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LIST OF SYMBOLS  

LATIN 

Symbol Signification Unit 
a Sub-sample edge length m ; µm 

b Closure variable m 

B Permeability m2 ; µm2 

dp Pore diameter m ; µm 

D Diffusion coefficient m2.s-1 

f,F Closure variables m, m2 

G Image greyscale value - 

Id Identity tensor - 

M Corrective constant in eq. (12) - 

N Distribution number - 

n Normal vector  

P Pressure Pa 

Kn Knudsen number - 

Q Auxiliary variable, see eq. (16)  

v Velocity m.s-1 

GREEK 

Symbol Signification Unit 

 Characteristic exponent for tortuosity-porosity 

correlations 

- 

 Porosity (volume fraction) - 

 Tortuosity factor  - 

 Thermal conductivity W.m-1.K-1 

µ Viscosity Pa.s 

 Density kg.m-3 

fi Fibre volume fraction - 

 Any material property  

 Space domain [m3] 
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SUPERSCRIPTS AND UNDERSCRIPTS 

Symbol Signification 

< > •   Intermediate-scale average  

< > •   Porosity-distribution-based average 

< > •  f Intrinsic fluid average 

{ } •   Large-scale average 

•lim Limiting value 

•ref Reference 

•eff Effective value 

•b Relative to binary diffusion 

•f Relative to fluid phase 

•fi Relative to fibre 

•fs Relative to fluid-solid interphase 

•gas Relative to gas phase 

•p Relative to percolation threshold 

•pyC Relative to pyrocabon 

•s Relative to solid phase 

•v Relative to viscous flow 

•x, y or z Relative to x, y or z direction 

•0 Initial state 

•// Relative to parallel direction 

• Relative to perpendicular (transverse) direction 
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Abstract 

Raw and partially infiltrated carbon-carbon composite preforms have been 

scanned by high-resolution synchrotron radiation x-ray computerized micro-

tomography (CMT). Three-dimensional (3D) high-quality images of the pore space 

have been produced at two distinct resolutions and have been used for the 

computation of transport properties: heat conductivity, binary gas diffusivities, 

Knudsen diffusivities, and viscous flow permeabilities. The computation procedures 

are based on a double change-of-scale strategy suited to the bimodal nature of pore 

space, and on the local determination of transport anisotropy. Good agreement has 

been found between all calculated quantities and experimental data. 

Key words 

Thermal conductivity, diffusion, X-ray tomography 

 

1 Introduction 

Thermostructural composites are characterized by their ability of operating 

under high mechanical stresses and high temperature (above 1000 °C), such as in 

spatial propulsion systems or aircraft brake disks. They are made of carbon or 

ceramic fibres (SiC, Al2O3…) linked together by a carbon or ceramic matrix. The 

association of these two brittle components leads to a material with pseudo-plastic 

mechanical behaviour. They are manufactured, among other processes, by chemical 

vapour infiltration (CVI): a heated fibrous preform is infiltrated by the chemical 

cracking of a vapour precursor of the matrix material inside its pore space [1, 2]. 

The final quality of materials fabricated by CVI relies on processing conditions 
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(such as vapour precursor concentration, temperature and pressure), as well as on 

geometrical, gas and heat transport properties of the preform. This rather expensive 

process has a strong need for model-based optimization, either in isothermal or in 

thermal-gradient process modifications. Numerous previous works have shown the 

crucial importance of adequate structural models in the quality of the modelling 

procedures [3-9]. In addition to these process-related issues, thermal characteristics 

of these composites are also of great interest: in some cases (braking, re-entry into 

the atmosphere…) they are as important as their mechanical or chemical properties. 

The aim of the present work is to provide for fibrous carbon/carbon (C/C) 

composites estimates of such properties based on accurate 3D representations 

obtained by x-ray computerized micro-tomography (CMT). In a previous study, it 

was demonstrated that geometrical properties of the composite preform could be 

determined from such images [10]. In this companion paper, the same 3D images 

are used to assess heat and gas transport properties.  

Experimental determination of heat [11-13] and gas [14-15] transport 

properties of thermostructural composites can be performed. However, this 

characterization has to be undertaken each time a new material is produced. 

Moreover, measuring the effective diffusivity of porous media is still a challenging 

task [15]. To complete these approaches, numerous works have been performed to 

compute thermal conductivity [16-19], diffusivity [20-22] and permeability [23-25] 

of ideal media such as regular or random arrays of cylinders. However, real 

composites exhibit a much more complex structure. In this paper, 3D CMT images 

are directly used to compute the transport properties of a preform at different stages 

of densification with the aim of performing direct comparisons either with 

experimental data, or with known model results.  
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In high-resolution images, carbon fibres can be seen in details whereas low-

resolution images enable us to view components of the fibrous reinforcement (yarns 

and needlings). Our computational method, described in the next paragraph, makes 

use of low-resolution images to compute thermal conductivity, gas diffusivity and 

permeability of the material. High-resolution images are also used to determine the 

local arrangement of fibres inside yarns, and to compute diffusivity-porosity 

relations. Results related to each property are presented and discussed in the last 

section.  

 

2 Experimental study 

A thorough description of the material studied here can be found in our 

previous paper [10]. It is a C/C composite, provided by Snecma Propulsion Solide, 

Le Haillan, France. The preform weave layers are stacked horizontally (x – y plane). 

Then, harpoon-shaped needles are used to punch these cloth stacks: as a 

consequence, fibres are broken and partially transferred in the z  direction. The 

stacks are now held together by needlings. The volume fraction of fibres is about 

30%, and 4% lie in z direction. The diameter of carbon fibres is about 8 µm. The 

yarn, less than 1 mm in diameter, is made up of the gathering of a large number of 

fibres. In this study, pores inside a yarn will be referred to as micro-pores while 

pores between yarns will be called macro-pores. Thus, there are two scales of 

heterogeneity to take into account in order to assess correctly the properties of the 

preform. 

Three samples were extracted from the preform at different stages of 

densification. The first one, CC0, was taken from the raw preform. Its bulk density, 

obtained by weighing and measuring the sample, is 470 kg.m-3, and the 
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corresponding porosity is 73%. Two other samples were taken after the preform was 

partially infiltrated. Owing to the fabrication process (isothermal isobaric CVI), the 

core of the preform is more porous than its borders. 

The samples, extracted at different depths, have consequently distinct 

characteristics. CC1 has a bulk density of 770 kg.m-3 (corresponding to 58% 

porosity) and CC2 a bulk density of 1520 kg.m-3 (corresponding to 20% porosity). 

The samples were embedded in organic resin and manufactured so as to image them 

at two different resolutions (high and low), and view the two scales of porosity. In 

addition to these samples, another sample with an infiltration level intermediate 

between CC1 and CC2 (giving a 35% porosity) has been imaged only at low 

resolution. It will be referred to as CC1b. 

The interested reader is referred to the preceding paper [10] for a detailed 

description of the experimental procedure featuring sample preparation and 

synchrotron x-ray CMT acquisition at European Synchrotron Radiation Facility 

(ESRF, Grenoble). Images used in this study are high and low-resolution images 

(effective voxel size equal respectively to 0.7 and 7.46 µm). Figure 1 is an example 

of the results obtained for sample CC1. 

 

3 Computational methods  

 

3.1 Double change of scale strategy 

Due to the fabrication process (gathering of a large number of fibres in yarn 

and then arrangement by weaving and needling of these yarns), the preform exhibits 

two scales of heterogeneity. High-resolution images enable us to view small-scale 

details [at the scale of the yarn, see Fig. 1(b)] whereas large-scale patterns can be 

fully captured in low-resolution images [see Fig. 1(a)]. Geometrical assessments 
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[10] strongly support such an evidence, at least for partially infiltrated samples. 

Since low-resolution images only provide information on large-scale properties (i.e., 

at Representative Elementary Volume (REV) size), small-scale information has to 

be integrated into it. This is the first change of scale: its procedure, schematised in 

Fig. 2, consists in determining the local properties of the high-resolution image by 

dividing it into cubic sub-samples of edge length a (variable parameter). Porosity, 

fibre orientation and then transport properties inside each sub-sample are 

determined. The results are cast into expressions relating the transverse and parallel 

properties to the local porosity. The second change of scale consists in computing 

the effective properties (thermal conductivity, gas diffusivity and permeability) of 

the low-resolution image from a field of small-scale properties by the method of 

volume averaging (see Fig. 3). The procedure starts from the subdivision of the low-

resolution images into sub-images; then, inside every sub-image, an evaluation of 

porosity and local fibre orientation is performed. Then, local property tensors may 

be affected to every sub-image; they may come either from the results of the first 

change of scale, or from analytical models. 

This strategy is suggested by the following argument: in a macro-scale 

image, there exists a distribution of porosity N()d, that may be assessed by means 

of image analysis. If some property  is known to be correlated to porosity by a 

relation  = (), a porosity-average of the property is given by: 

    
1

0

dN       (1)  

Then, the proposed procedure is a mere extension of this simple averaging by taking 

into account the true space distribution of porosity, as sampled at macro-scale. The 
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hypothesis that is taken here is that the porosity-property correlation is correctly 

sampled at micro-scale and directly transposable for macro-scale computations. 

The double change of scale procedure is suggested for the computation of 

effective properties of the fibrous preform at the beginning of the densification 

process (sample CC0 and CC1 with respective porosities 73% and 58%). In the 

latter stages of densification, a simple change of scale procedure for the computation 

of gas transport properties is proposed (samples CC1b and CC2 with respective 

porosities 35% and 20%). Indeed, in such a case, the micro-pores are quite sealed 

off by the deposition reaction, so that they may be safely disregarded. 

 

3.2 Determination of local porosity 

Six sub-samples, 2103 voxels (i.e., 1.63 mm3) in size, have been selected, 

three of them in the tomographic low-resolution image of CC0 and the three other 

ones in the low-resolution image of CC1. Each sub-sample has been subdivided into 

cubic sub-sub-samples of 6 voxels edge size (i.e., 0.045 mm3), the porosity of which 

has to be determined. The tomographic image is a 3D reconstruction of the 

absorption coefficient of the material traversed by the x-ray beam. Therefore, the 

grey level of each voxel is a linear combination of the average grey level of each 

individual component of the material. Let G1 be the grey level associated to void 

space, and G2 the grey level of the carbon components (fibre or deposit). Then, the 

average grey level <G>i of the ith sub-sample of porosity i is:  

 1 2 (1 ) i i iG G G       (2)  

Finally, a proportionality relationship is given between the average grey level of the 

sub-sub-sample and its porosity: 

 2

1 2 1 2

1
i i

GG
G G G G

    
 

 (3)  
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However, there is a phase contrast phenomenon [26] which makes this law not 

exactly true. Moreover, we have assumed that the grey level was the same for all 

carbon-containing components, which is not strictly the case, as their densities are 

indeed somewhat different [27]. Instead of using Eq. (3), we have determined, in an 

image of 500 voxels edge length, the threshold greyscale value Gt that leads to a 

binary image whose porosity matches the experimentally determined value. Then, 

the porosity i of each sub-image of 6 voxels edge length has been determined by a 

thresholding operation at greyscale level Gt. A linear correlation has finally been 

established between i and the average value of the greyscale level <G>i of the sub-

image.  

Using these correlations, the porosity of each sub-sub-sample inside low-

resolution images of CC0 and CC1 has been calculated. The mean pore volume 

fraction of the whole sub-samples (210 voxels edge length) are 72.7, 73.6, and 

73.4% for CC0 and 60.6, 58.7, and 55.3% for CC1, in agreement with 

measurements (73 ± 1.5% for CC0 and 58 ± 2% for CC1). The scatter of pore 

fraction values indicates that the sub-samples are not large enough to be 

representative, particularly for CC1. Consequently, the effective property of the 

composite will be assessed by averaging the values determined in the three sub-

samples. 

3.3 Determination of local fibre orientation 

The second geometrical property that is crucial in the computational 

procedures is the local orientation of the fibres. This issue has been addressed with 

an original method based on a random-walk algorithm sensitive to the local 

anisotropy. Details are given in the first part of this article [10]. Each cubic region of 

6 voxels edge length was arbitrarily thresholded to 50% pore fraction and random 
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walkers were allowed to travel in the “fluid” phase until the covariance matrix of the 

centred displacements, divided by twice the walk time, converges to a pseudo-

diffusion tensor. The eigenvector associated to the largest eigenvalue indicates the 

direction of preferred diffusion, which is assimilated to the local fibre orientation. 

The validity of the method has been checked by quantifying the proportion of fibres 

lying in the x, y and z orientation. The proportion detected by our method is in good 

agreement with values established otherwise [28].  

3.4 First change of scale by direct computation 

Once the porosity and the fibre orientation inside each sub-sub-sample of 6 

voxels edge length have been computed, the next step consists in determining 

effective transport properties from each sub-sample by homogenisation.  

 

3.4.1. Determination of local gas transport properties 

Computations make use of a random-walk algorithm described by Vignoles 

[29]. It is indeed a homogenisation procedure since the effective property is 

computed over walks the size of which is much larger than one single image. When 

a walker crosses an image border, it is reintroduced in the opposite border. Another 

way to describe the method is the following: consider that the space is paved by 

repetition of the elementary image. At t = 0, all walkers are placed randomly in the 

fluid phase of an elementary image located at the space origin: thus the initial 

average concentration field is (up to some noise due to the finite number of walkers) 

a hat-function. The random walk provides a numerical Lagrangian solver for the 

classical unsteady diffusion problem represented by Fick’s second law, subject to 

the above mentioned initial condition and to boundary conditions of null 

concentration at infinite distances. The diffusion coefficient that arises from the 

convergence of the covariance matrix is also an inverse identification of the 
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analytical Gaussian solution in the limit of large spreading (i.e., such that the initial 

hat-function is considered as a Dirac impulse distribution).  

There are three diffusion regimes depending on the Knudsen number Kn, 

which is the ratio between the mean free path of the molecules and the pore 

diameter: the ordinary (continuum) regime (Kn << 1), the transition regime (Kn ~1) 

and the Knudsen regime (Kn >> 1). The random walk performed by the molecules 

introduced in the void space of the porous medium is directly linked to the Knudsen 

number and allows one to determine the effective diffusivity tensor D at any value 

of Kn.  

The numerical procedure, applied with 10,000 walkers over 20,000 voxel-

long walks (the image edge size was 141 voxels) has been validated in comparison 

with analytical results [16] in bulk diffusion regime for square and hexagonal 

regular arrays of parallel cylinders, and by comparing with numerical results in 

Knudsen regime for a square array of parallel cylinders [22] with differences inferior 

to 5% in all cases, the worst ones lying close to the percolation threshold. 

Results are shown in Figs. 4 and 5 in terms of tortuosities for Knudsen and 

ordinary transport in transverse direction. Tortuosity  is defined by: 

 1refD D    (4)  

where refD  is a reference diffusivity, corresponding to the longitudinal diffusivity in 

a capillary the diameter of which is equal to the mean pore diameter. This reference 

value is computed using the Bosanquet formula [30]. When Kn has appreciable 

values, refD  depends on an assessment of the pore diameter, which is available in 

the images as shown previously [10]. 

The results are then collected together in a porosity-transport property 

correlation [31]. To do so, gas diffusivity has been evaluated in a large number of 
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sub-images within the high-resolution 3D images of CC0 and CC1 (respectively 

384 for sample CC0 and 1176 for sample CC1). These high-resolution sub-samples 

have nearly the same physical size as the sub-samples in the low-resolution images 

(i.e., ~0.05 mm3) so that correspondence between the microscopic correlation 

established from these extracts and the property of the sub-samples is valid.  

The simulated longitudinal and transverse tortuosity of each sub-sample can 

be modelled in the form suggested by Tomadakis and Sotirchos [32], which is an 

extension of Archie’s law:  

 0lim
i

p
i i

p


 

 
 

 
    

 (5)  

Using a unit initial porosity, the identified coefficients for continuum and rarefied 

limits in parallel and transverse direction are shown in Table I. In all cases the 

parameter fitting has been satisfactory, as indicated by the values of the R2 

correlation coefficient on Table I. It is worth to compare them with predictions for 

ideal media like 1D, 2D, and 3D random overlapping fibre arrangements [32,21], 

and regular arrays in the bulk diffusion regime [16] (Note that estimates in Knudsen 

regime cannot be cast into the form of Eq. (5) because of the “infinite horizon 

effect” that would yield an infinite value for refD ). Table I shows that the 

percolation porosity matches well the situation for 3D random fibre arrangements. 

The tortuosity limits in Knudsen regime lie between values for 1D and 3D random 

arrangements, and the characteristic exponent is close to the value for a 1D random 

arrangement. In the bulk diffusion regime, the limit tortuosity differs from all ideal 

predictions by only 9%; on the other hand, the characteristic exponent is neatly 

lower than all values for random media and higher than values for regular 1D arrays. 
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However the estimates for the regular arrays using Eq. (5) are not very accurate with 

respect to the original formulae.  

From Figs. 4 and 5 and Table I, it is seen that there is not a large difference 

between samples CC0 and CC1 in Knudsen transport. On the other hand, for binary 

diffusion, an apparently more marked difference appears between samples CC0 

(very similar to a 1D random arrangement) and CC1 (much closer to a 3D random 

arrangement). However, the ordinate scale is linear in Fig. 5, while it is logarithmic 

for Knudsen diffusion (Fig. 4), denoting a much larger sensitivity to fibre 

arrangement in the latter regime.  

3.4.2. Verification of the locally orthotropic character 

The computational results yield three values of tortuosity, the lowest being 

close to 1 and defining the direction parallel to fibres, and the other two related to 

the perpendicular direction. These two values should be equal if the medium were 

locally orthotropic, but it is generally not the case. The error made when one 

considers the medium as orthotropic is quantified by the relative difference of these 

two values :  

 
2

Error x y

x y

 

 





 (6)  

Figure 6 is a histogram plot of the distribution of this error. It appears that sample 

CC0 is very close to obey orthotropy, especially for continuum diffusion (the error 

average is 5%), and to a lesser extent for Knudsen diffusion (average error 22%); on 

the other hand, the discrepancy is stronger for CC1: 16% average error for binary 

transport, and 72% average error for Knudsen diffusion. However, this has not a 

strong influence on further computations, since the anisotropy ratio is much larger 

than this relative difference. 
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3.4.3. Computation of the viscous flow permeabilities 

The values of the permeabilities are obtained from micro-scale images by an 

averaging technique, performing a Stokes-Darcy change of scale. At low Reynolds 

numbers, it is sufficient to describe the fluid movement by Stokes equations:  

  

2 0  in 
0  in 

0  on 

f

f

fs

P 
 



   
  
  

v
v

v
  (7)  

Either by homogenization [33-34], or volume averaging [35], the 

macroscopic behaviour is proved to have the following form [36]:  

 eff1

0
fB P 

   


   

v

v
 (8)  

where effB  is the mesoscopic permeability tensor (m2). Eq. (8) is the well-known 

Darcy law [37]. The numeric value of the permeability tensor may be attained as an 

average of a closure tensor F: 

 effB F    f  (9)  

where F, together with another vector closure variable f, satisfies the following 

problem [38]: 

 

2
f

f

fs

        in 
        . 0                  in 

        = 0                    on 

        = 0            
        + periodic B.C.'s for  and 

F Id
F

F

F







   
 
 





f    
 =

f
f

f

 (10)  

The resolution has been implemented in a finite-volume solver [39-40], 

using an artificial compressibility transient scheme. 

It has not been possible to perform as many computations as for diffusion, 

because the large size of the sub-samples required too much computer memory; 
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rather, it has been chosen to select some sub-samples and correlate permeabilities to 

existing expressions. Of particular interest is the correlation with effective binary 

diffusivities suggested by Johnson et al. [41] and Tomadakis & Robertson [42]. If 

one defines viscous flow tortuosity 
v

  as:  

 
2

eff 1

32
p

v

d
B     (11)  

Then, summarizing the theory of Johnson [41], the permeability-diffusivity 

correlation is given by the simple formula:  

 
2

, ,
,

ln
1

ln
b i b i

v i M
 




 
   

 (12)  

where M is a constant close to 1. Recalling the extended Archie’s law result 

[Eq. (5)], one has the following prediction: 

 

2

, ,
, 1b i b i

v i
pM

  


 
 

    
 (13)  

The best found value for M in perpendicular direction is 0.95. Figure 7 is a 

plot of the tortuosities in perpendicular direction predicted with Eq. (13) against the 

value computed directly. Even though some scatter is present, the agreement is 

satisfactory on a broad enough tortuosity range. On the other hand, results in parallel 

direction are somewhat underestimated through this method; they match more 

satisfactorily the correlations given by van der Westhuizen and Du Plessis [25] and 

by Tomadakis and Robertson [42] for random arrays of nonoverlapping parallel 

cylinders, as illustrated in Fig. 8. Also reported is the Kozeny relationship identified 

by Gutowski et al. [43], with a less satisfactory agreement. 
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3.5 First change of scale from ideal media: local thermal conductivity 

Heat conduction in carbon/carbon composites is strongly related to the 

precise nature of the carbon-based components (carbon fibre and pyrocarbon 

deposit), as well as to the gas. The thermal conductivity of carbon fibres is not easy 

to measure and is a subject of research [44-45]. In lack of precise measurements, we 

will refer to studies conducted by Sauder [46], who deduced from electrical 

resistivity measurements the longitudinal conductivity of carbon fibres. According 

to Jumel et al. [47], the thermal conductivity of carbon fibres lies between 4 and 

10.5 W.m-1.K-1. A value of 5 W.m-1.K-1 has been retained for this study. The values 

determined by Jumel et al. [47,48] for the pyrocarbon deposit have been used. 

However, it is worth mentioning that there is a great variety of pyrocarbons, with 

different nanotextures and consequently various thermal properties. The values 

taken for this work are summarized in Table II. Of course, the gas thermal 

conductivity is markedly lower than all other values, and its possible variation with 

pressure and temperature may be safely neglected. 

It appears immediately that the heat conductivity of the solid phases is 

strongly anisotropic; moreover, the pyrocarbon deposit displays a cylindrical 

symmetry: this renders extremely difficult a direct simulation from CMT images, 

since the central axis of every fibre should be determined before assigning a local 

value of the heat conductivity to any voxel. So, it has been decided to provide a 

somewhat less satisfactory but readily feasible estimation based on a square array of 

parallel cylinders. The periodic unit cell is described in Fig. 9. 

The longitudinal conductivity ,//i  of the ith cell is directly given in analytical 

form by a law of mixtures (for conductances in parallel), where ,fi i  is the fibre 

volume fraction: 
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 ,// , ,// , ,//(1 )i i gas fi i fi i fi i pyC                (14)  

At the raw state (sample CC0), the material is only made of fibres and pores 

so that ,fi i  is simply  1 i . When the material is partially infiltrated, the local 

fibre fraction can be deduced from the local porosity by using the following 

proportionality relation: 

  , 1 fi
fi i i

s


 


   (15)  

where fi  is the average fibre fraction in the material and s  the average 

solid fraction. The ratio between these two values is about 0.643 for CC1.  

 
For the transverse conductivity of CC0, the following analytic equation of 

Perrins et al. [16] is suitable:  
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 (16)  

For CC1, constituted of three phases, the situation is more difficult. To partially 

circumvent this, the transverse conductivity of a square array of cylinders covered 

by an anisotropic deposit [see Fig. 9(a)] has been computed. The radius taken for the 

cylinders is 3.98 µm and the deposit thickness 2.6 µm (values assessed in [10] and 

confirmed by SEM micrographs). Computations have been performed for volume 

fraction of fibres lying between 0 and the percolation threshold for such an 

arrangement (i.e., 78.5%). The flux/force correlation method [49-50], solved by a 

finite element software package, has been used. The results established for CC1 

follow Eq. (16) if ,fi i  lies below a given threshold ,fi t , and in the converse case is: 

  2

, ,
, ,

-0.0141 143.1 137.9 -12.8    f
i fi i i

fi i fi t

  
    


 (17)  
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Expressions (16) and (17) are plotted at Fig. 10(a). They are converted into a 

porosity-conductivity correlation for CC1 as plotted at Fig. 10(b). 

3.6 Second change of scale: Computation of “large scale” properties 

3.6.1 Strategy 
 

The second change of scale consists in determining the effective property in 

large-scale images, the size of which is broad enough to ensure adequate 

representation of the whole porous medium. Whatever the property, this is computed 

by the same method, since all integrated expressions have the same flux-force 

formalism.  

Details of the application of the volume averaging method [35] to the 

process of heat conduction in two- and three-phase systems is described in [51]. In 

their work, focused on the first change of scale, spherical conductivity tensors are 

considered for each phase. However, the change of scale procedure for another 

diffusive process, namely the single phase flow in heterogeneous porous media 

(two-region media and heterogeneous porous media with continuously varying 

properties), leads to similar results in which the permeability tensors considered are 

not necessarily spherical [52]. The extension of their results to multi-region models 

is rather straightforward. In all the works cited above the averaging process and the 

closure is based upon an equilibrium assumption, assuming that a single large-scale 

equation, therefore a single large-scale effective property, is sufficient for a correct 

macroscopic description of the phenomena. 

The averaging process [53] leads to the following closure problem: 
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where  is the large-scale averaging volume composed of n regions (i, i = 

1,..,n). The tensor i is the conductivity tensor for the ith region (i), bi is the closure 

variable defined in i. The interface between regions i and j is denoted ij. The 

large-scale average of a quantity  is defined as  

   





 dv1
 (19)  

The effective conductivity tensor is given explicitly as a function of the 

closure variable b and local conductivities resulting from the first change of scale:  

    ~* :    b  (20)  

Where 
~
  is the conductivity deviation resulting from the decomposition of the 

local conductivity as  
~

      

The closure problem has been solved numerically using a continuous-flux, 

locally conservative finite volume method with a 27-point scheme proposed by 

Edwards and Rogers [54]. Indeed, the typically employed seven-point stencil cannot 

be used in this particular case of full tensor local conductivity. A thorough 

description of the method can be found in Cherblanc et al. [55]. 

At advanced stages of densification, the pore space exhibits only one degree 

of heterogeneity with respect to gas transport, since the contribution of micro-pores 

vanishes because of size reduction and of connectivity loss. Thus, a simple change 
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of scale can be designed for the computation of gas transport properties of such a 

material. However, since heat transport is not ensured by the pore space, this 

assumption is not true for the computation of thermal conductivity. For the 

computation of gas transport properties, 3 extracts with edge size equal to 200 

voxels were selected within low-resolution images of CC1b and CC2. Sub-images 

were segmented to separate the solid phase from the pore space. Effective 

diffusivities are then computed using the random-walk algorithm described 

previously. For the effective permeability tensor, the algorithm developed by Anguy 

and Bernard [39-40] presented above has been used again.  

The results have been compared to experimental measurements as far as 

possible; data were available on thermal conductivity [56] and on pure gas transport 

[57-58]. The latter properties have been determined at LCTS on a simple traditional 

experimental setup, inspired from [59,15] using argon, with a calibrated gas flow 

meter, a pressure difference gauge, and a terminal low-pressure regulation unit 

(vacuum pump and vane). From steady-state flow versus pressure difference curves 

obtained at various average pressures, the permeability and Knudsen diffusion 

coefficient were recovered [60-61]. 

3.6.2 Results 

Figure 11 is a plot of computed Knudsen diffusivities as compared to 

experimental determinations performed at LCTS; at macro-scale, the parallel and 

perpendicular directions now refer to the cloth stacking, and not to the fibre 

orientations. The calculated values are in qualitative agreement with the 

experiments, but there is a tendency to underestimate at high porosities. Many 

reasons may be put forward. First, the experimental determinations are of limited 

reliability, because of the small values of the flows involved. Also, the CMT-based 
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estimation relies on the assumption of linear relationship between local greyscale 

level and density, which is not exactly verified because of the presence of a certain 

amount of phase contrast – such an artefact is more pronounced for the most porous 

samples. 

Even if there is no experimental data available on binary diffusion, it is of 

interest to investigate the effect of the Knudsen number on the effective tortuosity. 

Figure 12 is a plot of the estimated values for samples CC0 and CC1, showing : (i) a 

very low value for all tortuosities, as can be expected in a very porous medium, and 

(ii) a monotonous evolution for CC1 while there is a hump for CC0. The latter 

behaviour had been reported in [22] for regular unidirectional arrays of cylinders 

with large porosity. A direct interpretation for it is that the mean free path is 

drastically increased when going from the transitional to the rarefied regime, 

because a very open structure provides longer free paths; indeed, when it is too 

open, convergence of the effective transport law (i.e., flux/gradient relationship) to 

classical Knudsen diffusion is not even ensured. 

Figure 13 is a plot of computed versus measured permeabilities, showing 

qualitative agreement, and a marked discrepancy for high-porosity samples. The 

aforementioned limitations on the image-based evaluation method appear again, 

more or less in the same way as for Knudsen diffusion. 

Figure 14 is a plot of computed vs. measured heat conductivities, showing an 

excellent agreement in both directions.  

Summarizing the results of Figs. 11, 13, and 14, it can be said that the porous 

medium family corresponding to the C fibre preform at various stages of infiltration 

has been correctly assessed on all transport (and geometrical) properties. Of these 

transport properties, Knudsen transport has been found to be the most sensitive to 
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infiltration, followed by viscous flow and finally by thermal conductivity. This is in 

agreement with the physicist’s intuition: first, thermal conductivity contrasts are 

known to be low, e. g. compared to electrical conductivity or any other property; 

second, Knudsen transport displays in many media a stronger tortuosity increase 

with diminishing porosity than the other gas transport parameters, because of the 

rapid view-factor reduction for direct transport as soon as a conducting medium is 

not straight. This last fact is confirmed here again both numerically and 

experimentally. 

4 Conclusion and outlook 

Raw and partially infiltrated carbon-carbon composite preforms have been 

scanned by high-resolution synchrotron radiation X-ray Computerized Micro-

Tomography (CMT). The quality of the images had been assessed on geometrical 

quantities in a previous work [10]. Here, the images of the pore space have been 

produced at two distinct resolutions and have been used for the computation of 

transport properties: heat conductivity, binary gas diffusivities, Knudsen 

diffusivities, and viscous flow permeabilities. It is the first attempt to perform such a 

simultaneous evaluation directly from tomographic scans on C/C composites, mostly 

because: (i) very high-scale 3D images with adequate phase identification were not 

previously available, and (ii) the bimodal nature of the samples implies to develop a 

double-change-of-scale strategy.  

The numerical evaluation of fibre-scale gas diffusivities in continuum and 

rarefied regime in the studied media compare favourably with estimates on ideal 

media families like 1D, 2D and 3D random fibre arrays. Viscous flow permeabilities 

have also been assessed and compared to available correlations for 1D random fibre 

arrangements, showing excellent agreement with the van der Westhuizen-Du Plessis 
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[25] and Tomadakis [42] models in parallel direction, and with the Tomadakis 

model in perpendicular direction. Further work at this scale concerns primarily the 

direct computation of thermal conductivity or diffusivity: this requires a separate 

segmentation of fibres and matrix, with a local assignment of material principal axes 

of anisotropy; this work is currently under way. 

Computations at a larger scale have been carried out for all transport 

properties; it has been possible to compare directly the results with experimental 

data acquired on the same materials for Knudsen diffusivity, viscous flow 

permeability, and thermal conductivity. Despite an excellent agreement on all 

properties, many improvements may be suggested. First, images of high-porosity 

samples do not totally verify the greyscale-porosity correlation because of phase 

contrast – tomographs taken at the same resolution with a classical x-ray source 

would be of better exploitation. 

Second, concerning gas transport, there is a need for a unified solver, able to 

manage high- and low-porosity samples in the same way. This could be achieved for 

viscous transport by writing down a Stokes-Brinkman microscopic problem, 

followed by the traditional change-of-scale procedure. This is also under way. 

Third, replacing the provided analytical estimates for fibre-scale thermal 

conductivity by estimates based on the results of a full numerical computation (as 

mentioned above), would increase greatly the confidence in the quality of this CMT-

based approach. 

Taking note of these improvement suggestions, it is claimed here that CMT-

based simulations are a powerful tool for the assessment of all properties of interest 

in C/C composite preforms during infiltration, which is of great importance in CVI 

process modelling. By combining process-scale approaches and the correlations 
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obtained in the past [10] and present works, it is possible to carry out a multi-scale 

simulation. Repeating the procedure on several fibre arrangements would allow 

comparing them one to each other in the sense of “infiltrability”, that is, of the 

predisposition to receive as much matrix as possible in given conditions. 

Finally, it is also possible to develop numerical methods for the detailed 

simulation of in-pore matrix deposition; utilizing them in a suitable double-change-

of-scale strategy would also allow to assess quantitatively the notion of 

“infiltrability”. This is yet another work in progress. 
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Rarefied (Knudsen) regime Continuum (ordinary) regime  Percolation 
porosity 

Limit 
tortuosity 

Exponent Limit 
tortuosity 

Exponent 

Parallel  

Samples CC1 
and CC0 

0.04 0.817 0.126 1.0 0.107 

Correlation coefficient R2 0.95 0.99 

2D random 0.11 1.149 0.954 1.0 0.521 

1D random 0 0.549 0 1.0 0. 

Transverse  

Samples CC1 
and CC0 

0.04 1.411 1.047 1.09 0.465 

Correlation coefficient R2 0.93 0.99 

3D random 0.037 1.444 0.921 1.0 0.661 

2D random 0.11 1.780 1.005 1.0 0.785 

1D random 0.33 1.747 1.099 1.0 0.707 

1D hexagonal 0.093   1.0 0.335 

1D square 0.215   1.0 0.358 

 

 

Table I : Comparison of parallel and transverse tortuosity-porosity correlation 
parameters [Eq. (12)] obtained from high-resolution tomographic images with estimations on 

ideal fibrous media [32] 
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Component Thermal conductivity (W.m-1.K-1) 

Longitudinal :         fi,// = 20 
Fibre  

Transverse :           fi, = 4 
Longitudinal :         pyC,// = 114 
Radial :                   pyC, = 44 Pyrocarbon 

Orthoradial :           pyC,// = 114 
Gas Isotropic :               gas = 0.13 

 

Table II : Thermal conductivities of C/C composite components 



33 

 
Sample Method Pore 

volume 
fraction 


In-plane heat 
conductivity
(W.m-1.K-1)

Transverse heat 
conductivity
( W.m-1.K-1)

72.7 0.62 0.43 
73.6 0.61 0.37 

Computed in sub-
samples 

73.4 0.57 0.40 
Computed, average 73.2 0.60 0.40 

CC0 

Measured 73.0 0.60 0.38 
60.6 3.74 1.44 
58.7 3.74 2.05 

Computed in sub-
samples 

55.3 4.17 2.14 
Computed, average 58.2 3.88 1.88 

CC1 

Measured 56.5 5.00 1.75 
  

Table III: Simulated thermal conductivities obtained with the double change of scale 
procedure and measurements performed by Demange and Laizet [56] 

 
 
 
 


