ M† is homogeneous of degree (µ, ν,m), the function

Ω → C
ε(f ) : z 7→ f(z)|t=θ

is a well defined Drinfeld quasi-modular form of weight µ + ν, type m and depth
≤ ν. An example is given by Lemma 13: ε(E) = E.
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4.1 Preliminaries on the functions Jγ and Lγ

Let us consider three matrices in Γ:

A =

(
a b
c d

)
, B =

(
α β
γ δ

)
, C = A · B =

(
∗ ∗
x y

)
∈ Γ. (56)

Lemma 11 We have the following identities in T>0:

LA(B(z)) = det(B)−1JB(z)
2(LC(z)− LB(z)),

LA(B(z)) = det(B)−1JB(z)JB(z)(LC(z)−LB(z)).

Proof. We begin by proving the first formula, observing that c = det(B)−1(xδ−yγ):

JB(z)
2(LC(z)− LB(z)) =

= (γz + δ)2
(

x

xz + y
−

γ

γz + δ

)

= det(B)
c(δ + γz)

(cα + dγ)z + (cβ + dγ)

= det(B)
c

(cα+dγ)z+(cβ+dγ)
δ+γz

= det(B)
c

cαz+β
γz+δ

+ d

= det(B)LA(B(z)).

As for the second formula, we set

L̃A =
c

cξ + d
, ξ :=

s1

s2
.

By using (43) and the obvious identity det(B) = det(B), we compute in a similar
way:

JB(z)
2(L̃C(z)− L̃B(z)) =

= (γz + δ)2
(

x

xξ + y
−

γ

γξ + δ

)

= det(B)
c

cαξ+β

γξ+δ
+ d

= det(B)L̃A(B(z)).

Hence,
L̃A(B(z)) = det(B)−1JB(z)

2(L̃C(z)− L̃B(z)).
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But
L̃A(z) = s2(z)LA(z),

so that

L̃A(B(z)) = s2(B(z))LA(B(z))

= (γs1(z) + δs2(z))LA(B(z))

= s2(z)JB(z)
−1JB(z)LA(B(z)),

where s1, s2 are considered as functions Ω → T>0, from which we deduce the
expected identity.

4.2 Almost A-quasi-modular forms.

We recall that for all z ∈ Ω and γ ∈ Γ, we have Jγ,Jγ, Lγ ,Lγ ∈ T>0.
Let r be a positive real number and f : Ω → T<r a map. We will say that f

is regular if the following properties hold.

1. There exists ε > 0 such that, for all t0 ∈ C, |t0| < ε, the map z 7→ f(z, t0) is
holomorphic on Ω.

2. For all a ∈ A, f (z + a) = f (z). Moreover, there exists c > 0 such that for
all z ∈ Ω with |u(z)| < c and t with |t| < c, there is a convergent expansion

f (z, t) =
∑

n,m≥0

cn,mt
num,

where cn,m ∈ C.

Definition 12 (Almost A-quasi-modular forms) Let f be a regular function
Ω → T<r, for r a positive real number. We say that f is an almost-A-quasi-
modular form of weight (µ, ν), type m and depth ≤ l if there exist regular functions
f i,j : Ω → T<r, 0 6 i + j 6 l, such that for all γ ∈ Γ and z ∈ Ω the following
functional equation holds in T>0:

f (γ(z), t) = det(γ)−mJµ
γ J

ν
γ

(
∑

i+j≤l

f i,jL
i
γL

j
γ

)
. (57)

The radius of convergence ρ(f ) of an almost A-quasi-modular form f : Ω →
T>0 is the infimum of the set of the real numbers r such that the maps f , f i,j

appearing in (57) simultaneously are well defined maps Ω → T<r.
We will say that µ = µ(f), ν = ν(f ), m = m(f ) are respectively the first

weight, the second weight and the type of f .
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4.2.1 Some remarks.

It is obvious that in (57), f = f0,0 (use γ = identity matrix).

If λ ∈ T>0, then the map z 7→ λ trivially is an almost A-quasi-modular form
of weight (0, 0), type 0, depth ≤ 0. The radius ρ(λ) is then just the radius of
convergence of the series λ.

Examples of almost A-quasi-modular forms are Drinfeld quasi-modular forms.
To any Drinfeld quasi-modular form of weight w, type m, depth ≤ l is associated
an almost A-quasi-modular form of weight (w, 0), type m, depth ≤ l whose radius
is infinite.

The T>0-algebra T>0[g, h] is graded by the couples (w,m) ∈ Z×Z/(q− 1)Z of
weights and types, and the isobaric elements are all almost A-quasi-modular forms
with the second weight 0.

The function s2 is, by Lemmas 4 and 5, an almost A-quasi-modular form of
weight (−1, 1), depth 0, type 0. The radius is q, by the results of Section 2.1.

If f is an almost A-quasi-modular form of weight (µ, ν), type m, depth ≤ l
and radius of convergence > q, then ε(f ) := f |t=θ is a well defined holomorphic
function Ω → C. It results from (45) and (46) that ε(f) is a Drinfeld quasi-
modular form of weight µ+ ν, type m and depth ≤ l.

The function f := s2 is not well defined at t = θ because its radius of con-
vergence is q, and we know from (36) that there is divergence at θ. However, the
function f := (t− θ)s2, which is an almost A-quasi-modular of same weight, type
and depth as s2, has convergence radius qq. Therefore, ε(f) is well defined, and is
the constant function −1 by the results of Subsection 2.1.1. From (50) we see that

the function s
(1)
2 is not an almost A-quasi-modular form. The non-zero function

ε(s
(1)
2 ) is well defined and we have already mentioned the results of Gekeler in [12]

that allow to compute ε(s
(1)
2 ).

Let us write φ = ε(E), which corresponds to a well defined series of uC[[uq−1]]
by (54). We obtain, by using (47), (45) and (46) with k = 0, that

φ(γ(z)) = det(γ)−1(cz + d)2
(
φ(z)− π̃−1 c

cz + d

)
.

This is the collection of functional equations of the Drinfeld quasi-modular form
E (4), whose u-expansion begins with the term u. Applying [3, Theorem 1] we
obtain:

Lemma 13 We have, for all z ∈ Ω:

ε(E) = E(z, θ) = E(z).
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It is easy to verify, as a confirmation of this result, that the first coefficients of
the u-expansion of E given in (54) agree, substituting t by θ, with the u-expansion
of E that we know already after [13, Corollary (10.5)]:

E = u(1 + v(q−1) + · · · ).

More generally, Propositions 7, 8 and 9 imply that for all k ≥ 0, E(k) is
an almost A-quasi-modular form of weight (qk, 1) type 1 and depth ≤ 1 with
convergence radius ≥ qq, so that ε(E(k)) is well defined, and is a Drinfeld quasi-
modular form of weight qk+1, type 1 and depth ≤ 1. The computation of ε(E(k)),
not needed for the proof of our Theorem, is made in Proposition 34.

4.2.2 Grading by the weights, filtering by the depths.

For µ, ν ∈ Z, m ∈ Z/(q − 1)Z, l ∈ Z≥0, we denote by M̃≤l
µ,ν,m the T>0-module of

almost A-quasi-modular forms of weight (µ, ν), type m and depth ≤ l. We have

M̃≤l
µ,ν,mM̃

≤l′

µ′,ν′,m′ ⊂ M̃≤l+l′

µ+µ′,ν+ν′,m+m′ .

We also denote by M̃ the T>0-algebra generated by all the almost A-quasi-modular
forms. We prove below that this algebra is graded by the group Z2 × Z/(q − 1)Z,
filtered by the depths (Proposition 18), and contains five algebraically independent
functions E, g, h,E,F (Proposition 19).

Let K be any field extension of Fq(t, θ). The key result of this section is the
following elementary lemma.

Lemma 14 The subset Θ = {(d, d), d ∈ A} ⊂ A2(K) is Zariski dense.

Proof. Let us assume by contradiction that the lemma is false and let Θ be the
Zariski closure of Θ. Then, we can write

Θ =
⋃

i∈I

Θi ∪
⋃

j∈J

Θ̃j,

where the Θi’s are irreducible closed subsets of A2(K) of dimension 1, the Θ̃j ’s are
isolated points of A2(K), and I,J are finite sets.

From Θ = Θ+ (d, d) for all d ∈ A we deduce Θ = Θ+ (d, d). The translations
of A2(K) by points such as (d, d) being bijective, they induce permutations of the

sets {Θi} and {Θ̃j}, from which we easily deduce that J = ∅. Therefore, the ideal
of polynomials R ∈ K[X, Y ] such that R(Θ) ⊂ {0} is principal, generated by a
non-zero polynomial P .
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Now, if b ∈ A, mb(Θ) ⊂ Θ, where mb(x, y) := (bx, by). Hence, P (mb(X, Y )) ∈
(P ) and there exists κb ∈ K× such that

P (bX, bY ) = κbP (X, Y ).

Let us write:
P (X, Y ) =

∑

α,β

cα,βX
αY β ,

and choose b 6∈ Fq. If cα,β 6= 0, then κb = b−αb
−β

. If P is not a monomial, we

have, for (α, β) 6= (α′, β ′), cα,β, cα′,β′ 6= 0, so that b−αb
−β

= b−α′

b
−β′

, yielding a
contradiction, because b 6∈ Fq.

If P is a monomial, however, it cannot vanish at (1, 1) ∈ Θ; contradiction.

Lemma 15 Let us suppose that for elements ψα,β ∈ C((t)) and for a certain
element z ∈ Ω we have an identity:

∑

α,β

ψα,βJ
α
γ J

β
γ = 0, (58)

in C((t)), for all γ =

(
a b
1 d

)
∈ Γ with determinant 1, the sum being finite. Then,

ψα,β = 0 for all α, β.

Proof. Let us suppose by contradiction the existence of a non-trivial relation (58).
We have, with the hypothesis on γ, Jγ = z + d,Jγ = ξ + d ∈ C((t)), so that the
relation of the lemma implies the existence of a relation:

∑

α,β

ℓα,βd
αd

β
= 0, d ∈ A,

with ℓα,β ∈ K = C((t)) not all zero, and all, but finitely many, vanishing. Lemma
14 yields a contradiction.

Another useful lemma is the following. The proof is again a simple application
of Lemma 14 and will be left to the reader.

Lemma 16 If the finite collection of functions fi,j : Ω → T>0 is such that for all
z ∈ Ω and for all γ ∈ Γ, ∑

i,j

fi,j(z)L
i
γL

j
γ = 0,

then the functions fi,j are all identically zero.
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Lemma 17 Let f be an almost A-quasi-modular form of type m with 0 ≤ m <
q − 1. Then, with v = uq−1,

f(z) = um
∑

i≥0

ci(t)v
i.

Proof. It follows the same ideas of the remark on p. 23 of [14]. Let us consider

γ =

(
λ 0
0 1

)
∈ Γ with λ ∈ F×

q . We have γ(z) = λz, det(γ) = λ, Jγ = Jγ = 1,

Lγ = Lγ = 0, so that f (λz) = λ−mf (z), for all z ∈ Ω. Now, if f =
∑

i ci(t)u
i, since

eCar is Fq-linear, we get u(λz) = λ−1u(z) and if ci 6= 0, then i ≡ m (mod q − 1).

Proposition 18 The T>0-algebra generated by the almost A-quasi-modular forms
is graded by weights and types, hence by the group Z2×Z/(q− 1)Z, and filtered by
the depths:

M̃ =
⊕

(µ,ν,m)∈Z2× Z

(q−1)Z

∞⋃

l=0

M̃≤l
µ,ν,m.

Proof. We begin by proving the property concerning the grading by the group
Z2 × Z/(q − 1)Z. Let us consider distinct triples (µi, νi, mi) ∈ Z2 × Z/(q − 1)Z,

i = 1, . . . , s, non-negative integers l1, . . . , ls and non-zero elements f i ∈ M̃≤li
µi,νi,mi

.
Then, we claim that

∑s
i=1 f i 6= 0. To see this, we assume by contradiction that

for some forms f i as in the proposition, we have the identity in T>0:

s∑

i=1

f i = 0. (59)

Recalling Definition 12 (identity (57)), we have, for all i = 1, . . . , s, γ =

(
a b
c d

)
∈

Γ, z ∈ Ω:

f i(γ(z), t) = det(γ)−miJµi
γ Jνi

γ

∑

j+k≤l

f i,j,k(z, t)L
j
γL

k
γ,

for certain functions f i,j,k : Ω → T>0.

Let us suppose first that γ is of the form

(
a b
1 d

)
with ad − b = 1. We recall

that s2(z)
−1 ∈ T×

>0 for all z. Therefore, for all z ∈ Ω, (59) becomes the identity of
formal series in T>0:

s∑

i=1

∑

j+k≤li

f i,j,ks
−k
2 (z + d)µi−j(ξ + d)νi−k = 0. (60)
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By Lemma 15, (60) is equivalent to the relations:

∑

i,j,k

φi,j,k = 0, for all (α, β) ∈ Z2 (61)

where φi,j,k := f i,j,ks
−k
2 and the sum runs over the triples (i, j, k) with i ∈ {1, . . . , s}

and j, k such that µi − j = α and νi − k = β, with obvious vanishing conventions
on some of the φi,j,k’s.

Let µ be the maximum value of the µi’s, and let us look at the relations (61)
for α = µ. Since for all µi < µ we get α = µ > µi − j for all j ≥ 0, for such a
choice of α we get: ∑

i,k

φi,0,k = 0, for all β ∈ Z, (62)

where the sum is over the couples (i, j) with i such that µi = µ and νi − k = β.
Now, let E be the set of indices i such that µi = µ and write ν for the maximum
of the νi with i ∈ E . If j is such that µj = µ, and if ν 6= νj , then for all k ≥ 0,
ν > νj − k, so that for β = ν, (62) becomes

∑

i

φi,0,0 = 0,

where the sum runs this time over the i’s such that (µi, νi) = (µ, ν). But φi,0,0 =
f i,0,0 = f i for i = 1, . . . , s. Since the types of the f i’s with same weights are
distinct by hypothesis, Lemma 17 implies that for all i such that (µi, νi) = (µ, ν),
f i = 0. This contradicts our initial assumptions and proves our initial claim.
Combining with Lemma 16, we end the proof of the proposition.

Proposition 19 The functions

E, g, h, s2, s
(1)
2 : Ω → T>0

are algebraically independent over the fraction field of T>0.

Proof. Assume by contradiction that the statement of the proposition is false.
Since E, g, h, s2, s

(1)
2 ∈ M̃ are almost A-quasi-modular forms, by Proposition 18,

there exist (µ, ν), m ∈ Z, and a non-trivial relation (where the sum is finite):

∑

i,j≥0

Pi,jE
is

(1)
2

j = 0,

with Pi,j ∈ T>0[g, h, s2]∩M̃
≤l
µ−2i+qj,ν−j,m−i (for some l ≥ 0). By Proposition 18, any

vector space of almost A-quasi-modular forms of given weight and depth is filtered
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by the depths. Comparing with the functional equations (50) and [3, Functional
equation (11)], and applying Lemma 16, we see that all the forms Pi,j vanish.
There are three integers α,m, n and a non trivial polynomial relation P among
g, h, s2, with coefficients in T>0:

n∑

s=0

Qss
s
2 = 0,

where Qs ∈ T>0[g, h] ∩ M̃≤l
α+s,0,m (s = 0, . . . , n), and for some s, Qs is non-zero.

Since ν(Qs) = 0 for all s such that Qs 6= 0 and ν(s2) = 1, The polynomial P ,

evaluated at the functions E, g, h, s2, s
(1)
2 is equal to Qss2 for Q ∈ T>0[g, h] \ {0}

and s ∈ Z, quantity that cannot vanish because g, h are algebraically independent
over T<qq : contradiction.

5 Estimating the multiplicity

We prove our Theorem in this section.

5.1 Preliminaries

Let us denote by M† the T<qq -algebra T<qq [g, h,E,F ], where F := E(1); its di-
mension is 4, according to Proposition 19 and Proposition 8. By Proposition 18,
this algebra is graded by the group Z2 × Z/(q − 1)Z:

M† =
⊕

(µ,ν),m

M†
µ,ν,m,

where M†
µ,ν,m = M̃µ,ν,m ∩M†.

The operator τ acts on M† by Proposition 7. More precisely, we have the
homomorphism of Fq[t]-modules

τ : M†
µ,ν,m → M†

qµ,ν,m.

Let us write h = π̃hs−1
Cars2 = hd.

Lemma 20 The formula h = (t − θq)F − gE holds, so that h ∈ M†
q,1,1 and

M† = T<qq [g, h,E,h].

Proof. From the definition of E and (37), we find:

(t− θq)F − gE =

= −(t− θq)hqd(2) + ghd(1)

= (−h)q(−hq−1)−1(d− gd(1)) + ghd(1)

= hd = h.
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This makes it clear that h belongs to M†
q,1,1 and that M† = T<qq [g, h,E,h].

We denote by εµ,ν,m or again ε the map which sends an almost A-quasi-modular
form f of weight (µ, ν), type m, with radius > q to the Drinfeld quasi-modular
form ε(f ) of weight µ+ν, typem. This map is clearly a C-algebra homomorphism.

Lemma 21 We have ε(h) = h.

Proof. This follows from the limit limt→θ s
−1
Cars2 = π̃−1 and the definition of d.

More generally, we have the following result.

Proposition 22 For all (µ, ν), m, the map

ε : M†
µ,ν,m → M̃≤ν

µ+ν,m

is well defined and the inverse image of 0 is the T<qq-module (t− θ)M†
µ,ν,m.

Proof. Let f be an element of M†
µ,ν,m. Then, by Lemma 20,

f =

ν∑

i=0

φih
ν−iEi,

where φi ∈Mµ−νq+i(q−1),m−ν ⊗CT<qq . Since limt→θ s
−1
Cars2 = π̃−1, we have ε(h) = h

by Lemma 21. Moreover, by Lemma 13, ε(E) = E, and

ε(f) =

ν∑

i=0

ε(φi)h
ν−iEi,

so that ε(f) = 0 if and only if ε(φi) = 0 for all i. But for all i, φi is a polynomial
in g, h with coefficients in T<qq . If ε(φi) = 0, then φi is a linear combination∑

a,b ca,bg
ahb with ca,b ∈ T<qq such that ca,b(θ) = 0. Since T<qq ⊂ T, it is a principal

ideal domain and the last condition is equivalent to φi ∈ (t−θ)(M⊗CT<qq). Hence,
ε(f) = 0 if and only if, for all i, φi ∈ (t− θ)(M ⊗C T<qq). The proposition follows.

5.2 Multiplicity estimate in M†

By Proposition 9, E = u+ · · · ∈ uFq[t, θ][[u
q−1]]. Hence,

E(k) = uq
k

+ · · · ∈ uq
k

Fq[t, θ][[u
(q−1)qk ]], k ≥ 0,
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and there is an embedding M† → T<qq [[u]]. It will be sometimes useful to fix an
embedding of T<qq in K, an algebraic closure of C((t)); we will then often consider
elements of M† as formal series if K[[u]] (especially in this subsection). Anderson’s
operator τ : C((t)) → C((t)) extends in a natural way to an Fq(t)-linear operator
τ : K → K (we will keep using the notation τkf = f (k)). If f =

∑
n≥n0

cn(t)u
n is

a formal series of K[[u]], then, Anderson’s operator further extends as follows:

f (k) =
∑

n≥n0

c(k)n (t)uq
kn, k ∈ Z. (63)

Let f =
∑

n≥n0
cn(t)u

n be in K[[u]], with cn0 6= 0. We write ν∞(f) := n0. We

also set ν∞(0) := ∞. Obviously, ν∞(f (k)) = qkν∞(f) for all k ≥ 0. We recall
that ν∞(g) = 0, ν∞(h) = ν∞(E) = 1 and ν∞(F ) = q. Since ν∞(s2) = 0, we
also get ν∞(h) = 1. In the following, we will write M†

µ,ν,m(K) = M†
µ,ν,m ⊗T<qq

K and Mw,m(K) = Mw,m ⊗C K. It is evident that the K-algebra M†(K) =∑
µ,ν,mM†

µ,ν,m(K) is again graded by the group Z2 × Z/(q − 1)Z; similarly for
the algebra M(K) =

∑
w,mMw,m(K).

We begin with a rather elementary estimate, for f ∈ M† of weight (µ, 0).

Lemma 23 If f ∈ M†
µ,0,m(K) is non-zero, then ν∞(f ) ≤ µ

q+1
.

Proof. A weight inspection shows that M†
µ,0,m(K) = K[g, h]µ,m. We can write

f = hν∞(f)b, with b ∈ K[g, h] and h not dividing b. Therefore, ν∞(f ) ≤ µ
q+1

.

In the next proposition, we study the case of f of weight (µ, ν) with ν > 0.

Proposition 24 Let f be a non-zero element of M†
µ,ν,m(K) with ν 6= 0. Then,

ν∞(f ) ≤ µν.

It is not difficult to show that the statement of this proposition cannot be improved
(this can be checked with the functions E(k)).

Before proving the proposition, we need to state and prove a lemma.

Lemma 25 Let f ∈ M†
µ,ν,m(K), f ′ ∈ M†

µ′,ν′,m′(K). By Lemma 20, f , f ′ can be
written in an unique way as polynomials in K[g, h,E,h]. Let l, l′ be the degrees in
E of f , f ′ respectively. Then,

φ := ResE(f , f
′) = hνl′+ν′l−ll′φ0,

where φ0 ∈Mw∗,m∗(K), with

w∗ = µl′ + µ′l − ll′ − q(νl′ + ν ′l − ll′), m∗ := ml′ +m′l − (νl′ + ν ′l).
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Proof. With an application of an obvious variant of [26, Lemme 6.1] (12) we see
that

φ ∈ M†
µl′+µ′l−ll′,νl′+ν′l−ll′,ml′+m′l−ll′(K).

At the same time, φ ∈ K[g, h,h]. Since ν(g) = ν(h) = 0 and ν(h) = 1, we have
φ0 := φ/hνl′+ν′l−ll′ ∈ M(K). The computation of the weight and type of φ0 is
obvious, knowing that µ(h) = q.

Proof of Proposition 24. Let f be in M†
µ,ν,m(K), with ν > 0. Assume first that

f , as a polynomial in g, h,E,h, is irreducible. If f belongs to K[g, h,h] then
f = φhν with φ ∈Mµ−qν,0,m−ν(K) and

ν∞(f ) ≤ ν∞(φ) + νν∞(h)

≤
µ− qν

q + 1
+ ν

≤
µ+ ν

q + 1
≤ µν.

We now suppose that f 6∈ K[g, h,h]; there are two cases left.

Case (i). We suppose that f divides f (1) ∈ M†
qµ,ν,m(K) as a polynomial in

g, h,E,h. For weight reasons, f (1) = af with a ∈ Mµ(q−1),0(K) and a 6= 0.

We also have ν∞(f (1)) = qν∞(f) by (63), so that, by Lemma 23, (q − 1)ν∞(f ) =
ν∞(a) ≤ (q− 1)(q+ 1)−1µ. Hence, in this case, we get the stronger inequality (13)

ν∞(f ) ≤
µ

q + 1
.

Case (ii). In this case, f and f (1) are coprime. Since f is irreducible, degE(f) =
l = ν > 0, so that f , f (1) depend on E, and their resultant φ with respect to E is
non-zero. We apply Lemma 25 with f ′ = f (1), finding

φ = hν2φ0,

with φ0 ∈ M(q+1)ν(µ−ν),m∗(K), for a certain m∗ that can be computed with Lemma
25. By Lemma 23 again, ν∞(φ0) ≤ ν(µ − ν). Since ν∞(h) = 1, ν∞(φ) ≤ ν(µ −

12The first formula after the statemement of the above cited lemma, mistakenly typed, must
be replaced with

p(R) = p(F ) degX0
(G) + p(G) degX0

(F )− p(X0) degX0
(F ) degX0

(G).

13It can be proved that f is, in this case, a modular form multiplied by an element of K, but
we do not need this information here.
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ν) + ν2 = µν. Now, the number ν∞(φ) is an upper bound for ν∞(f ) by Bézout
identity for the resultant.

We have proved the proposition if f ∈ M†
µ,ν,m(K) is irreducible. If f is not

irreducible, we can write f =
∏r

i=0 f i with f0 ∈ M†
µ0,0,m0

(K), f i ∈ M†
µi,νi,mi

(K)
irreducible for all i > 0 with νi > 0, and

∑
i µi = µ,

∑
i νi = ν,

∑
imi ≡ m

(mod q − 1). Since ν∞(f ) =
∑

i ν∞(f i), we get, applying Lemma 23,

ν∞(f) ≤
µ0

q + 1
+
∑

i>0

µiνi ≤ µν.

5.3 Reduced forms

Let f be inM†. Since ε(f) ∈ M̃ ⊂ C[[u]], it is legitimate to compare the quantities
ν∞(f) and ν∞(ε(f )). We have the inequality:

ν∞(f) ≤ ν∞(ε(f)), (64)

but the equality is not guaranteed in general, because the leading term of the
u-expansion of f can vanish at t = θ.

Definition 26 A function f in M† is reduced if ν∞(f) = ν∞(ε(f)), that is, if the
leading coefficient of the u-expansion of f does not vanish at t = θ.

Remark 27 If f ∈ M̃≤l
w,m is a Drinfeld quasi-modular form which is not a modular

form, and if there exists f ∈ M†
µ,ν,m reduced with f = ε(f) and w = µ + ν, l = ν,

then (12) holds applying Proposition 24.

The next lemma provides a tool to construct reduced almost A-quasi-modular
forms, useful in the sequel.

Lemma 28 Let f ∈ M†
µ,ν,m be such that f =

∑
n≥n0

bnu
n, with bn ∈ Fq[t, θ] for

all n and bn0 6= 0. Then, for all k > logq(degt bn0), the function f (k) is reduced.

Proof. We have b
(k)
n0 (θ) = bn0(θ

q−k

)q
k

= 0 if and only if t − θ1/q
k

divides the
polynomial bn0(t) in Kalg.[t]. This polynomial having coefficients in K, we have

b
(k)
n0 (θ) = 0 if and only if the irreducible polynomial tq

k

−θ divides bn0(t). However,
this is impossible if k > logq(degt bn0).
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5.4 Construction of the auxiliary forms.

We recall the u-expansion of E whose existence is proved in Proposition 9:

E = u
∑

i≥0

ci(t)v
i,

where c0 = 1, ci ∈ Fq[t, θ] for all i > 0 and v = uq−1.

Proposition 29 The following properties hold.

(i) Let α, β, γ, δ be non-negative integers and let us write f = gαhβEγF δ ∈
M†

µ,ν,m, with µ = α(q− 1) + β(q+ 1) + γ + qδ, ν = γ + δ and β + γ + δ ≡ m
(mod q − 1), m ∈ {0, . . . , q − 2}. Let us write

f = um
∑

n≥0

an(t)v
n

with an ∈ Fq[t, θ] (this is possible after Proposition 9 and the integrality of
the coefficients of the u-expansions of g, h). Then, for all n ≥ 0,

degt an(t) ≤ ν logq max{1, n}.

(ii) Let λ be a positive real number. Let f1, . . . , fσ be a basis of monic monomials
in g, h,E,F of the K-vector space M†

µ,ν,m(K). Let x1, . . . , xσ be polynomials
of Fq[t, θ] with max0≤i≤σ degt xi ≤ λ. Then, writing

f =

σ∑

i=1

xif i = um
∑

n≥0

bn(t)v
n

with bn ∈ Fq[t, θ] with 0 ≤ m ≤ q − 2, we have, for all n ≥ 0:

degt bn ≤ λ+ ν logq max{1, n}.

Proof. Since by definition F = E(1), we have

F = uq
∑

n≥0

c(1)n vqn = u
∑

r≥0

drv
r,

where dr = 0 if q ∤ r − 1 and dr = c
(1)
(r−1)/q otherwise. Now, the operator τ leaves

the degree in t invariant. Therefore, by Proposition 9 degt dr ≤ logq max{1, r/q} ≤
logq max{1, r}.
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Let us consider the u-expansions:

g =
∑

n≥0 γnv
n, E = u

∑
n≥0 cnv

n,
h = u

∑
n≥0 ρnv

n, F = u
∑

n≥0 dnv
n,

with γn, ρn ∈ A, cn, dn ∈ Fq[t, θ] for all n, we can write:

f = um
′
∑

n≥0

κnv
n,

where m′ = β + γ + δ and for all n, κn =
∑∏

x γix
∏

y ρjy
∏

s cks
∏

z drz , the sum

being over the vectors of Zα+β+γ+δ
≥0 of the form

(i1, . . . , iα, j1, . . . , jβ, k1, . . . , kγ, r1, . . . , rδ)

whose sum of entries is n, and with the four products running over x = 0, . . . , α,
y = 0, . . . , β, s = 0, . . . , γ and z = 0, . . . , δ respectively. Since the coefficients of
the u-expansions of g, h do not depend on t and γ + δ = ν, we obtain degt κn ≤
ν logq max{1, n}.

If m′ = m+ k(q − 1) with k ≥ 0 integer, and 0 ≤ m < q − 1. We can write

f = um
′
∑

n≥0

c′nv
n = um

∑

n≥0

cnv
n,

where cn = c′n−k, with the assumption that c′n−k = 0 if the index is negative. The
inequalities degt c

′
n ≤ ν logq max{1, n} for n ≥ 0 imply that degt cn is submitted

to the same bound, proving the first part of the proposition. The second part is a
direct application of the first and ultrametric inequality.

5.4.1 Dimensions of spaces

Lemma 30 We have, for all m and µ, ν ∈ Z such that µ ≥ (q + 1)ν ≥ 0,

σ(µ, ν)− ν − 1 ≤ dimK M†
µ,ν,m(K) ≤ σ(µ, ν) + ν + 1,

where

σ(µ, ν) =
(ν + 1)

(
µ− ν(q+1)

2

)

q2 − 1
.

Therefore, if µ > ν(q+1)
2

+ q2 − 1, we have dimK M†
µ,ν,m(K) > 0.

Proof. By [14, p. 33], we know that

δ(k,m) := dimC Mk,m =

⌊
k

q2 − 1

⌋
+ dimC Mk∗,m,
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where k∗ is the remainder of the euclidean division of k by q2 − 1. In the same
reference, it is also proved that dimC Mk∗,m = 0 unless k∗ ≥ m(q + 1), case where
dimC Mk∗,m = 1, so that, in all cases, 0 ≤ dimC Mk∗,m ≤ 1.

A basis of M†
µ,ν,m(K) is given by:

(bk)k=1,...dimM†
µ,ν,m(K) = (φi,sh

sEν−s)s=0,...,ν,i=1,...,σ(s), (65)

with, for all s, (φi,s)i=1,...,σ(s) a basis of Mµ−s(q−1)−ν,m−ν (hence σ(s) = δ(µ− s(q −
1)− ν,m− ν)). We have (taking into account the hypothesis on µ which implies
µ− s(q − 1)− ν > 0 for all 0 ≤ s ≤ ν):

dimM†
µ,ν,m(K) =

ν∑

s=0

δ(µ− ν − s(q − 1), m− ν)

=
ν∑

s=0

⌊
µ− s(q − 1)− ν

q2 − 1

⌋
+ dimC M(µ−ν−s(q−1))∗ ,m−ν .

But
ν∑

s=0

µ− s(q − 1)− ν

q2 − 1
= σ(µ, ν).

Moreover, µ > ν(q+1)
2

+ q2 − 1 if and only if σ(µ, ν) > ν +1, from which we deduce
the lemma easily.

5.4.2 Applying a variant of Siegel’s Lemma

We now prove the following:

Proposition 31 Let µ, ν ∈ Z≥0 be such that

µ ≥ (q + 1)ν + 2(q2 − 1) (66)

with ν ≥ 1, let m be an integer in {0, . . . , q − 2}. There exists an integer r > 0
such that

r ≤ 4qµν logq(µ+ ν + q2 − 1) + ν (67)

and, in M̃≤ν
r,m, a quasi-modular form fµ,ν,m such that

1

q(q + 1)
µν2 logq(µ+ ν + q2 − 1) ≤ ν∞(fµ,ν,m) ≤ 4qµν2 logq(µ+ ν + q2 − 1). (68)

We will need the following variant of Siegel’s Lemma whose proof can be found,
for example, in [21, Lemma 1] (see also [7]).
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Lemma 32 Let U, V be positive integers, with U < V . Consider a system (69) of
U equations with V indeterminates:

V∑

i=1

ai,jxi = 0, (1 ≤ j ≤ U) (69)

where the coefficients ai,j are elements of K[t]. Let d be a non-negative integer such
that degt ai,j ≤ d for each (i, j). Then, (69) has a non-zero solution (xi)1≤i≤V ∈
(K[t])V with degt xi ≤ Ud/(V − U) for each i = 1, . . . , V .

Proof of Proposition 31. We apply Lemma 32 with the parameters V = dimM†
µ,ν,m(K),

U = ⌊V/2⌋. We know that V > 0 because of (66) and Lemma 30.
If f = bi as in (65), Writing

bi = um
∑

j≥0

ai,jv
j, ai,j ∈ A[t] (70)

with 0 ≤ m < q − 1, Proposition 29 says that for all i and for all j ≥ 0,

degt ai,j ≤ ν logq max{1, j}. (71)

Lemma 32 yields polynomials x1, . . . , xV ∈ K[t], not all zero, such that if we write

f =
∑

i

xibi = um
∑

n≥n0

bnv
n, 0 ≤ m < q − 1 (72)

with bn ∈ K[t] for all n and bn0 6= 0, we have the following properties. The first
property is the last inequality below:

m+ (q − 1)n0 = ν∞(f ) ≥ m+ (q − 1)U

≥ (q − 1)(σ(µ, ν)− ν − 1)/2− 1

≥
(ν + 1)(µ− ν(q+1)

2
− q2 + 1)

2(q + 1)
− 1

≥
1

4(q + 1)
(ν + 1)µ− 1, (73)

where we have applied Lemma 30 and (66). The second property is that, in (72),

degt bn ≤ 2ν(logq(µ+ ν + q2 − 1) + logq max{1, n}), n ≥ 0, (74)

which follows from the following inequalities, with d = ν logq max{1, U}

degt xi ≤ Ud/(V − U)

≤ ν logq max{1, U}

≤ ν logq((σ(µ, ν) + ν + 1)/2)

≤ ν(logq(ν + 1) + logq(µ+ q2 − 1)− logq(q
2 − 1))

≤ 2ν logq(µ+ ν + q2 − 1),
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and Proposition 29.
By Proposition 24, we have m + (q − 1)n0 = ν∞(f) ≤ µν so that n0 ≤ µν

q−1
,

where n0 is defined in (72). Hence, by (74),

degt bn0 ≤ 4ν logq(µ+ ν + q2 − 1). (75)

Lemma 28 implies that for every integer k such that

k ≥ logq(4ν) + logq logq(µ+ ν + q2 − 1), (76)

the function fk := ε(f (k)) satisfies ν∞(fk) = ν∞(f (k)) = qkν∞(f ). Let k be
satisfying (76). We have, by (73), Proposition 24 and (63):

1. fk ∈ M̃≤ν
µqk+ν,m

,

2.
(

(ν+1)µqk

4(q+1)
− 1
)
≤ ν∞(fk) ≤ µνqk.

Let us define the function

κ(µ, ν) := ⌊logq(4ν) + logq logq(µ+ ν + q2 − 1)⌋+ 1

and write: fµ,ν,m := fκ(µ,ν). This Drinfeld quasi-modular form satisfies the prop-
erties announced in the proposition.

5.5 Proof of the Theorem

Let f be a Drinfeld quasi-modular form of weight w and depth l. We can assume,
without loss of generality, that f , as a polynomial in E, g, h with coefficients in
C, it is an irreducible polynomial. We can also assume, by (10) and, [4, Theorem
1.4], that l > q.

LetW be a real number ≥ 1 and let α be the function of a real variable defined,
for µ ≥ 0, by α(µ) = µl logq(µ +Wl + q2 − 1); we have α(µ + 1) ≤ 2α(µ). Since
(the dash ′ is the derivative) α′(µ) ≥ l logq(Wl + q2 − 1) > 1 for all l ≥ q and
µ ≥ 0, for all w ≥ 0 integer, there exist µ ∈ Z≥0 such that

α(µ) ≤ w < α(µ+ 1), (77)

and we choose one of them, for example the biggest one. Let us suppose that (6)
holds and, at once, set

ν =Wl,

with
W = q(2 + 4(q + 1)) = 2q(3 + 2q).
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We define β(l) to be the right hand side of (6), as a function of l ≥ q. Condition
(6) implies

µ ≥
β(l)

2l logq(µ+Wl + q2 − 1)
.

Since logq(x) ≤ 2x1/2 for all x ≥ 1 and q ≥ 2, we get

(µ+Wl + q2 − 1)3/2 ≥
β(l)

4l
,

that is,

µ ≥

(
β(l)

4l

)2/3

−Wl − q2 + 1.

But replacing β(l) by its value yields µ ≥ (q+1)ν+2(q2−1), which is the condition
(66) needed to apply Proposition 31.

Let us write L := logq(µ+ ν + q2 − 1) so that α(µ) = µlL. By Proposition 31,

there exists a form fµ,ν,m ∈ M̃≤ν
r,m such that l(fµ,ν,m) ≤ ν and

w(fµ,ν,m) ≤ 4(q + 1)µνL
(q(q + 1))−1µν2L ≤ ν∞(fµ,ν,m) ≤ 4qµν2L

(78)

We have two cases.

Case (i). If f |fµ,ν,m, then

ν∞(f) ≤ ν∞(fµ,ν,m) ≤ 4qµν2L. (79)

Case (ii). If f ∤ fµ,ν,m, then ρ := ResE(f, fµ,ν,m) is a non-zero modular form,
whose weight w(ρ) and type m(ρ) can be computed with the help of [4, Lemma
2.5] (we do not need an explicit computation of m(ρ)):

w(ρ) = wν + w(fµ,ν,m)l − 2lν

≤ wν + 4l(q + 1)µνL − 2lν

≤ ν(w + 4(q + 1)µlL)

< ν(α(µ+ 1) + 4(q + 1)µlL)

< ν(2α(µ) + 4(q + 1)µlL)

< (2 + 4(q + 1))νµlL. (80)

Let us suppose that ν∞(f) > (q(q + 1))−1µν2L. Then, by Bézout identity for
the resultant and (78), ν∞(ρ) ≥ (q(q + 1))−1µν2L. At the same time, by (10),

ν∞(ρ) ≤ w(ρ)
q+1

, yielding the inequality W < q(2 + 4(q + 1)) which is contradictory
with the definition of W .
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Therefore, in case (ii), we have that ν∞(f) ≤ 4qµν2L. Ultimately, we have
shown that, in both cases (i), (ii),

ν∞(f) ≤ 4qµν2L

≤ 4qµW 2l2L

≤ 4qW 2lw,

which is the estimate (7).

We now prove the weaker, but unconditional inequality (8); again, we can
suppose, without loss of generality, that f is an irreducible polynomial in E, g, h.
Let f be in M̃≤l

w,m be non-zero and irreducible as a polynomial in E, g, h. Let us
set this time

µ = BWw, ν = Wl,

with

B =
3

2
(q2 + 1), W = q(4(q + 1) + 1).

Then, since w ≥ 2l,

µ ≥ 3(q2 + 1)Wl

≥ (q + 1)Wl + 2(q2 + 1)

≥ (q + 1)ν + 2(q2 + 1),

we can apply Proposition 31 again. As before, there exists a form fµ,ν,m ∈ M̃≤ν
r,m

such that the inequalities (78) hold. Again, we can distinguish two cases, according
with f , if divides or not fµ,ν,m. If f divides fµ,ν,m, we get (79).

Let us assume that f and fµ,ν,m are coprime and form their non-vanishing
resultant ρ := ResE(f, fµ,ν,m), whose weight satisfies (80).

If ν∞(f) > (q(q + 1))−1µν2L, by Bézout identity for the resultant and (78),
ν∞(ρ) ≥ (q(q + 1))−1µν2L. At the same time, by (10), we find the inequality
W < q(4(q + 1) + 1) which is contradictory with the definition of W .

Hence, in all cases,

ν∞(f) ≤ 4qµν2L

≤ 4qµW 2l2L

≤ 4qBW 3l2w logq(µ+ ν + q2 − 1),

which yields the estimate (8).

Remark 33 The dependence on l in condition (6) can be relaxed, adding condi-
tions on q. For all ǫ > 0 there exists a constant c > 0 such that for all q > c,
assuming that w ≫ǫ l

2+ǫ, then, the inequality (7) holds. We do not report the
proof of this fact here.
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6 Link with extremal quasi-modular forms

Here, we would like to describe some links between the present work and the joint
work [4]. In [4], we have introduced the sequence of Drinfeld quasi-modular forms

(xk)k≥0 with xk ∈ M̃≤1
qk+1,1

\M , defined by x0 = −E, x1 = −Eg − h and by the
recursion formula

xk = xk−1g
qk−1

− [k − 1]xk−2∆
qk−2

, k ≥ 2,

where we recall that ∆ = −hq−1. In [4, Theorem 1.2], we have showed that for
all k ≥ 0, xk is extremal, in the sense that ν∞(xk) is the biggest possible value for

ν∞(f), if f ∈ M̃≤1
qk+1,1

\{0}. We also computed the order of vanishing: ν∞(xk) = qk

for all k.

Proposition 34 For k ≥ 0, we have

E(k)(z, θ) = (−1)k+1 xk(z)

[1][2] · · · [k]
, (81)

where the empty product is 1 by definition.

Proof. By (47) and by the limits (45) and (46) of Jγ,Lγ that we have computed
earlier, for k ≥ 0, the function φk(z) := E(k)(z, θ), is a well defined Drinfeld

quasi-modular form in the space M̃≤1
qk+1,1

. By (54),

E(k) = uq
k

+ · · · .

Hence, φk is non-vanishing, and by [4, Theorem 1.2] normalised, extremal, there-
fore proportional to xk for all k. By [4, Proposition 2.3],

xk = (−1)k+1Lku
qk + · · · ,

where Lk = [k][k − 1] · · · [1] if k > 0 and L0 = 1. This proves the proposition.

Combining with Proposition 9, we also obtain the following corollary, which
gives a proof of the property claimed in [4, Remark 2.4].

Corollary 35 Define, for all k ≥ 0, Ek := φk. Then, Ek is normalised in A[[uq
k

]].

Another interesting connection with [4] occurs with the sequence (ξk)k≥0 intro-
duced in [4, Identity (8)]. Let us define:

G := det

(
E(1) E

Eq (E(−1))q

)
= det

(
τ 1χ0 τ 0χ0

τ 1χ1 τ 0χ1

)
E,

44



where χ is Mahler’s map, defined in the introduction. It is straightforward to see
that G ∈ Fq[t, θ][[u]]. From (54) and a computation we deduce

G = (t− tq)uq
2+1(1− vq

2−1 − [1]vq
2

+ · · · ).

For all k ≥ 1, G(k) ∈ Fq[t, θ][g, h,E,E
(1)] is reduced and ν∞(G(k)) = (q2 + 1)qk;

moreover, G(k) ∈ M†
(q+1)qk ,q+1,2

for all k > 0. It even seems that the normalisation

of this formal series is defined over Fq[t, θ].

By [4, Theorem 1.3], for all k ≥ 1 and q ≥ 3, ε(G(k)) is proportional to ξk.
This property seems to hold also for k = 0 by numerical inspection for some small
values of q, but we do not know if G itself belongs to M†. It is plausible that it is
at least an almost A-quasi-modular form.

A result of Stiller [28] asserts that, if b is a non-constant meromorphic modular
function for SL2(Z) which generates the field of modular functions and f is a
meromorphic modular form of weight k for SL2(Z), then f , as a function of b,
satisfies a linear differential equation with rational functions of b as coefficients.

Analogously, It is not difficult to show that every non-zero element

f ∈ Fq[t, θ][g, h,E,E
(1)]

satisfies a non-trivial linear τ -difference equation of order ≤ ν(f ), with coefficients
in C(t)[g, h] (for example, (40) forE). We were unable to explicitly determine such
an equation for G, leaving open the problem to prove or disprove that G/(t− tq),
normalised, is itself in Fq[t, θ][[u]].

7 Observations in the classical theory

Let H be the complex upper-half plane, let Λ be the lattice ω1Z+ ω2Z of C, with
the basis ω1 = z ∈ H, ω2 = 1. Let us denote by η1(z), η2(z) the quasi-periods
η(ω1) and η(ω2) respectively, with η : Λ → C the quasi-period map associated to
the Weierstraß ζ-function for Λ. It is well known that η2(z) = −π2E2(z)/3, and
that η1(z) is related to η2(z) by Legendre’s formula

zη2(z)− η1(z) = 2πi. (82)

Let ι : H → P1(C) = C ∪ {∞} be the map defined by ι(z) = η1(z)/η2(z). From
the relation (82) and the basic properties of the quasi-period map, we obtain the
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following identities, for γ =

(
a b
c d

)
∈ SL2(Z):

η2(γ(z)) = (cz + d)2
(
η2(z)− 2πi

c

cz + d

)
(83)

= (cz + d)(cι(z) + d)η2(z) (84)

= (cι(z) + d)2
(
η2(z) + 2πi

c

cι(z) + d

)
,

where the second and the third functional equation hold for z which is not a
zero of E2. We have, for all γ ∈ SL2(Z), ι(γ(z)) = γ(ι(z)). Therefore, the map
ι : SL2(Z)×H → P1(C) satisfies the cocycle condition of a factor of automorphy.
Although there is no graduation by Z2 here, at least, the map η2 can be elusively
considered at once as of “bi-weights (2, 0), (1, 1) and (0, 2)”.

We also notice, from elementary computations, that ι sends a certain domain
D∞ ⊂ H contained in the half-plane ℑ(z) > 1.91, invariant by translations in
SL2(Z), biholomorphically onH. The boundary of D∞ is a real curve ofH which is
close, homotopically equivalent, although not equal to a horocycle with center at∞
(when one draws it, it appears very much as an horizontal line, with small, periodic
nutations). The “compactified” boundary ∂∞ of D∞ (union of the boundary and
the cusp at infinity) contains all the z’s such that the lattice Z+ zZ has its quasi-
periods R-linearly dependent and in this locus sits exactly one vanishing point for
η2, which is the point at infinity itself. For all γ ∈ SL2(Z), the set γ(∂∞) \ γ(∞)
contains exactly one zero of η2 and this shows by the way that every non-empty
vertical strip a < ℜ(z) < b, a, b ∈ R, contains a zero of E2 extending a result of
Heins in [17]. We deduce that ι is surjective. Therefore, for γ as above, the map
(γ, z) 7→ cι(z) + d is not a factor of automorphy over H (a factor of automorphy
is everywhere well defined and never vanishes), although it is one on the domain

⋃

γ∈SL2(Z)∞\SL2(Z)

γ(D∞),

in which points z in the boundary such that the quasi-periods of Z + zZ are
Q-linearly dependent play the role of “cusps” (the union is disjoint, over cosets
representatives of the action of the subgroup SL2(Z)∞ of translations of SL2(Z))
(14).

Now, let us return to our function E, which is a deformation of E. We have

14Zeroes of E2 have some connection with the vanishing locus of Bergman’s kernel and equi-
librium points of Green’s functions for annuli as pointed out by Falliero and Sebbar in [10].
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already noticed the two equalities, for γ =

(
a b
c d

)
this time in Γ:

E(γ(z)) = det(γ)−1(cz + d)(cξ + d)

(
E(z) +

1

π̃(t− θ)
Lγ

)
(85)

= det(γ)−1(cz + d)(cξ(1) + d)E(z). (86)

Replacing t by θ in these identities yields the analog of (83) and (84) in the
Drinfeldian framework, which legitimate the following loosely question.

Question. Do there exist a deformation of η2 and a suitable difference operator
allowing to furnish a proper analog of identities (85) and (86) in the classical
framework?

An answer could come from q-difference operators. Linear q-difference equa-
tions seem to be legitimate analogues in zero characteristic of linear τ -difference
equations. In this direction, Di Vizio has recently studied in [9] the notion of Gq-
function, q-Gevrey function etc. It is perhaps natural to investigate the analogues
(if any) of the functions E and allied, in her theory.

Acknowledgement. The author is indebted with V. Bosser for constructive criticism
and a careful reading of the first versions of this paper.

References

[1] G. Anderson. t-motives, Duke Math. J. 53 (1986), 457-502.

[2] G. Anderson, D. Brownawell & M. Papanikolas, Determination of the alge-
braic relations among special Γ-values in positive characteristic, Ann. of Math.
160 (2004), 237-313.

[3] V. Bosser & F. Pellarin. Differential properties of Drinfeld quasi-modular
forms. Int. Math. Res. Notices. Vol. 2008.

[4] V. Bosser & F. Pellarin. On certain families of Drinfeld quasi-modular forms.
to appear in J. Number Theory (2009), doi:10.1016/j.jnt.2009.04.014.

[5] D. Brownawell & D. Masser. Multiplicity estimates for analytic functions I.
J. Reine angew. Math. 314 (1980), pp. 200-216.

[6] D. Brownawell & D. Masser. Multiplicity estimates for analytic functions II.
Duke Math. J. Volume 47, Number 2 (1980), pp. 273-295.

[7] P. Bundschuh. Transzendenzmaße in Körpern, Laurentreihen. J. reine angew.
Math. 299-300 (1978), pp. 411-432.

47



[8] Chieh-Yu Chang & M. Papanikolas. Algebraic relations among periods and
logarithms of rank 2 Drinfeld modules. Preprint.
http://arxiv.org/abs/0807.3157

[9] L. Di Vizio. Arithmetic theory of q-difference equations, Gq-functions and q-
difference modules of type G, global q-Gevrey series. Preprint.
http://arxiv.org/abs/0902.4169

[10] Th. Falliero & A. Sebbar. Equilibrium point of Green’s function for the annulus
and Eisenstein series. Proc. of the A.M.S. Volume 135, Number 2, pp. 313-
328, (2007).

[11] J. Fresnel, & M. van der Put. Rigid Analytic Geometry and its Applications.
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