
HAL Id: hal-00407549
https://hal.science/hal-00407549v1

Preprint submitted on 26 Jul 2009 (v1), last revised 26 Sep 2010 (v3)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Estimating the order of vanishing at infinity of Drinfeld
quasi-modular forms

Federico Pellarin

To cite this version:
Federico Pellarin. Estimating the order of vanishing at infinity of Drinfeld quasi-modular forms. 2010.
�hal-00407549v1�

https://hal.science/hal-00407549v1
https://hal.archives-ouvertes.fr


Estimating the order of vanishing at infinity

of Drinfeld quasi-modular forms.

Federico Pellarin

July 26, 2009

Contents

1 Introduction, results. 2
1.1 Difficulties encountered by using hyperdifferential structures . . . . 6
1.2 Methods of proof with Frobenius structures . . . . . . . . . . . . . 7

2 Anderson’s functions 9
2.1 Drinfeld modules of rank 2 . . . . . . . . . . . . . . . . . . . . . . . 12

2.1.1 Studying functions of the variable t, with z fixed. . . . . . . 13
2.1.2 Studying functions Ω → T<q. . . . . . . . . . . . . . . . . . 13

3 The function E 14
3.1 linear τ -difference equations . . . . . . . . . . . . . . . . . . . . . . 15
3.2 Factors of automorphy, modularity . . . . . . . . . . . . . . . . . . 16
3.3 u-expansions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

4 Bi-weighted automorphic functions 22
4.1 Preliminaries on graduations and filtrations . . . . . . . . . . . . . 23
4.2 Almost A-quasi-modular forms. . . . . . . . . . . . . . . . . . . . . 24

4.2.1 First remarks. . . . . . . . . . . . . . . . . . . . . . . . . . . 25
4.2.2 Grading by the weights, filtering by the depths. . . . . . . . 26

5 Estimating the multiplicity 31
5.1 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
5.2 Multiplicity estimate in M† . . . . . . . . . . . . . . . . . . . . . . 32
5.3 Reduced forms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
5.4 Construction of the auxiliary forms. . . . . . . . . . . . . . . . . . . 35

5.4.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

1



5.4.2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
5.5 Proof of the main Theorem . . . . . . . . . . . . . . . . . . . . . . 39

6 Link with extremal quasi-modular forms 42

1 Introduction, results.

Foreword about the classical theory. For w, l non-negative integers, let M̃≤l
w be the

C-vector space generated by the classical quasi-modular forms (for SL2(Z)) which
have weight w and depth ≤ l (definition of Kaneko and Zagier in [20]).

We recall that in [4] it was noticed, by a simple resultant argument, for f 6= 0
a classical quasi-modular form of weight w and depth ≤ l, that

ν∞(f) ≤
(l + 1)(w − l)

6
. (1)

In [19], Kaneko and Koike highlight the following hypothesis; for all w, l such

that M̃≤l
w 6= (0) the image of the function

ν∞ : M̃≤l
w \ {0} → Z≥0,

which associates to every form its order of vanishing at infinity (1), is equal to the

interval [0, . . . , dimC M̃
≤l
w − 1]. Writing νmax

∞ (w, l) = max{ν∞(f) : f ∈ M̃≤l
w \ {0}},

we obviously get from this hypothesis,

lim
w→∞

dimC M̃
≤l
w

νmax
∞ (w, l)

= 1, l ≥ 0 fixed. (2)

Unexpected difficulties occur when one tries to formulate and prove analogues
of (1) and (2) in the framework of Drinfeld quasi-modular forms. The main theorem
of the paper is a slightly weaker analog of inequality (1); finding a reasonable
substitute of (2) in the drinfeldian framework remains an open problem.

Drinfeldian theory. Let q = pe be an integer power of a prime number p with e > 0,
let Fq be the field with q elements. Let us write A = Fq[θ] and K = Fq(θ), with θ
an indeterminate over Fq, and define an absolute value | · | on K by |a| = qdegθ a, a
being in K, so that |θ| = q. Let K∞ := Fq((1/θ)) be the completion of K for this
absolute value, let Kalg.

∞ be an algebraic closure of K∞, let C be the completion of
Kalg.

∞ for the unique extension of | · | to Kalg.
∞ , and let Kalg. be the algebraic closure

of K in C.

1Terminology explained, for example, in [4].
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Following Gekeler in [13], we denote by Ω the rigid analytic space C \K and
write Γ for GL2(A), group that acts on Ω by homographies. In this setting we
have three functions E, g, h : Ω → C, holomorphic in the sense of [11, Definition

2.2.1], such that, for all γ =

(
a b
c d

)
∈ Γ and z ∈ Ω:

g(γ(z)) = (cz + d)q−1g(z),

h(γ(z)) = (cz + d)q+1 det(γ)−1h(z),

E(γ(z)) = (cz + d)2 det(γ)−1

(
E(z) −

c

π̃(cz + d)

)
(3)

where γ(z) = (az + b)/(cz + d) and

π̃ := θ(−θ)
1

q−1

∞∏

i=1

(1 − θ1−qi

)−1 ∈ K∞((−θ)
1

q−1 ) \K∞,

a choice of a (q − 1)-th root having been made once and for all (2).
The functional equations above tell that g, h are Drinfeld modular forms, of

weights q − 1, q + 1 and types 0, 1 respectively. More precisely, the function g is
proportional to a variant of Eisenstein series (constructed by Goss in [15]), while
h is proportional to a variant of a Poincaré series (constructed by Gekeler in [13]).

The function E is not a Drinfeld modular form. In [13], Gekeler calls it “False
Eisenstein series” of weight 2 and type 1; it is often considered as a reasonable
substitute of the normalised (complex) Eisenstein series E2 of weight 2, although
it “vanishes at infinity” (see later).

The C-algebra M̃ := C[E, g, h] has dimension 3. Weights and types of E, g, h

associated to the functional equations (3) determine a graduation of M̃ by the
group Z × Z/(q − 1)Z. A degree is a couple of integers (w,m) ∈ Z × Z/(q − 1)Z.
By convention, we identify the class m with its unique representative in the interval
[0, q− 1[. A polynomial f ∈ M̃ \ {0} is a Drinfeld quasi-modular form of weight w
and type m if it is homogeneous (or isobaric) of degree (w,m).

The algebra M̃ is also filtered by the depths. The depth l(f) of a non-zero

polynomial f ∈ M̃ is by definition its degree degE f . By convention, the zero

polynomial of M̃ is a quasi-modular form of weight w, type m and depth l for all
w,m, l. In all the following, we denote by M̃≤l

w,m the finite-dimensional C-vector
space of Drinfeld quasi-modular forms of weight w, type m and depth ≤ l; we
recall that if w 6≡ 2m (mod q − 1), then M̃≤l

w,m = (0). Obviously, if f 6= 0 is quasi-

modular, then w(f) ≥ 2l(f). The dimension of M̃≤l
w,m can be easily computed with

2See [27, Section 2.1], where the notation π is adopted; there is an analogy with the number
2πi.
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the formulas of [14, p. 33]; one deduces that for l,m fixed,

lim
w→∞

dimC M̃
≤l
w,m

w − l
=

l + 1

q2 − 1
, (4)

the limit being taken over the w’s such that w ≡ 2m (mod q − 1), because if

w 6≡ 2m, then M̃≤l
w,m = (0).

Let eCar : C → C be the Carlitz exponential function (see below, (21)), and
let us write u : Ω → C for the “parameter at infinity” of Ω, that is, the function
u(z) = 1/eCar(π̃z).

The C-algebra M̃ embeds in C[[u]] (cf. [13]). If f ∈ M̃ , then, for u = u(z)
with |u| small enough, we have a converging u-expansion

f(z) =

∞∑

i=0

ciu
i, ci ∈ C. (5)

Let us write, with f as in (5), ν∞(f) := inf{i such that ci 6= 0} with the convention
inf ∅ = ∞. If f 6= 0, then ν∞(f) <∞.

The main motivation of this paper is the following:

Question Let w,m, l be such that M̃≤l
w,m 6= (0). How big can ν∞(f) be, with

f ∈ M̃≤l
w,m non-zero?

If M̃≤l
w,m 6= (0), let us write

νmax
∞ (w,m, l) = max{ν∞(f) : f ∈ M̃≤l

w,m \ {0}}

and let us first look at the case l = 0. We write Mw,m = M̃≤0
w,m. Let M =

⊕w,mMw,m = C[g, h] be the graded C-algebra of Drinfeld modular forms, of di-
mension 2. It is easy to show (the brackets ⌊·⌋ denote the lower integer part)
that ⌊

νmax
∞ (w,m, 0)

q − 1

⌋
= dimC Mw,m − 1, (6)

so that, for all f ∈Mw,m \ {0},

ν∞(f) ≤
w

q + 1
, (7)

which also is the best possible bound linear in w (3).

3Riemann-Roch’s Theorem over the rigid analytic curve compactification of Γ\Ω also implies
(7), see [13, (5.14)].
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Different phenomena arise in the vector spaces M̃≤l
w,m for l > 0. In this case, it

is unclear how to extend (6).

An example and a conjecture. We try to better illustrate this difficulty, proper
to the non-zero characteristic theory, by considering the case of depth ≤ 1. In
[4] we have constructed a family of Drinfeld quasi-modular forms (xk)k≥0 with

xk ∈ M̃≤1
qk+1,1

\M extremal in the sense that it attains, in the indicated vector
space, the biggest possible order of vanishing at infinity; we have also proved that
ν∞(xk) = qk for all k. From this construction, one can in fact furnish a normalised

extremal quasi-modular form fw,m,1 in every non-trivial vector space M̃≤1
w,m (4). If

for example q = 5, m = 1, the sequence (f4n+2,1,1)n≥0 is:

−x0,−
x1

[1]
,−g

x1

[1]
, . . . ,−g4 x1

[1]︸ ︷︷ ︸
5 terms

−
x2

[1][2]
,−g

x2

[1][2]
, . . . ,−g24 x2

[1][2]︸ ︷︷ ︸
25 terms

. . . ,

where [i] := θqi

− θ (if w is not of the form 4n + 2, the space M̃≤1
w,1 is trivial).

For general q and m it can be proved, by using the forms xk’s, that the sequences
(f(q−1)n+2m,m,1)n≥0 involve quasi-modular forms which are monomials λgahbxk (λ ∈
C×, a, b, k ≥ 0). An accurate study of these forms (that we skip here), implies that
for all q,m:

0 < lim inf
w→∞

dimC M̃
≤1
w,m

νmax
∞ (w,m, 1)

< lim sup
w→∞

dimC M̃
≤1
w,m

νmax
∞ (w,m, 1)

<∞,

the limits being taken in sequences with w such that dimC M̃
≤1
w,m 6= 0; so that

there is no close analog of (2). The smallest infimum limit precisely occurs in

the sequence of spaces M̃≤1
qk+1,1

, for k ≥ 0. Induction on k ≥ 0 starting with the

equality dimC M̃
≤1
2,1 = 1 yields the computation of the dimensions:

dimC M̃
≤1
qk+1+1,1

= q dimC M̃
≤1
qk+1,1

+ rk,

where r2s = −1 and r2s+1 = −2 if q = 2, and r2s = −q + 2 and r2s+1 = −2q + 3 if
q > 2. Hence,

lim
k→∞

dimC M̃
≤1
qk+1,1

νmax
∞ (qk + 1, 1, 1)

=
2

q2 − 1
.

Combining with (4) we find that for all w big enough with M̃≤1
w,m 6= (0) and

f ∈ M̃≤1
w,m \ {0}, ν∞(f) ≤ w − 1 (that is, ≤ l(w − l) with l = 1).

4A formal series
∑

i≥i0
ciu

i ∈ L[[u]] (L being a field) with ci0 6= 0 is normalised if its leading
coefficient ci0 is one.
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These arguments have been extended with the help of several numerical com-
putations to higher depths and seem to justify the following (cf. [4]):

Conjecture Let q and l > 0 be fixed. For all m, for all w big enough such that
M̃≤l

w,m 6= (0), and for all f ∈ M̃≤l
w,m \ {0},

ν∞(f) ≤ l(w − l). (8)

.
This upper bound cannot be improved, as the choice f = En indicates (indeed,

we have ν∞(E) = 1).

In this paper we demonstrate a partial but quite satisfactory result in the
direction of the inequality (8), by proving the following slightly weaker analog of
inequality (1):

Theorem Let w, l,m be integers, with 0 ≤ m < q − 1, l > 0, let f ∈ M̃≤l
w,m be a

non-zero Drinfeld quasi-modular form. Then,

ν∞(f) ≤ 6q4(4q + 5)3(q2 + 1)l2w(12 + logq w), (9)

where logq denotes the logarithm in base q. If moreover

w ≥ 4l
(
2q(q + 2)(3 + 2q)l + 3(q2 + 1)

)3/2
, (10)

Then we have the more precise estimate

ν∞(f) ≤ 16q3(3 + 2q)2lw. (11)

Condition (10) makes it clear that our Theorem does not overlap with [4,
Theorem 1.4] (joint work with Bosser), a rather precise estimate which, however,
holds for Drinfeld quasi-modular forms of depth ≤ q2 only.

1.1 Difficulties encountered by using hyperdifferential struc-
tures

A sketch of proof of inequality (1) is given in the introduction of [4]. If f ∈
C[E2, E4, E6] is a non-zero (classical) quasi-modular form (5), Ramanujan’s differ-
ential system implies that (d/dz)f is again a non-zero quasi-modular form. The

5The E2i’s denote normalisations of classical Eisenstein series of weights 2i.
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bound follows easily remarking that if f and (d/dz)f are coprime, then the resul-
tant

ResE2(f, (d/dz)f) (12)

of the polynomials f, (d/dz)f ∈ C[E2, E4, E6] with respect to E2 is a non-zero
modular form whose weight is controlled by elementary considerations and whose
order of vanishing at infinity is controlled by the well known suitable analog of (7).

If f and (d/dz)f are not coprime, one combines the resultant argument with
a variant of the separation property of Brownawell and Masser [5, Lemma, p. 212]
which is Nesterenko’s Lemma 5.2 of [24, Chapter 10].

Inequality (1) is in fact a very simple multiplicity estimate. Multiplicity esti-
mates are important tools in transcendence and algebraic independence techniques.
A much deeper result was obtained by Nesterenko [24, Chapter 10, Theorem 1.3],
and was the key tool in his theorem on the algebraic independence of values of
normalised Eisenstein series and the function e2πiz. The theory of multiplicity es-
timates in differential polynomial algebras gave general results when the base field
is algebraically closed of zero characteristic; see for example [5, 6, 23].

Analogues in positive characteristic of differential algebras are called iterative
differential, or hyperdifferential algebras (cf. [22]); very little is known about mul-
tiplicity estimates in this framework. In a joint paper with Bosser, we proved [3,

Theorem 2] that the algebra M̃ is hyperdifferential, endowed with a hyperdiffer-
ential structure D, that is, a collection of linear operators D = (Dn)n≥0 satisfying

certain properties. However, for a given non-constant polynomial f ∈ M̃ , the se-
quence of polynomials (Dnf)n≥0 behaves rather erratically (despite the algorithms
we developed in [4, Section 4.2]) and it is a serious computational problem to
characterise, with enough generality, the set of forms f that divide D1f, . . . , Dnf
for a given n ≥ 0. Hence, there is not a suitable separation property analog.

At least, we constructed in [4] families of extremal Drinfeld quasi-modular forms
which allowed, by using a resultant argument, partial multiplicity estimates in the
direction of (8).

1.2 Methods of proof with Frobenius structures

The main idea behind the proof of Theorem is to work with certain deformations
of Drinfeld quasi-modular forms, that we called almost A-quasi-modular forms
(6), introduced in this paper after a variation on Anderson’s idea of t-motives,
also called A-motives. Hence, in Section 2 we review and develop tools which
have essentially been introduced by Anderson in [1], concerning rigid analytic
trivialisations of A-motives associated to rank 2 Drinfeld A-modules. We use the

6The reader might find this terminology rather heavy. It has been chosen because in forth-
coming works, we will also need to deal with A-quasi-modular forms and A-modular forms.
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exposition in [27] as a basis to build the necessary background to proceed further:
linear τ -difference equations over all.

While spaces of Drinfeld quasi-modular forms embed in C[[u]] and are spanned
by forms with coefficients in Fq[θ], the spaces of almost A-quasi-modular forms
we are interested in, embed in C[[t, u]], with t a new indeterminate, are spanned
by forms with coefficients in Fq[t, θ] (7), and the algebra they generate is endowed
with the extension τ : C[[t, u]] → C[[t, u]] of Frobenius map τ : C → C, τc = cq,
defined by:

τ
∑

m,n≥0

cm,nt
mun :=

∑

m,n≥0

cqm,nt
muqn

the cm,n’s being in C.
Replacing t by θ essentially pushes almost A-quasi-modular forms down to

Drinfeld quasi-modular forms (a special care is required to check convergence of
our series). We will lift the quasi-modular form E to an almost A-quasi-modular
form E ∈ Fq[t, θ][[u]] of which we will study the main properties, in Section 3. This
section contains the most important tools of our paper, and its crucial features
will be separately reviewed in its introduction. With the help of the results proved
there, we will construct, in Section 4, a four dimensional sub-algebra M† of almost
A-quasi-modular forms which is at once:

– Graded by the group Z2 × Z/(q − 1)Z (a degree will be a triple (µ, ν,m), with
(µ, ν) the weight, m the type).

– Stable under the action of τ , in a way which is compatible with the graduation.

– Endowed with a set of generators contained in Fq[t, θ][[u]], whose coefficients cn
of their u-expansions have the property that the degrees in t grow “slowly”
as n increases, unlike the degrees in θ.

The Theorem will be proved in Section 5 by using the properties above, avoiding
resultants such as (12), in two steps. The first step is made by a multiplicity
estimate in M† itself (Proposition 19), with the use of resultants like

ResE(f , τf), (13)

with f ∈ M†, which essentially lands in C[[t]][g, h], after rescaling by a well con-
trolled A-quasi-modular form. The required variant of the separation property is
easy to obtain, but the grading by Z2 × Z/(q − 1)Z is unavoidable at this stage.

7These forms do not seem to have a counterpart in the classical framework yet, but could
perhaps be related to bimodular forms (the author learned about the latter forms in a seminar
of Zagier at “Collège de France” on a joint work by himself and Stienstra).
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The second step will use transcendental techniques. With a variant of Siegel’s
lemma we construct a collection of non-trivial auxiliary forms fµ,ν,m ∈ M† of weight
(µ, ν) and typem with certain technical conditions on µ, ν ∈ Z andm ∈ Z/(q−1)Z.
These forms vanish with high order at infinity, but we can bound from above this
order by Proposition 19. Let f be a Drinfeld quasi-modular form. The proof of
our Theorem ends with the study of a second resultant which lands in Drinfeld
modular forms:

ResE(f, ε(τkfµ,ν,m)),

making good choice of the parameters µ, ν,m. Here, we also need to choose k
not too big; this choice will be made possible by the crucial property highlighted
above, that the u-expansions of the generators of M† have their coefficients whose
degrees in t grow slowly as the index increases.

After having discovered the benefits of the graduation by Z2×Z/(q−1)Z of M†,
we have, for a while, searched for similar structures above classical quasi-modular
forms. We believe that this theme should be investigated in the sequel. The reader
might be interested in Remark 15, where we collect the results we know in this
domain.

The paper ends with Section 6, where we describe a link to extremal quasi-
modular forms as defined in [4]. In forthcoming works, we will develop the hy-
perdifferential viewpoint of almost A-quasi-modular forms and the appropriate
extension of the theory of Hecke operators and Hecke eigenforms.

2 Anderson’s functions

In this section we recall some tools introduced in [13, Section 2], [1, 2] and described
in [27, Section 2 and Section 4.2].

As A-lattice of rank r > 0 we mean a free sub-A-module of C of rank r, discrete
in the sense that in every compact subset of C only finitely many elements of it lie.
Let Λ ⊂ C be an A-lattice of rank r and let us consider, for ζ ∈ C, the function
defined by the product:

eΛ(ζ) := ζ
∏

λ∈Λ\{0}

(
1 −

ζ

λ

)
, (14)

which converges for all ζ ∈ C. For λ ∈ C×, we have by the product expansion
(14) defining eΛ:

eλΛ(ζ) = λeΛ(λ−1ζ). (15)

There exist elements 1 = α0(Λ), α1(Λ), α2(Λ), . . . ∈ C, depending on Λ only, such
that:

eΛ(ζ) =
∑

n≥0

αn(Λ)ζqn

, (16)
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the series having infinite radius of convergence (cf. [13, 16]).
The construction of the exponential function by (14) is the main tool to prove

that the category whose objects are A-lattices of rank r and morphisms are inclu-
sions, is dually equivalent to the category whose objects are Drinfeld A-modules
of rank r and morphisms are isogenies (see [13, Section (2.6)] or [27, Section 2];
references that contain a definition of Drinfeld A-module). For Λ as above, there
is a Drinfeld A-module φΛ such that

φΛ(a)eΛ(ζ) = eΛ(aζ) (17)

(for all ζ ∈ C and a ∈ A), which is uniquely determined by its value φΛ(θ) ∈
EndFq−lin.(Ga) in θ. This value is a polynomial of degree r in τ , that we recall, is
the Frobenius endomorphism τ : c 7→ cq.

On the other side, any Drinfeld A-module φ of rank r, a lattice Λφ of rank r
can be associated, so that the functors Λ 7→ φΛ and φ 7→ Λφ are inverse of each
other up to isomorphisms.

Let t be a new indeterminate. With Λ an A-lattice of rank r > 0 and eΛ as
in (14), let us consider ω ∈ Λ \ {0} and introduce, following Anderson in [1], the
formal series:

sΛ,ω(t) :=
∞∑

i=0

eΛ

( ω

θi+1

)
ti.

For a positive real number r, we denote by T<r the sub-C-algebra of C[[t]] whose
elements are formal series

∑
i≥0 cit

i that converge for any t ∈ C with |t| < r, and
T≤r for the C-sub-algebra of formal series

∑
i≥0 cit

i that converge for |t| ≤ r. We
denote by T>0 the sub-C-algebra of C[[t]] whose series converge in some non-empty
open disk containing 0, and all the series of T≤q converge at t = θ. We also denote
by T∞ the sub-C-algebra of series that converge everywhere in C.

If r1 > r2 > 0, we have

T>0 ⊃ T<r2 ⊃ T≤r2 ⊃ T<r1 ⊃ T≤r1 ⊃ T∞.

The Tate algebra T≤1 will be also denoted by T.
It is easy to verify that, with Λ and ω ∈ Λ as above, sΛ,ω ∈ T<q ⊂ T. More

precisely, if Λ ⊂ Kalg.
∞ , it can be proved that sΛ,ω(t) ∈ Kalg.

∞ [[t]].
We extend the operator τ from C to C[[t]] as follows:

f =
∑

n≥0

cnt
n 7→ τf :=

∑

n≥0

cqnt
n.

We will also write f (k) for τkf , k ∈ Z (the operator τ−1 is well defined). One
checks that τ sends T<r in T<rq and T≤r in T≤rq . The extension τ so constructed
is an Fq-automorphism of T.
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We write A = Fq[t], K = Fq(t). If a = a(θ) ∈ A we also write a = a(t) ∈ A. If
Λ is an A-lattice of rank r and if φΛ is the Drinfeld A-module of rank r in (17),
then, for all a1, a2 ∈ A and ω1, ω2 ∈ Λ,

φΛ(a1)sΛ,ω1 + φΛ(a2)sΛ,ω2 = sΛ,a1ω1+a2ω2 = a1sΛ,ω1 + a2sΛ,ω2. (18)

These identities, which hold in T, are proved in [27, Section 4.2.2].
On another side, from (15) it immediately follows that, for λ ∈ C×,

sλΛ,λω(t) = λsΛ,ω(t). (19)

We also have the series expansion (cf. [27, Section 4.2.2])

sΛ,ω(t) =

∞∑

n=0

αn(Λ)ωqn

θqn − t
, (20)

uniformly convergent in every compact subset of C \ {θ, θq, . . .}, and sΛ,ω(t) −
ω/(θ − t) extends to a rigid holomorphic function for |t| < qq. We will then often
say that sΛ,ω has a simple pole of residue −ω in t = θ. Notice that other poles
occur at t = θq, θq2

, . . ., but we do not need to focus on them in this paper.

Example: rank one case. For Λ = π̃A (rank 1), the exponential function is:

eCar(ζ) =
∑

n>0

ζqn

dn
, (21)

where d0 := 1 and di := [i][i − 1]q · · · [1]q
i−1

, recalling that [i] = θqi

− θ if i > 0.
The relations (17) become, for all a ∈ A,

φCar(a)eCar(ζ) = eCar(aζ),

where φCar is Carlitz’s module defined by

φCar(θ) = θτ 0 + τ ∈ EndFq-lin.(Ga)

(see Section 4 of [13]).
We will write sCar = seπA,eπ. The function sCar has a simple pole in θ with

residue −π̃.
By (18) (cf. [27, Section 4.2.5]), the following τ -difference equation holds:

s
(1)
Car(t) = (t− θ)sCar. (22)

After [11, Theorem 2.2.9], T is a principal ideal domain. This property can
be used to verify that the subfield of constants Lτ := {l ∈ L, τ l = l}, where L is
the fraction field of T, is equal to K := Fq(t) (see also [25, Lemma 3.3.2]). We
deduce, just as in the proof of [25, Lemma 3.3.5], that the τ -difference equation
f (1) = (t − θ)f has, as a complete set of solutions in L, the Fq(t)-vector space
Fq(t)sCar. In fact, for all a = a(θ) ∈ A, we have seπA,aeπ = asCar.
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2.1 Drinfeld modules of rank 2

We recall some tools described in [27, Section 4.2.5] (see also [8, 25]). Let z be
in Ω, and consider the A-lattice Λ = Λz = A + zA of rank 2, with associated
exponential function ez = eΛ. Let us consider the Drinfeld module φz defined by

φz : θ 7→ φz(θ) = θτ 0 + g̃(z)τ 1 + ∆̃(z)τ 2, (23)

where g̃(z) = π̃q−1g(z), ∆̃(z) = π̃q2−1∆(z), with ∆ = −hq−1. Then,

φz(a)ez(ζ) = ez(aζ) (24)

for all a ∈ A and ζ ∈ C ([13, Section 5], [27, Section 4.2.5], see also [25]).
We can write, for ζ ∈ C,

ez(ζ) =

∞∑

i=0

αi(z)ζ
qi

, (25)

for functions αi : Ω → C with α0 = 1. By (24) we deduce, with the initial values
α0 = 1, α−1 = 0, α−2 = 0, the recursive relations

αi =
1

[i]
(g̃αq

i−1 + ∆̃αq2

i−2), i > 0. (26)

This implies that the function αi(z) is a modular form of weight qi − 1 and type
0 for all i ≥ 0.

In all the following, we shall write:

s1(z, t) = sΛz ,z(t), s2(z, t) = sΛz,1(t).

These are functions Ω × Bq → C, where Bq is the set {z ∈ C, |z| < q}.
In fact the definition of the functions sΛ,ω tells that s1, s2 ∈ Hol(Ω)[[t]], where

Hol(Ω) denotes the C-algebra of rigid holomorphic functions Ω → C. After (25)
and (20) we see that, for any couple (z, t) ∈ Ω×Bq, the following convergent series
expansions hold:

s1(z, t) =
∞∑

i=0

αi(z)z
qi

θqi − t

s2(z, t) =

∞∑

i=0

αi(z)

θqi − t
.

Our notations stress the dependence on two variables z ∈ Ω, t ∈ Bq. However,
we can also fix z ∈ Ω and study the functions s1(z, ·), s2(z, ·), or look at the
functions s1(·, t), s2(·, t) : Ω → T<q with formal series as values. In the next
section, we provide the necessary analysis of the functions s1(z, ·), s2(z, ·). Hence,
we fix now z ∈ Ω.

12



2.1.1 Studying functions of the variable t, with z fixed.

At θ, the functions si(z, ·) have simple poles. Their respective residues are, ac-
cording to Section 2, −z for the function s1(z, ·) and −1 for s2(z, ·). Moreover,

we have s
(1)
1 (z, θ) = η1 and s

(1)
2 (z, θ) = η2, where η1, η2 are the quasi-periods of Λz

(see [27, Section 4.2.4] and [12, Section 7]).
Let us consider the matrix function:

Ψ̂(z, t) :=

(
s1(z, t) s2(z, t)

s
(1)
1 (z, t) s

(1)
2 (z, t)

)
.

By [27, Section 4.2.3] (see in particular equation (15)), we have:

Ψ̂(z, t)(1) = Θ̃(z) · Ψ̂(z, t), where Θ̃(z) =

(
0 1
t−θ
e∆(z)

− eg(z)
e∆(z)

)
, (27)

yielding the following τ -difference linear equation of order 2:

s
(2)
2 =

t− θ

∆̃
s2 −

g̃

∆̃
s

(1)
2 . (28)

Remark 1 By [1], there is a fully faithful contravariant functor from the category
of DrinfeldA-modules over Kalg. to the category of Anderson’s A-motives overKalg..
Part of this correspondence is sketched in [27, Section 4.2.2], where the definition of
A-motive is given and discussed (see also [8]); it is based precisely on Anderson’s

functions sΛ,ω. In the language introduced by Anderson, Ψ̂ is a rigid analytic
trivialisation of the A-motive associated to the Drinfeld module φ = φΛ.

In the next section, we study the functions s1, s2 as functions Ω → T>0.

2.1.2 Studying functions Ω → T<q.

We observe, by the definitions of s1, s2, and by the fact, remarked in (26), that
αi is modular of weight qi − 1 and type 0 for all i, and by (18), that for all

γ =

(
a b
c d

)
∈ Γ:

s2(γ(z), t) =
∞∑

i=0

(cz + d)qi−1 αi(z)

θqi − t

= (cz + d)−1sΛz ,cz+d(z)

= (cz + d)−1(cs1(z, t) + ds2(z, t)).

13



Similarly,

s1(γ(z), t) =

∞∑

i=0

(cz + d)qi−1αi(z)(γ(z))
qi

θqi − t

= (cz + d)−1sΛz ,az+b(z)

= (cz + d)−1(as1(z, t) + bs2(z, t)).

Let us write

Σ(z, t) :=

(
s1(z, t)

s2(z, t)

)
.

We have proved:

Lemma 2 For all γ =

(
a b
c d

)
∈ Γ, and for all z ∈ Ω, we have the following

identity of series in T<q:

Σ(γ(z), t) = (cz + d)−1γ · Σ(z, t), (29)

where γ is the matrix

(
a b

c d

)
∈ GL2(A).

3 The function E

The function of the title is defined, for z ∈ Ω and t ∈ Bq, by:

E(z, t) = (t− θ)−1π̃qh(z)s−1
Car(t)s

(1)
2 (z, t).

This section is entirely devoted to the description of its main properties. Three
Propositions will be proved here.

In Proposition 3 we show that E satisfies a linear τ -difference equation of order
2 with coefficients isobaric in C[[t]][g, h]; a special case of a general phenomenon
to be compared with a result of Stiller in [28].

In Proposition 4, we analyse the functional equations relating the values of E

at z and γ(z), where γ =

(
a b
c d

)
∈ Γ; they involve the factors of automorphy:

Jγ(z) = cz + d, Jγ(z) = c
s1(z, t)

s2(z, t)
+ d,

with values convergent in C[[t]].
Proposition 5 describes the third important feature of the function E; the

existence of a u-expansion in Fq[t, θ][[u]]. For Drinfeld quasi-modular forms, the
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degree in θ of the n-th coefficient of the u-expansion grows pretty rapidly with n
in contrast of the classical framework. The function E does not make exception
to this principle. However, the degree in t of the n-th coefficient grows slowly, and
this property is used in the proof of the multiplicity estimate. Another important
property studied in this section is that E(z, θ) is equal to Gekeler’s function E.

3.1 linear τ-difference equations

Proposition 3 For all z ∈ Ω, the function E(z, ·) can be developed as a series
of T≤q. Moreover, The following linear τ -difference equation holds in T≤q, for all
z ∈ Ω:

E(2) =
1

t− θq2 (∆E + gqE(1)). (30)

Proof. After having chosen a (q−1)-th root of −θ, let us write, following Anderson,
Brownawell, and Papanikolas in [2, Section 3.1.2],

Ω(t) := (−θ)
−q
q−1

∞∏

n=1

(
1 −

t

θqn

)
∈ (T∞ ∩K∞((−θ)

1
q−1 )[[t]]) \K∞(t)alg.

It is plain that
Ω(−1)(t) = (t− θ)Ω(t).

Thanks to the remark on the K-vector space structure of the set of solutions of
(22) and after the computation of the constant of proportionality, we get

sCar(t) =
1

Ω(−1)(t)
. (31)

At once, we obtain that the function sCar has no zeros in the domain C \{θ, θq, . . .}
from which it follows that ((t− θ)sCar)

−1 ∈ T≤q. Moreover, for all z ∈ Ω, we have

s2 ∈ T<q so that s
(1)
2 ∈ T<q2 ⊂ T≤q. Multiplying the factors that define the

function E, we then get, for all z ∈ Ω, that E(z, ·) ∈ T≤q, which gives the first
part of the proposition.

In order to prove the second part of the proposition, we remark, from (27),
that

s
(3)
2 =

t− θq

∆̃q
s

(1)
2 −

g̃q

∆̃q
s

(2)
2 .

By the definition of E and the relation (22) we find the relation:

E(k) = (t− θqk

)−1(t− θqk−1

)−1 · · · (t− θ)−1π̃qk+1

hqk

s−1
Cars

(k+1)
2 , (32)

for k ≥ 0. Substituting the above expression for s
(3)
2 in it, we get what we expected.
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3.2 Factors of automorphy, modularity

In the next proposition, the function E is considered as a function Ω → C[[t]]. In
order to state the proposition, we first need a preliminary discussion.

If ω 6∈ θΛ, eΛ(ω/θ) 6= 0 and sΛ,ω(t) ∈ T×
>0 (group of units of T>0), so that

s2(z, ·)
−1 ∈ T×

>0 (the radius of convergence, depending on z, seems very difficult
to compute). Hence, we have a well defined map

z : Ω → T×
>0

z 7→ s1(z,t)
s2(z,t)

,

and we can consider the map

γ =

(
a b
c d

)
∈ Γ 7→ Jγ := cz + d ∈ T>0.

Since c, d are coprime, we have cz + d 6∈ θΛz implying that cs1 + ds2 = sΛz ,cz+d ∈
T×

>0. Therefore, for all γ ∈ Γ and z ∈ Ω, Jγ ∈ T×
>0.

Moreover, by (29) we have, for all γ ∈ Γ and z ∈ Ω,

z(γ(z)) = γ(z(z)) ∈ C((t)), (33)

so that, for γ, δ ∈ Γ and z ∈ Ω,

Jγδ(z) = Jγ(δ(z))J δ(z).

the map J : Γ×Ω → T×
>0 is our “new factor of automorphy”, to be considered

together with the more familiar factor of automorphy

Jγ(z) := cz + d.

Let us also write, for γ =

(
a b
c d

)
∈ Γ:

Lγ(z) =
c

cz + d
,

Lγ(z) =
c

cs1 + ds2

∈ T>0.

The fact that Lγ(z) belongs to T>0 follows from the discussion that led us to the
conclusion that Jγ(z) ∈ T×

>0.
We further define the sequence of functions (g⋆

k)k≥0 by:

g⋆
−1 = 0, g⋆

0 = 1, g⋆
1 = g, g⋆

k = (t− θqk−1

)g⋆
k−2∆

qk−2

+ g⋆
k−1g

qk−1

, k ≥ 2,

so that for all k ≥ 0, we have the identity g⋆
k(z, θ) = gk(z), the function introduced

in [13, Equation (6.8)].
We have:
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Proposition 4 For all z ∈ Ω, γ ∈ Γ and k ≥ 0 the following identity of formal
series of T>0 holds:

E(k)(γ(z), t) = det(γ)−1Jγ(z)
qk

Jγ(z) × (34)(
E(k)(z, t) +

g⋆
k

π̃(t− θ)(t− θq) · · · (t− θqk)
Lγ(z)

)
.

Proof. Let f(z, t) be the function det(Ψ̂(z, t))h(z)π̃1+q, for z ∈ Ω and t ∈ Bq. We
have:

f (1)(z, t) = −(t− θ)∆̃(z)−1 det(Ψ̂(z, t))h(z)qπ̃q+q2

= (t− θ)f(z, t).

For fixed z ∈ Ω, s
(k)
i (z, ·) ∈ T<qk+1 ⊂ T for all k ≥ 0. Hence, f(z, ·) ∈ T for

all z ∈ Ω. By arguments used in the proof of Proposition 3, f(z, t) is equal to
λ(z, t)sCar(t), for some λ(z, t) ∈ A; the matter is now to compute λ, which does
not depend on z ∈ Ω as follows easily by fixing t = t0 ∈ Bq transcendental over Fq

and observing that f(z, t0) is holomorphic over Ω with values in a discrete set.
Now, for z fixed as t→ θ,

lim
t→θ

Ψ̂(z, t) −

(
− z

t−θ
− 1

t−θ

η1 η2

)
=

(
∗ ∗
0 0

)
,

η1, η2 being the quasi-periods (periods of second kind) of the lattice Aω1 + Aω2

[12, Section 7, Equations (7.1)], with generators ω1 = z, ω2 = 1, where the as-
terisks denote continuous functions of the variable z. Hence, we have limt→θ(t −

θ) det(Ψ̂(z, t)) = −zη2 + η1. By [12, Theorem 6.2], −zη2 + η1 = π̃−qh(z)−1 (notice
that the function denoted by h in [12] is equal to minus h, the function of our
paper and of [13]). At once,

lim
t→θ

(t− θ) det(Ψ̂(z, t)) = λ(θ)π̃−q−1h(z)−1 lim
t→θ

(t− θ)sCar(t) = −λ(θ)π̃−qh(z)−1,

which implies that λ = λ(θ) = −1 (θ is transcendental over Fq). We get:

det(Ψ̂) = −π̃−1−qh(z)−1sCar(t). (35)

From (35) we deduce that

s
(1)
1 =

s1

s2

(s
(1)
2 + π̃−1−qh−1sCar). (36)

Let γ =

(
a b
c d

)
∈ Γ. Applying τ on both left and right hand sides of

s2(γ(z), t) = J−1
γ Jγs2(z, t) = J−1

γ (cs1 + ds2), (37)
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consequence of Lemma 2, we see that

s
(1)
2 (γ(z), t) = J−q

γ (cs
(1)
1 + ds

(1)
2 ).

Eliminating s
(1)
1 from this identity and (36), we get:

s
(1)
2 (γ(z), t) = J−q

γ

(
s

(1)
2 (z, t)

(
c
s1(z, t)

s2(z, t)
+ d

)
+ π̃−1−q csCar(t)

h(z)s2(z, t)

)
,

that is,

s
(1)
2 (γ(z), t) = J−q

γ Jγ

(
s

(1)
2 (z, t) +

π̃−1−qsCar(t)

h(z)
Lγ

)
. (38)

This already implies, by the definition of E and the modularity of h:

E(γ(z), t) = det(γ)−1JγJγ

(
E(z, t) +

1

π̃(t− θ)
Lγ

)
.

Now, the joint application of (37), (38) and (27) implies, for all k ≥ 0 and γ ∈ Γ:

s
(k)
2 (γ(z), t) = J−qk

γ Jγ

(
s2(z, t) +

sCar(t)g
⋆
k−1

hqk−1 π̃qk+1
Lγ

)
. (39)

By the definition of E and the functional equation (22), we end the proof of the
proposition.

3.3 u-expansions

Proposition 5 We have

E(z, t) = u
∑

n≥0

cn(t)u(q−1)n ∈ uFq[θ, t][[u
q−1]],

where the formal series on the right-hand side converges for all t, u with |t| ≤ q
and |u| small. The first terms (with respect to the ordering of the degrees in u) of
the u-expansion of E are:

E = u(1 + u(q−1)2 − (t− θ)u(q−1)q + · · · ). (40)

Moreover, for all n > 0, we have the following inequality for the degree in t of
cn(t):

degt cn ≤ logq n,

where logq denotes the logarithm in base q and where we have adopted the conven-
tion degt 0 = −∞.
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Proof. We begin with the proof of the existence and the convergence of the u-
expansion. We recall the modular forms αi, defined by (26). There exist elements
ci,m ∈ C such that

αi(z) =
∑

m≥0

ci,mu
m, i ≥ 0,

with convergence for z ∈ Ω such that |u| is small enough. We need to provide
upper bounds for the |ci,m|’s, with explicit dependence on i,m.

Let us write g̃ =
∑

i≥0 γiu
i and ∆̃ =

∑
i≥0 δiu

i with γi, δi ∈ C. Looking at [13,
Definition (5.7), (iii)], there exists B ≥ q such that, for all i ≥ 0, max{|γi|, |δi|} ≤
Bi. We know that α0 = 1 and that |c1,m| ≤ q−qBm. Now, the recursive relations
(26) imply, for i > 1, m ≥ 0 and j, k non-negative integers:

ci,m =
1

[i]


 ∑

j+qk=m

γjc
q
i−1,k +

∑

j+q2k=m

δjc
q2

i−2,k


 .

After induction and the equality |[i]| = qqi

(i > 0), we deduce from these identities,

|ci,m| ≤ q−qi

Bm, (i,m ≥ 0). (41)

For z ∈ Ω such that |u| < B−1 with B as above, and for |t| < q:

s2(z, t) =
1

θ − t
+
∑

i≥1

αi(z)

θqi − t

=
1

θ − t
+
∑

i≥1

∑

m≥0

ci,mu
m 1

θqi − t

=
1

θ − t
+
∑

m≥0

um
∑

i≥1

ci,m
θqi − t

=
1

θ − t
+
∑

m≥1

κm(t)um,

where, in the second equality we have u-expanded αi, in the third equality, ex-
panded 1/(θqi

− t), and where for m ≥ 1,

κm(t) =
∑

j≥0

tj
∑

i≥0

ci,mθ
−qi(1+j) ∈ T≤q.

We see, by using (41), that for all t ∈ C such that |t| ≤ q, |κ(t)| ≤ Bmq−1.
Since

s
(1)
2 (z, t) =

1

θq − t
+
∑

m≥1

κ(1)
m (t)uqm,
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we obtain, from the definition of E, the convergence of the u-expansion of h,
the identity (31) and the convergence of the product defining Ω, that E has a
u-expansion

E(z, t) =
∑

i≥0

λi(t)u
i,

with λi ∈ T≤q, converging for all t, u such that |t| ≤ q and |u| small enough.
If a = d = 1, c = 0 and b ∈ A in (29) we find that s2(z+ b, t) = s2(z, t). Taking

further γ =

(
a 0
0 d

)
∈ GL2(Fq), one sees that in fact E ∈ uT≤q[[u

q−1]].

We need now to prove that this series is defined over Fq[t, θ]. From (30) we get:

E = ∆−1((t− θq2

)E(2) − gqE(1)). (42)

Let us write v = uq−1. We have the series expansions (cf. [13, Section 10]):

g = 1 − [1]v + · · · =
∞∑

n=0

anv
n ∈ A[[v]],

∆ = −v(1 − vq−1 + · · · ) ∈ vA[[v]],

∆−1 = −v−1(1 + vq−1 + · · · ) = −v−1 +
∞∑

n=0

bnv
n ∈ v−1A[[v]],

so that a0 = 1, a1 = −[1], a2 = · · · = aq = 0 and b0 = b1 = · · · = bq−3 = 0, bq−2 =
−1 if q > 2, while for q = 2, the u-expansion of ∆−1 begins with u−1(1+u+u5+· · · ).
The integrality of the coefficients of the u-expansions of ∆−1 comes from the fact
that the leading coefficient of the u-expansion of ∆ lies in F×

q .
We know, after the definition of E, that

E = u
∑

i≥0

ci(t)v
i,

for elements ci(t) ∈ T≤q that we want to determine. But, for k ∈ Z,

E(k) = uqk
∑

i≥0

c
(k)
i (t)vqki,

and (42) becomes:

u
∑

i≥0

ci(t)v
i = (−v−1 +

∞∑

n=0

bnv
n) × (43)

((t− θq2

)uq2
∑

i≥0

c
(2)
i (t)vq2i −

∞∑

n=0

aq
nv

nquq
∑

i≥0

c
(1)
i (t)vqi).
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Therefore, for r ≥ 0:

cr = (t− θq2

)(−
∑

q2α+q=r

c(2)α +
∑

α+q2β+q+1=r

bαc
(2)
β ) +

∑

qα+qβ=r

aq
αc

(1)
β −

∑

1+α+qβ+qγ=r

bαaβc
(1)
γ .

If r = 0, this gives c
(1)
0 = c0, that is, c0 ∈ Fq[t] because c0 ∈ T≤q ⊂ T and

Tτ = Fq[t], information contained in a previous remark. But this is not enough to
determine this coefficient. We recall that (t−θ)s2(z, t) → −1 and (t−θ)s1(z, t) →
−z as t → θ. Hence, limt→θ

s1

s2
= z. This implies that limt→θ Jγ(z) = Jγ(z). In a

similar way we see that

lim
t→θ

(t− θ)−1Lγ(z) = −Lγ(z). (44)

Let φ(z) be the limit limt→θ E(z, t). We obtain, by using (34) with k = 0 and
the limits above, that

φ(γ(z)) = det(γ)−1(cz + d)2

(
φ(z) − π̃−1 c

cz + d

)
,

but this is the collection of functional equations of the Drinfeld quasi-modular form
E (3), whose u-expansion begins with the term u. Hence, we get φ = E, c0(θ) = 1
and c0 = 1 because θ is transcendental over Fq. If r > 0, we see by induction that
cr is a polynomial with coefficients in Fq[t] evaluated in the coefficients ai, bj which
are in A, as remarked above, and this implies that cr(t) ∈ Fq[t, θ] for r ≥ 0.

Equation (43) easily delivers, after some calculations, the first coefficients of
the u-expansion of E given in (40), which agree, substituting t by θ, with the
u-expansion of E that we know already after [13, Corollary (10.5)]:

E = u(1 + v(q−1) + · · · ).

To end the proof of the proposition, it remains to prove the growth estimate
for the degrees in t of the coefficients ci. We know from (40) that c0 = 1, cn = 0
for n = 1, . . . , q − 2 (this corresponds to empty data if q = 2), cq−1 = 1 and
cq = θ − t. Therefore, degt cn ≤ 0 for n = 0, . . . , q − 2 and degt cq = 1, which
agrees with the estimate. By the recursive computation of cn above, the identities
degt r = degt r

(k) for all k ∈ Z and r ∈ C[t], and degt ai = degt bj = 0 for all i, j,
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we see by induction on n ≥ q that

degt cn ≤ max{1 + degt c
(2)
n−q

q2

, 1 + max
α+q2β+q+1=n

degt c
(2)
β ,

max
qα+qβ=n

degt c
(1)
β , max

α+qβ+qγ=n
degt c

(1)
γ }

≤ max{1 + degt cn−q

q2
, 1 + max

1+α+q2β+q+1=n
degt cβ,

max
qα+qβ=n

degt cβ, max
α+qβ+qγ=n

degt cγ}

≤ max{1 + logq max{1, n/q2}, logq max{1, n/q}}

≤ logq max{1, n},

where by definition, if s ∈ Q\Z≥0 (the induction hypothesis is applied in the next
to last inequality).

Remark 6 Let us introduce the function

µ = π̃1−qs
(1)
2 /s2 ∈ C[[t, uq−1]].

By (27), µ satisfies:

µ(1) =
(t− θ)

∆
µ−1 −

g

∆
.

Hence, µ = (t − θ)∆−1(µ(1) + g/∆)−1. Although not needed in this paper, we
point out that this functional equation gives the following continued fraction de-
velopment, which turns out to be convergent for the u-adic topology:

µ =
(t− θ)

g +
∆(t− θq)

gq +
∆q(t− θq2

)

gq2 +
∆q2

(t− θq3
)

· · ·

∈ Fq[t, θ][[v]]. (45)

This property should be compared with the connection of Atkin’s polynomials
with certain continued fraction developments in [20, Section 4, 5], or the continued
fraction developments described after [18, Theorem 2].

4 Bi-weighted automorphic functions

In this section we prove that almost A-quasi-modular forms generate a T≤q-algebra

M̃ ⊂ C[[t, u]] which is, thanks to the two kinds of factor of automorphy described
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below, graded by the group Z2 × Z/(q − 1)Z, and contains the four dimensional
algebra M† := T≤q[g, h,E,F ], where F = τE.

Proposition 3 implies that τ acts on M†: If f ∈ M† is homogeneous of degree
(µ, ν,m) then τf also is homogeneous of degree (qµ, ν,m).

If f ∈ M† is homogeneous of degree (µ, ν,m), then the function

Ω → C
ε(f) : z 7→ f(z)|t=θ

is a well defined Drinfeld quasi-modular form of weight µ + ν, type m and depth
≤ ν.

4.1 Preliminaries on graduations and filtrations

Let us consider three matrices:

A =

(
a b
c d

)
, B =

(
α β
γ δ

)
, C = A · B =

(
∗ ∗
x y

)
∈ Γ. (46)

Lemma 7 We have:

LA(B(z)) = det(B)−1JB(z)2(LC(z) − LB(z)),

LA(B(z)) = det(B)−1JB(z)JB(z)(LC(z) − LB(z)).

Proof. We begin by proving the first formula, observing that c = det(B)−1(xδ−yγ):

JB(z)2(LC(z) − LB(z)) =

= (γz + δ)2

(
x

xz + y
−

γ

γz + δ

)

= det(B)
c(δ + γz)

(cα + dγ)z + (cβ + dγ)

= det(B)
c

(cα+dγ)z+(cβ+dγ)
δ+γz

= det(B)
c

cαz+β
γz+δ

+ d

= det(B)LA(B(z)).

As for the second formula, we set

L̃A =
c

cz + d
, z :=

s1

s2
.
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By using (33) and the obvious identity det(B) = det(B), we compute in a similar
way:

JB(z)2(L̃C(z) − L̃B(z)) =

= (γz + δ)2

(
x

xz + y
−

γ

γz + δ

)

= det(B)
c

cαz+β

γz+δ
+ d

= det(B)L̃A(B(z)).

Hence,
L̃A(B(z)) = det(B)−1JB(z)2(L̃C(z) − L̃B(z)).

But
L̃A(z) = s2(z)LA(z),

so that

L̃A(B(z)) = s2(B(z))LA(B(z))

= (γs1(z) + δs2(z))LA(B(z))

= s2(z)JB(z)−1JB(z)LA(B(z)),

where s1, s2 are considered as functions Ω → T>0, from which we deduce the
expected identity.

4.2 Almost A-quasi-modular forms.

We recall that for all z ∈ Ω and γ ∈ Γ, Jγ ,Jγ , Lγ,Lγ ∈ T>0.

Definition 8 (Almost A-quasi-modular forms) Let r > 0 be a positive num-
ber. Let us consider a function and a finite collection of functions

f , (fi,j)i,j : Ω → T<r.

Let us assume that

f (z) =
∞∑

s=0

φs(z)t
s, fi,j(z) =

∞∑

s=0

φi,j,s(z)t
s for all i, j (47)

with φs;φi,j,s : Ω → C holomorphic for all s.
Let us assume that there exists a positive number B and, for all i, j, s, series

ψs, ψi,j,s ∈ T<r, such that for z ∈ Ω with |u| < B and for all |t| < r,

f (z) =
∑

s≥0

ψs(t)u
s, fi,j(z) =

∑

s≥0

ψi,j,s(t)u
s. (48)
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We say that f is an almost A-quasi-modular form of weight (µ, ν) ∈ Z2, type
m ∈ Z/(q − 1)Z, and depth ≤ l if the following identity of formal series in T>0

holds for all z ∈ Ω and γ ∈ Γ:

f(γ(z)) = det(γ)−mJµ
γ Jν

γ

∑

j+k≤l

fj,k(z)L
j
γL

k
γ. (49)

The supremum of the r’s such that f , fi,j, ψm, ψi,j,m ∈ T<r for all z, i, j,m is called
the radius of the almost A-quasi-modular form f , denoted by ρ(f ). We will say
that µ = µ(f ), ν = ν(f ), m = m(f ) are respectively the first weight, the second
weight and the type of f .

4.2.1 First remarks.

It is obvious that in (49), f = f0,0 (use γ = identity matrix).
If λ ∈ T>0, then it trivially is an almost A-quasi-modular form of weight (0, 0),

type 0, depth ≤ 0. The radius ρ(λ) is then just the radius of convergence of the
series.

Examples of almost A-quasi-modular forms are Drinfeld quasi-modular forms.
Any quasi-modular form of weight w, type m, depth ≤ l is an almost A-quasi-
modular form of weight (w, 0), type m, depth ≤ l. In all these cases, the radius
is infinite. More generally, the T>0-algebra T>0[g, h] is graded by the couples
(w,m) ∈ Z × Z/(q − 1)Z of weights and types, and the isobaric elements are all
almost A-quasi-modular forms.

The function s2 is, by Lemma 2, an almost A-quasi-modular form of weight
(−1, 1), depth 0, type 0. The radius is q, by the results of Section 2.1.

If f is a A-quasi-modular form of weight (µ, ν), type m, depth ≤ l and radius
> q, then ε(f) := f |t=θ is a well defined holomorphic function Ω → C. This is
the case, for example, if f = E(k), for all k ≥ 0, by Proposition 4, and we have
that µ(E(k)) = qk, ν(E(k)) = 1, m(E(k)) = 1, and the depths are always ≤ 1. It is
clear, from (44) and limt→θ Jγ = Jγ, that

ε(f) ∈ M̃≤l
µ+ν,m. (50)

The computation of ε(E(k)) is made in Proposition 28. In particular, ε(E) = E.
We denote by εµ,ν,m or again ε the map which sends an almost A-quasi-modular
form f of specified weight, type, with radius > q to the Drinfeld quasi-modular
form ε(f). This map is C-linear and such that, if λ ∈ T≤q,

ε(λf) = ε(λ)ε(f).

The function s2 is not well defined at t = θ. However, the function f(z) :=
(t− θ)s2, which is almost A-quasi-modular of same weight, type and depth as s2,
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has radius q2. Therefore, ε(f) is well defined, and is the constant function −1 by

the results of Subsection 2.1.1. The function s
(1)
2 is, on the other side, an almost

A-quasi-modular form of weight (−q, 1), type 0 and radius > q.

4.2.2 Grading by the weights, filtering by the depths.

For µ, ν ∈ Z, m ∈ Z/(q − 1)Z, l ∈ Z≥0, we denote by M̃≤l
µ,ν,m the T>0-module of

almost A-quasi-modular forms of weight (µ, ν), type m and depth ≤ l. We have

M̃≤l
µ,ν,mM̃

≤l′

µ′,ν′,m′ ⊂ M̃≤l+l′

µ+µ′,ν+ν′,m+m′ .

We also denote by M̃ the T>0-algebra generated by all the almost A-quasi-modular
forms. We prove below that this algebra is graded by the group Z2 × Z/(q − 1)Z,
filtered by the depths (Proposition 13), and contains five algebraically independent
functions (Proposition 14).

Let K be any field extension of Fq(t, θ). The key result of this section is the
following elementary lemma.

Lemma 9 The subset Γ = {(d, d), d ∈ A} ⊂ A2(K) is Zariski dense.

Proof. Let us assume by contradiction that the lemma is false and let Γ be the
Zariski closure of Γ. Then, we can write

Γ =
⋃

i∈I

Γi ∪
⋃

j∈J

Γ̃j ,

where the Γi’s are irreducible closed subsets of A2(K) of dimension 1, the Γ̃j’s are
isolated points of A2(K), and I,J are finite sets.

From Γ = Γ + (d, d) for all d ∈ A we deduce Γ = Γ + (d, d). The translations
of A2(K) by points such as (d, d) being bijective, they induce permutations of the

sets {Γi} and {Γ̃j}, from which we easily deduce that J = ∅. Therefore, the ideal
of polynomials R ∈ K[X, Y ] such that R(Γ) ⊂ {0} is principal, generated by a
non-zero polynomial P .

Now, if b ∈ A, mb(Γ) ⊂ Γ, where mb(x, y) := (bx, by). Hence, P (mb(X, Y )) ∈
(P ) and there exists κb ∈ K× such that

P (bX, bY ) = κbP (X, Y ).

Let us write:

P (X, Y ) =
∑

α,β

cα,βX
αY β,
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and choose b 6∈ Fq. If cα,β 6= 0, then κb = b−αb
−β

. If P is not a monomial, we

have, for (α, β) 6= (α′, β ′), cα,β, cα′,β′ 6= 0, so that b−αb
−β

= b−α′

b
−β′

, yielding a
contradiction, because b 6∈ Fq.

If P is a monomial, however, it cannot vanish at (1, 1) ∈ Γ; contradiction.

Lemma 10 Let us suppose that for elements ψα,β ∈ C((t)) and for a certain
element z ∈ Ω, ∑

α,β

ψα,βJ
α
γ Jβ

γ = 0, (51)

in C((t)), for all γ =

(
a b
1 d

)
∈ Γ with determinant 1, the sum being finite. Then,

ψα,β = 0 for all α, β.

Proof. Let us suppose by contradiction the existence of a non-trivial relation (51).
We have, with the hypothesis on γ, Jγ = z + d,Jγ = z + d ∈ C((t)), so that the
relation of the lemma implies the existence of a relation:

∑

α,β

ℓα,βd
αd

β
= 0, d ∈ A,

with ℓα,β ∈ K = C((t)) not all zero, and all, but finitely many, vanishing. Lemma
9 yields a contradiction.

Another useful lemma is the following. The proof is again a simple application
of Lemma 9 and will be left to the reader.

Lemma 11 If the finite collection of functions functions fi,j : Ω → T>0 is such
that for all z ∈ Ω and for all γ ∈ Γ,

∑

i,j

fi,j(z)L
i
γL

j
γ = 0,

then the functions fi,j are all identically zero.

Lemma 12 Let f be an almost A-quasi-modular form of type m with 0 ≤ m <
q − 1. Then, with v = uq−1,

f (z) = um
∑

i≥0

ci(t)v
i.
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Proof. It follows the same ideas of the remark on p. 23 of [14]. Let us consider

γ =

(
λ 0
0 1

)
∈ Γ with λ ∈ F×

q . We have γ(z) = λz, det(γ) = λ, Jγ = Jγ = 1,

Lγ = Lγ = 0, so that f (λz) = λ−mf (z), for all z ∈ Ω. Now, if f =
∑

i ci(t)u
i, since

eCar is Fq-linear, we get u(λz) = λ−1u(z) and ic ci 6= 0, then i ≡ m (mod q − 1).

Proposition 13 The T>0-algebra generated by the almost A-quasi-modular forms
is graded by weights and types, hence by the group Z2 ×Z/(q− 1)Z, and filtered by
the depths:

M̃ =
⊕

(µ,ν,m)∈Z2× Z
(q−1)Z

∞⋃

l=0

M̃≤l
µ,ν,m.

Proof. We begin by proving the property concerning the grading by the group
Z2 × Z/(q − 1)Z. Let us consider distinct triples (µi, νi, mi) ∈ Z2 × Z/(q − 1)Z,

i = 1, . . . , s, non-negative integers l1, . . . , ls and non-zero elements fi ∈ M̃≤li
µi,νi,mi

.
Then, we claim that

∑s
i=1 fi 6= 0. To see this, we assume by contradiction that

for some forms fi as in the proposition, we have the identity in T>0:

s∑

i=1

fi = 0. (52)

Recalling Definition 8 (identity (49)), we have, for all i = 1, . . . , s, γ =

(
a b
c d

)
∈

Γ, z ∈ Ω:

fi(γ(z), t) = det(γ)−miJµi
γ Jνi

γ

∑

j+k≤l

fi,j,k(z, t)L
j
γL

k
γ ,

for certain functions fi,j,k : Ω → T>0.

Let us suppose first that γ is of the form

(
a b
1 d

)
with ad − b = 1. We recall

that s−1
2 ∈ T∗

>0 for all z. Therefore, for all z ∈ Ω, (52) becomes the identity of
formal series in T>0:

s∑

i=1

∑

j+k≤li

fi,j,ks
−k
2 (z + d)µi−j(z + d)νi−k = 0. (53)

By Lemma 10, (53) is equivalent to the relations:

∑

i,j,k

φi,j,k = 0, for all (α, β) ∈ Z2 (54)
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where φi,j,k := fi,j,ks
−k
2 and the sum runs over the triples (i, j, k) with i ∈ {1, . . . , s}

and j, k such that µi − j = α and νi − k = β, with obvious vanishing conventions
on some of the φi,j,k’s.

Let µ be the maximum value of the µi’s, and let us look at the relations (54)
for α = µ. Since for all µi < µ we get α = µ > µi − j for all j ≥ 0, for such a
choice of α we get: ∑

i,k

φi,0,k = 0, for all β ∈ Z, (55)

where the sum is over the couples (i, j) with i such that µi = µ and νi − k = β.
Now, let E be the set of indices i such that µi = µ and write ν for the maximum
of the νi with i ∈ E . If j is such that µj = µ, and if ν 6= νj , then for all k ≥ 0,
ν > νj − k, so that for β = ν, (55) becomes

∑

i

φi,0,0 = 0,

where the sum runs this time over the i’s such that (µi, νi) = (µ, ν). But φi,0,0 =
fi,0,0 = fi for i = 1, . . . , s. Since the types of the fi’s with same weights are distinct
by hypothesis, Lemma 12 implies that for all i such that (µi, νi) = (µ, ν), fi = 0.
This contradicts our initial assumptions and proves our initial claim. Combining
with Lemma 11, we end the proof of the proposition.

Proposition 14 The functions

E, g, h, s2, s
(1)
2 : Ω → T>0

are algebraically independent over L>0, the fraction field of T>0.

Proof. Assume by contradiction that the proposition is false. SinceE, g, h, s2, s
(1)
2 ∈

M̃ are almost A-quasi-modular forms, by Proposition 13, there exist (µ, ν), m ∈ Z,
and a non-trivial relation (where the sum is finite):

∑

i,j≥0

Pi,jE
is

(1)
2

j = 0,

with Pi,j ∈ T>0[g, h, s2]∩M̃
≤l
µ−2i+qj,ν−j,m−i (for some l ≥ 0). By Proposition 13, any

vector space of almost A-quasi-modular forms of given weight and depth is filtered
by the depths. Comparing with the functional equations (38) and [3, Functional
equation (11)], and applying Lemma 11, we see that all the forms Pi,j vanish.
There are three integers α,m, n and a non trivial polynomial relation P among
g, h, s2, with coefficients in T>0:

n∑

s=0

Qss
s
2 = 0,
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where Qs ∈ T>0[g, h] ∩ M̃≤l
α+s,0,m (s = 0, . . . , n), and for some s, Qs is non-zero.

Since ν(Qs) = 0 for all s such that Qs 6= 0 and ν(s2) = 1, The polynomial P ,

evaluated at the functions E, g, h, s2, s
(1)
2 is equal to Qss

2 for Q ∈ T>0[g, h] \ {0}
and s ∈ Z quantity that cannot vanish because g, h are algebraically independent
over T≤q: contradiction.

Remark 15 (classical framework) Linear q-difference equations seem to be le-
gitimate analogues in zero characteristic of linear τ -difference equations. In this
direction, Di Vizio has recently studied in [9] the notion of Gq-function, q-Gevrey
functions etc. It is natural to investigate the analogues (if any) of the functions
E and allied, in her theory. Is there a Z2-graded algebra MQ of formal series
which are “q-deformations” of classical quasi-modular forms? We include a rather
heuristic discussion about this question.

Let H be the complex upper-half plane, let Λ be the lattice ω1Z + ω2Z of C,
with the basis ω1 = z ∈ H, ω2 = 1. Let us denote by η1(z), η2(z) the quasi-periods
η(ω1) and η(ω2) respectively, with η : Λ → C the quasi-period map associated to
the Weierstraß ζ-function for Λ. It is well known that η2(z) = π2E2(z)/3, and
that η1(z) is related to η2(z) by Legendre’s formula

zη2(z) − η1(z) = 2πi. (56)

Let ι : H → P1(C) = C ∪ {∞} be the map defined by ι(z) = η1(z)/η2(z). From
the relation (56) and the basic properties of the quasi-period map, we obtain the

following identities, for γ =

(
a b
c d

)
∈ SL2(Z):

η2(γ(z)) = (cz + d)2

(
η2(z) − 2πi

c

cz + d

)
(57)

= (cz + d)(cι(z) + d)η2(z) (58)

= (cι(z) + d)2

(
η2(z) + 2πi

c

cι(z) + d

)
, (59)

where the second and the third functional equation hold for z which is not a zero
of E2 (8). We have, for all γ ∈ SL2(Z), ι(γ(z)) = γ(ι(z)). Therefore, we can
consider the map SL2(Z) ×H → P1(C) as something like a factor of automorphy.
In this case, there is no graduation by Z2 but at least, the map η2 can be elusively
considered as of “bi-weight (2, 0), (1, 1) and (0, 2)” (9).

8It is known that E2, hence η2, vanishes on H infinitely many times in the vertical strip
0 < ℜ(z) < 1; see Heins paper [17]. It is in fact not too difficult to extend Heins result to prove
that every non-empty vertical strip a < ℜ(z) < b, a, b ∈ R, contains a zero of E2. The set of
zeroes deserves other surprises : read [10] for further details.

9Notice also that ι sends a certain domain D∞ ⊂ H contained in the half-plane ℑ(z) >
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5 Estimating the multiplicity

We prove our Theorem in this section.

5.1 Preliminaries

Let us denote by M† the T≤q-algebra T≤q[g, h,E,F ], where F := E(1); its dimen-
sion is 4, according to Proposition 14 and Proposition 4. By Proposition 13, this
algebra is graded by the group Z2 × Z/(q − 1)Z:

M† =
⊕

(µ,ν),m

M†
µ,ν,m,

where M†
µ,ν,m = M̃µ,ν,m ∩ M†.

The operator τ acts on M† by Proposition 3. More precisely, we have the
homomorphism of Fq[t]-modules

τ : M†
µ,ν,m → M†

qµ,ν,m.

Let us write h = π̃hs−1
Cars2.

Lemma 16 The formula h = (gE − (t − θq)F ) holds, so that h ∈ M†
q,1,1 and

M† = T≤q[g, h,E,h].

Proof. From the definition of E, (22) and (28), we find:

gE − (t− θq)F =

= (t− θ)−1π̃qghs−1
Cars

(1)
2 − π̃q2

hq(s
(1)
Car)

−1s
(2)
2

= (t− θ)−1π̃qghs−1
Cars

(1)
2 − (t− θ)−1π̃q2

hqs−1
Car

(
t− θ

∆̃
s2 −

g̃

∆̃
s

(1)
2

)

= (t− θ)−1π̃qghs−1
Cars

(1)
2 − π̃∆−1hqs−1

Cars2 + (t− θ)−1π̃qghq∆−1s−1
Cars

(1)
2

= π̃hs−1
Cars2.

This makes it clear that h belongs to M†
q,1,1 and that M† = T≤q[g, h,E,h].

We have the following result.

1.91 biholomorphically on H. The boundary of D∞ is a real curve of H which is very close,
homotopically equivalent, although not equal to a horocycle with center at ∞. We can define
a function φ : H → C by φ(ξ) := η2(ι

−1(ξ)), and (59) tells that φ has certain automorphic
properties, and that lattices with Q-linearly dependent quasi-periods play the role of cusps in
this setting.
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Proposition 17 For all (µ, ν), m, the map

ε : M†
µ,ν,m → M̃≤ν

µ+ν,m

is well defined and the inverse image of 0 is the T≤q-module (t− θ)M†
µ,ν,m.

Proof. Let f be an element of M†
µ,ν,m. Then, by Lemma 16,

f =

ν∑

i=0

φih
ν−iEi,

where φi ∈Mµ−νq+i(q−1),m−ν ⊗C T≤q. Since limt→θ s
−1
Cars2 = π̃−1, we have ε(h) = h.

Moreover, by Proposition 28, ε(E) = E, and

ε(f ) =
ν∑

i=0

ε(φi)h
ν−iEi

and ε(f) = 0 if and only if ε(φi) = 0 for all i. But for all i, φi is a polynomial in g, h
with coefficients in T≤q. If ε(φi) = 0, then φi is a linear combination

∑
a,b ca,bg

ahb

with ca,b ∈ T≤q such that ca,b(θ) = 0. Since T≤q ⊂ T, it is a principal ideal domain
and the last condition is equivalent to φi ∈ (t − θ)(M ⊗C T≤q). Hence, ε(f) = 0
if and only if, for all i, φi ∈ (t− θ)(M ⊗C T≤q).

5.2 Multiplicity estimate in M†

By Proposition 5, E = u + · · · ∈ uFq[t, θ][[u
q−1]]. If f =

∑
n≥n0

cn(t)un with
cn ∈ C((t)), then

f (k) =
∑

n≥n0

c(k)
n (t)uqkn, k ∈ Z. (60)

Hence,

E(k) = uqk

+ · · · ∈ uqk

Fq[t, θ][[u
(q−1)qk

]], k ≥ 0,

and there is an injective map M† → T≤q[[u]]. Let f =
∑

n≥n0
cn(t)un be in T≤q[[u]],

with cn0 6= 0. We write ν∞(f) := n0. We also set ν∞(0) := ∞.

We recall that ν∞(g) = 0, ν∞(h) = ν∞(E) = 1 and ν∞(F ) = q. Since ν∞(s2) =
0, we also get ν∞(h) = 1. We begin with a rather elementary estimate, for f of
weight (µ, 0).

Lemma 18 If f ∈ M†
µ,0,m is non-zero, then ν∞(f) ≤ µ

q+1
.
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Proof. A weight inspection shows that M†
µ,0,m = T≤q[g, h]µ,m. We can write

f =
∑

a,b da,bg
ahb =

∑
n≥n0

cnu
n, with da,b, cn ∈ T≤q for all a, b, n, and cn0 6= 0. Let

t0 ∈ C be such that |t0| ≤ q and cn0(t0) 6= 0. Then, setting f0 =
∑

a,b da,b(t0)g
ahb,

we see that f0 ∈Mµ,m \ {0} and ν∞(f0) = ν∞(f). In virtue of (7), ν∞(f0) ≤
µ

q+1
.

In the next proposition, we study the case of f of weight (µ, ν) with ν > 0.

Proposition 19 Let f be a non-zero element of M†
µ,ν,m with ν 6= 0. Then,

ν∞(f ) ≤ µν.

It is not difficult to show that the statement of this proposition cannot be improved.
Before proving the proposition, we first need a lemma.

Lemma 20 Let f ∈ M†
µ,ν,m, f ′ ∈ M†

µ′,ν′,m′. Consider f ,f ′ as polynomials in
T≤q[g, h,E,h], which is licit by Lemma 16. Let l be the degree of f in E and l′ be
the degree of f ′ in E. Then,

φ := ResE(f ,f ′) = hνl′+ν′l−ll′φ0,

where φ0 ∈Mw∗,m∗ ⊗C T≤q, with

w∗ = µl′ + µ′l − ll′ − q(νl′ + ν ′l − ll′), m∗ := ml′ +m′l − (νl′ + ν ′l).

Proof. With an application of a natural variant of [26, Lemme 6.1] (10) we see that

φ ∈ M†
µl′+µ′l−ll′,νl′+ν′l−ll′,ml′+m′l−ll′.

But we have φ ∈ T≤q[g, h,h] (isobaric for the graduation by Z2 × Z/((q − 1)Z)).

Since ν(g) = ν(h) = 0 and ν(h) = 1, we have φ0 := φ/hνl′+ν′l−ll′ ∈M ⊗ T≤q. The
computation of the weight and type of φ0 is obvious, knowing that µ(h) = q.

Proof of Proposition 19. Since T≤q ⊂ T and T is a unique factorisation domain
(cf. [11, Theorem 2.2.9]), T≤q itself is a unique factorisation domain and the ring
M† = T≤q[g, h,E,h] is a unique factorisation domain.

Let f be in M†
µ,ν,m, with ν > 0. Assume first that f , as a polynomial in

g, h,E,h, is an irreducible polynomial with coefficients in T≤q. Since the result is

10The first formula after the statemement of the above cited lemma, mistakenly typed, must
be replaced with

p(R) = p(F ) degX0
(G) + p(G) degX0

(F ) − p(X0) degX0
(F ) degX0

(G).
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clear for f proportional to h, we can further exclude this possibility. There are
two cases left.

Case (i). We suppose that f divides f (1) ∈ M†
qµ,ν,m as a polynomial in g, h,E,h

with coefficients in T≤q. For weight reasons, f (1) = af with a ∈ Mµ(q−1),0 ⊗C T≤q

and a 6= 0. We also have ν∞(f (1)) = qν∞(f) by (60), so that, by Lemma 18,
(q−1)ν∞(f) = ν∞(a) ≤ (q−1)(q+1)−1µ. Hence, in this case, we get the stronger
inequality (11)

ν∞(f ) ≤
µ

q + 1
.

Case (ii). In this case, f and f (1) are coprime. Since f is irreducible, l = ν > 0,
f ,f (1) depend on E, and their resultant φ with respect to E is non-zero. We
apply Lemma 20 with f ′ = f (1), finding

φ = hν2

φ0,

with φ0 ∈M(q+1)ν(µ−ν),m∗ ⊗C T≤q, for a certain m∗ to be computed with Lemma 20.
By Lemma 18 again, ν∞(φ0) ≤ ν(µ−ν). Since ν∞(h) = 1, ν∞(φ) ≤ ν(µ−ν)+ν2 =
µν. Now, the number ν∞(φ) is an upper bound for ν∞(f) by Bézout identity for
the resultant.

We have proved the proposition if f ∈ M†
µ,ν,m is irreducible. If f is not irre-

ducible, we can write f =
∏r

i=0 f i with f 0 ∈ M†
µ0,0,m0

, f i ∈ M†
µi,νi,mi

irreducible
for all i > 0 with νi > 0, and

∑
i µi = µ,

∑
i νi = ν,

∑
imi ≡ m (mod q−1). Since

ν∞(f) =
∑

i ν∞(f i), we get, applying Lemma 18,

ν∞(f) ≤
µ0

q + 1
+
∑

i>0

µiνi ≤ µν.

5.3 Reduced forms

Let f be in M†. Since ε(f) ∈ M̃ ⊂ C[[u]], it is legitimate to compare the quantities
ν∞(f) and ν∞(ε(f )). We have the inequality:

ν∞(f) ≤ ν∞(ε(f)), (61)

but the equality is not guaranteed in general, because the leading term of the
u-expansion of f can vanish at t = θ.

11It can be proved that f is in this case, a modular form, but we do not need this information
here.
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Definition 21 A function f in M† is reduced if ν∞(f ) = ν∞(ε(f)), that is, if the
leading coefficient of the u-expansion of f does not vanish at t = θ.

If f ∈ M̃≤l
w,m is a Drinfeld quasi-modular form which is not a modular form,

and if f = ε(f ) with f ∈ M†
µ,ν,m reduced, and w = µ+ ν, l = ν, then (8) holds.

The next lemma provides a tool to construct reduced almost A-quasi-modular
forms, useful in the sequel.

Lemma 22 Let f ∈ M†
µ,ν,m such that f =

∑
n≥n0

bnu
n, with bn ∈ Fq[t, θ] for all

n and bn0 6= 0. Then, for all k > logq(degt bn0), the function f (k) is reduced.

Proof. We have b
(k)
n0 (θ) = bn0(θ

q−k

)qk

= 0 if and only if t − θ1/qk

divides the

polynomial bn0(t) in Kalg.[t]. This polynomial having coefficients in K, b
(k)
n0 (θ) = 0

if and only if the irreducible polynomial tq
k

− θ divides bn0(t). However, this is
impossible if k > logq(degt bn0).

5.4 Construction of the auxiliary forms.

We recall the u-expansion of E whose existence is proved in Proposition 5:

E = u
∑

i≥0

ci(t)v
i,

where c0 = 1, ci ∈ Fq[t, θ] for all i > 0 and v = uq−1.

Proposition 23 The following properties hold.

(i) Let α, β, γ, δ be non-negative integers and let us write f = gαhβEγF δ ∈
M†

µ,ν,m, with µ = α(q− 1) + β(q+ 1) + γ + qδ, ν = γ + δ and β + γ + δ ≡ m
(mod q − 1), m ∈ {0, . . . , q − 2}. Let us write

f = um
∑

n≥0

an(t)vn

with an ∈ Fq[t, θ] (this is possible after Proposition 5 and the integrality of
the coefficients of the u-expansions of g, h). Then, for all n ≥ 0,

degt an(t) ≤ ν logq max{1, n}.
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(ii) Let λ be a positive real number. Let f 1, . . . ,fσ be a basis of monic monomials
in g, h,E,F of the T≤q-module M†

µ,ν,m. Let x1, . . . , xσ be polynomials of
Fq[t, θ] with max0≤i≤σ degt xi ≤ λ. Then, writing

f =
σ∑

i=1

xif i = um
∑

n≥0

bn(t)vn

with bn ∈ Fq[t, θ], we have, for all n ≥ 0:

degt bn ≤ λ+ ν logq max{1, n}.

Proof. Since by definition F = E(1), we have

F = uq
∑

n≥0

c(1)n vqn = u
∑

r≥0

drv
r,

where dr = 0 if q ∤ r − 1 and dr = c
(1)
(r−1)/q otherwise. Now, the operator τ leaves

the degree in t invariant. Therefore, degt dr ≤ logq max{1, r/q} ≤ logq max{1, r}.
Let us consider the u-expansions:

g =
∑

n≥0 anv
n, E = u

∑
n≥0 cnv

n,

h = u
∑

n≥0 bnv
n, F = u

∑
n≥0 dnv

n.

We can write:
f = um′

∑

n≥0

κnv
n,

where, for all n, κn =
∑∏

x aix

∏
y bjy

∏
s cks

∏
z drz

, the sum being over the vectors

of Zα+β+γ+δ
≥0 of the form

(i1, . . . , iα, j1, . . . , jβ, k1, . . . , kγ, r1, . . . , rδ)

whose sum of entries is n, and the four products running over x = 0, . . . , α, y =
0, . . . , β, s = 0, . . . , γ and z = 0, . . . , δ. Since the coefficients of the u-expansions
of g, h do not depend on t and γ + δ = ν, degt κn ≤ ν logq max{1, n}.

If m′ = m+ k(q − 1) with k ≥ 0 integer, and 0 ≤ m < q − 1. We can write

f = um′
∑

n≥0

c′nv
n = um

∑

n≥0

cnv
n,

where cn = c′n−k, with the assumption that c′n−k = 0 if the index is negative. The
inequalities degt c

′
n ≤ ν logq max{1, n} for n ≥ 0 imply that degt cn is submitted

to the same bound, proving the first part of the proposition. The second part is a
direct application of the first.
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5.4.1

Lemma 24 We have, for all m and µ, ν ∈ Z such that µ ≥ (q + 1)ν ≥ 0,

σ(µ, ν) − ν − 1 ≤ dimT≤q
M†

µ,ν,m ≤ σ(µ, ν) + ν + 1,

where

σ(µ, ν) =
(ν + 1)

(
µ− ν(q+1)

2

)

q2 − 1
.

Proof. By [14, p. 33], we know that

δ(k,m) := dimC Mk,m =

⌊
k

q2 − 1

⌋
+ dimC Mk∗,m,

where k∗ is the remainder of the euclidean division of k by q2 − 1. In the same
reference, it is also proved that dimC Mk∗,m = 0 unless k∗ ≥ m(q + 1), case where
dimC Mk∗,m = 1, so that, in all cases, 0 ≤ dimC Mk∗,m ≤ 1.

A basis of M†
µ,ν,m is given by:

(bk)k=1,...dim M
†
µ,ν,m

= (φi,sh
sEν−s)s=0,...,ν,i=1,...,σ(s), (62)

with, for all s, (φi,s)i=1,...,σ(s) a basis of Mµ−s(q−1)−ν,m−ν (hence σ(s) = δ(µ− s(q −
1) − ν,m− ν)). We have (taking into account the hypothesis on µ which implies
µ− s(q − 1) − ν ≥ 0 for all 0 ≤ s ≤ ν):

dim M†
µ,ν,m =

ν∑

s=0

⌊
µ− s(q − 1) − ν

q2 − 1

⌋
+ dimC M(µ−ν−s(q−1))∗ ,m−ν .

But
ν∑

s=0

µ− s(q − 1) − ν

q2 − 1
= σ(µ, ν),

from which we deduce the lemma easily.

5.4.2

We now prove the following:

Proposition 25 Let µ, ν ∈ Z≥0 be such that µ ≥ (q + 1)ν + 2(q2 − 1) and ν ≥ 1,
let m be an integer in {0, . . . , q − 2}. There exists an integer r > 0 such that

r ≤ 4qµν logq(µ+ ν + q2 − 1) + ν (63)

and, in M̃≤ν
r,m, a quasi-modular form fµ,ν,m such that

1

q(q + 1)
µν2 logq(µ+ ν + q2 − 1) ≤ ν∞(fµ,ν,m) ≤ 4qµν2 logq(µ+ ν + q2 − 1). (64)
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A proof of the following variant of Siegel’s Lemma can be found, for example,
in [21, Lemma 1] (see also [7]).

Lemma 26 Let U, V be positive integers, with U < V . Consider a system (65) of
U equations with V unknowns:

V∑

i=1

ai,jxi = 0, (1 ≤ j ≤ U) (65)

where the coefficients ai,j are elements of K[t]. Let d be a non-negative integer such
that degt ai,j ≤ d for each (i, j). Then, (65) has a non-zero solution (xi)1≤i≤V ∈
(K[t])V with degt xi ≤ Ud/(V − U) for each i = 1, . . . , V .

Proof of Proposition 25. We apply Lemma 26 with the parameters V = dim M†
µ,ν,m,

U = ⌊V/2⌋, assuming that µ ≥ (q + 1)ν ≥ 0 and ν ≥ 1. If f = bi as in (62),
Writing

bi = um
∑

j≥0

ai,jv
j, ai,j ∈ A[t] (66)

with 0 ≤ m < q − 1, Proposition 23 says that for all i and for all j ≥ 0,

degt ai,j ≤ ν logq max{1, j}. (67)

Lemma 26 yields polynomials x1, . . . , xV ∈ K[t], not all zero, such that if we write

f =
∑

i

xibi = um
∑

n≥n0

bnv
n, 0 ≤ m < q − 1 (68)

with bn ∈ K[t] for all n and bn0 6= 0, we have the following properties. The first
property is the last inequality below:

m+ (q − 1)n0 = ν∞(f ) ≥ m+ (q − 1)U

≥ (q − 1)(σ(µ, ν) − ν − 1)/2 − 1

≥
(ν + 1)(µ− ν(q+1)

2
− q2 + 1)

2(q + 1)
− 1

≥
1

4(q + 1)
(ν + 1)µ− 1, (69)

where we have applied Lemma 24 and used the hypothesis that µ ≥ (q + 1)ν +
2(q2 − 1). The second property is that

degt bn ≤ 2ν(logq(µ+ ν + q2 − 1) + logq max{1, n}), n ≥ 0, (70)
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which follows from the following inequalities, with d = ν logq max{1, U − 1}

degt xi ≤ Ud/(V − U)

≤ ν logq max{1, U − 1}

≤ ν logq(σ(µ, ν) + ν − 1)

≤ ν(logq(ν + 1) + logq(µ+ q2 − 1) − logq(q
2 − 1))

≤ 2ν logq(µ+ ν + q2 − 1),

and the second part of Proposition 23.
By Proposition 19, we have m + (q − 1)n0 = ν∞(f) ≤ µν so that n0 ≤ µν

q−1
,

where n0 is defined in (68). Hence, by (70),

degt bn0 ≤ 4ν logq(µ+ ν + q2 − 1). (71)

Lemma 22 implies that for every integer k such that

k ≥ logq(4ν) + logq logq(µ+ ν + q2 − 1), (72)

the function fk := ε(f (k)) satisfies ν∞(fk) = ν∞(f (k)). Let k be satisfying (72).
We have, by (50), (69), Proposition 19 and (60):

1. fk ∈ M̃≤ν
µqk+ν,m

,

2. (4(q + 1))−1(ν + 1)µqk ≤ ν∞(fk) ≤ µνqk.

Let us define the function

κ(µ, ν) := ⌊logq(4ν) + logq logq(µ+ ν + q2 − 1)⌋ + 1

and write: fµ,ν,m := fκ(µ,ν). This function satisfies the properties announced in the
proposition.

5.5 Proof of the main Theorem

Let f be a Drinfeld quasi-modular form of weight w and depth l and assume
first that, as a polynomial in E, g, h with coefficients in C, it is an irreducible
polynomial. We can also assume, by (7) and, [4, Theorem 1.4], that l > q.

We begin with the proof of the second, more precise assertion of our Theorem.
Let α be the function of a real variable defined, for µ ≥ 0, by α(µ) = µl logq(µ +
Cl + q2 − 1); we have α(µ + 1) ≤ 2α(µ). Since (the dash ′ is the derivative)
α′(µ) ≥ l logq(Cl+ q2 − 1) > 1 for all l ≥ q and µ ≥ 0, for all w ≥ 0 integer, there
exist µ ∈ Z≥0 such that

α(µ) ≤ w < α(µ+ 1), (73)
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and we choose one of them, for example the biggest one. Let us suppose that (10)
holds and, at once, set

ν = Wl,

with
W = q(2 + 4(q + 1)) = 2q(3 + 2q).

We define β(l) to be the right hand side of (10), as a function of l ≥ q. Condition
(10) implies

µ ≥
β(l)

2l logq(µ+Wl + q2 − 1)
.

Since logq(x) ≤ 2x1/2 for all x ≥ 1 and q ≥ 2, we get

(µ+Wl + q2 − 1)3/2 ≥
β(l)

4l
,

that is,

µ ≥

(
β(l)

4l

)2/3

−Wl − q2 + 1.

But replacing β(l) by its value yields µ ≥ (q+1)ν+2(q2−1), which is the condition
needed to apply Proposition 25.

Let us write L := logq(µ+ ν + q2 − 1). By Proposition 25, there exists a form

fµ,ν,m ∈ M̃≤ν
r,m such that l(fµ,ν,m) = ν and

0 < w(fµ,ν,m) ≤ 4(q + 1)µνL
(q(q + 1))−1µν2L ≤ ν∞(fµ,ν,m) ≤ 4qµν2L

(74)

We have two cases.

Case (i). If f |fµ,ν,m, then

ν∞(f) ≤ ν∞(fµ,ν,m) ≤ 4qµν2L. (75)

Case (ii). If f ∤ fµ,ν,m, then ρ := ResE(f, fµ,ν,m) is a non-zero modular form,
whose weight and type m∗ can be computed with the help of [4, Lemma 2.5] (we
do not need an explicit computation of m∗):

w(ρ) = wν + w(fµ,ν,m)l − 2lν

≤ wν + 4l(q + 1)µνL − 2lν

≤ ν(w + 4(q + 1)µlL)

< ν(α(µ+ 1) + 4(q + 1)µlL)

< ν(2α(µ) + 4(q + 1)µlL)

< (2 + 4(q + 1))νµlL. (76)
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Let us suppose that ν∞(f) > (q(q + 1))−1µν2L. Then, by Bézout identity for
the resultant and (74), ν∞(ρ) ≥ (q(q + 1))−1µν2L. At the same time, by (7),

ν∞(ρ) ≤ w(ρ)
q+1

, yielding the inequality W < q(2 + 4(q + 1)) which is contradictory
with the definition of W .

Therefore, the case (ii) signifies that ν∞(f) ≤ 4qµν2L. Ultimately, we have
shown that, in both cases (i), (ii),

ν∞(f) ≤ 4qµν2L

≤ 4qµW 2l2L

≤ 4qW 2lw,

which is the estimate (11).

We now prove the weaker, but unconditional inequality (9). Let f be in M̃≤l
w,m

be non-zero and irreducible as a polynomial in E, g, h. Let us set this time

µ = BWw, ν = Wl,

with

B =
3

2
(q2 + 1), W = q(4(q + 1) + 1).

Then, since w ≥ 2l,

µ ≥ 3(q2 + 1)Wl

≥ (q + 1)Wl + 2(q2 + 1)

≥ (q + 1)ν + 2(q2 + 1),

we can apply Proposition 25 again. As before, there exists a form fµ,ν,m ∈ M̃≤ν
r,m

such that the inequalities (74) hold. Again, we can distinguish two cases, according
with f , if divides or not fµ,ν,m. If f divides fµ,ν,m, we get (75).

Let us assume that f and fµ,ν,m are coprime and form their non-vanishing
resultant ρ := ResE(f, fµ,ν,m), whose weight satisfies (76).

If ν∞(f) > (q(q + 1))−1µν2L, by Bézout identity for the resultant and (74),
ν∞(ρ) ≥ (q(q + 1))−1µν2L. At the same time, by (7), we find the inequality
W < q(4(q + 1) + 1) which is contradictory with the definition of W .

Hence, in all cases,

ν∞(f) ≤ 4qµν2L

≤ 4qµW 2l2L

≤ 4qBW 3l2w logq(µ+ ν + q2 − 1)

≤ 4qBW 3l2w(logq + logq(BW +W/2 + q2 − 1)),

which yields the estimate (9), hence completing the proof of our Theorem.
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Remark 27 The dependence on l in condition (10) can be relaxed, adding con-
ditions on q. For all ǫ > 0 there exists a constant c > 0 such that for all q > c,
assuming that w ≫ǫ l

2+ǫ, then, the inequality (11) holds. We do not pursue the
proof of this fact here.

6 Link with extremal quasi-modular forms

As a conclusion of this paper, we would like to describe some links between the
present work and [4]. In [4], we have introduced the sequence of Drinfeld quasi-

modular forms (xk)k≥0 with xk ∈ M̃≤1
qk+1,1

\M , defined by x0 = −E, x1 = −Eg−h
and by the recursion formula

xk = xk−1g
qk−1

− [k − 1]xk−2∆
qk−2

, k ≥ 2,

where we recall that ∆ = −hq−1. In [4, Theorem 1.2], we have showed that for
all k ≥ 0, xk is extremal, in the sense that ν∞(xk) is the biggest possible value for

ν∞(f), if f ∈ M̃≤1
qk+1,1

\{0}. We also computed the order of vanishing: ν∞(xk) = qk

for all k.

Proposition 28 For k ≥ 0, we have

E(k)(z, θ) = (−1)k+1 xk(z)

[1][2] · · · [k]
, (77)

where the empty product equals 1.

Proof. By (34) and by the limits of Jγ,Lγ that we have computed earlier, for
k ≥ 0, the function φk(z) := E(k)(z, θ), is a well defined Drinfeld quasi-modular

form in the space M̃≤1
qk+1,1

. By (40),

E(k) = uqk

+ · · · .

Hence, φk is non-vanishing, and by [4, Theorem 1.2] normalised, extremal, there-
fore proportional to xk for all k. By [4, Proposition 2.3],

xk = (−1)k+1Lku
qk

+ · · · ,

where Lk = [k][k − 1] · · · [1] if k > 0 and L0 = 1. This proves the proposition.

Combining with Proposition 5, we also obtain the following corollary, which
gives a proof of the property claimed in [4, Remark 2.4].

42



Corollary 29 Define, for all k ≥ 0, Ek := φk. Then, Ek is normalised in A[[uqk

]].

Another interesting connection with [4] occurs with the sequence (ξk)k≥0 intro-
duced in [4, Identity (8)]. Let us define:

G := det

(
E(1) E

Eq (E(−1))q

)
.

It is straightforward to see that G ∈ Fq[t, θ][[u]]. From (40) and a computation we
deduce

G = (t− tq)uq2+1(1 − vq2−1 + [1]vq2

+ · · · ).

For all k ≥ 1, G(k) ∈ Fq[t, θ][g, h,E,E
(1)] is reduced and ν∞(G(k)) = (q2 + 1)qk.

By [4, Theorem 1.3], for all k ≥ 1 and q ≥ 3, ε(G(k)) is proportional to ξk. This
property seems to hold also for k = 0 by numerical inspection for some small
values of q, but we do not know if G itself belongs to M†. It is plausible that it is
at least an almost A-quasi-modular form.

A result of Stiller [28] asserts that, if b is a non-constant meromorphic modular
function for SL2(Z) which generates the field of modular functions and f is a
meromorphic modular form of weight k for SL2(Z), then f , as a function of b,
satisfies a linear differential equation with rational functions of b as coefficients.

Analogously, It is not too difficult to show that every non-zero element f ∈
Fq[t, θ][g, h,E,E

(1)] satisfies a non-trivial linear τ -difference equation of order ≤
ν(f ), with coefficients in C(t)[g, h] (for example, (30) for E). We were unable to
explicitly determine such an equation for G, leaving open the problem to prove or
disprove that G/(t− tq), normalised, is itself in Fq[t, θ][[u]].
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