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Hamilton circuits in the directed wrapped
Butterfly network !

J-C. Bermond?, E. Darrot?®, O. Delmas?, S. Perennes?

aSLOOP project, INRIA Sophia Antipolis 2004, route des Lucioles
BP 93 — 06902 Sophia Antipolis Cedex (France)?

Abstract

In this paper, we prove that the wrapped Butterfly digraph WZS}"(d, n) of degree d
and dimension n contains at least d — 1 arc-disjoint Hamilton circuits, answering
a conjecture of Barth [5]. We also conjecture that WBZF(d,n) can be decomposed
into d Hamilton circuits, except for {d = 2 and n = 2}, {d = 2 and n = 3} and
{d = 3 and n = 2}. We show that it suffices to prove this conjecture for d prime
and n = 2. Then, we give such a Hamilton decomposition for all primes to 12000 by
a clever computer search, and so, as a corollary, we have a Hamilton decomposition
of WB]—'((],, n) for any d divisible by a number ¢, with 4 < ¢ < 12000.

Key words: Butterfly digraph, graph theory, Hamilton decomposition, Hamilton
cycle, Hamilton circuit, perfect matching.

1 Introduction and notation

1.1 Butterfly networks

Many interconnection networks have been proposed as suitable topologies for
parallel computers. Among them, Butterfly networks have received particular
attention, due to their interesting structure.

I This work has been supported by the CEFIPRA (french-indian collaboration) and
the european project HCM MAP.

2 SLOOP (Simulation, Object Oriented Languages and Parallelism) is a common
project with the CNRS/University of Nice - Sophia Antipolis (I3S laboratory) and
the INRIA.
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First, we have to warn the reader that under the name Butterfly and with the
same notation, different networks are described in the literature. Indeed, while
some authors consider the Butterfly networks to be multistage networks used
to route permutations, others consider them to be point-to-point networks.
In what follows, we will use the term Butterfly for the multistage version and
we will use Leighton’s terminology [13|, namely wrapped Butterfly, for the
point-to-point version. Furthermore, these networks can be considered either
as undirected or directed. To be complete, we recall that some authors consider
only binary Butterfly networks — the restricted class of networks obtained
when the out-degree is 2 (directed case) or the degree is 4 (undirected case).

In this article, we will use the following definitions and notation, where Z,
denotes the set of integers modulo ¢ (for definitions not given here see [15]).

Definition 1 The Butterfly digraph of degree d and dimension n, denoted
Bf?-"(d, n), has as vertices the ordered pairs (x,l), where x is an element of 27},
that 1s a word x, 1T, o ---x1x9 where the letters belong to Z, and 0 <[ <n
(1 is called the level). Forl < n, a verter (x, 12, 5---x12q,l) is joined by an
arc to the d vertices (x, 1+ 41 @z 1---To,l + 1) where o is any element

Of Zd.

BF(d,n) has (n + 1)d" vertices. Each vertex in level | < n has out-degree d.
This digraph is not strongly connected. It is mainly used as a multistage
interconnection network (the levels corresponding to the stages) in order to
route some one-to-one mapping of d" inputs (nodes at level 0) to d" outputs
(nodes at level n).

The underlying undirected graph obtained by ignoring the orientation will be
denoted BF(d,n).

Figure (1) shows simultaneously BF(3,2) and BF(3,2). The orientation on
BF(d,n) is obtained by directing the edges from left to right.

Note that BF(d, n) is often represented (for example in [13,15]) in an opposite
way to our drawing as the authors denote the nodes (zgzy - - -z, 1). We have
chosen the representation which most emphasizes the recursive decomposi-
tion of Bf?-"(d, n) and provides us with an easy representation of our inductive
construction (see section 3).

Definition 2 The wrapped Butterfly digraph, denoted WB']:(d, n), is 0b-
tained from Bf?-"(d, n) by identifying the vertices of the last and first levels,
namely (x,n) with (z,0). In other words, the vertices are the ordered pairs
(x,1) where x is an element of 77, that is a word x, 12, 5---x12q where
the letters belong to Zg and | € Z, (I is called the level). For any I, a ver-
tex (x, 1T, o x120,1) is joined by an arc to the d vertices (z, 1 x4 «
X1 -xg, L+ 1) where « is any element of Zy.



Usually, to represent the wrapped Butterfly (di)graph we use the represen-
tation of BF(d,n) by repeating level 0 at the end. Hence the reader has to

remember that levels 0 and n are identified for WBF(d,n). WBF(d,n) is a
d-regular digraph with nd" vertices; its diameter is 2n — 1. The underlying

wrapped Butterfly network will be denoted WBF(d, n); it is easy to see that

this graph is regular of degree 2d and has diameter |[2*].

Node (10,2) in BF(3.2)
10 or
Node (10,0) in WBF(3,2)
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Fig. 1. The graphs BF(3,2) (multistage version) with 3 levels, or WBF(3,2)
(point-to-point version with level 0 duplicated). For digraphs BF(3,2) or WBF(3,2),
the edges must be arcs directed from left to right .

1.2 Other definitions and general results

e K, will denote the complete graph on d vertices.

e K44 will denote the complete bipartite graph where each set of the biparti-
tion has size d.

e G* will denote the symmetric digraph obtained from an undirected graph
G by replacing each edge by two opposite arcs. In particular £ (resp. K )
will denote the complete symmetric (resp. bipartite) digraph on d (resp.
d x d) vertices.

e K will denote the complete symmetric digraph with a loop on each vertex.

e A circuit, or directed cycle, of length n will be denoted C, and a dipath of
length n will be denoted P,.

. /Ed,d will denote the digraph obtained from K, 4 by orienting each edge from
one part of the bipartition, called left part, to the other, called right part.



Definition 3 (see [15]) Let G be a directed graph. The line digraph of G,
denoted L(G), is the directed graph whose vertices correspond to the arcs of G
and whose arcs are defined as follows: there is an arc from a vertex e to a
verter f in L(G) if and only if, in G, the initial vertex of f is the end vertex
of e.

Note that WBZF(d, 1) is just K} and that BF(d,1) is /Ed,d. We will see in
section 4 (corollary (38)) that WBZF(d, 2) is the line digraph of K

Definition 4 A 1-difactor of a digraph G is a spanning subgraph of G with
in- and out-degree 1. It corresponds to a partition of the vertices of G into
circusts.

Definition 5 A Hamilton cycle (resp. circuit) of a graph (resp. digraph)
is a cycle (resp. circuit) which contains every vertex exactly once.

Definition 6 We will say that a graph (resp. digraph) has ¢ Hamilton
decomposition or can be decomposed into Hamilton cycles (resp.
circuits) if its edges (resp. arcs) can be partitioned into Hamilton cycles (resp.
circuits).

Remark 7 A Hamilton circuit is a connected 1-difactor.

The existence of one and if possible many edge(arc)-disjoint Hamilton cycles
(circuits) in a network is advantageous for algorithms that make use of a
ring structure. Furthermore, the existence of a Hamilton decomposition also
allows the message traffic to be evenly distributed across the network. Various
results have been obtained about the existence of Hamilton cycles in classical
networks (see for example the surveys |2,11|). For example, it is well-known
that any Cayley graph on an abelian group is Hamiltonian. Furthermore, it
has been conjectured by Alspach [1] that:

Conjecture 8 (Alspach) Ewvery connected Cayley graph on an abelian group
has a Hamilton decomposition.

This conjecture has been verified for all connected 4-regular graphs on abelian
groups in [9]. This includes in particular the toroidal meshes (grids). It is also
known that H(2d), the hypercube of dimension 2d, can be decomposed into d
Hamilton cycles (see [2,3]).

Concerning line digraphs, it has been shown in [12] that d-regular line digraphs
always admit |4] Hamilton circuits. In the case of de Bruijn and Kautz di-
graphs which are the simplest line digraphs, partial results have been obtained
successively in [14] and [6] respectively, and near optimal results have been

obtained for undirected de Bruijn and Kautz graphs [4].



1.3 Results for the Butterfly networks

The wrapped Butterfly (di)graph is actually a Cayley graph (on a non abelian
group) and a line digraph. So, the decomposition into Hamilton cycles (resp.
circuits) of this graph (resp. digraph) has received some attention. First, it
is well-known that WBZF(d, n) is Hamiltonian (see [13, page 465] for a proof
in the case d = 2). In [7]|, Barth and Raspaud proved that WBF(2,n) has
a Hamilton decomposition, answering a conjecture of Rowley and Sotteau
(private communication).

Theorem 9 (Barth, Raspaud) WBF(2,n) can be decomposed into 2 Hamil-
ton cycles.

They also gave the following conjecture:

Conjecture 10 (Barth, Raspaud) For n > 2, WBF(d,n) can be decom-
posed into d Hamilton cycles.

In his thesis [5] , Barth also stated the following conjecture for the directed
case:

Conjecture 11 (Barth) Forn > 2, WBF(d,n) contains d — 1 arc-disjoint
Hamilton circusts.

Recall that for n = 1, WBJ:(d, 1) is just KJ which itself is the arc-disjoint
sum of K and loops. So conjecture (11) can be seen as an extension of a
theorem of Tillson [17].

Theorem 12 (Tillson) The complete symmetric digraph IC can be decom-
posed into d — 1 Hamilton circuits, except for d =4 and 6.

In this paper we focus mainly on the decomposition of the wrapped Butterfly
digraph WBF(d,n). Our main result implies that the number of arc-disjoint
Hamilton circuits contained in WBJF(d, n) can only increase when n increases.

Proposition 13 For any n' > n, if Wzgf(d, n) contains p arc-disjoint

Hamilton circuits, then WBJF (d,n') also contains at least p arc-disjoint Hamil-
ton circuits.

This proposition, with Tillson’s theorem and a special study for d = 4 and 6,
implies conjecture (11).

Theorem 14 For n > 2, WB’}"(d, n) contains d — 1 arc-disjoint Hamilton
circuits.



Furthermore, it appears that, except for three cases, for all small values of d,
WBF(d,n) can be decomposed into d Hamilton circuits. So, we conjecture
that:

Conjecture 15 For n > 2, WZS’.T(d, n) can be decomposed into d Hamilton
circuits, except for (d =2 andn =2 or 3) and (d =3 and n =2).

By proposition (13), it suffices to prove the conjecture for n = 2. Using results
of section 4 on the conjunction of graphs, we have been able to reduce the study
to prime degrees. So, conjecture (15) would follow from conjecture (16).

Conjecture 16 For any prime number p > 3, WZS'.T(p, 2) can be decomposed
into p Hamilton circuits.

With a clever computer search, we have been able to prove conjecture (16)
for any prime less than 12000, leading to the following statement:

Theorem 17 If d is divisible by any number q, such that 4 < g < 12000, then
WBF(d,2), and consequently WBF(d,n), has a Hamilton decomposition.

Finally, the methods used in this paper are combined with other ideas and
applied to the undirected case to prove conjecture (10) in a forthcoming pa-

per [8].

Theorem 18 For n > 2, WBF(d,n) can be decomposed into d Hamilton
cycles.

2 Circuits and Permutations
2.1 More definitions

First, we will show that the existence of k£ arc-disjoint Hamilton circuits in
Wzgf(d, n), is equivalent to the ability to route k compatible cyclic realizable
permutations between levels 0 and n in BTT(d, n). For this purpose, we need
some specific definitions.

In this paper, m will always denote a permutation of Z] which associates the
element 7 (x) with z. The composition 7- 7’ of two permutations 7 and 7’
is the permutation which associates with the element a the element = (7'(a)).

Definition 19 A permutation m is cyclic if, for some x, all the elements
7' (x) are distinct, for 0 < i < d".



Remark 20 Note that if © is cyclic, then, for every x, the elements 7' (x) are
all distinct. In fact, to verify that m is cyclic, it suffices to verify that for a
gwen x, ©(x) # x, for 1 < i < d". Indeed, if there exists j and k, with j > k,
such that ©(x) = n*(x), then ™ *(x) = x.

For example, the permutation m which associates with a the element a + 1 is
clearly cyclic, as '(a) = a + i.

It follows from the definition of B?-“(d, n) that there exists a unique dipath
connecting a vertex (z,0) to a vertex (y,n). So, we can associate with a per-
mutation 7 of Z" a set of dipaths in BF(d, n) connecting vertex (z,0) to vertex
(m(z),n) for any = in Z].

Following the terminology used in multistage interconnection networks, where
one wants to connect inputs to outputs via disjoint paths, we introduce the
notation of realizable permutations.

Definition 21 A permutation 7 s realizable in B_f(d, n), or equivalently
BF(d,n) realizes the permutation , if the d" associated dipaths from the
imputs to the outputs are vertezr-disjoint.

Finally, following the terminology of Eulerian graph theory, we say:

Definition 22 A set of k permutations my, my,- -+ , Tx_1 realizable in B_f(d, n)
is compatible if the kd" dipaths from (x,0) to (7;(x),n), for x in Z and

0 <7 < k-1, are arc-disjoint. We will also say that Bf?-"(d, n) realizes k
compatible permutations.

Warning - In the whole paper we are working with permutations which are
mathematical objects independent of the graph for which they can be either
realizable or compatible. In contrary, the realizability or compatibility is a
property related to the graphs on which it applies.

2.2  Hamilton circuits and permutations

We are now ready to prove that there is an immediate connection between the
existence of compatible cyclic realizable permutations in BF(d, n) and that of
arc-disjoint Hamilton circuits in WBF(d, n).

Lemma 23 Wzgf(d, n) contains k arc-disjoint Hamilton circuits if and only
if BF(d,n) realizes k compatible cyclic permutations.



Proof. First, let us show how to associate with a cyclic permutation ,
realizable in BF(d, n), a Hamilton circuit of WBF(d,n) and conversely.

Let m be a cyclic permutation of Z!]. Let x be a given element of Z}; and let
P; be the unique dipath of BF(d,n) joining (7(z),0) to (x*(z),n). As 7 is
cyclic, all the 7' (x) are distinct. So, if 7 is realizable, the dipaths P; are vertex-
disjoint. Let P! be the dipath of WB’]:(d, n) obtained from P; by identifying
(m* (), n) with (7'*(z),0). Now, the end vertex of P! is the initial of P/ ,
and so, as the (7'(x), 0) span the set of vertices of level 0, the concatenation of
the dipaths P/, with 0 < i < d" — 1, forms a Hamilton circuit of W?S']—“(d, n).

1)

Conversely, let H be a Hamilton circuit of WBF(d, n). Let (z,0), (z;,0),

oy (23,0), ..., (zgn_1,0) be the vertices we meet successively on level 0 by
following the cycle H. Let us consider the permutation defined by 7(x;) = ;1.
As H is a Hamilton circuit, all the z;’s are distinct so 7 is cyclic; furthermore,
all the inside dipaths are vertex-disjoint, so 7 is a cyclic realizable permutation

in BF(d,n).

To prove the lemma, it suffices to note that the definition of compatible per-
mutations has been done in order that the dipaths associated with the permu-
tation are arc-disjoint, and so their concatenation form arc-disjoint Hamilton

circuits, and conversely (see Figure (2)). O
>
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Fig. 2. A Hamilton circuit of WZ%]—'(Z,?) (figure a) or equivalently the associated
permutation realizable in BF(2,2) (figure b) and the cyclic permutation which is
used (figure c).



3 Recursive construction
3.1 Recursive decomposition of B_f(d, n)

The permutation network BTT(d, n) has a simple recursive property: the n+ 1
first levels of B_f(d,n + 1) form d vertex-disjoint subgraphs isomorphic to
B?-“(d, n). We shall call them left Butterflies. If the elements of Z2*! are de-
noted y = (ax) € Zq x Z}, then each left Butterfly connects the set of vertices
having the same left part a. So we will label a left Butterfly by Byeg(a). In
the same way, the two last levels of B_j:(d,n + 1) are built with d" disjoint
subgraphs isomorphic to B?-“(d, 1) = /Gd,d, that we shall call right Butterflies;
each right Butterfly connects all the vertices having the same right part z and
we will label it by Kqa(x).

We can summarize the situation as follows:

e vertices of BF(d,n+ 1) are denoted (ax,1),

e the left Butterfly labeled by a € Z, is formed by the vertices ax of the n+1
first levels. It is denoted Byen(a),

e the right Butterfly with label z € Z] is formed by the vertices xz of the 2
last levels. It is denoted Kgq(x).

Remark 24 In BTT(d, n+1), vertices of level n are shared by the left and right
Butterflies, the outputs of the left Butterflies being considered as the inputs of
the right Butterflies. Moreover, all the subgraphs defined above are arc-disjoint.

Figure (3) displays such a recursive decomposition.

3.2  Iterative Construction

We will now give a simple construction which enables us to construct p com-
patible cyclic realizable permutations in BF(d,n+ 1) from p compatible cyclic
realizable permutations in BF(d,n).

In what follows, we will use the letter M to indicate a permutation of Z,; and
M, to denote a permutation realizable in the right Butterfly ﬁdd(T) If M, is
a permutation of Z, realizable in Ed,d(m), then the arcs joining the vertices ax
on level n of BF(d,n + 1) to the vertices M,(a)z on level n + 1 are disjoint
and form a perfect matching in Kyq(z).
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Fig. 3. The recursive decomposition of BF(3,2). To obtain the directed version
B_f(3,2) the edges must be changed into arcs directed from left to right. The ver-
tices are denoted y = (ax) € Zg X Z;. In B_.‘7-'(3,2), the 2 first levels form 3 wver-
tex-disjoint subgraphs, each one isomorphic to B?(?), 2 —1). These 3 subgraphs are
labeled Bprep(a). In the same way, the 2 last levels of B_.‘7-'(3,2) are built with 3!

disjoint subgraphs isomorphic to BTF(S, 1) = /6,1,,1, labeled lﬁdd(a")

To be able to prove an inductive lemma, we need another definition:

Definition 25 A family (or multi-set) of permutations satisfies the
cyclic property if the composition of the permutations of the family is a
cyclic permutation for any order of the composition.

We use the word “family” because the permutations are not necessarily differ-
ent. This is the case in the following useful example, where all the permutations
are identical except one:

Example 26 Let the family M, consist of the d" permutations M, ; of Zy,
such that v € Z1, M, ;(a) = a+ j, for x # 0, and M, ;(a) = a+ j + 1,
for x = 0. Then, the family M; satisfies the cyclic property. Indeed, con-
sider a permutation obtained by the composition of these d" permutations in
any order; this permutation associates with the element a of Z4 the element
a+(d"=1)j+j+1=a+d"j+1 =a+1 and so is clearly a cyclic permutation
Of Zd.

Lemma 27 (inductive lemma) Let 7 be a cyclic permutation realizable in
B_.?:(d, n) and let M = (M,, x € Z1) be a family of d" permutations satisfying
the cyclic property and such that M, is realizable in led,d(aj). Then, the per-
mutation fx am) of 75 defined by [ (az) = br(x), where b = Mz, (a),
18 a cyclic permutation realizable in B??-“(d, n+1).

10



Proof. First, let us show that fir ) is a cyclic permutation. To show that
fex.a) is cyclic, it suffices, by remark (20), to show that f(’:mM)(ax) + az,
for 1 <i < d"*' — 1. Suppose that f(’:mM)(a:c) = ax for some i. By definition,
fleplaz) = d'm'(x). So, w'(x) = @, which implies that i = kd". If i = d",
a' is the image of a by the composition of the d" elements of M, in some
order and since M has the cyclic property, ' = o(a), where o is a cyclic
permutation. Therefore, f(’jrdjw)(ar) = o*(a)r # ax, for 1 < k < d. So, for
any i, 1 <7 <d"*tt -1, f(iﬂ,M)(a,m) + az.

It remains to show that f; ¢ is realizable in BT?-"(d,n + 1). The dipath as-
sociated with f(x ¢y from (ax,0) to (bm(x),n + 1) consists of the dipath from
(az,0) to (am(x),n) in Byey(a) associated with the permutation m of By (a)
(which is isomorphic to BF(d,n)) followed by the arc joining (am(z),n) with
(br(z),n + 1) in Kgq(n(2)) defined by the matching associated with the per-
mutation My, that is b = M) (a). We claim that the dipaths joining two
distinct inputs (az,0) and (a’z’,0) to their outputs are vertex-disjoint and
SO fir,am) is realizable. Indeed, if a # a' their first parts are in two different
Breti(a) and Brer(a') and the last arcs are disjoint as either z # 2’ or = 2
and M, is realizable in Kaa(m(z)). If a = d, then, since  is realizable, the
first dipaths are vertex-disjoint and since z # 2/, the last arcs belong to two
different Ied.’d. O

Corollary 28 If there exist p compatible cyclic realizable permutations in
BF(d,n), then there exist p compatible cyclic realizable permutations in

BF(d,n+1).

Proof. Let M, (0 < j < p—1) be the family of d" permutations M, ; defined
in example (26), that is M, ;(a) = a + j, for x # 0, and M, ;(a) = a+ j + 1,
for x = 0. Note that the permutation M, ; is realizable in /&,d(r) Let mg,

., T, ..., Tp_1 be p compatible cyclic realizable permutations of Bf?-"(d, n).
By lemma (27), the permutation fix, a;), 0 < j < p — 1, are cyclic realizable
permutations of B_j:(d,n + 1). It remains to show that these permutations
are compatible. First, the associated dipaths are arc-disjoint in the left But-
terflies Bpeg(a) because the m; are compatible. Secondly, for any given z, the
permutations M, ;, with 0 < j < p — 1, are compatible (i.e. the associated
matchings are arc-disjoint). Indeed, for x # 0 the arcs (a,a+j) and (a,a+j')
are arc-disjoint (since j # j', 0<j<p-1<d-land0<j <p-1<d-1).
Similarly, for z = 0, the arcs (a,a+j + 1) and (a,a + j' + 1) are disjoint. O

Now, we are ready to prove our main proposition, stated in the introduction:
Proposition 29 (main proposition) For any n’ > n, if WZ@]:(d, n) con-

tains p arc-disjoint Hamilton circuits, then WBf(d, n') contains at least p
arc-disjoint Hamailton circuits.

11



Proof. The result for n’ = n+ 1 follows from corollary (28) and lemma (23).
A recursive application of this property gives the above proposition. O

For an example of the construction see Figure (4).

CI
2 1

figure b

figure @’ figure b’

Fig. 4. Two Hamilton circuits (figures (a') and (b)) of BF(3,2) are obtained from
two Hamilton circuits of WB}'(S,l) = K§ by the construction of lemma (27).
The figures (a) and (b) show two arc-disjoint Hamilton circuits of K3 : the circuits
{Colz — z+1 (mod3)} and {C) | & — =+ 2 (mod 3)}. This example uses the
families My (figure (a')) and My (figure (b')) defined in the proof of corollary (28).

3.3  Consequences

Corollary 30 WZS’}"(Z, n) can be decomposed into 2 Hamilton circuits as soon
asn > 4. For 1 <n <3, WBF(2,n) admits only one Hamilton circuit.

Proof. A computer search has given a decomposition of WBF(2,4) into 2
arc-disjoint Hamilton circuits. Therefore, by proposition (29) WZ%}"(Z, n) has
a Hamilton decomposition for any n > 4. For 1 < n < 3, an exhaustive com-
puter search shows that there cannot exist two arc-disjoint Hamilton circuits.
([

Corollary 31 WB]:(?), n) can be decomposed into 3 Hamilton circuits as soon

asn > 3. For1 <n <2, WB.T(B, n) admits only two arc-disjoint Hamilton
circuits.

12



Proof. For n > 3, this follows from the existence of a Hamilton decomposi-
tion of WB’T(S, 3) obtained by computer (figures of decompositions available
on demand). For n = 1 and 2, an exhaustive search (by computer) shows that
there exist only two arc-disjoint Hamilton circuits. O

Now, we are able to prove Barth’s conjecture (conjecture (11)):

Theorem 32 For n > 2, WB’}"(d, n) contains d — 1 arc-disjoint Hamilton
circuits.

Proof. By Tillson’s decomposition (theorem (12)), for d # 4 and d # 6,
WB’T(d, 1) = K contains d — 1 arc-disjoint Hamilton circuits. So, by propo-
sition (29), for d # 4 and d # 6, WB]:(d, n) contains at least d— 1 arc-disjoint
Hamilton circuits. For d = 4 (resp. d = 6), we have found, by computer search,
4 (resp. 6) arc-disjoint Hamilton circuits in WBF(4,2) (resp. WBF(6,2)).
So, by proposition (29), WBF(4,n) (resp. WBF(6,n)) contains 4 (resp. 6)
arc-disjoint Hamilton circuits. O

As seen in the proof above, there exists a Hamilton decomposition of W?S']—“(d, n)
for n > 2 and d = 4 or 6. These results and those of the next section lead us
to propose the following conjecture, which would completely close the study
of the Hamilton decomposition of WBF(d, n).

Conjecture 33 For d > 4 and n > 2, WZS’]:(d, n) can be decomposed into
Hamilton circuits.

By proposition (29), it suffices to prove the conjecture for n = 2 or equiva-
lently, as WBF(d,2) = L(K},) (see corollary (38)), that K ; admits d com-
patible Eulerian tours (see [12]).

4 Decomposition of WBF(d,2) into Hamilton circuits
4.1 Line digraphs and conjunction

We need some more definitions and results concerning conjunction, line di-
graphs and de Bruijn digraphs.

Definitions 34 (see [2])

(1) The conjunction G-Gy of two digraphs Gy = (Vi, Ey) and Gy = (V3 Es)
is the digraph with vertez-set Vi x Vo and an arc joining (uq, us) to (vy, vq)
if and only if there is an arc joining uy to vy 1 Gy and an arc joining us
to vy in Gy.
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(2) If A and B are two digraphs defined on the same set of vertices with no
arc in common, we denote by A & B the arc-disjoint union (sum) of
them, that is the digraph on the same set of vertices having as arcs the
union of those of A and B.

(3) ¢G will denote the digraph made of ¢ disjoint copies of G.
(4) L¥(G) = L(L*'(Q)) will denote the k iterated line digraph of G.

For example, K , = K - Cy and WBF(2,4) = A® B, if A and B are the two
arc-disjoint Hamilton circuits of WBF(2,4).

Properties 35

F-G=G-F
L(F-G) = L(F)- L(G)
(F-G)-H=F-(G-H) =F-G-H
(A@B)&#C=A®(B&C)=AaBaC
(A& B)-F=(A-F)& (B-F)

Proof. These results are clear from the definitions. O

There is a very strong connection between the de Bruin digraph and the
wrapped Butterfly digraph. We recall the definition of the de Bruijn digraph:

Definition 36 The de Bruijn digraph of out-degree d and diameter n is
denoted g(d, n) and has as vertices the words of length n on an alphabet of d
letters. A wvertex xq---x,_1 18 joined by an arc to the vertices xy--- T, 10,
where o 18 any letter from the alphabet.

Propositions 37

B(d,n) = L" " (K) (1)
B(dydy, n) = B(dy,n) - B(dy, n) (2)
WBF(d,n) = B(d,n) - C, = L" (K} - C,) (3)

14



BF(d,n) = B(d,n)- P, (4)
WBF(dydy, n) = WBF(dy,n) - B(dy, n) (5)

Proof. Equality (1) is well known, and even sometimes considered as the
proper definition of de Bruijn digraphs (see [10,15]).

Result (2) can be found in [16] and can be proved as follows: from (1),
B(didy,n) = L"'(K} ,,)- As K ., = K7 Ky, , we deduce from properties (35)
that L" Y (K -KL) = L H(Kg)-L" (K, ), which is indeed B(d, n)-B(ds, n).

Result (3) is implicit in different papers. It can be obtained by considering the
following isomorphism from B(d,n) - C, to WBF(d,n): with the vertex (z,1)
in g(d, n) - én, where © = xgx1---2,_1 and | € Z,, we associate the vertex
o((x,1)) = (/1) in WBF(d,n), where 2/ = 2! 2! -z, and 2, = ;. By
definitions (34)-1 and (36), the out-neighbors of (z,1) in B(d,n) - C, are the
vertices (y,l + 1) with y = yoy1 - y,_1 such that y; = x;4q, for i #n — 1,
and y, 1 = «, a being any letter from the alphabet. The associated vertices
in WBF(d,n) are ¢((y,1 +1)) = (', +1) where y/ = 1, 1. ,---y} and
Y. = vyi 1. Fori =1 —1# n —1, or equivalently 7 # [, y. = x; , = z}, and
for i =1, y; = a. So, by definition (2), the vertices (y',1 + 1) are exactly the
out-neighbors of (2/,1) in WBZF(d, n). The second part of the equality is due to
the fact that L"'(C,) = C,; hence, L" " (K}) - C, = L"'(K}) - L™ (C,) =
LYK - C,). An example is displayed in Figure (5).

Result (4) can be proved in the same way as (3).

The last equality follows directly from (2) and (3). O

Corollary 38 WBF(d,2) = LK)
Proof. Follows from proposition (37) equality (3) with n = 2. O
Lemma 39 When r and s are relatively prime, C_"qs . C_"qr = qC_"qST.

Proof. éqs . éqr is a regular digraph with in- and out-degree 1. So, it is the
union of circuits. Starting from a vertex (u, v), we find at distance i the vertex
(u+1i,v+1i) where u+1 (resp. v+1i) has to be taken modulo gs (resp. qr). So,
the length of any circuit is the smallest common multiple of ¢s and qr, that is
grs, as r and s are relatively prime. As the number of vertices in the digraph
is ¢’rs, there are g such cycles. O
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Fig. 5. The graph WBF(2,3) as a conjunction of B(2,3) and Cs.

Proposition 40 WBF(dy,n) - WBF (dy, n) = n€WBF (dydy, n).

—;

Proof. Let G = W F(dy,n)- WB]—"((J’Q, ). By proposition (37)-(3), we have
g( o,n) - Cy). As C, - C, = nC, (from lemma (39),

G:(B(dh ) ) ]

(
with ¢ = n and s = r = 1), we obtain: G = B(dy,n) - B(dy,n) - (nC,) =
n(B(dy,n) - B(dy, n ) C,) = nWBF (dydy, n). O

Corollary 41 If di and dy are relatively prime, and if WB}"(dl,n) (resp.
WBF(dy,n)) admits ay (resp. ag) arc-disjoint Hamilton circuits, then
WBF(didy,n) admits ajay arc-disjoint Hamilton circuits.

Proof. Let Cﬁnd? (resp. éndg,) be a Hamilton circuit in WBF(dy,n) (resp.
WBF(dy,n)). From lemma (39), the conjunction C,4» - Cpan is a set of n
circuits of length ndyd;. As WBF(dyds, n) has ndid} vertices, the 1-difactor
C’nd? . Cndg consists of n circuits, each one being a Hamilton circuit of a con-

nected component of WBF (dy, n) - WBF (dy, n) isomorphic to WEBF (dydy, n).
So, the conjunction of one Hamilton circuit of WB}"(dl, n) with one Hamilton
circuit of WBF(dy, n) provides one Hamilton circuit in WBF(dydy,n). Ap-
plying this results to the ajay different ordered pairs of circuits provides ajas
arc-disjoint Hamilton circuits in WBf(dldg, n). O
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So, by corollary (41), it is enough to prove conjecture (33) for every power p’
of a prime number p.

4.2 Reduction to the case where p 1s prime

We would like to prove that WBF(d, 2) = B(d, 2) - C, has a Hamilton decom-
position. But this appears to be quite difficult. However, we will prove that
for n > 3, B(d,2) - C, has a Hamilton decomposition. Such a decomposition
will then be sufficient to reduce the problem to the case of prime degrees.
Lemma 42 For any number n > 3 and any prime p, g(p, 2) - C, can be
decomposed into p Hamilton circuits.

Proof. Let the nodes of g(p, 2) - C., be labeled (zy,l), with x € Z,, y € Z,
and | € Z,. The digraph g(p, 2) - C, is similar to the wrapped Butterfly
digraph, and we can define a multistage network by duplicating level 0 to
obtain level n. Formally, this multistage network is g(p, 2) - P,, where P, is a
directed path of length n (i.e. with n 4 1 vertices); its vertices will be labeled
(zy,l), with x € Z,, y € Z, and | € {0,1,... ,n}.

Like in section 2, we can define a notion of realizable permutation in the graph
g(p, 2) - P,, except that now there is more than one dipath connecting (xy, 0)
to (w(xy),n). We will say that B(p,2) - P, realizes k compatible permutations
Ty 1y «vv, Tp1 OF Zz, if there exist kp? dipaths P;(zy), with zy € Zg and
0 < j <k —1, where P;(zy) connects (zy,0) to (7;(zy),n) in B(p,2) - P,,
satisfying the following properties: for a given j, the p? dipaths P;(zy) are
vertex-disjoint (realizability property) and all the kp* dipaths P;(zy) are arc-
disjoint (compatibility property).

Using the same argument as in lemma (23), we can establish that B(p,2)-C,
can be decomposed into p Hamilton circuits if and only if B(p, 2)- P, realizes p
compatible cyclic permutations.

We will show by induction that g(p, 2)- P;, realizes p compatible cyclic permu-
tations; more exactly, we will prove that if the property is true for n, it is also
true for n + 3. First, we give, for n € {3,4,5}, the dipaths P;(zy) associated
with compatible cyclic permutations.

In all the dipaths that we consider, a vertex (xy,[) is followed by a vertex

(y2', 1+ 1) with 2’ = g)(x,y,j) = ax + f(y) + ¢j, where a, f and ¢ depend on
the level [ and where 0 < 7 <p—1.
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e For any j, the dipaths Pj(xy) are vertex-disjoint if and only if, at each
level, two distinct vertices (z1y1,() and (x2ys,1) are followed by two distinct
vertices (y12),0 + 1) and (yo2),1 + 1). As p is a prime, this is realized if
and only if the coefficient a of = in g)(z,y, j) is different from 0. Indeed, if
yoxhy =y then, yy = y; and 2y, = 2. So, axs+ f(y2)+cj = azxi+ f(y1)+cj
and as y; = y;. This implies axry = axy, which in turn implies (as p is a
prime number) either a = 0 or x5 = ;.

e Similarly, the dipaths P;(zy) are arc-disjoint if and only if, for given [, z, y:
g(z,y,7) = gi(x,y’,j) are different. This is satisfied if and only if ¢ # 0,
as p is a prime number.

Since a vertex of level [ is always followed by a vertex of level [ + 1, we will

simplify the notation in the following, by omitting the values of the levels from
the labels of the vertices.

4.2.1 Initial constructions

lifx=0
0ifx#0

Let &y denote the function of Z, into {0,1}:  dy(z) =

n =3

Pi(zy) =zy ylr+y+j) @+y+i)@+1) (@+1)(y+d(+1))

n=4

Pi(xy) =y y(e+j) @+5)y+7) (y+i)e+1) (z+1)(y+do(z+1))
Figure (6) shows one decomposition of B(3,2) - Cy into circuits. To produce a

clearer figure, vertices ab on odd levels are ranked lexicographically and those
on even levels in the following order: ab < @'t/ if b < b or b=10" and a < d'.

3 %)

3 % ) - «~ ) ) ) - «~ ) ) ) - «~ ) )
5 > ° ° ° ° ° ° ° ° ° ° ° ° ° ° °
> 3 54 54 54 54 54 54 54 54 54 54 53 53 53 53 5
i a a a a a a a a a a a a a a a
00 00

10 01

20 02

21 12

02 20
2 21
22 22

n o H*%Y;ﬁ

Fig. 6. A decomposition of 3(3, 2)-64, presented with a special ranking of the vertices.

18



n=5andp#2 Pj(zy) =
vy yw+y+j) (@+y+i)@+2)) (@+2))y ye+1) (@+1)(y+j+bo(r+1))
n=5andp=2 Pj(zy) =
vy yw+y+i+1) (@+y+i+D+7) y+)@+i+1) @+i+ly yle+1)

In all the cases, one can easily verify that the functions g;(x,y, j) are of the
form ax + f(y) + ¢j with, a # 0 and ¢ # 0. For example, in the construction
for n = 3, the functions implicitly defined are:

(X’ Y) X! = aXi)f(Y)‘l'Cj Y, X,)
X' = X+Y+j .
(z, y) =0 y, x+y+7)

(y, c+y+y r+y+j, x+1)

T
) X :Y;>ij+1 (
) "

(+y+j, 1) * Y

z+1, y+do(r+1))

To complete the proof, it remains to note that in the three first cases, the
permutation induced by the construction 7(zy) = (z + 1)(y + ¢j + do(z + 1))
is cyclic, and that in the case n =5 and p = 2, 7w(zy) = y(x + 1) is also cyclic,
as p = 2.

4.2.2  Induction step

The induction step follows from two facts. First, it can be easily seen that
B(p,2) - P,ym realizes p compatible permutations 7;, 0 < j7 < p — 1, if and
only if there exist two sets of permutations 7 and 7}, 0 < j < p — 1, such

that:

[

e for0<j<p-—1,m=mm,
. g(p, 2) - P, realizes the p compatible permutations 7, 0 < j <p —1,
. g(p, 2) B realizes the p compatible permutations 7}, 0 < j <p — 1.

Secondly, g(p, 2) - ]33 realizes p compatible permutations 7;, 0 < j < p — 1,
such that each 7; = e is the identity permutation. Indeed, let us consider the

dipaths: ) )
P Pij(zy) =y ylz+y+7j) (x+y+j)z xy

Once again, a vertex XY of level [ is joined to a vertex Y X' of level [ + 1,
with X' = g(X,Y,j) = aX + f(Y) +¢j, a # 0 and ¢ # 0. So, if B(p,2) - P,
realizes p compatible permutations 7, then B(p,2) - P,.5 realizes the same
compatible permutations.

So, we can conclude by induction that g(p, 2) - C,, can be decomposed into p
Hamilton circuits for any number n > 3. O
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Theorem 43 If a digraph G, with at least 3 vertices, contains k arc-disjoint
Hamilton circuits, then B(d,2) - G contains dk arc-disjoint Hamilton circuits.

Proof. First, we prove the result for d prime. By hypothesis, G D @g<;f_1 qu’,
where [ is the number of vertices of G and [ > 3. Hence:

B(d2)-G>B(d2)- @ (= @ Bd2)-

0<i<hk—1 0<i<h—1
From lemma (42), we have g(d, 2) - C, = Do<j<a1 C_’ZQZ. So:

Bd2)-G> @ @ Y < B2 -G> @ Iy

0<i<k—10<j<d—1 0<m<kd—1

Suppose now that the result holds for all integers strictly less than d. If d is
prime, we have just proved the result. Otherwise, d = d;p, where p is a prime
and d; < d. By proposition (37)-2, B(d,2) = B(p,2) - B(d,,2). As a conse-
quence, B(d,2) - G = B(p,2) - (B(dy,2) - G). By induction, G' = B(d,,2) - G
contains at least d;k arc-disjoint Hamilton circuits. Moreover, since p is prime,
G = g(p, 2) - G' will contain pd;k = dk arc-disjoint Hamilton circuits. O

When G can be decomposed into Hamilton circuits, the above theorem can
be restated as:

Theorem 44 If G has more than 3 vertices and can be decomposed into
Hamilton circuits, then B(d,2) - G can also be decomposed into Hamilton cir-
cuits.

Corollary 45 If WZS’]:(d, 2), with d # 1, can be decomposed into Hamilton

circuits, then WB]:(qd, 2) can also be decomposed into Hamilton circuits for
any integer q.

Proof. Just apply theorem (44) to WBF(¢d, 2) which is B(q, 2) - WBF(d, 2)
by proposition (37). Note that WBJF(1,2) has only 2 vertices. So, the corol-
lary cannot be applied for d = 1. O

Example 46 Since W?ﬁ'f(4,2) has a Hamilton decomposition, ij’f(élq, 2)

also has a Hamilton decomposition for any integer q. In particular, WBF(2',2)
has a Hamilton decomposition for i > 2.

Corollary 47 To prove conjecture (33), it suffices to prove that WB}"(p, 2)
has a Hamilton decomposition, for any prime p > 5.
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Proof. Let d be a non prime number. If d has a prime factor p ¢ {2,3}, by
corollary (45), it suffices to prove the conjecture for WBZF (p,2). If d > 4 has
only prime factors equal to 2 or 3, then d = 237 with i +j > 2. A computer
search shows that WBF(4,2), WBF(6,2) and WBF(9,2) have a Hamilton
decomposition. So, according to corollary (45), WBF (2137, 2), with i + j > 2
has a Hamilton decomposition. 0

Remark 48 Although it is not the purpose of this article, proposition (43)
can be used to improve results about the decomposition of de Bruijn digraphs
into Hamilton circuits:

Propositions 49
e [f p is the greatest prime dividing d, then B(d,2) contains %d Hamilton
circuits.

e B(21q,2) contains (2' — 1)q Hamilton circuits.

Proof. The first result holds for p = 1. For p > 1, by a result of Barth,
Bond and Raspaud [6], we know that, for p a prime, g(p, 2) contains p — 1
arc-disjoint Hamilton circuits and has at least 4 vertices. Hence, theorem (43)
implies that B(d,2) contains (p — 1)d; arc-disjoint Hamilton circuits, as we
have B(d, 2) = B(pdy,2) = B(dy,2)-B(p, 2). Similarly, the second result follows
from a result of Rowley and Bose [14], stating that B(27,2) contains 2 — 1
Hamilton circuits. O

4.3 BEzhaustive Search for Hamilton decomposition of WB}"(p, 2)

As seen above, the problem has been reduced to finding a Hamilton decom-
position of WB]:(p, 2) = L(Iap,p), for any prime p > 5. In order to provide
ideas and to strengthen our conjecture, we have performed some exhaustive
searches. The complexity of an exhaustive search being exponential, we have
restricted the set of solutions to those for which the i-th circuit H; is obtained
from Hy by applying the automorphism ¢; of Wzgf(p, 2) which sends vertex
(ab, 1) to vertex (a(b+ i),l). Furthermore, we want solutions such that Hy is
Hamiltonian and the Hamilton circuits H; = ¢;(Hy), with 0 < i < p — 1 are
arc-disjoint. However, the search space is still exponential in p and a computer
search (with normal computation resources) cannot be successful for p greater
than 7. So, we restricted the search space again to “nearly linear” solutions.
This restriction gave us solutions for small primes strictly less than 29.

21



For example, for p = 5, we found the cycle H, given by the following set of
arcs:

(ab,0) = (a(2b),1)  (a & {0,1})
(06,0) — (0(2b+ 1), 1)
(16,0) — (1(2b+2),1)
(ab, 1) — ((2a + )b, 0)

It induces the following cyclic permutation on level 0:
(00,11, 14, 20, 40, 30, 10, 42, 24, 23, 01, 33, 21, 12, 31, 32, 04, 44, 13, 03, 22, 34, 43, 41, 02)

Finally, we looked for very special Hamilton circuits Hy. This enabled us to
find a solution for every prime p between 7 and 12000. More precisely, we
searched for parameters o and 3 in Z,, such that Hy is given by the following
set of arcs:

(ab,0) — (a(ab), 1) (a #0)
(0b,0) = (0(ab+ 3),1)
(ab,1) = ((a+b+1)b,0)

One can easily check that if a # 1, the H,’s are arc-disjoint. So, we only have
to find @ and g such that Hy is a Hamilton circuit. In particular, we need
a # 0 (condition to obtain a one difactor) and # # 0 (otherwise we obtain a
circuit of length p starting at vertex (0,0)). We conjecture that:

Conjecture 50 For any prime p > 5, there exist a & {0,1} and 8 # 0 such
that the permutation m of Zf, defined by the following is cyclic:

m(ab) = (a + ab+ 1, ab) (a #0)
w(0b) = (B+ab+ 1,0+ ab)
The number of possible solutions is then only p?. So, we have been able to

verify the conjecture by a computer search for large values of p (< 12000).
Below, we give some solutions for p less than 100.

p || 7{11]13]17]19|23|29|31|37|41|43|47|53|59|61|67|71|73|79|83|89|97

all2(31412]6|2|7|2|3[|2|4|3|43(4(6(2]2(2]3|2]2

B3 |74 |14|4(13(2811]|19|25|22|18(29| 1 |25|14|28|27|51|37(25|16
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For example, for p = 7, « = 2 and # = 3, we obtain the following cyclic
permutation on level 0:

(00,43, 46, 35, 03,32, 14, 31, 62, 44, 61, 22, 04, 54, 01, 65, 33, 36, 25, 63, 66, 55, 23, 26,
15,53, 56,45, 13, 16,05, 06, 21, 52, 34, 51, 12, 64, 11,42, 24, 41, 02, 10, 20, 30, 40, 50, 60)

So, using corollary (45), we have:

Th_porem 51 Ifd is divisible by any number q, such that 4 < q < 12000, then
WBF(d,2), and consequently WBF(d,n), has a Hamilton decomposition.

This result can be strengthened in the case of Wzgf(d, 4). Indeed, we know
that WBF(2,4) and WBF(3,4) have a Hamilton decomposition and we have

been able to generalize lemma (42) for B(p,4) - C, when p is an odd prime
and n > 5.

Theorem 52 If d is divisible by any number q, such that 2 < g < 12000,
then WBF(d,4), and consequently WBF(d,n) for n > 4, has a Hamilton
decomposition.

As a consequence, the Butterfly digraphs WB]—"(Zp,n) have a Hamilton de-
composition, for n > 4.

5 Conclusion

In this paper, we have shown that in a lot of cases, Butterfly digraphs have
a Hamilton decomposition and give strong evidence that the only exceptions

are WBF(2,2), WBF(2,3) and WBF(3,2). We have furthermore reduced
the problem to checking if L(/S,,,,,) has a Hamilton decomposition for p prime
(or equivalently that ﬁp,p has an Eulerian compatible decomposition). We
have also shown that such a decomposition will follow from the solution of a

problem (conjecture (50)) in number theory.

Our interest came from a conjecture of Barth and Raspaud [7], concerning the
decomposition of Butterfly networks into undirected Hamilton cycles. This
conjecture is solved in [8|, by generalizing the techniques of section 3.2.

Finally, we have seen in proposition (49) that the techniques can be applied
to obtain results on the Hamilton decomposition of de Bruijn digraphs. In this
spirit it will be interesting to solve the following problem:

Problem 53 Determine the smallest integer fu(n) such that g(d, n) - éfd(n)
has a Hamilton decomposition.

A proof similar to that of lemma (42) should lead to f4(n) < n + 1. Conjec-
ture (33) is, for a given d, equivalent to fy(n) < n.
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Note added in proof

Helen Verrall® has informed us that she has been able to prove conjecture (16),
thus closing the problem.
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