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HAMILTON CYCLE DECOMPOSITION OF THE BUTTERFLY NETWORK
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In this paper, we prove that the wrapped Butter y graph WBF(d; n) of degree d and dimension n is decomposable into Hamilton cycles. This answers a conjecture of Barth and Raspaud who solved the case d = 2.

Introduction and notations

The construction of one, and if possible many edge-disjoint Hamilton cycles in a network can provide advantage for algorithms that make use of a ring structure. As example, the existence of many edge-disjoint Hamilton cycles allows the message tra c to be evenly distributed across the network. Furthermore, a partition of the edges into Hamilton cycles can be used in various distributed algorithms (termination, garbage collector, : : :). So, many authors have considered the problem of nding how many edge-disjoint Hamilton cycles can be found in a given network. The most signi cant results have been obtained for the class of Cayley graphs on abelian groups, and for (underlying) line digraphs. Here we solve this problem for the Butter y networks. These networks have been proposed as suitable topologies for parallel computers, due to their interesting structure (see [START_REF] Fleischner | Compatible euler tours in eulerian digraphs[END_REF][START_REF] Rowley | On the number of arc-disjoint hamiltonian circuits in the de Bruijn graph[END_REF]) because they are, when properly de ned, both Cayley digraphs (on a non-abelian group) and iterated line digraphs.

De nitions

First, we have to warn the reader that under the name Butter y and with the same notation, di erent networks are described in the literature. Indeed, while some authors consider the Butter y networks to be multistage networks used to route permutations, others consider them to be point-to-point networks. In what follows, we will study the point-to-point version, and use Leighton's terminology 11], namely, wrapped Butter y. Also, when we use the terms edge-disjoint or arcdisjoint, it obviously means pairwise edge-disjoint or arc-disjoint.

In this article, we will use the following de nitions and notation, where Z q denotes the set of integers modulo q -For de nitions not given here see 13].

De nition 1 The wrapped Butter y digraph of degree d and dimension n, denoted W BF(d; n), has as vertices the ordered pairs (x; l) where x is an element of Z n d , that is, a word x n?1 x n?2 x 1 x 0 where the letters belong to Z d , and l 2 Z n (l is called the level). For any l, a vertex (x n?1 x n?2 x l x 1 x 0 ; l) is joined by an arc to the d vertices (x n?1 x l+1 x l + x l?1 x 0 ; l + 1) where is any element of Z d . Each one of these arcs is said to have the slope . W BF(d; n) is a d-regular digraph with nd n vertices; its diameter is 2n ? 1. This network is sometimes considered as undirected, but its structure being indeed directed, we will always consider the digraph.

For convenience, we repeat the level 0 when drawing the wrapped Butter y digraph. Hence, the reader has to remember that the two occurrences of level 0 have to be identi ed. Figure (1) displays W BF(3; 2) with the arcs directed from left to right. Note that W BF(d; n) is often represented (for example in [START_REF] Fleischner | Compatible euler tours in eulerian digraphs[END_REF][START_REF] Rowley | On the number of arc-disjoint hamiltonian circuits in the de Bruijn graph[END_REF]) in an opposite way to our drawing as the authors denote the nodes (x 0 x 1 x n?1 ; l). Note that W BF(d; 1) is nothing else than K + d .

In digraphs, the concept of dipaths and circuits (directed cycles) is well-known. Here, we need to use more general concepts valid for digraphs of paths and cycles (which are also called oriented elementary paths and oriented elementary cycles).

De nition 2 A path of a digraph is a sequence = (v 0 ; e 0 ; v 1 ; e 1 ; ; v k ; e k ; v k+1 ) where the v i 's are vertices and the e i 's are arcs such that the end vertices of e i are v i and v i+1 and where the sequence does not meet twice the same vertex except maybe v 0 and v k+1 .

De nition 3 A path such that v k+1 = v 0 in the sequence is called a cycle.

Note that the arc e i can be either directed from v i to v i+1 or from v i+1 to v i . If all the arcs of the path (resp. cycle) are directed from v i to v i+1 we have a dipath (resp. circuit also called dicycle).

De nition 4 A vertex v i of a cycle is said to be of type + (resp. of type ?) for the cycle, if v i is the terminal vertex of e i?1 (resp. e i ) and the initial vertex of e i (resp. e i?1 ).

Note that the type is not necessarily de ned for all the vertices of a cycle. In a circuit, all vertices are of type +.

De nition 5 A vertex v is said to be crossed by a cycle, or a cycle crosses the vertex v, if v is of type + or of type ? for the cycle. When a vertex v is crossed by a cycle, we will de ne its sign function by (v) = +1 (resp. (v) = ?1) if v is of type + (resp. of type ?).

Remark 1 We can also de ne the predecessor p(v) and the successor s(v) of the vertex v in the order induced by the cycle. Then, the vertex v is of type + (or has sign (v) = +1) if (p(v); v) and (v; s(v)) are both arcs of the digraph, and is of type ? (or has sign (v) = ?1) if both (s(v); v) and (v; p(v)) are arcs of the digraph.

De nition 6 A Hamilton cycle (resp. circuit) of a digraph is a cycle (resp. circuit) which contains every vertex exactly once.

De nition 7

We say that a digraph is decomposable into Hamilton cycles (resp. circuits) if its arcs can be partitioned into Hamilton cycles (resp. circuits).

De nition 8 A Hamilton cycle of W BF(d; n) is said to be l-crossing if the cycle crosses all the vertices of level l and furthermore P v=(x;l); x2Z n d (v) 0 (mod d).

Figure [START_REF] Alspach | Decomposition into cycles I: Hamilton decompositions[END_REF] shows examples of 1-crossing Hamilton cycles in W BF(3; 2) and W BF (3; 3). Note that a Hamilton circuit is l-crossing for all l.

Results

Various results have been obtained on the existence of Hamilton cycles in classical networks (see for example the surveys 2,9]). For example, it is well-known that any Cayley graph on an abelian group is Hamiltonian. Furthermore, it has been conjectured by Alspach 1] that:

Conjecture 1 (Alspach) Every connected Cayley graph on an abelian group has a Hamilton decomposition. This conjecture has been veri ed for all connected 4-regular graphs on abelian groups in 8]. This includes in particular the toroidal meshes (grids). It is also known that H(2d), the hypercube of dimension 2d, is decomposable into d Hamilton cycles In 6], Barth and Raspaud proved that the underlying multigraph associated with W BF(2; n) contains two arc-disjoint Hamilton cycles answering a conjecture of Rowley and Sotteau (private communication). In our terminology, their result can be stated as:

Theorem 1 (Barth, Raspaud) W BF(2; n) is decomposable into 2 Hamilton cycles.

They conjectured that this result can be generalized for any degree:

Conjecture 2 (Barth, Raspaud) For n 2, W BF(d; n) is decomposable into d Hamilton cycles.

In this paper, we prove the conjecture (2). To do so, we use some techniques introduced in 7] where we studied the decomposition of W BF(d; n) into Hamilton circuits. In fact, we prove that W BF(d; n) is decomposable into d l-crossing Hamilton cycles. Indeed, the l-crossing property, combined with the recursive structure of W BF(d; n), enables us to prove that the number of l-crossing arc-disjoint Hamilton cycles that W BF(d; n) contains can only increase when n increases. Then, we prove mainly that W BF(d; 2) contains d arc-disjoint l-crossing Hamilton cycles, by constructing two arc-disjoint l-crossing Hamilton cycles using only arcs of slopes 0 and 1 and d?2 arc-disjoint Hamilton circuits using arcs of other slopes. The results are summarized in the following theorem: 

The general construction

We give below some additional de nitions and properties enabling us to establish lemma (2) which is a strengthened version of the inductive lemma of 7]. This lemma is then applied in section 3 to construct inductively the decomposition.

Cyclic-potent families of permutations

In this paper, M will always denote a permutation of Z d which associates the element a with the element M(a). To such a permutation, one can associate a perfect matching (denoted also M) of Kd;d containing all the arcs (a; M(a)).

Let x 2 Z n d , M x will denote a permutation; the label x will be useful in the proof of lemma (2), as we will associate M x with a perfect matching of Kd;d (x) where Kd;d (x) denote the bipartite subgraph of W BF(d; n + 1) with left part the vertices (?x; n) and right part the vertices (?x; 0). M x contains the arcs joining (ax; n) to (M x (a)x; 0). In 7], M x is said to be a permutation realizable in Kd;d (x).

De nition 9 Let S be a set of slopes (that is a subset of Z d ). Then, a permutation M of Z d uses the slopes in S if, for any a 2 Z d , M(a) 2 fa + s; s 2 Sg. A family of d n permutations M = fM x ; x 2 Z n d g of Z d uses the slopes in S if, for any permutation M x of the family, M x uses the slopes in S. De nition 10 A set of p permutations M j , with 1 j p, is said to be compatible if, 8a; M j (a) 6 = M j 0 (a) for j6 = j 0 .

In other words the perfect matchings associated with the M j are arc-disjoint.

De nition 11 For 1 j p, let M j = fM x;j j x 2 Z n d g be p families, each consisting of d n permutations. The families M j are said to be compatible if, for each x in Z n d , the p permutations M x;j are compatible, i.e. 8a, M x;j (a) 6 = M x;j 0 (a) for j 6 = j 0 .

The composition M M 0 of two permutations M and M 0 is the permutation which associates the element a with the element M(M 0 (a)).

De nition 12 A permutation M is cyclic if, for some x, all the elements M i (x) are distinct for 0 i < d n .

Remark 2 Note that if M is cyclic, then for every x, the elements M i (x) are all distinct. In fact, to verify that M is cyclic, it su ces to verify that for a given x, M i (x) 6 = x, for 1 i < d n . Indeed, if there exists j and k, with j > k, such that M j (x) = M k (x), then M j?k (x) = x.

For example, the permutation M which associates a with the element a + is clearly cyclic if and only if is prime with d, as M i (a) = a + i.

De nition 13 A family M = fM x ; x 2 Z n d g of d n permutations of Z d satis es the cyclic-potent property if, for any order of composition of the M x and any set of sign f x j x 2 Z n d x 2 f?1; 1gg such that P x x 0 (mod d), the permutation x M x x is cyclic.

De nition 14 A family of d n permutations M = fM x ; x 2 Z n d g is of type (i; j) if for x 6 = 0, M x (a) = a + i; and for x = 0, M 0 (a) = a + j.

Lemma 1 A family of permutations of type (i; j), M = fM x ; x 2 Z n d g is cyclicpotent if and only if j ? i is relatively prime to d.

Proof. As the permutations of the family commute, the permutation x M x x of de nition (13) can be simply expressed as a ! a + . So, this permutation will be cyclic if and only if is prime with d. Here = ( P x6 =0 x )i + 0 j. As P x x = 0, we have = ( P x x )i + 0 (j ? i) = 0 (j ? i). So, is clearly prime with d if and only if j ? i is prime with d. 2

We will represent a set of p families of permutations of type (i; j): f(i 0 ; j 0 );

(i 1 ; j 1 ); :::; (i p?1 ; j p?1 )g by the array:

Families i 0 i 1 i 2 i 3
: : : i p?2 i p?1 j 0 j 1 j 2 j 3

: : : j p?2 j p?1

In section 3, we will need some very simple cyclic-potent families of permutations that we give as examples.

Families 1 There exist d compatible cyclic-potent families of permutations: These families are cyclic-potent as, applying lemma (1), 1 ? 0 = 2 ? 1 = = d ? 1 ? (d ? 2) = 0 ? (d ? 1) = 1 which is prime with d. These families use all the slopes.

Families 2 There exist 2 compatible cyclic-potent families using slopes f0; 1g: These families are cyclic-potent as, applying lemma (1), we get: for d odd, 4?2 = 5?3 = = d?1?(d?3) = 2 and 2?(d?2) = 3?(d?1) = 4, as 2 and 4 are prime with d;

for d even, 3 ? 2 = 5 ? 4 = = (d ? 1) ? (d ? 2) = 1 and 2 ? 3 = 4 ? 5 = = (d ? 2) ? (d ? 1) = ?1, which are prime with d. In both cases, the slopes used are in f2; : : :; d ? 1g.

Inductive construction

Lemma 2 If W BF(d; n) admits p arc-disjoint l-crossing Hamilton cycles and if there exist p compatible cyclic-potent families each of d n permutations, then W BF(d; n + 1) admits p arc-disjoint l-crossing Hamilton cycles.

Proof. Let H be an l-crossing Hamilton cycle of W BF(d; n). As all the levels are equivalent, we can suppose without loss of generality and for simplicity in the notations that l = 0. Let M = fM x ; x 2 Z n d g be a cyclic-potent family of d n permutations. The vertices of W BF(d; n + 1) can be labeled (ax; l) with a 2 Z d ; x 2 Z n d and l 2 Z n+1 . Now, we associate H and M with a partial digraph H 0 in W BF(d; n + 1) as follows (for an example of such a construction see gure (3)):

for 0 l n ? 1 and for each a, if the arc (x; l)(x 0 ; l + 1) belongs to H, we put in H 0 the arc (ax; l)(ax 0 ; l + 1) where the indices are taken modulo n + 1, which means that to the arc (x; n ? 1)(x 0 ; 0) of H is associated the arc (ax; n ? 1)(ax 0 ; n) in H 0 ; between levels n and 0 of W BF(d; n + 1) we put the arcs joining (ax; n) to (M x (a)x; 0).

With such a de nition, each vertex of W BF(d; n + 1) is incident to two arcs of H 0 . Hence, we can de ne for each vertex a predecessor and a successor on H 0 that enables us to prove that we can order H 0 in a cycle.

For 1 l n ?1, let (x 0 ; l 0 ) (resp. (x 00 ; l 00 )) be the predecessor (resp. successor) of (x; l) in H, then the predecessor (resp. successor) of (ax; l) in H 0 will be (ax 0 ; l 0 ) (resp. (ax 00 ; l 00 )).

For l = 0 and n, as H is a 0-crossing Hamilton cycle, vertices (x; 0) are either of type + or ? on H.

When (x; 0) is of type +, its predecessor (resp. successor) in the cycle H is (x 0 ; n ? 1) (resp. (x 00 ; 1)). Then, in H 0 the predecessor (resp. successor) of (ax; n) will be (ax 0 ; n ? 1) (resp. (M x (a)x; 0)); the predecessor (resp. successor) of (ax; 0) will be (M ?1

x (a)x; n) (resp. (ax 00 ; 1)).

When (x; 0) is of type ?, its predecessor (resp. successor) in H is (x 0 ; 1) (resp. (x 00 ; n ? 1)). Then, in H 0 the predecessor (resp. successor) of (ax; 0) will be (ax 0 ; 1) (resp. (M ?1 x (a)x; n)); the predecessor (resp. successor) of (ax; n) will be (M x (a)x; 0) (resp. (ax 00 ; n ? 1)) in H 0 . Therefore, when (x; 0) is of type + (resp. ?), (ax; n) and (ax; 0) are vertices of type + (resp. ?) in H 0 . Hence, all the vertices of levels 0 and n are crossed by H 0 ; furthermore, the sum of the signs of the vertices of H 0 of levels 0 or n will be d times the sum of the signs of the vertices of H of level 0, that is, by hypothesis, 0. Hence, H 0 is 0-crossing (and also n-crossing). Now, we have to prove that H 0 is e ectively a Hamilton cycle. For this it su ces to prove that if we start at some vertex (ax; 0) and follow H 0 , we meet successively all the vertices of level 0 and n before coming back to (ax; 0). Indeed, suppose that (y; l) was on the portion of cycle H between (x 1 ; 0) and (x 2 ; 0). Then, (ay; l) will be on the portion of H 0 between (ax 1 ; ) and (ax 2 ; ), where = 0 (resp. = n) if (x 1 ; 0) is of type + (resp. ?), and = 0 (resp. = n) if (x 2 ; 0) is of type ? (resp. +). These cases are described on gure (2). displays the case where the vertex x 1 is of type + (resp. ?) and the vertex x 2 is of type ? (resp. +). Now, let (x 0 ; 0); (x 1 ; 0); : : : ; (x d n = x 0 ; 0) be the sequence of vertices of H at level 0 in the order we meet them on H. Starting from (a 0 x 0 ; 0) we will meet successively (a 1 x 1 ; 0); (a 2 x 2 ; 0); : : : ; (a d n x d n = a d n x 0 ; 0) on H 0 . Following such a path, we can meet either x i of type + by going from level n to level 0, in which case we will apply the permutation M xi to some a, or x i of type ? by going from level 0 to n, in which case we will apply M ?1 xi to a. So a d n = M x i xi (a) where the product is taken in an order depending on x 0 . As all the x i di er, we can meet again (a 0 x 0 ; 0) only at some a qd n x 0 , but M being cyclic-potent, the values a d n ; a 2d n ; : : : ; a qd n ; : : : ; a (d)d n are all distinct. So, we meet again (a 0 x 0 ; 0) only after having encountered the d n+1 vertices of level 0.

Now, note that we can perform this construction with p arc-disjoint 0-crossing cycles and p compatible cyclic-potent families. From construction, the p 0-crossing cycles that we will obtain, will be arc-disjoint.

2

Remark 3 When the 0-crossing Hamilton cycles used in the lemma above are circuits of W BF(d; n), all the vertices are of type +, and the construction leads to circuits of W BF(d; n + 1), giving another proof of the inductive lemma of 7].

Decomposition of W BF(d; n)

We will use a decomposition of W BF(d; n) into two partial digraphs.

De nition 15

The Butter y digraph W BF(d; n) is the sum of two partial digraphs W BF 0;1 (d; n) and W BF 2;:::;d?1 (d; n) de ned as follows: W BF 0;1 (d; n) contains the arcs which slopes belong to f0; 1g, W BF 2;:::;d?1 (d; n) contains the arcs which slopes belong to f2; : : : ; d ? 1g.

3.1. Decomposition of W BF 2;:::;d?1 (d; n)

The proof is by induction on n. We start the induction for n = 1.

Lemma 3 When d 6 2 f4; 6g, W BF 2;:::;d?1 (d; 1) is decomposable into d?2 Hamilton circuits.

Proof. As W BF(d; 1) = K + d , W BF 2;:::;d?1 (d; 1) is obtained from K + d by removing the loops and the arcs of slope 1. Following Tillson 14], we know that K + d without the loops contains d ? 1 arc-disjoint Hamilton circuits when d 6 = 4; 6. So, using Tillson's decomposition, we can label the vertices of K + d such that one of the circuits uses all the arcs of slope 1. By removing it, we get d ? 2 arc-disjoint Hamilton circuits in W BF 2;:::;d?1 (d; 1). 2

Proposition 1 For d 6 2 f3; 4; 6g, W BF 2;:::;d?1 (d; n) is decomposable into d ? 2

Hamilton circuits.

Proof. As d 6 2 f4; 6g, the proposition is proved for n = 1 by lemma (3). Then, as d 6 = 3, the d ? 2 compatible cyclic-potent families (3) use the slopes f2; : : :; d ? 1g and satisfy the hypothesis of lemma (2). Hence, we can apply that lemma inductively, in order to construct d ? 2 arc-disjoint Hamilton circuits (see remark (3)) in W BF 2;:::;d?1 (d; n). 2

3.2. Decomposition of W BF 0;1 (d; n) Lemma 4 W BF 0;1 (d; 2) is decomposable into 2 l-crossing Hamilton cycles.

Proof. For this proof, the vertices of W BF 0;1 (d; 2) will be denoted by the ordered pairs (xy; l) with x 2 Z d , y 2 Z d and l 2 Z 2 . We will show that we can build two arc-disjoint 1-crossing Hamilton cycles in W BF 0;1 (d; 2) by using two sets of arcs of W BF 0;1 (d; 2) de ned by the next two rules: (2) It is easy to verify that H 0 and H 1 are arc-disjoint. With the arcs (1) of H 0 , we can de ne for each x 2 Z d a dipath P x as follows: P x 8 < :

(xx; 0) ! (x(x + 1); 1) ! (x(x + 1); 0) ! ! (x(x + 2); 1) ! ! (x(x + d ? 2); 1) ! ! (x(x + d ? 2); 0) ! (x(x + d ? 1); 1) ! (x(x + d ? 1); 0) One can easily check that we have de ned a Hamilton cycle. The d dipaths are joined through their extremal vertices in a cyclic way, using only arcs (2) of H 0 .

By construction, all the vertices at level 1 are crossed. In order to compute the sign of the vertices at level 1, we can choose to walk along the cycle in the direction (xx; 0) ! (x(x + 1); 1). Therefore, all the vertices (xy; 1) with x 6 = y are of type + and have +1 as sign, while the vertices (xx; 1) are of type ? and have ?1 as sign. So, the sum of the signs is (d 2 ? d) ? (d) 0 (mod d).

To prove that the second set of rules builds a second 1-crossing Hamilton cycle, it su ces to notice that we can rewrite this rule up to a permutation of the letters x and y as being:

Arcs of H 1 (with permutation of x and y):

( if y 6 = x; (y(x + 1); 0) +1 (yx; 1) +0 (yx; 0); if y = x; (yy; 0) +0 (yy; 1) +1 ((y ? 1)y; 0): Construction 2 is then clearly similar to construction 1; to be convinced, just exchange x and y, and replace 1 by ?1 in the proof for construction (1).

Hence, H 0 and H 1 are two arc-disjoint 1-crossing Hamilton cycles. As the levels are equivalent, the result holds also for level 0. Proposition 2 For n 2, W BF 0;1 (d; n) is decomposable into 2 l-crossing Hamilton cycles.

Proof. The proposition is proved for n = 2 by the lemma (4). Then, we use lemma (2) with the two compatible cyclic-potent families (2) which use the slopes f0; 1g to construct inductively two arcs-disjoint l-crossing Hamilton cycles in W BF 0;1 (d; n). 2 

Global decomposition

We are now ready to prove the main result: Proof. According to propositions (1) and (2) we have, when d 6 2 f3; 4; 6g, d?2 arc-disjoint circuits in W BF 2;:::;d?1 (d; n) and 2 arc-disjoint cycles in W BF 0;1 (d; n). So, the result holds in these cases. For d 2 f4; 6g and n = 2, an exhaustive computer search shows that W BF(d; n) is decomposable into Hamilton circuits, and so, for n 2, W BF(4; n) and W BF(6; n) are decomposable into Hamilton circuits. For d = 3, we can construct two 1-crossing arc-disjoint Hamilton cycles and one arcdisjoint Hamilton circuit in W BF(3; 2) (see gure (4)). Then, we can apply lemma (2) with families (1) and the result holds for W BF(3; n) with n 2. 2 

Figure 1 :

 1 Figure 1: The digraph W BF(3; 2), the arcs being directed from left to right.

(

  see 2,3]). Concerning line digraphs, it has been shown in 10] that d-regular line digraphs always admit b d 2 c Hamilton circuits. In the case of de Bruijn and Kautz digraphs which are the simplest line digraphs, partial results have been obtained successively in 12] and 5] respectively, and near optimal results have been obtained for undirected de Bruijn and Kautz graphs 4]. The wrapped Butter y digraph is actually a Cayley graph (on a non-abelian group) and a line digraph. So, the decomposition into Hamilton cycles (resp. circuits) of this digraph has received some attention. It is well-known that W BF(d; n) has one Hamilton circuit (see 11, page 465] for a proof in the case d = 2 or 15]).

Families 3 Families 3 (d odd and d 6

 336 to lemma (1) they are two compatible cyclic-potent families and they use the slopes f0; 1g. When d 6 = 3, there exist d ? 2 compatible cyclic-potent families of permutations using the slopes f2; : : :; d ? 1g. One possible solution is given below: when d is odd and d 6 = 3, the following families can be used:

Figure 2 :

 2 figure b figure b'

  The d dipaths P x , x 2 Z d , are clearly vertex-disjoint. Only the vertices noted (xx; 1) are not in these d dipaths. The arcs (2) of H 0 allows us to join the end vertices of the d dipaths through the missing vertices (xx; 1) as follows:

2Figure ( 3 )

 3 Figure (3) gives a decomposition of W BF 0;1 (3; 2) into two 1-crossing Hamilton cycles.

Figure ( 3 )Figure 3 :

 33 Figure (3) gives the recursive construction of two 1-crossing arc-disjoint Hamilton cycles in W BF 0;1 (3; 3) from two 1-crossing arc-disjoint cycles in W BF(3; 2).

Figure 4 :Remark 4

 44 Figure 4: The decomposition of W BF(3; 2) into two 1-crossing arc-disjoint Hamilton cycles and one arc-disjoint Hamilton circuit. The preceding result implies the conjecture of Barth and Raspaud: Theorem 3 For any d and n 2, W BF(d; n) is decomposable into d Hamilton cycles.Remark 4 We could also have derived theorem (3) by proving that, if W BF(d; n) is decomposable into l-crossing Hamilton cycles, then W BF(d; n+1) is also decomposable into l-crossing Hamilton cycles. This can be done by applying lemma (2) with the families (1). But to start the induction we needed to split the Butter y digraph into two partial digraphs in order to prove that W BF(d; 2) is decomposable into l-crossing Hamilton cycles for n = 2 and d 6 = 3.4. ConclusionIn this paper we have proved that W BF(d; n) is always decomposable into Hamilton cycles. In the paper 7], we considered the problem of decomposing W BF(d; n) into Hamilton circuits and conjectured that such a decomposition into d Hamilton circuits exists for n 2, except for (d = 2 and (n = 2 or n = 3)) and (d = 3 and n = 2). The di culty in that case was to start the induction; indeed in 7] we were able to reduce the problem to the case n = 2 and d prime and to solve it in many cases. Consequently, we proposed as an open problem the following conjecture:Conjecture 3[START_REF] Barth | Two edge-disjoint hamiltonian cycles in the Butter y graph[END_REF]) For any prime number p > 3, W BF(p; 2) is decomposable into Hamilton circuits.

  BF(d; n) is decomposable into d Hamilton circuits, W BF(3; n) is decomposable into 1 Hamilton circuit and 2 Hamilton cycles.
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Note added in proof

Recently, Helen Verrall a has informed us that she has been able to prove conjecture (3), thus closing completely the problem of Hamilton decomposition of the Butter y network.