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S U M M A R Y
Viscoelastic inversion is developed for a realistic, simple, causal hereditary model with a
power-law attenuation. In this class of models the energy travels with a delay behind the wave
front because the effective speed of the seismic signal is lower than the infinite-frequency
limit of the propagation speed which determines the wave front propagation. In inversion this
discrepancy affects the correct positioning of scatterers and interfaces. Our inversion method
is an extension of Ribodetti’s imaging method. Using a power-law model, propagation- and
attenuation-related parameters are uncoupled for the acquisition geometries used in laboratory
and in field seismic experiments. The method is applied to ultrasonic laboratory data where we
have complete control of the acquisition parameters and the physical properties of the medium
to be recovered are well known. An application to ultrasonic data for a wavefield scattered
from a hollow PVC sample and a lava sample immersed in a water tank demonstrates that
the proposed inversion method allows reliable parameter estimation in the power-law class of
viscoacoustic models.

Key words: inversion, lava sample, seismic attenuation, ultrasonic laboratory data, viscoelas-
ticity.

N O TAT I O N

ˆf (ω) = 1

2π

∫ ∞

−∞
eiωt f (t) dt

˜f (s) =
∫ ∞

0
e−st f (t) dt

1 I N T RO D U C T I O N

Realistic inversion of seismic wave data requires a model which is mathematically rigorous, physically acceptable and sufficiently flexible.
Such a model has to include absorption and dispersion effects and must also satisfy the causality principle. Power laws of attenuation (Szabo
1994, 1995) are the simplest models of causal and attenuating media that include absorption and dispersion effects. Power-law models can
be associated with a subset of the class of viscoelastic equations of motion with singular memory, studied in a related paper (Hanyga &
Seredyńska 1999a). A more detailed mathematical study of this class of integro-differential equations can be found in (Lokshin & Rok 1978a;
Hanyga & Rok 2000; Hanyga & Seredyńska 2002). Solutions of the associated initial-value problems are infinitely smooth at the wave fronts.
Since the solution vanishes ahead of the wave front, an initial singular delta-spiked pulse sent by the source immediately spreads out and its
maximum lags behind the wave front. The peaks of a smooth causal signal arrive with a fixed delay with respect to the wave front, determined
by the properties of the signal only. In power-law models there is an additional delay depending on the attenuating properties of the medium
and increasing with the propagation distance. Since the energy travels with an ever-increasing delay behind the wave front, the effective
speed of the seismic signal is lower than the infinite-frequency limit of the propagation speed associated with the wave front. This has some
importance for imaging scatterers such as interfaces. As shown by Hanyga & Seredyńska (1999a), for a given source, receiver and a singly
scattered signal arrival time the location of the scatterer lies in a thin layer above the isochrone determined from wave front (or traveltime)
considerations.

The principal objective of this paper is to present a method of viscoelastic inversion for power-law viscoacoustic models. Seismic
inversion (or its first, imaging stage) is usually based on the Beylkin method of interface imaging (Beylkin 1985). It is, however, easy to see
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Inversion in viscoelastic media 427

that the original Beylkin method does not apply to attenuating media due to the failure of a symmetry of the phase function as a function of
frequency. We shall therefore apply the method of viscoelastic inversion developed by Ribodetti et al. (2000).

In an attenuating medium the phase of a signal consists of an imaginary part, which is an odd function of frequency, and a negative real
part, which is an even function of frequency. The Beylkin single-step inversion method (Beylkin 1985), commonly used in elastic imaging,
implicitly assumes that the phase is an odd function of frequency. An extension of Beylkin’s imaging method, adapted for dealing with
viscoelastic media, was recently developed by Ribodetti et al. (2000) and applied to a non-causal constant-Q model. Ribodetti’s method takes
into account the lack of symmetry between positive and negative frequencies in attenuating media.

In this paper we apply the method of Ribodetti et al. (2000) to power-law attenuation. In causal hereditary models the appearance of an
additional imaginary dispersive phase associated with the attenuation factor causes some additional complications in the transformation from
the frequency variable to the composite wavenumber vector length, as required by Beylkin’s method.

The inversion scheme is tested on data acquired from laboratory measurements of the acoustic wavefield scattered by a hollow PVC
cylinder and by a lava cylinder immersed in a water tank. It is demonstrated that the inversion allows a complete parameter estimation in the
power-law class of acoustic models.

The power-law model is presented in Section 2, while the inversion method is described in Sections 3 and 4. An application to laboratory
data (a PVC and lava specimen immersed in a water tank) is discussed in the following sections.

2 M O D E L

A scalar model of single-mode wave propagation with power-law attenuation can be represented by a frequency-domain expression:

û(ω, x) ∝ f (ω) exp [iωT (x) − (−iω)α A(x)] /(4π |x|) (1)

with A ≥ 0, 0 < α < 1, and a source spectrum f (ω). It is easy to see that the inverse Fourier transform u(t, x) of û(ω, x) vanishes for
t > T provided the function f (ω) is analytic in the upper complex half-plane (Hanyga & Seredyńska 2002). In fact, for f = 1 and T = 0
the right-hand side of (1) is a totally skewed α-stable probability distribution, vanishing identically on the negative real axis (Uchaikin &
Zolotarev 1999; Kreis & Pipkin 1986). Since we shall only need Green’s functions for a homogeneous background medium, caustics are
absent. Following the method of Appendix D in Hanyga & Seredyńska (2002) one can easily show that eq. (1) is the dominating term of the
frequency domain solution

ũ(s, x) = 1 + K̃ (s)

4πr
exp[−rsφ(s)/c] (2)

of the initial-value problem

utt + K (t) ∗ utt = c2∇2u + δ(t)δ(x); u(0, x) = ut (0, x) = 0 (3)

where s = − iω is the Laplace-transform variable conjugate for t,

φ(s) = 1 + (τ s)α−1

and

1 + K̃ (s) = φ(s)2 ≡ 1 + 2(τ s)α−1 + (τ s)2α−2 (4)

with a constant τ > 0 of dimension [T]. The kernel K(t), given by the formula[
2(t/τ )−α/�(1 − α) + (t/τ )1−2α/�(2 − 2α)

]
/τ (5)

is singular at t = 0 and locally integrable. Eqs (3) with the kernel (5) were originally studied by Lokshin & Rok (1978a,b) (cf. also Lokshin
& Suvorova 1982; Dautray & Lions 1992; Hanyga & Seredyńska 1999b, 2002; Hanyga & Rok 2000; Engler 1997). Since the kernel δ(t) +
K (t) is invertible in the convolution algebra, it is possible to define an equivalent stress relaxation function at the expense of working with the
Mittag–Leffler function. Consequently, the medium defined by eqs (3) and (5) is viscoacoustic.

Eq. (2) implies that complex-valued wave propagation velocity for the model is given by the formula

v(ω) = c/φ(−iω)

while the quality factor

Q−1 = 4π cos(πα/2)(ωτ )α−1.

Since the kernel δ(t) + K (t) is invertible in the convolution algebra, eq. (3) is equivalent to a viscoacoustic equation

ρutt = c2∇2u + c2 f (t) ∗ ∇2u + [1 + f (t)] δ(x); u(0, x) = ut (0, x) = 0. (6)

The stress response kernel f (t) can be expressed in terms of the generalized Mittag–Leffler functions (Engler 1997). The creep function of
the corresponding viscoelastic material is, however, quite simple (Engler 1997)

J (t) = 1 + 2
(t/τ )1−α

�(2 − α)
+ (t/τ )2(1−α)

�(3 − 2α)
.

The causality and dissipative nature of power-law models for 0 < α < 1 is proved in Hanyga & Seredyńska (2003).
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428 A. Ribodetti and A. Hanyga

The inverse Laplace transform of ũ(s, x) can be expressed in terms of Wright functions (Podlubny 1998). For α = 1/2, 1/3, 2/3 the
time-domain solution can be expressed in terms of easily computable functions (elementary functions, the complementary error function and
the Airy functions, Hanyga & Seredyńska (2002)). For slightly more general kernels

K (t) = [
2a(x)(t/τ )−α/�(1 − α) + b(x)(t/τ )1−2α/�(2 − 2α)

]
/τ (7)

the initial-value problems for eq. (3) can be approximately solved by the Born approximation (Hanyga & Seredyńska 1999a) or, for α = 1/2,
1/3, 2/3, by ray-asymptotic methods (Hanyga & Seredyńska 2002). Efficient finite difference and pseudospectral methods can be based on an
equivalent formulation in terms of fractional time derivatives (Podlubny 1998; Lu & Hanyga 2004). For applications in seismic inversion the
Green’s function for the background model should preferably be computable in the frequency domain. This leaves the following possibilities
for the background model: it is either an arbitrary power-law model (3) with the kernel K given by eq. (5) and constant parameters, or a
possibly heterogeneous model for which a ray-asymptotic Green’s function is available, defined by the time convolution kernels (7) with α =
1/2, 1/3, 2/3.

3 B O R N A P P RO X I M AT I O N

Let G 0(t , x) denote the Green’s function for the background medium, i.e. the solution of eq. (3) with c2 = κ 0/ρ 0, with positive constants κ 0,
ρ 0,

K0(t) = 2
(t/τ )α0−1

�(α0)
+ (t/τ )2α0−1

�(2α0)
(8)

a constant 0 < α0 < 1 and a positive constant τ .
The perturbed medium is characterized by the memory kernel K (t , x) = K 0(t) + δK (t , x), and the parameter κ(x) = κ 0 + δκ(x). The

corresponding Green’s function satisfies the equation

Gtt + K ∗ Gtt = (1/ρ)∇ · [κ∇G] + δ(t)δ(x); u(0, x) = ut (0, x) = 0 (9)

or, equivalently

Gtt + K0 ∗ Gtt − (1/ρ0)∇ · [κ∇G] = δ(t)δ(x)

− δK ∗ Gtt + δρ−1∇ · [κ∇G] + (1/ρ)∇ · [δκ∇G]

u(0, x) = ut (0, x) = 0.

(10)

We shall consider the kernel

K (t, x) = 2a(x)
(t/τ )α−1

�(α)
+ b(x)

(t/τ )2α−1

�(2α)
(11)

with a(x), b(x) close to unity and α ∼= α0.
The Green’s function G(t, x) of eq. (10) can be expressed in terms of G 0(t , x):

G(y, x, t1 − t0) = G0(y, x, t1 − t0) + ∫
G0(y, y′, t) ∗ [− δK (t, y′) ∗ Gtt (y′, x, t)

+ρ−1
0 ∇ · [δκ(y′)∇G(y′, x, t)]

]∣∣
t=t1−t0

dy′
(12)

where the asterisk denotes the time convolution and

δK (t, x) = 2[a(x) − 1]
(t/τ )α0−1

�(α0)
+ [b(x) − 1]

(t/τ )2α0−1

�(2α0)
+ 2

[
ln(t/τ ) − (t/τ )α0−1 ψ(α0)

]
(α − α0)/�(α0)

where ψ(z) = d ln �(z)/dz.
In the Born approximation

G(y, x, t1 − t0) ∼= GB(y, x, t1 − t0) := G0(y, x, t1 − t0)

+
∫

G0(y, y′, t) ∗ [ − δK (t, y′) ∗ G0,t t (y
′, x, t)

+ ρ−1
0 ∇ · [δκ(y′)∇G0(y′, x, t)]

]
dy′.

(13)

In the frequency domain the Born approximation assumes the form

ĜB(ω, y, x) = Ĝ0(ω, y, x) +
∫

Ĝ0(ω, y′, x)
{
ω2Ĝ0(ω, z, y′)δ K̃ (ω, y′)

+δρ−1(y′)∇ · [
κ0(y′)∇Ĝ0(y′, x, ω)

] + ρ0(y′)−1∇ · [δκ(y′)∇Ĝ0(ω, y′, x)]
}∣∣

t=t1−t0
dy′. (14)
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Inversion in viscoelastic media 429

Figure 1. Experimental set-up: the water tank, the data acquisition system and the PVC cylinder are shown. The horizontal plane at a depth of z = 0.67 m
beneath the water level containing source and receiver hydrophones and the horizontal section of the cylinder is plotted.

Figure 2. Acquisition geometry. (a) Schematic top view of the source–receiver system in a horizontal plane at z = 0.67 m. The target is the section of the
cylinder. (b) Close-up of (a) centred on the target. The dimensions of the cylinder and the size of the numerical grid used for inversion are indicated.
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430 A. Ribodetti and A. Hanyga

Figure 3. Seventy-two seismic traces of the scattered wavefield from the PVC cylinder: red, recorded data; blue, reconstructed data after inversion for
α = 0.5.

Figure 4. Comparison of recorded and synthetic seismograms for PVC for a guessed value of α = 0.4.
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Inversion in viscoelastic media 431

4 I N V E R S I O N

4.1 A generalized Beylkin-type inversion operator

We shall focus on the parameter κ = λ + 2µ (which is bulk modulus for water; λ and µ denote the Lamé constants) and the attenuation
parameter a for water and for the scatterer. The parameter b, appearing in a smoother part of the perturbed memory kernel, will be neglected.

Figure 5. Comparison of recorded and synthetic seismograms for the PVC cylinder; guessed value α = 0.6.

Figure 6. Recovered δa and δk sections for the PVC cylinder after one iteration for an assumed value of α = 0.5. The shape of the cylinder is clearly identifiable
on both sections notwithstanding a contamination by the source signature and multiples.
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432 A. Ribodetti and A. Hanyga

The parameter α is determined by the physics of the relaxation mechanism at the microlevel and therefore it is expected to be a material
constant. Furthermore, it is unlikely to exhibit a significant continuous variation in a medium or part of it (a phase) consisting of a single
material. Whenever the wave propagation occurs in one material it is convenient to hold α at a constant value while applying the inversion
procedure; the value of α is determined a posteriori by optimizing the discrepancy between the recorded data and the synthetic data obtained
from the parameters of the medium determined by inversion. In those cases where the scattered field is essentially reflected by an obstacle and
there is no significant transmission through the scattering obstacle it is also possible to guess the appropriate value of α for the surrounding
medium and for the scatterer before running inversion for the remaining parameters and check it a posteriori against alternative values.

In an experiment involving transmission through two media the exponent α is expected to assume two different values. In this case
inversion can be applied to determine the value of α and the remaining parameters directly. We shall accordingly consider two- and three-
parameter inversion, the latter involving the parameter α as an additional inversion target; it will be seen below that the local values of α can
be used for imaging the target.

In view of eq. (1) the phase of the Green’s function

� = iT (x) + iτ (−iωτ )α−1 A(x) = �R + i�I (15)

consists of an imaginary part

�I = T (x) + sgn(ω)τ |ωτ |α−1 sin(πα/2)A(x) (16)

and a real part

�R = −τ |ωτ |α−1 cos(πα/2)A(x). (17)

T denotes the traveltime, i.e. the arrival time of the wave front. While constructing the inversion operator the slowly varying factor exp(ω�R)
will be included in the amplitude, while the imaginary phase will be used in the construction of the inverse operator.

Let x(ξ ), z(ξ ) denote the set of sources and receivers parametrized by ξ varying over a region U ⊂ R
2 of the plane. The coordinates of

the scatterers are denoted by y. The total imaginary phase of a singly scattered wave in eq. (14) equals

�IT(y) = [T (x, y) + T (z, y)] + sgn(ω)τ (ωτ )α−1 sin(πα/2) [A(x, y) + A(z, y)] . (18)

 α=0.4   α=0.5   α=0.6

Figure 7. Rms for the PVC cylinder, α = 0.4, 0.5, 0.6.
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Inversion in viscoelastic media 433

The unperturbed Green’s function Ĝ0(y, x; ω) = D(x, y) exp(iω�I) where D(x, y) = B(x, y) C(x, y); B(x, y) denotes the geometric divergence
factor (= 1/4 π |x − y| in a homogeneous background medium) and C(x, y) = exp[ω�R(x, y)]. After an asymptotic evaluation of the Laplacian
the Born approximation can be expressed in a compact form

δĜ(z, x, ω) := GB(z, x, ω) − G0(z, x, ω) =
∫

g(z, x, ω; y)Mδm(y) dy (19)

with

g(x, z, ω; y) = D(y, x)D(z, y) exp(iω�IT(y)) (20)

M = ( − 2(−iω)2−α0τ−α0 , ω2/ρ0(y′)[i∇�IT(y) + ∇�RT(y)]2, 2(−iω)2−α0τ−α0 [ln(ωτ ) − iπ/2]
)

(21)

and

δm(y) =


δa(y)

δκ(y)
δα(y)


 . (22)

δα ≡ 0 if the value of α is kept fixed; in this case the third components of the vector M, δm, drop out. We denote by G the integral operator
(G f )(x, z) = ∫

g(x, z; y) f (y) dy. Denoting by k the gradient of �IT with respect to the scatterer coordinates we define the Jacobian I = ∂(ω,
ξ )/∂(k 1, k 2, k 3) = ∂(ω, ξ )/∂(k, �)/(k2 sin θ ), where (k, �) are the spherical coordinates in the k-space and θ is the complementary latitude
in the k-space.

3.5

4.0

4.5

5.0

5.5
x10-4

-0.2 0 0.2
Amplitude

Ti
m

e 
(s

)

Observed

Ray+Born Synthetics for α=0.1

Ray+Born Synthetics for α=0.9

Figure 8. Comparison of the recorded trace 23 with the post-inversion synthetic trace 23 obtained by the ray–Born approximation for α = 0.1 and for
α = 0.9, for PVC.
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434 A. Ribodetti and A. Hanyga

If the acquisition geometry ensures that the mapping ξ → � is surjective and the mapping ω → k is monotone, then a change of the
integration variables (ω, ξ ) → k yields a unit operator (Ribodetti et al. 2000). In addition to checking the invertibility of the mapping ξ → �

it is important to establish the monotonicity and range of the mapping ω → k.
In a homogeneous background medium the traveltime and the attenuation are proportional to the distance d from the source, T = d/c,

A = d/(cτ ). Denoting by D(y) the total distance |x − y| + |z − y|, we have

�IT(y) = c−1[1 + sin(πα/2)(τω)α]D(y).

Consequently

k = c−1ω[ω + sin(πα/2)(τω)α−1]∇ D,

� does not depend on the frequency ω, the Jacobian can be factored 1/I = (∂�/∂ξ ) dk/dω, and k is a monotonic function of ω ranging from
0 to ∞.

In an inhomogeneous background medium k = ωv + ωαw, and the two vectors v = ∇y[T (x, y) + T (y, z)] and w = τα sin(πα/2)
∇y[A(x, y) + A(y, z)] are in general not collinear. Suppose that γ is the largest real number such that v · w ≥ γ vw for all ξ ∈ U , where
−1 ≤ γ ≤ 0 and v, w denote the lengths of the vectors v, w. If γ < −2

√
α/(1 + α), then monotonicity breaks down for some low values of

ω. Indeed, the derivative on the left-hand side of the inequality

(ω/2)dk2/dω ≥ ω2α[q2 + αw2 + γ (1 + α)qw]; q := ω1−αv

is non-negative if γ ≥ −2
√

α/(1 + α).
The operator Y := G†WG with the weight W = D[ y, x(ξ )]−1 D[y′, x(ξ )]−1 I (ω, ξ ) Z becomes

2�
∫

dξ

∫ ∞

0
dωg(ξ, ω, y)g(ξ, ω, y′)(R + S)

where M = R + S, R is the part of M involving the highest powers of ω, while S contains lower powers of ω. If R is invertible and Z = R−1,
then

Y = 2�
∫

dξ

∫ ∞

0
dωI exp[iω(�I(y) − �I(y

′))][U + Z S]

where U denotes the unit matrix. Following Beylkin (1985), we apply the approximation �TI(y) − �TI(y′) ≈ k · (y − y′) in the oscillatory
factor

Figure 9. Comparison of recorded and synthetic traces obtained in three-parameter inversion.
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Inversion in viscoelastic media 435

Y ∼= 2�
∫

dk exp[ik · (y − y′)][U + Z S] = 2(2π )3Uδ(y − y′) + X (23)

where X is a pseudodifferential operator of a negative order. X maps elements of the model space to smoother objects while the first term of
eq. (23) yields a sharp image of the model.

We shall choose R in such a way that it contains all the powers of ω which tend to ω4 when α → 1. Expanding M† M we get the Hermitian
matrix R,

R11 = 4ω4−2α0τ−2α0 (24)

R12 = R21 = −ρ−1
0

(
ω2∇T 2

T − 2ω1+α0 eiπ (1+α0)/2∇TT · ∇ AT

)
(25)

R22 = ρ−2
[
ω4(∇TT)4 + 4ω2+2α0τ 2α0 (∇TT · ∇ AT)2 + 2 sin(πα0/2)ω3+α0τα

0 (∇TT)2∇TT · ∇ AT

]
(26)

R13 = R31 = −4|ω|4−2α0τ−2α0 [ln(ωτ ) − iπ/2] (27)

R23 = R32 = 2(−iω)4−α0τ−α0 (∇TT)2[ln(τω) − iπ/2]/ρ (28)

Figure 10. Inversion for the PVC cylinder. Results of the post-processing sequence applied to the tomographic model δa to eliminate the source signature and
to estimate the absolute values of the recovered parameters. The arrows show the influence of the inaccuracy of the experimental set-up on the tomographic
model. (a) Original tomographic model. (b) Best-fitting convolved model. (c) Best-fitting impulsional model representing the geometry and dimensions of the
hollow PVC cylinder. (d) Misfit for δa, the minimum represents the optimal absolute value.
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436 A. Ribodetti and A. Hanyga

R33 = 4|ω|4−2α0 [ln2(τω) + π 2/4]τ−2α0 (29)

with T T = T (x, y) + T (y, z), AT = A(x, y) + A(y, z), ∇ = ∇y. The inversion formula has the following form (Ribodetti et al. 2000):

δm = (G†WG)−1G†WδG (30)

where δG(ξ ) = Gobs(z(ξ ), x(ξ )) − G 0(z(ξ ), x(ξ )). By construction it is an identity for Gobs(z(ξ ), x(ξ )) = G B(z(ξ ), x(ξ )).

5 A P P L I C AT I O N T O U LT R A S O N I C L A B O R AT O RY DATA : 1 . A H O L L O W
P V C C Y L I N D E R

5.1 Two-parameter inversion

In two-parameter inversion the value of α is held fixed while the values of a, κ are recovered. The value of α is then determined by optimizing
the misfit between the recorded seismogram and the synthetic seismograms obtained for the recovered models.

The inversion method described in the previous section was tested on ultrasonic laboratory data collected in a water tank equipped with
computer-based control and data acquisition systems (National Instruments system, Valero (1997)). The same experimental data were used
in previous work based on the assumption of a constant quality factor Q (Ribodetti et al. 2000). The inversion target was a PVC cylinder
immersed in a vertical position in a water tank 2.0 m × 1.4 m × 1.5 m containing 5000 l water. The radius and the height of the PVC
cylinder were 0.058 m and 1.30 m, respectively. The axis of the cylinder was positioned at (X , Y ) = (0.0925 m; −0.1925 m). The density
of PVC is reported as 1.39 g cm−3, while the P-wave velocity in PVC is 2380 m s−1 (e.g. in the tables of www.ondacorp.com/tables). The
roles of the source and the receiver were played by two hydrophones with the frequency bands 1–110 kHz. The source and the receiver

Figure 11. Inversion for PVC. Results of the post-processing sequence applied to the tomographic model δα in (a). (b) Best-fitting convolved model. (c)
Best-fitting impulsional model representing the geometry and dimensions of the hollow PVC cylinder. (d) Misfit for δα.
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Inversion in viscoelastic media 437

were located on a horizontal plane at a depth of 0.67 m beneath the water level and rotated simultaneously around a fixed vertical axis
X = 0, Y = 0 (Fig. 1). The azimuthal offset between source and receiver was kept constant at 15◦ during the acquisition. The step dθ

between two consecutive source azimuths was 5◦, which results in 72 seismograms per common-offset gather. The dominant frequency of
the source signal was 100 kHz, corresponding to a wavelength of 0.015 m in water. Waveforms were digitized with sampling interval of
2 × 10−6 s.

In inversion the background medium was assumed to be pure water. The velocity of sound in water was assumed to be 1520 m s−1 and
the Q factor was assumed as 210 000, corresponding to the value reported for the frequency of 100 kHz (Fujii & Masui 1993). The target and
the acquisition are shown in Fig. 1, the geometry is explained in Fig. 2. Following Ribodetti et al. (2000) we focus on the diffracted wavefield
(Fig. 3). The main arrival ((4–5) × 104 s) is the reflection from the external edge of the cylinder. The second arrival is the reflection from the
second cylinder surface. The arrival around 9 × 104 s is a multiple reflection from inside the cylinder. The flat arrival is a reflection from the
bottom of the water tank plus a reflection from the water level. The inversion was performed for several hypothetical values of the exponent
α = 0.1, 0.5, 0.4, 0.6, 0.9. Comparisons of recorded and synthetics for α = 0.5, 0.1, 0.4 are presented in Figs 3, 4 and 5.

The images of the perturbations δa and δk of a and k recovered after one iteration are shown in Fig. 6. The gross contours of the cylinder
both on the attenuation δa and the compressibility δk are clearly identifiable on both images in Fig. 6 The centre of the cylinder image lies
at (X , Y ) = (0.09 m; −0.19 m), which is in good agreement with the actual centre of the cylinder. The nearly vertical trace in the δa and δκ

sections is due to a missing source-receiver pair during the acquisition of the data. The rms for α = 0.5, 0.4, 0.6 are shown in Fig. 7. The
discrepancy is markedly lower for α = 0.5. Because of the good quality of the fit between observed and synthetics the inversion procedure
was limited to a single iteration.

For α = 0.1 and α = 0.9 the fit is very bad (Fig. 8). For α = 0.9 the model is close to the constant-Q model used in the work of (Ribodetti
et al. 2000). For these extreme cases we note a deterioration of the fit, particularly noticeable in the phase shift.

Figure 12. Inversion for the PVC cylinder. Results of the post-processing sequence applied to the tomographic model δk in (a). (b) Best-fitting convolved
model. (c) Best-fitting impulsional model representing the geometry and dimensions of the hollow PVC cylinder. (d) Misfit for δk.
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438 A. Ribodetti and A. Hanyga

5.2 Three-parameter inversion

In the three-parameter inversion κ , a and α are recovered simultaneously. For a background value α = 0.5 the recovered perturbation δα is
very small. In Fig. 9 the synthetic seismic traces obtained by the two- and three-parameter inversion are compared. There is hardly a noticeable
difference because of the very small variation of the parameter δα for the PVC material, as we will see below.

In order to obtain parameter estimates for the target the deconvolution method described in Ribodetti et al. (2000) was applied. The
method is based on a matching of a boxcar family (model space) with a fixed amplitude and width and with a variable position. These boxcars
mimic the radius of a cylinder. The amplitude of the boxcar represents the amplitude of the perturbations (δa, δα, δk). The width of the boxcar
represents the thickness of the cylinder section. To build the predicted tomographic model, the boxcars are converted from space to time using
the velocity of the background medium and are convolved with the source wavelet. To estimate the source wavelet, several traces centred
on the direct arrival are stacked. In the next step the convolved boxcar is converted back from time to space for comparison with the trace
extracted from the tomographic image. The procedure is performed by a systematic exploration of the model space for each azimuth choosing
the best-fitting model in a least-squares sense. Once all the azimuths are explored, the best-fitting is convolved and impulsive boxcars are put
together in the (X , Y ) plane to build 2-D synthetic images of the cylinder section. The results of this post-processing are shown in Figs 10, 11
and 12 for δa, δα, δk perturbations.

The shape of the recovered cylinder section on the δa, δα, δk synthetic images (Figs 10c, 11c and 12c) is acceptable. It is more difficult
to recognize the shape from the δa, δα images related to the viscoelastic attenuation. The recovered shape of the cylinder in all the images is
slightly oval. This may result from a combination of inaccuracies in the experimental set-up (denoted by arrows on the models) rather than
from the processing itself. The post-processing failed locally to fit the exact shape due to the sensitivity of the parameters to the amplitude. To
estimate the absolute value of the perturbations in the cylinder, we applied the post-processing for several values of δa, δα, δk perturbations
(namely, for several amplitudes of the boxcars). We computed the l 2 misfit for each tested amplitude. The misfit as a function of the perturbation
is displayed in Figs 10(d), 11(d) and 12(d). A minimum is well identified for all the parameters: for δa the minimum lies around 0.8 × 10−4

corresponding to a perturbation δQ ≈ −50 000 of the Q factor with respect to the reference Q value, equal to the experimental value at the
central frequency of 100 kHz. This result is in agreement with previous results obtained in Ribodetti et al. (2000), since the PVC presents
essentially an elastic response with a very high Q. The perturbation δα has a minimum around 0.05, which indicates a small variation of the
water around the reference value α = 0.5. An exact value α = 0.5 is possibly attributable to purely thermal dissipation of the water (Kelbert
& Chaban 1986). δk has a minimum of around 5.2 × 10−6 N m−2 corresponding to a velocity reported at www.ondacorp.com/tables.

Figure 13. Comparison of recorded data (in red) and synthetic seismograms (in blue) for the lava specimen.
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6 A P P L I C AT I O N T O U LT R A S O N I C L A B O R AT O RY DATA : 2 . A C Y L I N D R I C A L
L AVA S P E C I M E N

A cylindrical Neapolitan Yellow Tuff sample (pyroclastic rock) from a drilling experiment performed near the Chiaiano (Campi Flegrei, Italy)
of height 0.5 m and diameter 0.06 m was immersed in the centre of the water tank described in the previous section. The source and receiver
were identical were the same as in the previous section. They were placed on a horizontal plane orthogonal to the sample at a depth of 0.67 m
below the water level and rotated synchronously around the axis of the cylinder at a distance of 0.469 m. The azimuthal offset between the
source and the receiver was again 15◦, the initial azimuth of the source was 7.55◦ and the azimuth step was 55◦. The central frequency of the
source is around 100 kHz. The diffracted wavefield is presented in Fig. 13. The main arrivals between 0.5 and 0.6 ms are respectively the
reflections from the external and internal edge of the rock sample. The ray–Born synthetics obtained at the first iteration using the perturbation
in Figs 14, 15 and 16, are superimposed with the observed traces. A good fit is obtained. The tomographic models for δk, δa and δα are shown
in Figs 14(a), 15(a) and 16(a). The best-fitting convolved model shown in parts (b) is obtained by convolution with the source wavelet shown in

Figure 14. Inversion for the lava sample. (a) Tomographic model for δk. (b) The best-fitting convolved model results of the post-processing sequence applied
to (a). The source wavelet is plotted in (c). (d) The best-fitting impulsional model showing the geometry and location of contour of the section of the rock
sample. (e) Misfit function representing the perturbations of δk and the minimum.
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440 A. Ribodetti and A. Hanyga

Figure 15. Inversion for the lava sample. (a) Tomographic model for δa. (b) The best-fitting convolved model from the post-processing sequence applied to
(a). (c) The best-fitting impulsional model. (d) The misfit function representing the perturbations of δa and the minimum.

Fig. 14(c), while the model shown in parts (d) is obtained by convolution with the best-fitting impulsional model. The influence of an imperfect
acquisition geometry is indicated by arrows. Because of the ray–Born approximation and the constant background model assumed during
inversion, only the physical properties along the contour of the rock sample can be estimated. Concerning the geometry, a good location of the
sample and its dimensions are obtained successfully (see Figs 14c, 15c and 16c). The shape of the recovered section is acceptable on all three
images. Nevertheless, we note that the recovered shape of the cylinder is slightly oval. This may result from a combination of inaccuracies in
the experimental set-up.

On the δa and δα synthetic images the post-processing failed locally to fit the exact shape due to the sensitivity of the parameters to the
amplitude variations related to some local high heterogeneity of the sample.

The absolute quantitative estimation of the propagation parameter δk and attenuation parameters δa and δα are obtained during the
post-processing of the tomographic models. The misfit in the l 2 sense between the tomographic model and the best-fitting convolved model is
also determined. The misfit for δk presented in Fig. 14(e) shows a minimum at 3.908 × 106 N m−2, corresponding to a velocity perturbation
δv = 1318 m s−1, then the velocity of the tuff sample is v tuff = v0 + δv ≈ 3800 m s−1; for δa the misfit presents a minimum at 1.689 ×
10−4, corresponding to a δQ around −209 880 estimated at the central frequency of 100 kHz. The attenuation Q of the sample is Q tuff =
Q0 + δQ ≈ 120. The estimates of the velocity and the Q factor are in agreement with results obtained by Vanorio & Nur (2000). For the
parameter δα (Fig. 16d) the minimum of the misfit function is obtained at δα = 0.15 corresponding to α tuff = α0 + δα = 0.5 + 0.15 = 0.65.
The estimated value of α is attributable to wave attenuation in a porous water-saturated sample. A similar value was obtained by Hanyga &
Rok (2000) from the Gurevich–Lopatnikov model of fast wave attenuation in a thin-layered porous medium, but there is not enough evidence
for validating this model for the lava specimen in our experiment.

7 C O N C L U S I O N S

We have demonstrated that the viscoelastic inversion developed by Ribodetti et al. (2000) yields fairly sharp and reliable parameter estimates
in the power-law model class. The power model class is more realistic than the constant-Q model class because dispersion and absorption
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Inversion in viscoelastic media 441

Figure 16. Inversion for the lava sample. (a) Tomographic model for δα. (b) The best-fitting convolved model results of the post-processing sequence applied
to (a). (c) The best-fitting impulsional model. (d) The misfit function representing the perturbations of δα and the minimum.

effects are simultaneously taken into account and the causality principle is respected. For ultrasonic laboratory data the optimal value of
the exponent of the power law for wave propagation in water is almost exactly 0.5, which can be attributed to thermal rather than viscous
dissipation.

Our results indicate that the model parametrization is physically meaningful, in contrast to the commonly used approximation of viscous
memory by a superposition of exponentials (Day & Minster 1984; Emmerich & Korn 1987). The latter approach requires an arbitrary choice
of relaxation times and therefore cannot yield a unique result in seismic inversion. Furthermore, the value of the power-law exponent can be
linked to a specific physical mechanism, such as viscous or thermal boundary layers (Kelbert & Chaban 1986; Kelbert & Sazonov 1996).

Low-frequency behaviour of materials is incorrectly represented by the power-law model, since according to the power-law model the
wave speed vanishes at zero frequency and stress relaxes to zero after an infinite time. This might not be relevant for wave propagation,
but the Cole–Cole model (Hanyga 2003) and its generalizations (Rossikhin & Shitikova 2001) can be used to correct this shortcoming. The
Cole–Cole model allows for a different power law in the low- and high-frequency regions. More complicated models can accommodate several
transitions in the frequency region.

The main implication of the theoretical analysis of the inversion algorithm is that when the power-law model is used in the linear
inversion schema, the parameter related to the attenuation factor and the parameter related to the propagation are decoupled for the acquisition
geometries used in laboratory and in field seismic experiments (the Hessian matrix is not singular).

The essential practical result is that when the power of the model α is 0.5 (in the case of water as a reference medium) the viscoelastic
inversion runs successfully on ultrasonic laboratory data. In many respects the results of inversion in power-law media and in the constant-Q
class are in agreement. The choice of a power law-medium in the inversion procedure, however, yields a good fit between observed and
synthetics in only one iteration. This fact is important because of its implication for the reduction of the computation time.

Our results of inversion of ultrasonic laboratory data for a hollow PVC cylinder and for a lava sample show that the adopted method
can be useful for estimating rock properties in laboratory experiments; in particular the parameter α governs the frequency dependence of the
relaxation functions and can be an interesting indicator of the degree of porosity of the material.

The CPU time on one processor of a SUN E450 computer required for one iteration was 45 min for the three-parameter inversion.
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