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Hamilton circuits in the directed wrappedButter�y network 1
J-C. Bermond a, E. Darrot a, O. Delmas a, S. Perennes aaSLOOP project, INRIA Sophia Antipolis � 2004, route des LuciolesBP 93 � 06902 Sophia Antipolis Cedex (France) 2AbstractIn this paper, we prove that the wrapped Butter�y digraph ~WBF(d; n) of degree dand dimension n contains at least d � 1 arc-disjoint Hamilton circuits, answeringa conjecture of Barth [5]. We also conjecture that ~WBF(d; n) can be decomposedinto d Hamilton circuits, except for {d = 2 and n = 2}, {d = 2 and n = 3} and{d = 3 and n = 2}. We show that it su�ces to prove this conjecture for d primeand n = 2. Then, we give such a Hamilton decomposition for all primes to 12000 bya clever computer search, and so, as a corollary, we have a Hamilton decompositionof ~WBF(d; n) for any d divisible by a number q, with 4 � q � 12000.Key words: Butter�y digraph, graph theory, Hamilton decomposition, Hamiltoncycle, Hamilton circuit, perfect matching.

1 Introduction and notation1.1 Butter�y networksMany interconnection networks have been proposed as suitable topologies forparallel computers. Among them, Butter�y networks have received particularattention, due to their interesting structure.1 This work has been supported by the CEFIPRA (french-indian collaboration) andthe european project HCM MAP.2 SLOOP (Simulation, Object Oriented Languages and Parallelism) is a commonproject with the CNRS/University of Nice - Sophia Antipolis (I3S laboratory) andthe INRIA.Preprint submitted to Elsevier Preprint 4 August 1997



First, we have to warn the reader that under the name Butter�y and with thesame notation, di�erent networks are described in the literature. Indeed, whilesome authors consider the Butter�y networks to be multistage networks usedto route permutations, others consider them to be point-to-point networks.In what follows, we will use the term Butter�y for the multistage version andwe will use Leighton's terminology [13], namely wrapped Butter�y, for thepoint-to-point version. Furthermore, these networks can be considered eitheras undirected or directed. To be complete, we recall that some authors consideronly binary Butter�y networks � the restricted class of networks obtainedwhen the out-degree is 2 (directed case) or the degree is 4 (undirected case).In this article, we will use the following de�nitions and notation, where Zqdenotes the set of integers modulo q (for de�nitions not given here see [15]).De�nition 1 The Butter�y digraph of degree d and dimension n, denoted~BF(d; n), has as vertices the ordered pairs (x; l), where x is an element of Znd,that is a word xn�1xn�2 � � �x1x0 where the letters belong to Zd and 0 � l � n(l is called the level). For l < n, a vertex (xn�1xn�2 � � �x1x0; l) is joined by anarc to the d vertices (xn�1 � � �xl+1 � xl�1 � � �x0; l + 1) where � is any elementof Zd.~BF(d; n) has (n + 1)dn vertices. Each vertex in level l < n has out-degree d.This digraph is not strongly connected. It is mainly used as a multistageinterconnection network (the levels corresponding to the stages) in order toroute some one-to-one mapping of dn inputs (nodes at level 0) to dn outputs(nodes at level n).The underlying undirected graph obtained by ignoring the orientation will bedenoted BF(d; n).Figure (1) shows simultaneously BF(3; 2) and ~BF(3; 2). The orientation on~BF(d; n) is obtained by directing the edges from left to right.Note that ~BF(d; n) is often represented (for example in [13,15]) in an oppositeway to our drawing as the authors denote the nodes (x0x1 � � �xn�1). We havechosen the representation which most emphasizes the recursive decomposi-tion of ~BF(d; n) and provides us with an easy representation of our inductiveconstruction (see section 3).De�nition 2 The wrapped Butter�y digraph, denoted ~WBF(d; n), is ob-tained from ~BF(d; n) by identifying the vertices of the last and �rst levels,namely (x; n) with (x; 0). In other words, the vertices are the ordered pairs(x; l) where x is an element of Znd, that is a word xn�1xn�2 � � �x1x0 wherethe letters belong to Zd and l 2 Zn (l is called the level). For any l, a ver-tex (xn�1xn�2 � � �x1x0; l) is joined by an arc to the d vertices (xn�1 � � �xl+1 �xl�1 � � �x0; l + 1) where � is any element of Zd.2



Usually, to represent the wrapped Butter�y (di)graph we use the represen-tation of ~BF(d; n) by repeating level 0 at the end. Hence the reader has toremember that levels 0 and n are identi�ed for ~WBF(d; n). ~WBF(d; n) is ad-regular digraph with ndn vertices; its diameter is 2n � 1. The underlyingwrapped Butter�y network will be denoted WBF(d; n); it is easy to see thatthis graph is regular of degree 2d and has diameter b3n2 c.
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Fig. 1. The graphs BF(3; 2) (multistage version) with 3 levels, or WBF(3; 2)(point-to-point version with level 0 duplicated). For digraphs ~BF(3; 2) or ~WBF(3; 2),the edges must be arcs directed from left to right .1.2 Other de�nitions and general results� Kd will denote the complete graph on d vertices.� Kd;d will denote the complete bipartite graph where each set of the biparti-tion has size d.� G� will denote the symmetric digraph obtained from an undirected graphG by replacing each edge by two opposite arcs. In particular K�d (resp. K�d;d)will denote the complete symmetric (resp. bipartite) digraph on d (resp.d� d) vertices.� K+d will denote the complete symmetric digraph with a loop on each vertex.� A circuit, or directed cycle, of length n will be denoted ~Cn and a dipath oflength n will be denoted ~Pn.� ~Kd;d will denote the digraph obtained from Kd;d by orienting each edge fromone part of the bipartition, called left part, to the other, called right part.3



De�nition 3 (see [15]) Let G be a directed graph. The line digraph of G,denoted L(G), is the directed graph whose vertices correspond to the arcs of Gand whose arcs are de�ned as follows: there is an arc from a vertex e to avertex f in L(G) if and only if, in G, the initial vertex of f is the end vertexof e.Note that ~WBF(d; 1) is just K+d and that ~BF(d; 1) is ~Kd;d. We will see insection 4 (corollary (38)) that ~WBF(d; 2) is the line digraph of K�d;d.De�nition 4 A 1-difactor of a digraph G is a spanning subgraph of G within- and out-degree 1. It corresponds to a partition of the vertices of G intocircuits.De�nition 5 A Hamilton cycle (resp. circuit) of a graph (resp. digraph)is a cycle (resp. circuit) which contains every vertex exactly once.De�nition 6 We will say that a graph (resp. digraph) has a Hamiltondecomposition or can be decomposed into Hamilton cycles (resp.circuits) if its edges (resp. arcs) can be partitioned into Hamilton cycles (resp.circuits).Remark 7 A Hamilton circuit is a connected 1-difactor.The existence of one and if possible many edge(arc)-disjoint Hamilton cycles(circuits) in a network is advantageous for algorithms that make use of aring structure. Furthermore, the existence of a Hamilton decomposition alsoallows the message tra�c to be evenly distributed across the network. Variousresults have been obtained about the existence of Hamilton cycles in classicalnetworks (see for example the surveys [2,11]). For example, it is well-knownthat any Cayley graph on an abelian group is Hamiltonian. Furthermore, ithas been conjectured by Alspach [1] that:Conjecture 8 (Alspach) Every connected Cayley graph on an abelian grouphas a Hamilton decomposition.This conjecture has been veri�ed for all connected 4-regular graphs on abeliangroups in [9]. This includes in particular the toroidal meshes (grids). It is alsoknown that H(2d), the hypercube of dimension 2d, can be decomposed into dHamilton cycles (see [2,3]).Concerning line digraphs, it has been shown in [12] that d-regular line digraphsalways admit bd2c Hamilton circuits. In the case of de Bruijn and Kautz di-graphs which are the simplest line digraphs, partial results have been obtainedsuccessively in [14] and [6] respectively, and near optimal results have beenobtained for undirected de Bruijn and Kautz graphs [4].4



1.3 Results for the Butter�y networksThe wrapped Butter�y (di)graph is actually a Cayley graph (on a non abeliangroup) and a line digraph. So, the decomposition into Hamilton cycles (resp.circuits) of this graph (resp. digraph) has received some attention. First, itis well-known that ~WBF(d; n) is Hamiltonian (see [13, page 465] for a proofin the case d = 2). In [7], Barth and Raspaud proved that WBF(2; n) hasa Hamilton decomposition, answering a conjecture of Rowley and Sotteau(private communication).Theorem 9 (Barth, Raspaud) WBF(2; n) can be decomposed into 2 Hamil-ton cycles.They also gave the following conjecture:Conjecture 10 (Barth, Raspaud) For n � 2, WBF(d; n) can be decom-posed into d Hamilton cycles.In his thesis [5] , Barth also stated the following conjecture for the directedcase:Conjecture 11 (Barth) For n � 2, ~WBF(d; n) contains d� 1 arc-disjointHamilton circuits.Recall that for n = 1, ~WBF(d; 1) is just K+d which itself is the arc-disjointsum of K�d and loops. So conjecture (11) can be seen as an extension of atheorem of Tillson [17].Theorem 12 (Tillson) The complete symmetric digraph K�d can be decom-posed into d� 1 Hamilton circuits, except for d = 4 and 6.In this paper we focus mainly on the decomposition of the wrapped Butter�ydigraph ~WBF(d; n). Our main result implies that the number of arc-disjointHamilton circuits contained in ~WBF(d; n) can only increase when n increases.Proposition 13 For any n0 � n, if ~WBF(d; n) contains p arc-disjointHamilton circuits, then ~WBF(d; n0) also contains at least p arc-disjoint Hamil-ton circuits.This proposition, with Tillson's theorem and a special study for d = 4 and 6,implies conjecture (11).Theorem 14 For n � 2, ~WBF(d; n) contains d � 1 arc-disjoint Hamiltoncircuits. 5



Furthermore, it appears that, except for three cases, for all small values of d,~WBF(d; n) can be decomposed into d Hamilton circuits. So, we conjecturethat:Conjecture 15 For n � 2, ~WBF(d; n) can be decomposed into d Hamiltoncircuits, except for (d = 2 and n = 2 or 3) and (d = 3 and n = 2).By proposition (13), it su�ces to prove the conjecture for n = 2. Using resultsof section 4 on the conjunction of graphs, we have been able to reduce the studyto prime degrees. So, conjecture (15) would follow from conjecture (16).Conjecture 16 For any prime number p > 3, ~WBF(p; 2) can be decomposedinto p Hamilton circuits.With a clever computer search, we have been able to prove conjecture (16)for any prime less than 12000, leading to the following statement:Theorem 17 If d is divisible by any number q, such that 4 � q � 12000, then~WBF(d; 2), and consequently ~WBF(d; n), has a Hamilton decomposition.Finally, the methods used in this paper are combined with other ideas andapplied to the undirected case to prove conjecture (10) in a forthcoming pa-per [8].Theorem 18 For n � 2, WBF(d; n) can be decomposed into d Hamiltoncycles.2 Circuits and Permutations2.1 More de�nitionsFirst, we will show that the existence of k arc-disjoint Hamilton circuits in~WBF(d; n), is equivalent to the ability to route k compatible cyclic realizablepermutations between levels 0 and n in ~BF(d; n). For this purpose, we needsome speci�c de�nitions.In this paper, � will always denote a permutation of Znd which associates theelement �(x) with x. The composition � ��0 of two permutations � and �0is the permutation which associates with the element a the element �(�0(a)).De�nition 19 A permutation � is cyclic if, for some x, all the elements�i(x) are distinct, for 0 � i < dn. 6



Remark 20 Note that if � is cyclic, then, for every x, the elements �i(x) areall distinct. In fact, to verify that � is cyclic, it su�ces to verify that for agiven x, �i(x) 6= x, for 1 � i < dn. Indeed, if there exists j and k, with j > k,such that �j(x) = �k(x), then �j�k(x) = x.For example, the permutation � which associates with a the element a + 1 isclearly cyclic, as �i(a) = a+ i.It follows from the de�nition of ~BF(d; n) that there exists a unique dipathconnecting a vertex (x; 0) to a vertex (y; n). So, we can associate with a per-mutation � of Znd a set of dipaths in ~BF(d; n) connecting vertex (x; 0) to vertex(�(x); n) for any x in Znd.Following the terminology used in multistage interconnection networks, whereone wants to connect inputs to outputs via disjoint paths, we introduce thenotation of realizable permutations.De�nition 21 A permutation � is realizable in ~BF(d; n), or equivalently~BF(d; n) realizes the permutation �, if the dn associated dipaths from theinputs to the outputs are vertex-disjoint.Finally, following the terminology of Eulerian graph theory, we say:De�nition 22 A set of k permutations �0; �1; � � � ; �k�1 realizable in ~BF(d; n)is compatible if the kdn dipaths from (x; 0) to (�j(x); n), for x in Znd and0 � j � k � 1, are arc-disjoint. We will also say that ~BF(d; n) realizes kcompatible permutations.Warning - In the whole paper we are working with permutations which aremathematical objects independent of the graph for which they can be eitherrealizable or compatible. In contrary, the realizability or compatibility is aproperty related to the graphs on which it applies.2.2 Hamilton circuits and permutationsWe are now ready to prove that there is an immediate connection between theexistence of compatible cyclic realizable permutations in ~BF(d; n) and that ofarc-disjoint Hamilton circuits in ~WBF(d; n).Lemma 23 ~WBF(d; n) contains k arc-disjoint Hamilton circuits if and onlyif ~BF(d; n) realizes k compatible cyclic permutations.7



Proof. First, let us show how to associate with a cyclic permutation �,realizable in ~BF(d; n), a Hamilton circuit of ~WBF(d; n) and conversely.Let � be a cyclic permutation of Znd . Let x be a given element of Znd and letPi be the unique dipath of ~BF(d; n) joining (�i(x); 0) to (�i+1(x); n). As � iscyclic, all the �i(x) are distinct. So, if � is realizable, the dipaths Pi are vertex-disjoint. Let P 0i be the dipath of ~WBF(d; n) obtained from Pi by identifying(�i+1(x); n) with (�i+1(x); 0). Now, the end vertex of P 0i is the initial of P 0i+1and so, as the (�i(x); 0) span the set of vertices of level 0, the concatenation ofthe dipaths P 0i , with 0 � i < dn � 1, forms a Hamilton circuit of ~WBF(d; n).Conversely, let H be a Hamilton circuit of ~WBF(d; n). Let (x0; 0), (x1; 0),: : : , (xi; 0), : : : , (xdn�1; 0) be the vertices we meet successively on level 0 byfollowing the cycleH. Let us consider the permutation de�ned by �(xi) = xi+1.As H is a Hamilton circuit, all the xi's are distinct so � is cyclic; furthermore,all the inside dipaths are vertex-disjoint, so � is a cyclic realizable permutationin ~BF(d; n).To prove the lemma, it su�ces to note that the de�nition of compatible per-mutations has been done in order that the dipaths associated with the permu-tation are arc-disjoint, and so their concatenation form arc-disjoint Hamiltoncircuits, and conversely (see Figure (2)). 2
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figure   a figure   b figure   cFig. 2. A Hamilton circuit of ~WBF(2; 2) (�gure a) or equivalently the associatedpermutation realizable in ~BF(2; 2) (�gure b) and the cyclic permutation which isused (�gure c).
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3 Recursive construction3.1 Recursive decomposition of ~BF(d; n)The permutation network ~BF(d; n) has a simple recursive property: the n+1�rst levels of ~BF(d; n + 1) form d vertex-disjoint subgraphs isomorphic to~BF(d; n). We shall call them left Butter�ies. If the elements of Zn+1d are de-noted y = (ax) 2 Zd�Znd , then each left Butter�y connects the set of verticeshaving the same left part a. So we will label a left Butter�y by BLeft(a). Inthe same way, the two last levels of ~BF(d; n + 1) are built with dn disjointsubgraphs isomorphic to ~BF(d; 1) = ~Kd;d, that we shall call right Butter�ies;each right Butter�y connects all the vertices having the same right part x andwe will label it by ~Kd;d(x).We can summarize the situation as follows:� vertices of ~BF(d; n+ 1) are denoted (ax; l),� the left Butter�y labeled by a 2 Zd is formed by the vertices a� of the n+1�rst levels. It is denoted BLeft(a),� the right Butter�y with label x 2 Znd is formed by the vertices �x of the 2last levels. It is denoted ~Kd;d(x).Remark 24 In ~BF(d; n+1), vertices of level n are shared by the left and rightButter�ies, the outputs of the left Butter�ies being considered as the inputs ofthe right Butter�ies. Moreover, all the subgraphs de�ned above are arc-disjoint.Figure (3) displays such a recursive decomposition.3.2 Iterative ConstructionWe will now give a simple construction which enables us to construct p com-patible cyclic realizable permutations in ~BF(d; n+1) from p compatible cyclicrealizable permutations in ~BF(d; n).In what follows, we will use the letter M to indicate a permutation of Zd andMx to denote a permutation realizable in the right Butter�y ~Kd;d(x). If Mx isa permutation of Zd realizable in ~Kd;d(x), then the arcs joining the vertices axon level n of ~BF(d; n + 1) to the vertices Mx(a)x on level n + 1 are disjointand form a perfect matching in ~Kd;d(x).9
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Proof. First, let us show that f(�;M) is a cyclic permutation. To show thatf(�;M) is cyclic, it su�ces, by remark (20), to show that f i(�;M)(ax) 6= ax,for 1 � i � dn+1 � 1. Suppose that f i(�;M)(ax) = ax for some i. By de�nition,f i(�;M)(ax) = a0�i(x). So, �i(x) = x, which implies that i = kdn. If i = dn,a0 is the image of a by the composition of the dn elements of M, in someorder and since M has the cyclic property, a0 = �(a), where � is a cyclicpermutation. Therefore, fkdn(�;M)(ax) = �k(a)x 6= ax, for 1 � k < d. So, forany i, 1 � i � dn+1 � 1, f i(�;M)(ax) 6= ax.It remains to show that f(�;M) is realizable in ~BF(d; n + 1). The dipath as-sociated with f(�;M) from (ax; 0) to (b�(x); n+ 1) consists of the dipath from(ax; 0) to (a�(x); n) in BLeft(a) associated with the permutation � of BLeft(a)(which is isomorphic to ~BF(d; n)) followed by the arc joining (a�(x); n) with(b�(x); n + 1) in ~Kd;d(�(x)) de�ned by the matching associated with the per-mutation M�(x), that is b = M�(x)(a). We claim that the dipaths joining twodistinct inputs (ax; 0) and (a0x0; 0) to their outputs are vertex-disjoint andso f(�;M) is realizable. Indeed, if a 6= a0 their �rst parts are in two di�erentBLeft(a) and BLeft(a0) and the last arcs are disjoint as either x 6= x0 or x = x0and M�(x) is realizable in ~Kd;d(�(x)). If a = a0, then, since � is realizable, the�rst dipaths are vertex-disjoint and since x 6= x0, the last arcs belong to twodi�erent ~Kd;d. 2Corollary 28 If there exist p compatible cyclic realizable permutations in~BF(d; n), then there exist p compatible cyclic realizable permutations in~BF(d; n+ 1).Proof. LetMj (0 � j � p�1) be the family of dn permutations Mx;j de�nedin example (26), that is Mx;j(a) = a + j, for x 6= 0, and Mx;j(a) = a+ j + 1,for x = 0. Note that the permutation Mx;j is realizable in ~Kd;d(x). Let �0,: : : , �j, : : : , �p�1 be p compatible cyclic realizable permutations of ~BF(d; n).By lemma (27), the permutation f(�j ;Mj), 0 � j � p� 1, are cyclic realizablepermutations of ~BF(d; n + 1). It remains to show that these permutationsare compatible. First, the associated dipaths are arc-disjoint in the left But-ter�ies BLeft(a) because the �j are compatible. Secondly, for any given x, thepermutations Mx;j, with 0 � j � p � 1, are compatible (i.e. the associatedmatchings are arc-disjoint). Indeed, for x 6= 0 the arcs (a; a+ j) and (a; a+ j 0)are arc-disjoint (since j 6= j 0, 0 � j � p�1 � d�1 and 0 � j 0 � p�1 � d�1).Similarly, for x = 0, the arcs (a; a+ j + 1) and (a; a+ j 0 + 1) are disjoint. 2Now, we are ready to prove our main proposition, stated in the introduction:Proposition 29 (main proposition) For any n0 � n, if ~WBF(d; n) con-tains p arc-disjoint Hamilton circuits, then ~WBF(d; n0) contains at least parc-disjoint Hamilton circuits. 11



Proof. The result for n0 = n+1 follows from corollary (28) and lemma (23).A recursive application of this property gives the above proposition. 2For an example of the construction see Figure (4).
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figure  a’ figure  b’Fig. 4. Two Hamilton circuits (�gures (a0) and (b0)) of ~BF(3; 2) are obtained fromtwo Hamilton circuits of ~WBF(3; 1) = K+3 by the construction of lemma (27).The �gures (a) and (b) show two arc-disjoint Hamilton circuits of K+3 : the circuitsf ~C0 j x ! x + 1 (mod 3)g and f ~C1 j x ! x + 2 (mod 3)g. This example uses thefamilies M0 (�gure (a0)) and M1 (�gure (b0)) de�ned in the proof of corollary (28).3.3 ConsequencesCorollary 30 ~WBF(2; n) can be decomposed into 2 Hamilton circuits as soonas n � 4. For 1 � n � 3, ~WBF(2; n) admits only one Hamilton circuit.Proof. A computer search has given a decomposition of ~WBF(2; 4) into 2arc-disjoint Hamilton circuits. Therefore, by proposition (29) ~WBF(2; n) hasa Hamilton decomposition for any n � 4. For 1 � n � 3, an exhaustive com-puter search shows that there cannot exist two arc-disjoint Hamilton circuits.2Corollary 31 ~WBF(3; n) can be decomposed into 3 Hamilton circuits as soonas n � 3. For 1 � n � 2, ~WBF(3; n) admits only two arc-disjoint Hamiltoncircuits. 12



Proof. For n � 3, this follows from the existence of a Hamilton decomposi-tion of ~WBF(3; 3) obtained by computer (�gures of decompositions availableon demand). For n = 1 and 2, an exhaustive search (by computer) shows thatthere exist only two arc-disjoint Hamilton circuits. 2Now, we are able to prove Barth's conjecture (conjecture (11)):Theorem 32 For n � 2, ~WBF(d; n) contains d � 1 arc-disjoint Hamiltoncircuits.Proof. By Tillson's decomposition (theorem (12)), for d 6= 4 and d 6= 6,~WBF(d; 1) = K+d contains d� 1 arc-disjoint Hamilton circuits. So, by propo-sition (29), for d 6= 4 and d 6= 6, ~WBF(d; n) contains at least d�1 arc-disjointHamilton circuits. For d = 4 (resp. d = 6), we have found, by computer search,4 (resp. 6) arc-disjoint Hamilton circuits in ~WBF(4; 2) (resp. ~WBF(6; 2)).So, by proposition (29), ~WBF(4; n) (resp. ~WBF(6; n)) contains 4 (resp. 6)arc-disjoint Hamilton circuits. 2As seen in the proof above, there exists a Hamilton decomposition of ~WBF(d; n)for n � 2 and d = 4 or 6. These results and those of the next section lead usto propose the following conjecture, which would completely close the studyof the Hamilton decomposition of ~WBF(d; n).Conjecture 33 For d � 4 and n � 2, ~WBF(d; n) can be decomposed intoHamilton circuits.By proposition (29), it su�ces to prove the conjecture for n = 2 or equiva-lently, as ~WBF(d; 2) = L(K�d;d) (see corollary (38)), that K�d;d admits d com-patible Eulerian tours (see [12]).4 Decomposition of ~WBF(d; 2) into Hamilton circuits4.1 Line digraphs and conjunctionWe need some more de�nitions and results concerning conjunction, line di-graphs and de Bruijn digraphs.De�nitions 34 (see [2])(1) The conjunction G1�G2 of two digraphs G1 = (V1; E1) and G2 = (V2; E2)is the digraph with vertex-set V1�V2 and an arc joining (u1; u2) to (v1; v2)if and only if there is an arc joining u1 to v1 in G1 and an arc joining u2to v2 in G2. 13



(2) If A and B are two digraphs de�ned on the same set of vertices with noarc in common, we denote by A � B the arc-disjoint union (sum) ofthem, that is the digraph on the same set of vertices having as arcs theunion of those of A and B.(3) cG will denote the digraph made of c disjoint copies of G.(4) Lk(G) = L(Lk�1(G)) will denote the k iterated line digraph of G.For example, K�d;d = K+d � ~C2 and ~WBF(2; 4) = A�B, if A and B are the twoarc-disjoint Hamilton circuits of ~WBF(2; 4).Properties 35 F �G = G � FL(F �G) = L(F ) � L(G)(F �G) �H = F � (G �H) = F �G �H(A� B)� C = A� (B � C) = A�B � C(A�B) � F = (A � F )� (B � F )Proof. These results are clear from the de�nitions. 2There is a very strong connection between the de Bruijn digraph and thewrapped Butter�y digraph. We recall the de�nition of the de Bruijn digraph:De�nition 36 The de Bruijn digraph of out-degree d and diameter n isdenoted ~B(d; n) and has as vertices the words of length n on an alphabet of dletters. A vertex x0 � � �xn�1 is joined by an arc to the vertices x1 � � �xn�1�,where � is any letter from the alphabet.Propositions 37 ~B(d; n) = Ln�1(K+d ) (1)~B(d1d2; n) = ~B(d1; n) � ~B(d2; n) (2)~WBF(d; n) = ~B(d; n) � ~Cn = Ln�1(K+d � ~Cn) (3)14



~BF(d; n) = ~B(d; n) � ~Pn (4)~WBF(d1d2; n) = ~WBF(d1; n) � ~B(d2; n) (5)Proof. Equality (1) is well known, and even sometimes considered as theproper de�nition of de Bruijn digraphs (see [10,15]).Result (2) can be found in [16] and can be proved as follows: from (1),~B(d1d2; n) = Ln�1(K+d1d2). As K+d1d2 = K+d1 �K+d2 , we deduce from properties (35)that Ln�1(K+d1 �K+d2) = Ln�1(K+d1)�Ln�1(K+d2), which is indeed ~B(d1; n)� ~B(d2; n).Result (3) is implicit in di�erent papers. It can be obtained by considering thefollowing isomorphism from ~B(d; n) � ~Cn to ~WBF(d; n): with the vertex (x; l)in ~B(d; n) � ~Cn, where x = x0x1 � � �xn�1 and l 2 Zn, we associate the vertex�((x; l)) = (x0; l) in ~WBF(d; n), where x0 = x0n�1x0n�2 � � �x00 and x0i = xi�l. Byde�nitions (34)-1 and (36), the out-neighbors of (x; l) in ~B(d; n) � ~Cn are thevertices (y; l + 1) with y = y0y1 � � � yn�1 such that yi = xi+1, for i 6= n � 1,and yn�1 = �, � being any letter from the alphabet. The associated verticesin ~WBF(d; n) are �((y; l + 1)) = (y0; l + 1) where y0 = y0n�1y0n�2 � � � y00 andy0i = yi�l�1. For i � l � 1 6= n � 1, or equivalently i 6= l, y0i = xi�l = x0i, andfor i = l, y0i = �. So, by de�nition (2), the vertices (y0; l + 1) are exactly theout-neighbors of (x0; l) in ~WBF(d; n). The second part of the equality is due tothe fact that Ln�1( ~Cn) = ~Cn; hence, Ln�1(K+d ) � ~Cn = Ln�1(K+d ) � Ln�1( ~Cn) =Ln�1(K+d � ~Cn). An example is displayed in Figure (5).Result (4) can be proved in the same way as (3).The last equality follows directly from (2) and (3). 2Corollary 38 ~WBF(d; 2) = L(K�d;d).Proof. Follows from proposition (37) equality (3) with n = 2. 2Lemma 39 When r and s are relatively prime, ~Cqs � ~Cqr = q ~Cqsr.Proof. ~Cqs � ~Cqr is a regular digraph with in- and out-degree 1. So, it is theunion of circuits. Starting from a vertex (u; v), we �nd at distance i the vertex(u+ i; v+ i) where u+ i (resp. v+ i) has to be taken modulo qs (resp. qr). So,the length of any circuit is the smallest common multiple of qs and qr, that isqrs, as r and s are relatively prime. As the number of vertices in the digraphis q2rs, there are q such cycles. 2
15
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Fig. 5. The graph ~WBF(2; 3) as a conjunction of ~B(2; 3) and ~C3.Proposition 40 ~WBF(d1; n) � ~WBF(d2; n) = n ~WBF(d1d2; n).Proof. Let G = ~WBF(d1; n) � ~WBF(d2; n). By proposition (37)-(3), we haveG = ( ~B(d1; n) � ~Cn) � ( ~B(d2; n) � ~Cn). As ~Cn � ~Cn = n~Cn (from lemma (39),with q = n and s = r = 1), we obtain: G = ~B(d1; n) � ~B(d2; n) � (n~Cn) =n( ~B(d1; n) � ~B(d2; n) � ~Cn) = n ~WBF(d1d2; n). 2Corollary 41 If d1 and d2 are relatively prime, and if ~WBF(d1; n) (resp.~WBF(d2; n)) admits a1 (resp. a2) arc-disjoint Hamilton circuits, then~WBF(d1d2; n) admits a1a2 arc-disjoint Hamilton circuits.Proof. Let ~Cndn1 (resp. ~Cndn2 ) be a Hamilton circuit in ~WBF(d1; n) (resp.~WBF(d2; n)). From lemma (39), the conjunction ~Cndn1 � ~Cndn2 is a set of ncircuits of length ndn1dn2 . As ~WBF(d1d2; n) has ndn1dn2 vertices, the 1-difactor~Cndn1 � ~Cndn2 consists of n circuits, each one being a Hamilton circuit of a con-nected component of ~WBF(d1; n) � ~WBF(d2; n) isomorphic to ~WBF(d1d2; n).So, the conjunction of one Hamilton circuit of ~WBF(d1; n) with one Hamiltoncircuit of ~WBF(d2; n) provides one Hamilton circuit in ~WBF(d1d2; n). Ap-plying this results to the a1a2 di�erent ordered pairs of circuits provides a1a2arc-disjoint Hamilton circuits in ~WBF(d1d2; n). 216



So, by corollary (41), it is enough to prove conjecture (33) for every power piof a prime number p.4.2 Reduction to the case where p is primeWe would like to prove that ~WBF(d; 2) = ~B(d; 2) � ~C2 has a Hamilton decom-position. But this appears to be quite di�cult. However, we will prove thatfor n � 3, ~B(d; 2) � ~Cn has a Hamilton decomposition. Such a decompositionwill then be su�cient to reduce the problem to the case of prime degrees.Lemma 42 For any number n � 3 and any prime p, ~B(p; 2) � ~Cn can bedecomposed into p Hamilton circuits.Proof. Let the nodes of ~B(p; 2) � ~Cn be labeled (xy; l), with x 2 Zp, y 2 Zpand l 2 Zn. The digraph ~B(p; 2) � ~Cn is similar to the wrapped Butter�ydigraph, and we can de�ne a multistage network by duplicating level 0 toobtain level n. Formally, this multistage network is ~B(p; 2) � ~Pn, where ~Pn is adirected path of length n (i.e. with n+ 1 vertices); its vertices will be labeled(xy; l), with x 2 Zp, y 2 Zp and l 2 f0; 1; : : : ; ng.Like in section 2, we can de�ne a notion of realizable permutation in the graph~B(p; 2) � ~Pn, except that now there is more than one dipath connecting (xy; 0)to (�(xy); n). We will say that ~B(p; 2) � ~Pn realizes k compatible permutations�0, �1, : : : , �k�1 of Z2p, if there exist kp2 dipaths Pj(xy), with xy 2 Z2p and0 � j � k � 1, where Pj(xy) connects (xy; 0) to (�j(xy); n) in ~B(p; 2) � ~Pn,satisfying the following properties: for a given j, the p2 dipaths Pj(xy) arevertex-disjoint (realizability property) and all the kp2 dipaths Pj(xy) are arc-disjoint (compatibility property).Using the same argument as in lemma (23), we can establish that ~B(p; 2) � ~Cncan be decomposed into p Hamilton circuits if and only if ~B(p; 2) � ~Pn realizes pcompatible cyclic permutations.We will show by induction that ~B(p; 2) � ~Pn realizes p compatible cyclic permu-tations; more exactly, we will prove that if the property is true for n, it is alsotrue for n + 3. First, we give, for n 2 f3; 4; 5g, the dipaths Pj(xy) associatedwith compatible cyclic permutations.In all the dipaths that we consider, a vertex (xy; l) is followed by a vertex(yx0; l + 1) with x0 = gl(x; y; j) = ax + f(y) + cj, where a; f and c depend onthe level l and where 0 � j � p� 1. 17



� For any j, the dipaths Pj(xy) are vertex-disjoint if and only if, at eachlevel, two distinct vertices (x1y1; l) and (x2y2; l) are followed by two distinctvertices (y1x01; l + 1) and (y2x02; l + 1). As p is a prime, this is realized ifand only if the coe�cient a of x in gl(x; y; j) is di�erent from 0. Indeed, ify2x02 = y1x01 then, y2 = y1 and x02 = x01. So, ax2+f(y2)+cj = ax1+f(y1)+cjand as y2 = y1. This implies ax2 = ax1, which in turn implies (as p is aprime number) either a = 0 or x2 = x1.� Similarly, the dipaths Pj(xy) are arc-disjoint if and only if, for given l; x; y:gl(x; y; j) = gl(x; y0; j) are di�erent. This is satis�ed if and only if c 6= 0,as p is a prime number.Since a vertex of level l is always followed by a vertex of level l + 1, we willsimplify the notation in the following, by omitting the values of the levels fromthe labels of the vertices.4.2.1 Initial constructionsLet �0 denote the function of Zp into f0; 1g: �0(x) = 8><>: 1 if x = 00 if x 6= 0n = 3Pj(xy) = xy y(x+ y + j) (x+ y + j)(x + 1) (x+ 1)(y + �0(x+ 1))n = 4Pj(xy) = xy y(x+ j) (x+ j)(y + j) (y + j)(x+ 1) (x + 1)(y + �0(x+ 1))Figure (6) shows one decomposition of ~B(3; 2) � ~C4 into circuits. To produce aclearer �gure, vertices ab on odd levels are ranked lexicographically and thoseon even levels in the following order: ab < a0b0 if b < b0 or b = b0 and a < a0.
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n = 5 and p 6= 2 Pj(xy) =xy y(x+ y+ j) (x+ y+ j)(x+2j) (x+2j)y y(x+1) (x+1)(y+ j + �0(x+1))n = 5 and p = 2 Pj(xy) =xy y(x+ y+ j+1) (x+ y+ j+1)(y+ j) (y+ j)(x+ j +1) (x+ j+1)y y(x+1)In all the cases, one can easily verify that the functions gl(x; y; j) are of theform ax + f(y) + cj with, a 6= 0 and c 6= 0. For example, in the constructionfor n = 3, the functions implicitly de�ned are:(X; Y ) X0 = aX+f(Y )+cj! (Y; X 0)(x; y) X0 = X+Y+j! (y; x+ y + j)(y; x + y + j) X0 = Y�X�j+1! (x+ y + j; x + 1)(x + y + j; x+ 1) X0 = X�Y�j+1+�0(Y )! (x+ 1; y + �0(x + 1))To complete the proof, it remains to note that in the three �rst cases, thepermutation induced by the construction �(xy) = (x+ 1)(y + cj + �0(x+ 1))is cyclic, and that in the case n = 5 and p = 2, �(xy) = y(x+1) is also cyclic,as p = 2.4.2.2 Induction stepThe induction step follows from two facts. First, it can be easily seen that~B(p; 2) � ~Pn+m realizes p compatible permutations �j, 0 � j � p � 1, if andonly if there exist two sets of permutations �0j and �00j , 0 � j � p � 1, suchthat:� for 0 � j � p� 1, �j = �0j�00j ,� ~B(p; 2) � ~Pn realizes the p compatible permutations �0j, 0 � j � p� 1,� ~B(p; 2) � ~Pm realizes the p compatible permutations �00j , 0 � j � p� 1.Secondly, ~B(p; 2) � ~P3 realizes p compatible permutations �j, 0 � j � p � 1,such that each �j = e is the identity permutation. Indeed, let us consider thedipaths: Pj(xy) = xy y(x+ y + j) (x+ y + j)x xyOnce again, a vertex XY of level l is joined to a vertex Y X 0 of level l + 1,with X 0 = gl(X; Y; j) = aX + f(Y ) + cj, a 6= 0 and c 6= 0. So, if ~B(p; 2) � ~Pnrealizes p compatible permutations �0j, then ~B(p; 2) � ~Pn+3 realizes the samecompatible permutations.So, we can conclude by induction that ~B(p; 2) � ~Cn can be decomposed into pHamilton circuits for any number n � 3. 219



Theorem 43 If a digraph G, with at least 3 vertices, contains k arc-disjointHamilton circuits, then ~B(d; 2) �G contains dk arc-disjoint Hamilton circuits.Proof. First, we prove the result for d prime. By hypothesis, G � L0�i<k�1 ~Cil ,where l is the number of vertices of G and l � 3. Hence:~B(d; 2) �G � ~B(d; 2) � M0�i<k�1 ~Cil = M0�i<k�1 ~B(d; 2) � ~CilFrom lemma (42), we have ~B(d; 2) � ~Cl = L0�j�d�1 ~Cjd2l. So:~B(d; 2) �G � M0�i<k�1 M0�j�d�1 ~Ci;jd2l () ~B(d; 2) �G � M0�m�kd�1 ~Cmd2lSuppose now that the result holds for all integers strictly less than d. If d isprime, we have just proved the result. Otherwise, d = d1p, where p is a primeand d1 < d. By proposition (37)-2, ~B(d; 2) = ~B(p; 2) � ~B(d1; 2). As a conse-quence, ~B(d; 2) � G = ~B(p; 2) � ( ~B(d1; 2) � G). By induction, G0 = ~B(d1; 2) � Gcontains at least d1k arc-disjoint Hamilton circuits. Moreover, since p is prime,G = ~B(p; 2) �G0 will contain pd1k = dk arc-disjoint Hamilton circuits. 2When G can be decomposed into Hamilton circuits, the above theorem canbe restated as:Theorem 44 If G has more than 3 vertices and can be decomposed intoHamilton circuits, then ~B(d; 2) �G can also be decomposed into Hamilton cir-cuits.Corollary 45 If ~WBF(d; 2), with d 6= 1, can be decomposed into Hamiltoncircuits, then ~WBF(qd; 2) can also be decomposed into Hamilton circuits forany integer q.Proof. Just apply theorem (44) to ~WBF(qd; 2) which is ~B(q; 2) � ~WBF(d; 2)by proposition (37). Note that ~WBF(1; 2) has only 2 vertices. So, the corol-lary cannot be applied for d = 1. 2Example 46 Since ~WBF(4; 2) has a Hamilton decomposition, ~WBF(4q; 2)also has a Hamilton decomposition for any integer q. In particular, ~WBF(2i; 2)has a Hamilton decomposition for i � 2.Corollary 47 To prove conjecture (33), it su�ces to prove that ~WBF(p; 2)has a Hamilton decomposition, for any prime p � 5.20



Proof. Let d be a non prime number. If d has a prime factor p =2 f2; 3g, bycorollary (45), it su�ces to prove the conjecture for ~WBF(p; 2). If d � 4 hasonly prime factors equal to 2 or 3, then d = 2i3j with i + j � 2. A computersearch shows that ~WBF(4; 2), ~WBF(6; 2) and ~WBF(9; 2) have a Hamiltondecomposition. So, according to corollary (45), ~WBF(2i3j; 2), with i+ j � 2has a Hamilton decomposition. 2Remark 48 Although it is not the purpose of this article, proposition (43)can be used to improve results about the decomposition of de Bruijn digraphsinto Hamilton circuits:Propositions 49� If p is the greatest prime dividing d, then ~B(d; 2) contains p�1p d Hamiltoncircuits.� ~B(2iq; 2) contains (2i � 1)q Hamilton circuits.Proof. The �rst result holds for p = 1. For p > 1, by a result of Barth,Bond and Raspaud [6], we know that, for p a prime, ~B(p; 2) contains p � 1arc-disjoint Hamilton circuits and has at least 4 vertices. Hence, theorem (43)implies that ~B(d; 2) contains (p � 1)d1 arc-disjoint Hamilton circuits, as wehave ~B(d; 2) = ~B(pd1; 2) = ~B(d1; 2)� ~B(p; 2). Similarly, the second result followsfrom a result of Rowley and Bose [14], stating that ~B(2i; 2) contains 2i � 1Hamilton circuits. 2
4.3 Exhaustive Search for Hamilton decomposition of ~WBF(p; 2)As seen above, the problem has been reduced to �nding a Hamilton decom-position of ~WBF(p; 2) = L(~Kp;p), for any prime p � 5. In order to provideideas and to strengthen our conjecture, we have performed some exhaustivesearches. The complexity of an exhaustive search being exponential, we haverestricted the set of solutions to those for which the i-th circuit Hi is obtainedfrom H0 by applying the automorphism �i of ~WBF(p; 2) which sends vertex(ab; l) to vertex (a(b + i); l). Furthermore, we want solutions such that H0 isHamiltonian and the Hamilton circuits Hi = �i(H0), with 0 � i � p � 1 arearc-disjoint. However, the search space is still exponential in p and a computersearch (with normal computation resources) cannot be successful for p greaterthan 7. So, we restricted the search space again to �nearly linear� solutions.This restriction gave us solutions for small primes strictly less than 29.21



For example, for p = 5, we found the cycle H0 given by the following set ofarcs: (ab; 0) ! (a(2b); 1) (a 62 f0; 1g)(0b; 0) ! (0(2b+ 1); 1)(1b; 0) ! (1(2b+ 2); 1)(ab; 1) ! ((2a+ b)b; 0)It induces the following cyclic permutation on level 0:(00; 11; 14; 20; 40; 30; 10; 42; 24; 23; 01; 33; 21; 12; 31; 32; 04; 44; 13; 03; 22; 34; 43; 41; 02)Finally, we looked for very special Hamilton circuits H0. This enabled us to�nd a solution for every prime p between 7 and 12000. More precisely, wesearched for parameters � and � in Zp, such that H0 is given by the followingset of arcs: (ab; 0) ! (a(�b); 1) (a 6= 0)(0b; 0) ! (0(�b+ �); 1)(ab; 1) ! ((a+ b+ 1)b; 0)One can easily check that if � 6= 1, the Hi's are arc-disjoint. So, we only haveto �nd � and � such that H0 is a Hamilton circuit. In particular, we need� 6= 0 (condition to obtain a one difactor) and � 6= 0 (otherwise we obtain acircuit of length p starting at vertex (0; 0)). We conjecture that:Conjecture 50 For any prime p > 5, there exist � 62 f0; 1g and � 6= 0 suchthat the permutation � of Z2p de�ned by the following is cyclic:�(ab) = (a + �b+ 1; �b) (a 6= 0)�(0b) = (� + �b+ 1; � + �b)The number of possible solutions is then only p2. So, we have been able toverify the conjecture by a computer search for large values of p (� 12000).Below, we give some solutions for p less than 100.p 7 11 13 17 19 23 29 31 37 41 43 47 53 59 61 67 71 73 79 83 89 97� 2 3 4 2 6 2 7 2 3 2 4 3 4 3 4 6 2 2 2 3 2 2� 3 7 4 14 4 13 28 11 19 25 22 18 29 1 25 14 28 27 51 37 25 16
22



For example, for p = 7, � = 2 and � = 3, we obtain the following cyclicpermutation on level 0:(00; 43; 46; 35; 03; 32; 14; 31; 62; 44; 61; 22; 04; 54; 01; 65; 33; 36; 25; 63; 66; 55; 23; 26;15; 53; 56; 45; 13; 16; 05; 06; 21; 52; 34; 51; 12; 64; 11; 42; 24; 41; 02; 10; 20; 30; 40; 50; 60)So, using corollary (45), we have:Theorem 51 If d is divisible by any number q, such that 4 � q � 12000, then~WBF(d; 2), and consequently ~WBF(d; n), has a Hamilton decomposition.This result can be strengthened in the case of ~WBF(d; 4). Indeed, we knowthat ~WBF(2; 4) and ~WBF(3; 4) have a Hamilton decomposition and we havebeen able to generalize lemma (42) for ~B(p; 4) � ~Cn when p is an odd primeand n � 5.Theorem 52 If d is divisible by any number q, such that 2 � q � 12000,then ~WBF(d; 4), and consequently ~WBF(d; n) for n � 4, has a Hamiltondecomposition.As a consequence, the Butter�y digraphs ~WBF(2p; n) have a Hamilton de-composition, for n � 4.5 ConclusionIn this paper, we have shown that in a lot of cases, Butter�y digraphs havea Hamilton decomposition and give strong evidence that the only exceptionsare ~WBF(2; 2), ~WBF(2; 3) and ~WBF(3; 2). We have furthermore reducedthe problem to checking if L(~Kp;p) has a Hamilton decomposition for p prime(or equivalently that ~Kp;p has an Eulerian compatible decomposition). Wehave also shown that such a decomposition will follow from the solution of aproblem (conjecture (50)) in number theory.Our interest came from a conjecture of Barth and Raspaud [7], concerning thedecomposition of Butter�y networks into undirected Hamilton cycles. Thisconjecture is solved in [8], by generalizing the techniques of section 3.2.Finally, we have seen in proposition (49) that the techniques can be appliedto obtain results on the Hamilton decomposition of de Bruijn digraphs. In thisspirit it will be interesting to solve the following problem:Problem 53 Determine the smallest integer fd(n) such that ~B(d; n) � ~Cfd(n)has a Hamilton decomposition.A proof similar to that of lemma (42) should lead to fd(n) � n + 1. Conjec-ture (33) is, for a given d, equivalent to fd(n) � n.23
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