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In this paper, we prove that the wrapped Butter y digraph W BF(d; n) of degree d and dimension n contains at least d ? 1 arc-disjoint Hamilton circuits, answering a conjecture of Barth 5]. We also conjecture that W BF(d; n) can be decomposed into d Hamilton circuits, except for {d = 2 and n = 2}, {d = 2 and n = 3} and {d = 3 and n = 2}. We show that it su ces to prove this conjecture for d prime and n = 2. Then, we give such a Hamilton decomposition for all primes to 12000 by a clever computer search, and so, as a corollary, we have a Hamilton decomposition of W BF(d; n) for any d divisible by a number q, with 4 q 12000.

Introduction and notation

1.1 Butter y networks Many interconnection networks have been proposed as suitable topologies for parallel computers. Among them, Butter y networks have received particular attention, due to their interesting structure.

First, we have to warn the reader that under the name Butter y and with the same notation, di erent networks are described in the literature. Indeed, while some authors consider the Butter y networks to be multistage networks used to route permutations, others consider them to be point-to-point networks.

In what follows, we will use the term Butter y for the multistage version and we will use Leighton's terminology 13], namely wrapped Butter y, for the point-to-point version. Furthermore, these networks can be considered either as undirected or directed. To be complete, we recall that some authors consider only binary Butter y networks ? the restricted class of networks obtained when the out-degree is 2 (directed case) or the degree is 4 (undirected case).

In this article, we will use the following de nitions and notation, where Z q denotes the set of integers modulo q (for de nitions not given here see 15]).

De nition 1 The Butter y digraph of degree d and dimension n, denoted BF(d; n), has as vertices the ordered pairs (x; l), where x is an element of Z n d , that is a word x n?1 x n?2 x 1 x 0 where the letters belong to Z d and 0 l n (l is called the level). For l < n, a vertex (x n?1 x n?2 x 1 x 0 ; l) is joined by an arc to the d vertices (x n?1 x l+1 x l?1 x 0 ; l + 1) where is any element of Z d . BF(d; n) has (n + 1)d n vertices. Each vertex in level l < n has out-degree d. This digraph is not strongly connected. It is mainly used as a multistage interconnection network (the levels corresponding to the stages) in order to route some one-to-one mapping of d n inputs (nodes at level 0) to d n outputs (nodes at level n).

The underlying undirected graph obtained by ignoring the orientation will be denoted BF(d; n). Note that BF(d; n) is often represented (for example in [START_REF] Fleischner | Compatible euler tours in eulerian digraphs[END_REF][START_REF] Rowley | On the number of arc-disjoint hamiltonian circuits in the de Bruijn graph[END_REF]) in an opposite way to our drawing as the authors denote the nodes (x 0 x 1 x n?1 ). We have chosen the representation which most emphasizes the recursive decomposition of BF(d; n) and provides us with an easy representation of our inductive construction (see section 3).

De nition 2

The wrapped Butter y digraph, denoted W BF(d; n), is obtained from BF(d; n) by identifying the vertices of the last and rst levels, namely (x; n) with (x; 0). In other words, the vertices are the ordered pairs (x; l) where x is an element of Z n d , that is a word x n?1 x n?2 x 1 x 0 where the letters belong to Z d and l 2 Z n (l is called the level). For any l, a vertex (x n?1 x n?2 x 1 x 0 ; l) is joined by an arc to the d vertices (x n?1 x l+1 x l?1 x 0 ; l + 1) where is any element of Z d .

Usually, to represent the wrapped Butter y (di)graph we use the representation of BF(d; n) by repeating level 0 at the end. Hence the reader has to remember that levels 0 and n are identi ed for W BF(d; n). W BF(d; n) is a d-regular digraph with nd n vertices; its diameter is 2n ? 1. The underlying wrapped Butter y network will be denoted WBF(d; n); it is easy to see that this graph is regular of degree 2d and has diameter b 3n 2 c. K + d will denote the complete symmetric digraph with a loop on each vertex.

A circuit, or directed cycle, of length n will be denoted Cn and a dipath of length n will be denoted Pn . Remark 7 A Hamilton circuit is a connected 1-difactor.

The existence of one and if possible many edge(arc)-disjoint Hamilton cycles (circuits) in a network is advantageous for algorithms that make use of a ring structure. Furthermore, the existence of a Hamilton decomposition also allows the message tra c to be evenly distributed across the network. Various results have been obtained about the existence of Hamilton cycles in classical networks (see for example the surveys 2,11]). For example, it is well-known that any Cayley graph on an abelian group is Hamiltonian. Furthermore, it has been conjectured by Theorem 9 (Barth, Raspaud) WBF(2; n) can be decomposed into 2 Hamilton cycles.

They also gave the following conjecture:

Conjecture 10 (Barth, Raspaud) For n 2, WBF(d; n) can be decomposed into d Hamilton cycles.

In his thesis 5] , Barth also stated the following conjecture for the directed case:

Conjecture 11 (Barth) For n 2, W BF(d; n) contains d ? 1 arc-disjoint Hamilton circuits.

Recall that for n = 1, W BF(d; 1) is just K + d which itself is the arc-disjoint sum of K d and loops. So conjecture [START_REF] Bermond | Broadcasting in de Bruijn networks[END_REF] can be seen as an extension of a theorem of Tillson 17].

Theorem 12 (Tillson) The complete symmetric digraph K d can be decomposed into d ? 1 Hamilton circuits, except for d = 4 and 6.

In this paper we focus mainly on the decomposition of the wrapped Butter y digraph W BF(d; n). By proposition [START_REF] Fleischner | Compatible euler tours in eulerian digraphs[END_REF], it su ces to prove the conjecture for n = 2. Using results of section 4 on the conjunction of graphs, we have been able to reduce the study to prime degrees. So, conjecture [START_REF] Rowley | On the number of arc-disjoint hamiltonian circuits in the de Bruijn graph[END_REF] would follow from conjecture [START_REF] De | Communication dans les r seaux de processeurs[END_REF].

Conjecture 16 For any prime number p > 3, W BF(p; 2) can be decomposed into p Hamilton circuits.

With a clever computer search, we have been able to prove conjecture [START_REF] De | Communication dans les r seaux de processeurs[END_REF] for any prime less than 12000, leading to the following statement:

Theorem 17 If d is divisible by any number q, such that 4 q 12000, then W BF(d; 2), and consequently W BF(d; n), has a Hamilton decomposition.

Finally, the methods used in this paper are combined with other ideas and applied to the undirected case to prove conjecture [START_REF] Bermond | Hamiltonian decomposition of Cayley graphs of degree 4[END_REF] in a forthcoming paper 8].

Theorem 18 For n 2, WBF(d; n) can be decomposed into d Hamilton cycles.

2 Circuits and Permutations

More de nitions

First, we will show that the existence of k arc-disjoint Hamilton circuits in W BF(d; n), is equivalent to the ability to route k compatible cyclic realizable permutations between levels 0 and n in BF(d; n). For this purpose, we need some speci c de nitions.

In this paper, will always denote a permutation of Z n d which associates the element (x) with x. The composition 0 of two permutations and 0

is the permutation which associates with the element a the element ( 0 (a)).

De nition 19 A permutation is cyclic if, for some x, all the elements i (x) are distinct, for 0 i < d n .

Remark 20 Note that if is cyclic, then, for every x, the elements i (x) are all distinct. In fact, to verify that is cyclic, it su ces to verify that for a given x, i (x) 6 = x, for 1 i < d n . Indeed, if there exists j and k, with j > k, such that j (x) = k (x), then j?k (x) = x.

For example, the permutation which associates with a the element a + 1 is clearly cyclic, as i (a) = a + i.

It follows from the de nition of BF(d; n) that there exists a unique dipath connecting a vertex (x; 0) to a vertex (y; n). So, we can associate with a permutation of Z n d a set of dipaths in BF(d; n) connecting vertex (x; 0) to vertex ( (x); n) for any x in Z n d .

Following the terminology used in multistage interconnection networks, where one wants to connect inputs to outputs via disjoint paths, we introduce the notation of realizable permutations.

De nition 21 A permutation is realizable in BF(d; n), or equivalently BF(d; n) realizes the permutation , if the d n associated dipaths from the inputs to the outputs are vertex-disjoint.

Finally, following the terminology of Eulerian graph theory, we say:

De nition 22 A set of k permutations 0 ; 1 ; ; k?1 realizable in BF(d; n) is compatible if the kd n dipaths from (x; 0) to ( j (x); n), for x in Z n d and 0 j k ? 1, are arc-disjoint. We will also say that BF(d; n) realizes k compatible permutations.

Warning -In the whole paper we are working with permutations which are mathematical objects independent of the graph for which they can be either realizable or compatible. In contrary, the realizability or compatibility is a property related to the graphs on which it applies.

Hamilton circuits and permutations

We are now ready to prove that there is an immediate connection between the existence of compatible cyclic realizable permutations in BF(d; n) and that of arc-disjoint Hamilton circuits in W BF(d; n). Proof. First, let us show how to associate with a cyclic permutation , realizable in BF(d; n), a Hamilton circuit of W BF(d; n) and conversely.

Let be a cyclic permutation of Z n d . Let x be a given element of Z n d and let P i be the unique dipath of BF(d; n) joining ( i (x); 0) to ( i+1 (x); n). As is cyclic, all the i (x) are distinct. So, if is realizable, the dipaths P i are vertexdisjoint. Let P 0 i be the dipath of W BF(d; n) obtained from P i by identifying ( i+1 (x); n) with ( i+1 (x); 0). Now, the end vertex of P 0 i is the initial of P 0 i+1 and so, as the ( i (x); 0) span the set of vertices of level 0, the concatenation of the dipaths P 0 i , with 0 i < d n ? 1, forms a Hamilton circuit of W BF(d; n).

Conversely, let H be a Hamilton circuit of W BF(d; n). Let (x 0 ; 0), (x 1 ; 0), : : : , (x i ; 0), : : : , (x d n ?1 ; 0) be the vertices we meet successively on level 0 by following the cycle H. Let us consider the permutation de ned by

(x i ) = x i+1 .
As H is a Hamilton circuit, all the x i 's are distinct so is cyclic; furthermore, all the inside dipaths are vertex-disjoint, so is a cyclic realizable permutation in BF(d; n).

To prove the lemma, it su ces to note that the de nition of compatible permutations has been done in order that the dipaths associated with the permutation are arc-disjoint, and so their concatenation form arc-disjoint Hamilton circuits, and conversely (see 3 Recursive construction 

Iterative Construction

We will now give a simple construction which enables us to construct p compatible cyclic realizable permutations in BF(d; n+1) from p compatible cyclic realizable permutations in BF(d; n).

In what follows, we will use the letter M to indicate a permutation of Z d and M x to denote a permutation realizable in the right Butter y Kd;d (x). If M x is a permutation of Z d realizable in Kd;d (x), then the arcs joining the vertices ax on level n of BF(d; n + 1) to the vertices M x (a)x on level n + 1 are disjoint and form a perfect matching in Kd;d (x). To be able to prove an inductive lemma, we need another de nition:

0 0 0 1 0 2 1 0 1 1 1 2 2 0 2 1 2 2 0 0 0 1 0 2 1 0 1 1 1 2 2 0 2 1 2 2 Right Butterflies Left Butterflies d,d d,d d,d K (0) K (1) K (2) Left Left Left B (0) B (1) B (2)
De nition 25 A family (or multi-set) of permutations satis es the cyclic property if the composition of the permutations of the family is a cyclic permutation for any order of the composition.

We use the word family because the permutations are not necessarily di erent. This is the case in the following useful example, where all the permutations are identical except one:

Example 26 Let the family M j consist of the d n permutations M x;j of Z d , such that x 2 Z n d , M x;j (a) = a + j, for x 6 = 0, and M x;j (a) = a + j + 1, for x = 0. Then, the family M j satis es the cyclic property. Indeed, consider a permutation obtained by the composition of these d n permutations in any order; this permutation associates with the element a of Z d the element a+(d n ?1)j + j + 1 = a+d n j + 1 = a+1 and so is clearly a cyclic permutation of Z d .

Lemma 27 (inductive lemma) Let be a cyclic permutation realizable in BF(d; n) and let M = (M x ; x 2 Z n d ) be a family of d n permutations satisfying the cyclic property and such that M x is realizable in Kd;d (x). Then, the per- mutation f ( ;M) of Z n+1 d de ned by f ( ;M) (ax) = b (x), where b = M (x) (a), is a cyclic permutation realizable in BF(d; n + 1).

Proof. First, let us show that f ( ;M) is a cyclic permutation. To show that f ( ;M) is cyclic, it su ces, by remark (20), to show that f i ( ;M) (ax) 6 = ax, for 1 i d n+1 ? 1. Suppose that f i ( ;M) (ax) = ax for some i. By de nition, f i ( ;M) (ax) = a 0 i (x). So, i (x) = x, which implies that i = kd n . If i = d n , a 0 is the image of a by the composition of the d n elements of M, in some order and since M has the cyclic property, a 0 = (a), where is a cyclic permutation. Therefore, f kd n ( ;M) (ax) = k (a)x 6 = ax, for 1 k < d. So, for any i, 1 i d n+1 ? 1, f i ( ;M) (ax) 6 = ax.

It remains to show that f ( ;M) is realizable in BF(d; n + 1). The dipath associated with f ( ;M) from (ax; 0) to (b (x); n + 1) consists of the dipath from (ax; 0) to (a (x); n) in B Left (a) associated with the permutation of B Left (a)

(which is isomorphic to BF(d; n)) followed by the arc joining (a (x); n) with (b (x); n + 1) in Kd;d ( (x)) de ned by the matching associated with the per- mutation M (x) , that is b = M (x) (a). We claim that the dipaths joining two distinct inputs (ax; 0) and (a 0 x 0 ; 0) to their outputs are vertex-disjoint and so f ( ;M) is realizable. Indeed, if a 6 = a 0 their rst parts are in two di erent B Left (a) and B Left (a 0 ) and the last arcs are disjoint as either x 6 = x 0 or x = x 0 and M (x) is realizable in Kd;d ( (x)). If a = a 0 , then, since is realizable, the rst dipaths are vertex-disjoint and since x 6 = x 0 , the last arcs belong to two di erent Kd;d . 2

Corollary 28 If there exist p compatible cyclic realizable permutations in BF(d; n), then there exist p compatible cyclic realizable permutations in BF(d; n + 1).

Proof. Let M j (0 j p?1) be the family of d n permutations M x;j de ned in example (26), that is M x;j (a) = a + j, for x 6 = 0, and M x;j (a) = a + j + 1, for x = 0. Note that the permutation M x;j is realizable in Kd;d (x). Let 0 , : : : , j , : : : , p?1 be p compatible cyclic realizable permutations of BF(d; n).

By lemma (27), the permutation f ( j ;M j ) , 0 j p ? 1, are cyclic realizable permutations of BF(d; n + 1). It remains to show that these permutations are compatible. First, the associated dipaths are arc-disjoint in the left Butter ies B Left (a) because the j are compatible. Secondly, for any given x, the permutations M x;j , with 0 j p ? 1, are compatible (i.e. the associated matchings are arc-disjoint). Indeed, for x 6 = 0 the arcs (a; a + j) and (a; a + j 0 ) are arc-disjoint (since j 6 = j 0 , 0 j p?1 d?1 and 0 j 0 p?1 d?1).

Similarly, for x = 0, the arcs (a; a + j + 1) and (a; a + j 0 + 1) are disjoint. 2

Now, we are ready to prove our main proposition, stated in the introduction:

Proposition 29 (main proposition) For any n 0 n, if W BF(d; n) contains p arc-disjoint Hamilton circuits, then W BF(d; n 0 ) contains at least p arc-disjoint Hamilton circuits.

Proof. The result for n 0 = n+1 follows from corollary (28) and lemma (23).

A recursive application of this property gives the above proposition.

2

For an example of the construction see Figure [START_REF] Aubert | D composition de la somme cart sienne d'un cycle et de l'union de deux cycles en cycles hamiltoniens[END_REF]. The gures (a) and (b) show two arc-disjoint Hamilton circuits of K + 3 : the circuits f C0 j x ! x + 1 (mod 3)g and f C1 j x ! x + 2 (mod 3)g. This example uses the families M 0 ( gure (a 0 )) and M 1 ( gure (b 0 )) de ned in the proof of corollary (28).

Consequences

Corollary 30 W BF(2; n) can be decomposed into 2 Hamilton circuits as soon as n 4. For 1 n 3, W BF(2; n) admits only one Hamilton circuit. Proof. A computer search has given a decomposition of W BF(2; 4) into 2 arc-disjoint Hamilton circuits. Therefore, by proposition (29) W BF(2; n) has a Hamilton decomposition for any n 4. For 1 n 3, an exhaustive computer search shows that there cannot exist two arc-disjoint Hamilton circuits.

2

Corollary 31 W BF(3; n) can be decomposed into 3 Hamilton circuits as soon as n 3. For 1 n 2, W BF(3; n) admits only two arc-disjoint Hamilton circuits.

(2) If A and B are two digraphs de ned on the same set of vertices with no arc in common, we denote by A B the arc-disjoint union (sum) of them, that is the digraph on the same set of vertices having as arcs the union of those of A and B. (3) cG will denote the digraph made of c disjoint copies of G. (4) L k (G) = L(L k?1 (G)) will denote the k iterated line digraph of G.

For example, K d;d = K + d C2 and W BF(2; 4) = A B, if A and B are the two arc-disjoint Hamilton circuits of W BF(2; 4). Properties 35

F G = G F L(F G) = L(F) L(G) (F G) H = F (G H) = F G H (A B) C = A (B C) = A B C (A B) F = (A F) (B F)
Proof. These results are clear from the de nitions.

2

There is a very strong connection between the de Bruijn digraph and the wrapped Butter y digraph. We recall the de nition of the de Bruijn digraph:

De nition 36 The de Bruijn digraph of out-degree d and diameter n is denoted B(d; n) and has as vertices the words of length n on an alphabet of d letters. A vertex x 0 x n?1 is joined by an arc to the vertices x 1 x n?1 , where is any letter from the alphabet.

Propositions 37

B(d; n) = L n?1 (K + d ) (1) B(d 1 d 2 ; n) = B(d 1 ; n) B(d 2 ; n) (2) W BF(d; n) = B(d; n) Cn = L n?1 (K + d Cn ) (3) BF(d; n) = B(d; n) Pn (4) W BF(d 1 d 2 ; n) = W BF(d 1 ; n) B(d 2 ; n) (5)
Proof. Equality (1) is well known, and even sometimes considered as the proper de nition of de Bruijn digraphs (see [START_REF] Bermond | Hamiltonian decomposition of Cayley graphs of degree 4[END_REF][START_REF] Rowley | On the number of arc-disjoint hamiltonian circuits in the de Bruijn graph[END_REF]).

Result (2) can be found in 16] and can be proved as follows: from (1),

B(d 1 d 2 ; n) = L n?1 (K + d 1 d 2 ). As K + d 1 d 2 = K + d 1 K + d 2 , we deduce from properties (35) that L n?1 (K + d 1 K + d 2 ) = L n?1 (K + d 1 ) L n?1 (K + d 2 )
, which is indeed B(d 1 ; n) B(d 2 ; n).

Result ( 3) is implicit in di erent papers. It can be obtained by considering the following isomorphism from B(d; n) Cn to W BF(d; n): with the vertex (x; l) in B(d; n) Cn , where x = x 0 x 1 x n?1 and l 2 Z n , we associate the vertex ((x; l)) = (x 0 ; l) in W BF(d; n), where x 0 = x 0 n?1 x 0 n?2 x 0 0 and x 0 i = x i?l . By de nitions (34)-1 and (36), the out-neighbors of (x; l) in B(d; n) Cn are the vertices (y; l + 1) with y = y 0 y 1 y n?1 such that y i = x i+1 , for i 6 = n ? 1, and y n?1 = , being any letter from the alphabet. The associated vertices in W BF(d; n) are ((y; l + 1)) = (y 0 ; l + 1) where y 0 = y 0 n?1 y 0 n?2 y 0 0 and y 0 i = y i?l?1 . For i ? l ? 1 6 = n ? 1, or equivalently i 6 = l, y 0 i = x i?l = x 0 i , and for i = l, y 0 i = . So, by de nition (2), the vertices (y 0 ; l + 1) are exactly the out-neighbors of (x 0 ; l) in W BF(d; n). The second part of the equality is due to the fact that L n?1 ( Cn ) = Cn ; hence, L n?

1 (K + d ) Cn = L n?1 (K + d ) L n?1 ( Cn ) = L n?1 (K + d Cn ).
An example is displayed in Figure (5).

Result (4) can be proved in the same way as (3).

The last equality follows directly from (2) and (3).
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Corollary 38 W BF(d; 2) = L(K d;d ).

Proof. Follows from proposition (37) equality (3) with n = 2.

2

Lemma 39 When r and s are relatively prime, Cqs Cqr = q Cqsr . Proof. Cqs Cqr is a regular digraph with in-and out-degree 1. So, it is the union of circuits. Starting from a vertex (u; v), we nd at distance i the vertex (u + i; v + i) where u + i (resp. v + i) has to be taken modulo qs (resp. qr). So, the length of any circuit is the smallest common multiple of qs and qr, that is qrs, as r and s are relatively prime. As the number of vertices in the digraph is q 2 rs, there are q such cycles. Fig. 5. The graph W BF(2; 3) as a conjunction of B(2; 3) and C3 .

Proposition

40 W BF(d 1 ; n) W BF(d 2 ; n) = n W BF(d 1 d 2 ; n). Proof. Let G = W BF(d 1 ; n) W BF(d 2 ; n). By proposition (37)-(3), we have G = ( B(d 1 ; n) Cn ) ( B(d 2 ; n) Cn ).
As Cn Cn = n Cn (from lemma (39), with q = n and s = r = 1), we obtain:

G = B(d 1 ; n) B(d 2 ; n) (n Cn ) = n( B(d 1 ; n) B(d 2 ; n) Cn ) = n W BF(d 1 d 2 ; n). 2
Corollary 41 If d 1 and d 2 are relatively prime, and if W BF(d 1 ; n) (resp. W BF(d 2 ; n)) admits a 1 (resp. a 2 ) arc-disjoint Hamilton circuits, then W BF(d 1 d 2 ; n) admits a 1 a 2 arc-disjoint Hamilton circuits.

Proof. Let Cnd n 1 (resp. Cnd n 2 ) be a Hamilton circuit in W BF(d 1 ; n) (resp. W BF(d 2 ; n)). From lemma (39), the conjunction Cnd n

1 Cnd n 2 is a set of n circuits of length nd n 1 d n 2 . As W BF(d 1 d 2 ; n) has nd n 1 d n 2 vertices, the 1-difactor Cnd n 1
Cnd n 2 consists of n circuits, each one being a Hamilton circuit of a connected component of W BF(d 1 ; n) W BF(d 2 ; n) isomorphic to W BF(d 1 d 2 ; n). So, the conjunction of one Hamilton circuit of W BF(d 1 ; n) with one Hamilton circuit of W BF(d 2 ; n) provides one Hamilton circuit in W BF(d 1 d 2 ; n). Applying this results to the a 1 a 2 di erent ordered pairs of circuits provides a 1 a 2 arc-disjoint Hamilton circuits in W BF(d 1 d 2 ; n). 2

So, by corollary (41), it is enough to prove conjecture (33) for every power p i of a prime number p.

Reduction to the case where p is prime

We would like to prove that W BF(d; 2) = B(d; 2) C2 has a Hamilton decomposition. But this appears to be quite di cult. However, we will prove that for n 3, B(d; 2) Cn has a Hamilton decomposition. Such a decomposition will then be su cient to reduce the problem to the case of prime degrees.

Lemma 42 For any number n 3 and any prime p, B(p; 2) Cn can be decomposed into p Hamilton circuits.

Proof. Let the nodes of B(p; 2) Cn be labeled (xy; l), with x 2 Z p , y 2 Z p and l 2 Z n . The digraph B(p; 2) Cn is similar to the wrapped Butter y digraph, and we can de ne a multistage network by duplicating level 0 to obtain level n. Formally, this multistage network is B(p; 2) Pn , where Pn is a directed path of length n (i.e. with n + 1 vertices); its vertices will be labeled (xy; l), with x 2 Z p , y 2 Z p and l 2 f0; 1; : : : ; ng.

Like in section 2, we can de ne a notion of realizable permutation in the graph B(p; 2) Pn , except that now there is more than one dipath connecting (xy; 0) to ( (xy); n). We will say that B(p; 2) Pn realizes k compatible permutations 0 , 1 , : : : , k?1 of Z 2 p , if there exist kp 2 dipaths P j (xy), with xy 2 Z 2 p and 0 j k ? 1, where P j (xy) connects (xy; 0) to ( j (xy); n) in B(p; 2) Pn , satisfying the following properties: for a given j, the p 2 dipaths P j (xy) are vertex-disjoint (realizability property) and all the kp 2 dipaths P j (xy) are arcdisjoint (compatibility property).

Using the same argument as in lemma (23), we can establish that B(p; 2) Cn can be decomposed into p Hamilton circuits if and only if B(p; 2) Pn realizes p compatible cyclic permutations.

We will show by induction that B(p; 2) Pn realizes p compatible cyclic permutations; more exactly, we will prove that if the property is true for n, it is also true for n + 3. First, we give, for n 2 f3; 4; 5g, the dipaths P j (xy) associated with compatible cyclic permutations.

In all the dipaths that we consider, a vertex (xy; l) is followed by a vertex (yx 0 ; l + 1) with x 0 = g l (x; y; j) = ax + f(y) + cj, where a; f and c depend on the level l and where 0 j p ? 1.

For any j, the dipaths P j (xy) are vertex-disjoint if and only if, at each level, two distinct vertices (x 1 y 1 ; l) and (x 2 y 2 ; l) are followed by two distinct vertices (y 1 x 0 1 ; l + 1) and (y 2 x 0 2 ; l + 1). As p is a prime, this is realized if and only if the coe cient a of x in g l (x; y; j) is di erent from 0. Indeed, if y 2 x 0 2 = y 1 x 0 1 then, y 2 = y 1 and x 0 2 = x 0 1 . So, ax 2 +f (y 2 )+cj = ax 1 +f (y 1 )+cj and as y 2 = y 1 . This implies ax 2 = ax 1 , which in turn implies (as p is a prime number) either a = 0 or x 2 = x 1 . Similarly, the dipaths P j (xy) are arc-disjoint if and only if, for given l; x; y: g l (x; y; j) = g l (x; y 0 ; j) are di erent. This is satis ed if and only if c 6 = 0, as p is a prime number.

Since a vertex of level l is always followed by a vertex of level l + 1, we will simplify the notation in the following, by omitting the values of the levels from the labels of the vertices.

Initial constructions

Let 0 denote the function of Z p into f0; 1g: 0 (x) = 8 > < > :

1 if x = 0 0 if x 6 = 0 n = 3 P j (xy) = xy y(x + y + j) (x + y + j)(x + 1) (x + 1)(y + 0 (x + 1)) n = 4 P j (xy) = xy y(x + j) (x + j)(y + j) (y + j)(x + 1) (x + 1)(y + 0 (x + 1))

Figure [START_REF] Barth | R seaux d'interconnection: structures et communications[END_REF] shows one decomposition of B(3; 2) C4 into circuits. To produce a clearer gure, vertices ab on odd levels are ranked lexicographically and those on even levels in the following order: ab < a 0 b 0 if b < b 0 or b = b 0 and a < a 0 . Fig. 6. A decomposition of B(3; 2) C4 , presented with a special ranking of the vertices. n = 5 and p 6 = 2 P j (xy) = xy y(x + y + j) (x + y + j)(x + 2j) (x + 2j)y y(x + 1) (x + 1)(y + j + 0 (x + 1)) n = 5 and p = 2 P j (xy) = xy y(x + y + j + 1) (x + y + j + 1)(y + j) (y + j)(x + j + 1) (x + j + 1)y y(x + 1)

In all the cases, one can easily verify that the functions g l (x; y; j) are of the form ax + f(y) + cj with, a 6 = 0 and c 6 = 0. For example, in the construction for n = 3, the functions implicitly de ned are:

(X; Y ) X 0 = aX+f(Y )+cj ! (Y; X 0 ) (x; y) X 0 = X+Y +j ! (y; x + y + j) (y; x + y + j) X 0 = Y ?X?j+1 ! (x + y + j; x + 1) (x + y + j; x + 1) X 0 = X?Y ?j+1+ 0 (Y ) ! (x + 1; y + 0 (x + 1))

To complete the proof, it remains to note that in the three rst cases, the permutation induced by the construction (xy) = (x + 1)(y + cj + 0 (x + 1)) is cyclic, and that in the case n = 5 and p = 2, (xy) = y(x + 1) is also cyclic, as p = 2.

Induction step

The induction step follows from two facts. First, it can be easily seen that B(p; 2) Pn+m realizes p compatible permutations j , 0 j p ? 1, if and only if there exist two sets of permutations 0 j and 00 j , 0 j p ? 1, such that: for 0 j p ? 1, j = 0 j 00 j , B(p; 2) Pn realizes the p compatible permutations 0 j , 0 j p ? 1, B(p; 2) Pm realizes the p compatible permutations 00 j , 0 j p ? 1. Secondly, B(p; 2) P3 realizes p compatible permutations j , 0 j p ? 1, such that each j = e is the identity permutation. Indeed, let us consider the dipaths: P j (xy) = xy y(x + y + j) (x + y + j)x xy Once again, a vertex XY of level l is joined to a vertex Y X 0 of level l + 1, with X 0 = g l (X; Y; j) = aX + f(Y ) + cj, a 6 = 0 and c 6 = 0. So, if B(p; 2) Pn realizes p compatible permutations 0 j , then B(p; 2) Pn+3 realizes the same compatible permutations.

So, we can conclude by induction that B(p; 2) Cn can be decomposed into p Hamilton circuits for any number n 3. 2

Proof. Let d be a non prime number. If d has a prime factor p = 2 f2; 3g, by corollary (45), it su ces to prove the conjecture for W BF(p; 2). If d 4 has only prime factors equal to 2 or 3, then d = 2 i 3 j with i + j 2. A computer search shows that W BF(4; 2), W BF(6; 2) and W BF(9; 2) have a Hamilton decomposition. So, according to corollary (45), W BF(2 i 3 j ; 2), with i + j 2 has a Hamilton decomposition.

2

Remark 48 Although it is not the purpose of this article, proposition (43) can be used to improve results about the decomposition of de Bruijn digraphs into Hamilton circuits:

Propositions 49

If p is the greatest prime dividing d, then B(d; 2) contains p?1 p d Hamilton circuits.

B(2 i q; 2) contains (2 i ? 1)q Hamilton circuits.

Proof. As seen above, the problem has been reduced to nding a Hamilton decomposition of W BF(p; 2) = L( Kp;p ), for any prime p 5. In order to provide ideas and to strengthen our conjecture, we have performed some exhaustive searches. The complexity of an exhaustive search being exponential, we have restricted the set of solutions to those for which the i-th circuit H i is obtained from H 0 by applying the automorphism i of W BF(p; 2) which sends vertex (ab; l) to vertex (a(b + i); l). Furthermore, we want solutions such that H 0 is Hamiltonian and the Hamilton circuits H i = i (H 0 ), with 0 i p ? 1 are arc-disjoint. However, the search space is still exponential in p and a computer search (with normal computation resources) cannot be successful for p greater than 7. So, we restricted the search space again to nearly linear solutions. This restriction gave us solutions for small primes strictly less than 29.

For example, for p = 5, we found the cycle H 0 given by the following set of arcs:

(ab; 0) ! (a(2b); 1) (a 6 2 f0; 1g) (0b; 0) ! (0(2b + 1); 1) (1b; 0) ! (1(2b + 2); 1) (ab; 1) ! Finally, we looked for very special Hamilton circuits H 0 . This enabled us to nd a solution for every prime p between 7 and 12000. More precisely, we searched for parameters and in Z p , such that H 0 is given by the following set of arcs:

(ab; 0) ! (a( b); 1) (a 6 = 0) (0b; 0) ! (0( b + ); 1) (ab; 1) ! ((a + b + 1)b; 0) One can easily check that if 6 = 1, the H i 's are arc-disjoint. So, we only have to nd and such that H 0 is a Hamilton circuit. In particular, we need 6 = 0 (condition to obtain a one difactor) and 6 = 0 (otherwise we obtain a circuit of length p starting at vertex (0; 0)). We conjecture that: Conjecture 50 For any prime p > 5, there exist 6 2 f0; 1g and 6 = 0 such that the permutation of Z 2 p de ned by the following is cyclic: The number of possible solutions is then only p 2 . So, we have been able to verify the conjecture by a computer search for large values of p ( 12000). Below, we give some solutions for p less than 100. p 7 11 [START_REF] Fleischner | Compatible euler tours in eulerian digraphs[END_REF] Theorem 51 If d is divisible by any number q, such that 4 q 12000, then W BF(d; 2), and consequently W BF(d; n), has a Hamilton decomposition.

This result can be strengthened in the case of W BF(d; 4). Indeed, we know that W BF(2; 4) and W BF(3; 4) have a Hamilton decomposition and we have been able to generalize lemma (42) for B(p; 4) Cn when p is an odd prime and n 5.

Theorem 52 If d is divisible by any number q, such that 2 q 12000, then W BF(d; 4), and consequently W BF(d; n) for n 4, has a Hamilton decomposition.

As a consequence, the Butter y digraphs W BF(2p; n) have a Hamilton decomposition, for n 4.

Conclusion

In this paper, we have shown that in a lot of cases, Butter y digraphs have a Hamilton decomposition and give strong evidence that the only exceptions are W BF(2; 2), W BF(2; 3) and W BF(3; 2). We have furthermore reduced the problem to checking if L( Kp;p ) has a Hamilton decomposition for p prime (or equivalently that Kp;p has an Eulerian compatible decomposition). We have also shown that such a decomposition will follow from the solution of a problem (conjecture (50)) in number theory.

Our interest came from a conjecture of Barth and Raspaud 7], concerning the decomposition of Butter y networks into undirected Hamilton cycles. This conjecture is solved in 8], by generalizing the techniques of section 3.2.

Finally, we have seen in proposition (49) that the techniques can be applied to obtain results on the Hamilton decomposition of de Bruijn digraphs. In this spirit it will be interesting to solve the following problem: A proof similar to that of lemma (42) should lead to f d (n) n + 1. Conjecture (33) is, for a given d, equivalent to f d (n) n.

Figure ( 1

 1 ) shows simultaneously BF(3; 2) and BF(3; 2). The orientation on BF(d; n) is obtained by directing the edges from left to right.

Fig. 1 .

 1 Fig. 1. The graphs BF(3; 2) (multistage version) with 3 levels, or WBF(3; 2) (point-to-point version with level 0 duplicated). For digraphs BF(3; 2) or W BF(3; 2), the edges must be arcs directed from left to right .

Lemma 23 W

 23 BF(d; n) contains k arc-disjoint Hamilton circuits if and only if BF(d; n) realizes k compatible cyclic permutations.

Figure

  figure a figure b figure c

Fig. 2 .

 2 Fig.2. A Hamilton circuit of W BF(2; 2) ( gure a) or equivalently the associated permutation realizable in BF(2; 2) ( gure b) and the cyclic permutation which is used ( gure c).

  Remark 24 In BF(d; n+1), vertices of level n are shared by the left and right Butter ies, the outputs of the left Butter ies being considered as the inputs of the right Butter ies. Moreover, all the subgraphs de ned above are arc-disjoint.

Figure ( 3 )

 3 Figure (3) displays such a recursive decomposition.

Fig. 3 .

 3 Fig.3. The recursive decomposition of BF(3; 2). To obtain the directed version BF(3; 2) the edges must be changed into arcs directed from left to right. The vertices are denoted y = (ax) 2 Z 3 Z 1 3 . In BF(3; 2), the 2 rst levels form 3 vertex-disjoint subgraphs, each one isomorphic to BF(3; 2 ? 1). These 3 subgraphs are labeled B Left (a). In the same way, the 2 last levels of BF(3; 2) are built with 3 1 disjoint subgraphs isomorphic to BF(3; 1) = Kd;d , labeled Kd;d (x). To be able to prove an inductive lemma, we need another de nition:

Fig. 4 .

 4 figure a figure b

2 4 . 3

 43 Exhaustive Search for Hamilton decomposition of W BF(p; 2)

(

  ab) = (a + b + 1; b) (a 6 = 0) (0b) = ( + b + 1; + b)

Problem 53

 53 Determine the smallest integer f d (n) such that B(d; n) Cf d (n) has a Hamilton decomposition.

  Kd;d will denote the digraph obtained from K d;d by orienting each edge from one part of the bipartition, called left part, to the other, called right part.De nition 3 (see 15]) Let G be a directed graph. The line digraph of G, denoted L(G), is the directed graph whose vertices correspond to the arcs of G and whose arcs are de ned as follows: there is an arc from a vertex e to a vertex f in L(G) if and only if, in G, the initial vertex of f is the end vertex of e. We will say that a graph (resp. digraph) has a Hamilton decomposition or can be decomposed into Hamilton cycles (resp.

	Note that W BF(d; 1) is just K + d and that BF(d; 1) is Kd;d . We will see in section 4 (corollary (38)) that W BF(d; 2) is the line digraph of K d;d .
	De nition 4 A 1-difactor of a digraph G is a spanning subgraph of G with in-and out-degree 1. It corresponds to a partition of the vertices of G into circuits.
	De nition 5 A Hamilton cycle (resp. circuit) of a graph (resp. digraph) is a cycle (resp. circuit) which contains every vertex exactly once.
	De nition 6

circuits) if its edges (resp. arcs) can be partitioned into Hamilton cycles (resp. circuits).

  The permutation network BF(d; n) has a simple recursive property: the n + 1 rst levels of BF(d; n + 1) form d vertex-disjoint subgraphs isomorphic to BF(d; n). We shall call them left Butter ies. If the elements of Z n+1 d are denoted y = (ax) 2 Z d Z n d , then each left Butter y connects the set of vertices having the same left part a. So we will label a left Butter y by B Left (a). In the same way, the two last levels of BF(d; n + 1) are built with d n disjoint subgraphs isomorphic to BF(d; 1) = Kd;d , that we shall call right Butter ies; each right Butter y connects all the vertices having the same right part x and we will label it by Kd;d(x). left Butter y labeled by a 2 Z d is formed by the vertices a of the n+1 rst levels. It is denoted B Left (a), the right Butter y with label x 2 Z n d is formed by the vertices x of the 2 last levels. It is denoted Kd;d (x).

	We can summarize the situation as follows:
	vertices of BF(d; n + 1) are denoted (ax; l),

3.1 Recursive decomposition of BF(d; n) the

  The rst result holds for p = 1. For p > 1, by a result of Barth, Bond and Raspaud 6], we know that, for p a prime, B(p; 2) contains p ? 1 arc-disjoint Hamilton circuits and has at least 4 vertices. Hence, theorem (43) implies that B(d; 2) contains (p ? 1)d 1 arc-disjoint Hamilton circuits, as we

have B(d; 2) = B(pd 1 ; 2) = B(d 1 ; 2) B(p; 2). Similarly, the second result follows from a result of Rowley and Bose 14], stating that B(2 i ; 2) contains 2 i ? 1 Hamilton circuits.

  For example, for p = 7, = 2 and = 3, we obtain the following cyclic permutation on level 0: (00; 43; 46; 35; 03; 32; 14; 31; 62; 44; 61; 22; 04; 54; 01; 65; 33; 36; 25; 63; 66; 55; 23; 26; 15; 53; 56; 45; 13; 16; 05; 06; 21; 52; 34; 51; 12; 64; 11; 42; 24; 41; 02; 10; 20; 30; 40; 50; 60) So, using corollary (45), we have:

	17 19 23 29 31 37 41 43 47 53 59 61 67 71 73 79 83 89 97
	2 3 4 2 6 2 7 2 3 2 4 3 4 3 4 6 2 2 2 3 2 2
	3 7 4 14 4 13 28 11 19 25 22 18 29 1 25 14 28 27 51 37 25 16
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Proof. For n 3, this follows from the existence of a Hamilton decomposition of W BF (3; 3) obtained by computer ( gures of decompositions available on demand). For n = 1 and 2, an exhaustive search (by computer) shows that there exist only two arc-disjoint Hamilton circuits. We need some more de nitions and results concerning conjunction, line digraphs and de Bruijn digraphs.

De nitions 34 (see 2])

is the digraph with vertex-set V 1 V 2 and an arc joining (u 1 ; u 2 ) to (v 1 ; v 2 ) if and only if there is an arc joining u 1 to v 1 in G 1 and an arc joining u 2 to v 2 in G 2 .

Theorem 43 If a digraph G, with at least 3 vertices, contains k arc-disjoint Hamilton circuits, then B(d; 2) G contains dk arc-disjoint Hamilton circuits.

Proof. First, we prove the result for d prime. By hypothesis, G L 0 i<k?1 Ci l , where l is the number of vertices of G and l 3. Corollary 45 If W BF(d; 2), with d 6 = 1, can be decomposed into Hamilton circuits, then W BF(qd; 2) can also be decomposed into Hamilton circuits for any integer q.

Proof. Just apply theorem (44) to W BF(qd; 2) which is B(q; 2) W BF(d; 2) by proposition (37). Note that W BF(1; 2) has only 2 vertices. So, the corollary cannot be applied for d = 1. 2

Example 46 Since W BF(4; 2) has a Hamilton decomposition, W BF(4q; 2) also has a Hamilton decomposition for any integer q. In particular, W BF(2 i ; 2) has a Hamilton decomposition for i 2.

Corollary 47 To prove conjecture (33), it su ces to prove that W BF(p; 2) has a Hamilton decomposition, for any prime p 5.

Note added in proof

Helen Verrall 3 has informed us that she has been able to prove conjecture [START_REF] De | Communication dans les r seaux de processeurs[END_REF], thus closing the problem.