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STATIONARY SOLUTIONS TO PHASE FIELD CRYSTAL

EQUATIONS

MORGAN PIERRE & ARNAUD ROUGIREL

Abstract. This paper is devoted to the analytical and numerical study of the sta-
tionary solutions of the one dimensional Phase Field Crystal Equation. This new
model recently introduced by K. Elder and M. Grant describes phase transformations
at atomistic level on large time scales. By using bifurcation methods, we investigate
quantitative and qualitative properties of these solutions: multiplicity, stability, peri-
odicity. Quite unusual bifurcation diagrams are obtained by numerical simulations.

1. Introduction

In materials science, the study of phase transformations is a very challenging issue.
Since material properties depend on microstructures that form during non equilibrium
processing, it is essential to develop models accounting for the evolution of these mi-
crostructures. In this paper, we will perform a mathematical analysis of a new model,
the so-called Phase Field Crystal modeling, introduced recently by K. Elder and M.
Grant in [EG04].

This model describes for example liquid/solid phase transition, crystal growth or freez-
ing (see [EPB+07]). It represents an alternative to the usual approaches, namely
• the atomistic models: molecular dynamics, Boltzmann’s equation, Monte-Carlo me-
thod;
• the continuum or phase field models: Cahn-Hilliard and Allen-Cahn equations, . . .
These powerful methods have permitted to simulate many physical phenomenon: molec-
ular motions, spacial structure in molecular liquids, spinodal decomposition, order-
disorder transition kinetics, . . . However, the former applies on very short time scales
and the latter gives rise to spatially uniform fields at equilibrium.

The Phase Field Crystal method extends the phase field modeling and allows to simu-
late periodic microstructure on large time scale. More precisely, as explained in [EG04],
“the field to be considered (the time-average density) is only averaged in time and not
in space”, contrary to standard phase field models. Furthermore, the model is con-
structed to produce fields that are periodic in space by considering free energies involv-
ing second order derivatives. In a liquid/solid system, the solid phase is represented
by a periodic field whose wavelength accounts for the distance between neighbouring
atoms. The liquid state is described by a (spatially) uniform field. We refer the reader
to [EG04, EPB+07, PDA+07] for a more comprehensive exposition of the Phase Field
Crystal method.

The simplest Phase Field Crystal model is the following sixth order evolution equation:

∂tu − ∂xx

(

∂xxxxu + 2∂xxu + f(u)
)

= 0, t > 0, x ∈ (0, L), (1.1)
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where L is the length of the domain and where f is the derivative of a double-well
potential. This equation can be viewed as a conservative Swift-Hohenberg equation (see
for instance [PR03, PR04, PW07, VdBPT01]) exactly as the Cahn-Hilliard equation is a
conservative version of the Allen-Cahn equation. Performing a linear change of variable
mapping (0, L) onto (0, 1), equation (1.1) can be rewritten

∂tu − ε∂xx

(

ε2∂xxxxu + 2ε∂xxu + f(u)
)

= 0, t > 0, x ∈ (0, 1), (1.2)

with ε = 1/L2.
In this paper, we will focus on the stationary solutions to (1.2) complemented with

initial and boundary conditions (see (2.7)). From a physical point of view, the main
questions we would like to address are
• How can this equation produce stable periodic solutions ? What is their wavelength ?
• Does there exist stable equilibria to (1.2) that represent phase coexistence in a liq-
uid/solid system?

By using bifurcation technics for theoretical results and for numerical simulations as
well, we bring the following answers to these questions.
• There exist bifurcation points (u, ε) = (M,ε∗) such that if (u, ε) is a non trivial sta-
tionary solution to (2.7) close to (M,ε∗) then u is a 2πcf

√
ε∗-periodic function where

cf = (1 ±
√

1 − f ′(M))−1/2. Moreover, if the trivial solution (M,ε) is stable for ε < ε∗
or ε > ε∗ then the latter periodic function u is stable according to Theorems 5.5 and
5.8. If (M,ε) is unstable for ε close ε∗, u is also unstable. By symmetry, we prove that
u(· + πcf

√
ε∗) is also a solution.

• As predicted by the thermodynamics, we are able to exhibit stable stationary solutions
to the Phase Field Crystal equation that are a mixture of constant and periodic solu-
tions: see Figures 16 and 17. These solutions can indeed be interpreted as representing
phase coexistence in a liquid/solid system. They are obtained numerically by using a
path-following method.

From a mathematical point of view, we would like to describe the solutions to (1.2). For
this, we use local bifurcation theory to get multiplicity results and asymptotic expansion
of bifurcating solutions (see Theorem 5.2, 5.7 and 5.11 ). In Theorem 5.3, we determine
the shape of the bifurcation branches near bifurcation points. We prove, in Theorem
5.5, that the Principle of Exchange of Stability holds in the sense of Definition 5.2. We
compare, for fixed ε, the energy of the bifurcating solutions with the energy of the trivial
solution (see Theorem 5.6).

Our analysis relies on the Lyapunov-Schmidt method (see for instance [Kie04, CH82,
AP93]). In some critical cases (Subsection 5.1 and 5.3), we use in addition Newton
polygon’s method.

Since our analytical results are essentially local (i.e. valid close to bifurcation points),
we complete the description of the solution set to (1.2) by numerical simulations. We
use also a bifurcation approach to track non trivial solutions (see Section 6). The Morse
index of each solution is computed and is represented on bifurcation diagrams by specific
color, as for example in Figure 5. These numerical simulations highlight a broad variety
of bifurcation branches: bounded branches connecting two bifurcation points, loops,
branches with complicated geometry (Figure 7), bifurcations from non trivial solution
(Figure 15).

In the next three sections, we introduce some notations and we give preliminary results.
Section 5 is devoted to theoretical bifurcation analysis. Finally, Section 6 deals with
numerical simulations.
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2. Equations and Functional Setting

Let Ω = (0, 1) ⊂ R, ε > 0 and r be a real parameter. We define

f : R → R, u 7→ (1 + r)u + u3 (2.1)

W0 =
{

u ∈ H2(Ω) |u′(0) = u′(1) = 0
}

(2.2)

V0 =
{

u ∈ H4(Ω) |u′ = u′′′ = 0 on ∂Ω
}

(2.3)

L̇2(Ω) =
{

v ∈ L2(Ω) |
∫

Ω
v dx = 0

}

V̇0 = V0 ∩ L̇2(Ω), Ẇ0 = W0 ∩ L̇2(Ω). (2.4)

The space V̇0 is equipped with the bilinear form

(u, v)V̇0
=

∫

Ω
u(4)v(4) dx

which becomes in turn a Hilbert space since every v ∈ V̇0 satisfies

‖v‖2 ≤ 1

λ2
1

‖v(4)‖2, (2.5)

where ‖ · ‖2 denotes the L2(Ω)-norm. Indeed,

‖v‖2 ≤ 1√
λ1

‖v′‖2 ≤ 1

λ1
‖v′′‖2 (2.6)

by Poincaré-Wirtinger and Poincaré’s inequalities. Here λ1 := π2 denotes the first eigen-
value of the one-dimensional Laplace operator with homogeneous Dirichlet boundary con-
ditions on Ω. Moreover v′′ belongs to Ẇ0 thus the same estimates give ‖v′′‖2 ≤ 1

λ1
‖v(4)‖2.

Then (2.5) follows. In the same way, if (u, v)Ẇ0
:=
∫

Ω u(2)v(2) dx then (Ẇ0, (·, ·)Ẇ0
) is a

Hilbert space. Of course, u(2) stands for ∂xxu.
Given initial data u0 = u0(x), the Phase Field Crystal equation with homogeneous

Neuman boundary condition reads










∂tu − ε∂xx

(

ε2∂xxxxu + 2ε∂xxu + f(u)
)

= 0 in Ω × (0,∞)

u′ = u(3) = u(5) = 0 on ∂Ω × (0,∞)

u(0) = u0 in Ω.

(2.7)

Since every solution to (2.7) satisfies
∫

Ω
u(x, t) dx =

∫

Ω
u0(x) dx ∀t > 0,

the stationary solutions to the problem above solve

u ∈ M + V̇0, ε2u(4) + 2εu(2) + f(u) =

∫

Ω
f(u) dx in L2(Ω), (2.8)

where M :=
∫

Ω u0(x) is a real parameter. Associated to this equation is the energy
functional

E : W0 × (ε,∞) → R, (u, ε) 7→
∫

Ω

1

2
(εu′′ + u)2 +

r

2
u2 +

1

4
u4 dx. (2.9)
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Introducing the new function v defined by u = M + v, (2.8) is equivalent to

v ∈ V̇0, ε2v(4) + 2εv(2) + f(M + v) =

∫

Ω
f(M + v) dx in L2(Ω), (2.10)

or by Taylor’s expansion of f(M + v), to














v ∈ V̇0, ε2v(4) + 2εv(2) + f ′(M)v + f ′′(M)
2

(

v2 −
∫

Ω
v2dx

)

+ f ′′′(M)
6

(

v3 −
∫

Ω
v3dx

)

= 0 in L2(Ω).

(2.11)

We split the right hand side of (2.11) into linear and nonlinear parts by setting

L(·, ε) : V̇0 → L̇2(Ω), v 7→ ε2v(4) + 2εv(2) + f ′(M)v (2.12)

N : V̇0 → L̇2(Ω), v 7→ f ′′(M)
2

(

v2 −
∫

Ω
v2dx

)

+ f ′′′(M)
6

(

v3 −
∫

Ω
v3dx

)

.

Finally we define

F : V̇0 × (0,∞) → L̇2(Ω), v 7→ L(v, ε) + N(v), (2.13)

so what instead of (2.10), we will consider the bifurcation problem

v ∈ V̇0, ε > 0, F (v, ε) = 0 in L̇2(Ω). (2.14)

3. Preliminary Results

Proposition 3.1. For every positive ε, the energy E(·, ε) admits a minimizer on M +V̇0.
Moreover, if

E(u, ε) < E(M,ε)

for some u ∈ M + Ẇ0, then (2.8) admits at least two solutions.

Proof. For every positive ε, E(·, ε) is coercive and weakly sequentially lower semi-

continuous on M + Ẇ0. Then it is well know that E(·, ε) admits a minimizer u0 on

M + Ẇ0. By Fourier multiplier theory, u0 is solution to






Find u ∈ M + Ẇ0 such that for every ϕ ∈ W0
∫

Ω
ε2u′′ϕ′′ − 2εu′ϕ′ + f(u)ϕdx =

∫

Ω
f(u) dx

∫

Ω
ϕdx.

A bootstrap argument shows that u0 is in M + V̇0. Hence u0 is a minimizer on M + V̇0

and solves (2.8). The second assertion is then obvious. �

We now give an uniform L∞ bound for solutions to (2.10).

Proposition 3.2. There exists a constant C depending only on r and M such that for
every solution v to (2.10),

‖v‖∞ ≤ C

ε
. (3.1)

Proof. Since
∫

Ω v = 0, there exists x0 ∈ Ω such that v(x0) = 0. Then, for each x ∈ Ω,
the Cauchy-Schwarz inequality and (2.6) lead to

|v(x)| =
∣

∣

∣

∫ x

x0

v′(s) ds
∣

∣

∣
≤ |x − x0|1/2‖v′‖2 ≤ ‖v′‖2 ≤ 1√

λ1
‖v′′‖2.
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Hence it is enough to estimate ‖v′′‖2. For this, we first notice that for some positive
constants c1, C1, there holds

f(u)u ≥ c1u
4 − C1

|f(u)| ≤ C1(|u|3 + 1) ∀u ∈ R.

Then, for all v ∈ R,

f(M + v)v ≥ c1

2
v4 − C, (3.2)

where C is positive and depends only on r and M . Now testing (2.10) with ϕ = v and
using (3.2), we obtain

ε2‖v′′‖2
2 +

c1

2

∫

Ω
v4 dx ≤ 2ε‖v′‖2

2 + C. (3.3)

Furthermore, ‖v′‖2
2 = −

∫

Ω vv′′ and for every a, b, δ > 0, we have the Young inequality

ab ≤ δ

4
a4 +

3

4δ1/3
b4/3.

Thus we deduce

2ε‖v′‖2
2 ≤ εδ

2

∫

Ω
v4 dx +

3ε

2δ1/3

∫

Ω
|v′′|4/3 dx.

By choosing δ = c1/ε and going back to (3.3), we deduce with Hölder’s inequality,
(

ε‖v′′‖2

)2
≤ 3

2c
1/3
1

(

ε‖v′′‖2

)4/3
+ C.

Hence (3.1) follows. �

For large ε, (2.8) and (2.10) possess an unique solution. More precisely, the following
result holds.

Proposition 3.3. If r ≥ 0 then (2.10) has a unique solution.
If r < 0 then (2.10) has a unique solution provided ε > ε0 where

ε0 =
1 +

√−r

λ1
. (3.4)

We recall that λ1 := π2 denotes the first eigenvalue of the one-dimensional Laplace
operator with homogeneous Dirichlet boundary conditions on Ω.

Proof. Let u and v be two solutions of (2.10) and g be the function defined by g(u) =
f(u) − u. Then testing the difference of the two equations with u − v, we find

∫

Ω

(

ε(u − v)′′ + u − v
)2

dx +

∫

Ω

(

g(u) − g(v)
)

(u − v) dx = 0.

Moreover,
(

g(u) − g(v)
)

(u − v) ≥ r(u − v)2 + (u3 − v3)(u − v).

Thus,

‖ε(u − v)′′ + u − v‖2
2 + r‖u − v‖2

2 +

∫

Ω
(u3 − v3)(u − v)dx ≤ 0.

Then u = v in the case r ≥ 0. Otherwise, by the triangular inequality,

ε‖(u − v)′′‖2 ≤
(

1 +
√
−r
)

‖u − v‖2.

By using (2.6), we conclude that u = v if ε > ε0, where ε0 is given by (3.4). �
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Remark 3.1. According to [EG04], the parameter r is proportional to the temperature
of the system.

4. The Linearized Equation

We study the eigenvalue problem (see (2.3), (2.12) for notation)
{

L(ϕ, ε) = λϕ in L2(Ω)

ϕ ∈ V̇0 \ {0}, λ ∈ R.
(4.1)

Under the notation of Section 2, we put p := 1− f ′(M) and λk := (kπ)2 for k = 1, 2, . . . .
It is easy to see that the eigenvalues of (4.1) are of the form

(ελk − 1)2 − p, k = 1, 2, . . . , (4.2)

with corresponding eigenfunctions

ϕk : Ω → R, x 7→ cos(kπx). (4.3)

For k ≥ 1 and p ≥ 0, we put

εk :=
1 +

√
p

λk
, εk :=

1 −√
p

λk
. (4.4)

Then the following description of kerL(·, ε) holds.

Proposition 4.1. Let M ∈ R, p := 1 − f ′(M) and ε > 0.
• If p ∈ {0} ∪ [1,∞) and there exists k ≥ 1 such that ε = εk then

kerL(·, ε) = 〈ϕk〉.
• If 0 < p < 1 and there exists k ≥ 1 such that ε = εk then

• if p ∈ {pk,k′ | k′ = 1, . . . , k − 1} (see (4.5) below for the definition of pk,k′) then

kerL(·, ε) = 〈ϕk, ϕk′〉;
• if p 6∈ {pk,k′ | k′ = 1, . . . , k − 1} then kerL(·, ε) = 〈ϕk〉.

• In any other case, kerL(·, ε) = {0}.
Proof. We will prove only the case where p ∈ (0, 1). For k ≥ 1, we put

εk :=
1 +

√
p

λk

and for k′ = 1, . . . , k − 1, we denote by pk,k′ the unique solution in (0, 1) of

λk

λk′

=
1 +

√
pk,k′

1 −√
pk,k′

. (4.5)

If p = pk,k′ then εkλk′ = 1 −√
pk,k′, hence L(ϕk′ , εk) = 0 and kerL(·, ε) is generated by

ϕk and ϕk′ . The remainder of the proof is left to the reader. �

The linear stability of the trivial solution to (2.10) is given by the following statement.

Proposition 4.2. Let p := 1−f ′(M) and suppose that 0 is not in the spectrum of L(·, ε).
Besides,
• if 0 < p < 1 then let

k+ :=
[

− 1

2
+

1 +
√

1 − p

2
√

p

]

+ 1



PHASE FIELD CRYSTAL EQUATIONS 7

be the smallest integer larger than the number into brackets. If

ε ∈ (0, εk+
)∪̇(εk+−1, εk+−1)∪̇ . . . ∪̇(ε2, ε2)∪̇(ε1, ε1)

then the trivial solution to (2.10) is unstable.
• If p ≥ 1 and ε < ε1 then v = 0 is also unstable.
• Otherwise v = 0 is stable.

Proof. By (4.2), we have to assess the sign of (ελk − 1)2 − p for each k ≥ 1, assuming
that it is non zero. More precisely, v = 0 is unstable if and only if there exists some
integer k such that (ελk − 1)2 − p < 0.

Hence, we first observe that 0 is stable if p < 0. If p ≥ 1 then ε1 ≤ 0 hence if ε < ε1

then v = 0 is unstable. If p ≥ 0 and ε > ε1 then for every k ≥ 1,

ελk − 1 > ε1λ1 − 1 =
√

p.

Hence (ελk − 1)2 − p > 0 and v = 0 is stable. There remains to consider the case where
0 < p < 1 and ε < ε1. Recalling (4.4), we have clearly

εk ≤ εk and εk+1 ≤ εk.

Thus ε ∈ (εk, εk) yields the instability of 0. Moreover, εk ≤ εk+1 if and only if k ≥ k+.
This completes the proof of the theorem. �

Remark 4.1. • If M = 0 and r < 0 then ε1 and the solution ε0 to (3.4) coincide. According
to Propositions 3.1, 3.3 and 4.2, if we suppose in addition that −1 < r < 0 then (2.10)
admits an unique solution for ε ∈ (ε1,∞); at least two solutions for ε ∈ (ε1, ε1).
• k+ = 1 ⇐⇒ p > 9/25. Hence if p > 9/25 then εk+

= ε1 and v = 0 is unstable for
ε ∈ (0, ε1).
• The case 0 < p < 1 and k+ = 3 is depicted in Fig. 1.

ε2 ε2 ε1 ε1 ε0εk+

stablestable uniquenessunstable
0

Figure 1. Stability intervals w.r.t. ε when k+ = 3

• Proposition 4.2 states the stability analysis in terms of ε when p is given. However,
we may fix ε first and discuss the stability of the trivial solution with respect to p. For
example, let us choose ε so what 2/λ2 < ε < 1/λ1. In order to emphasize the dependence
on p, we will denote εk by εk(p). If p ∈ (0, 1) then

ε2(p) < ε < 1/λ1 = ε1(0).

According to Proposition 4.2, v = 0 is unstable if and only if ε > ε1(p) i.e. p > (1−ελ1)
2.

Since p = −(r+3M2), the phase diagram in the plan (M, r) is determined by the parabola

r = −3M2 − (1 − ελ1)
2.

Indeed, if r < (>) − 3M2 − (1 − ελ1)
2 then v = 0 is unstable (stable).
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5. Bifurcation Analysis

According to the Implicit Function Theorem, bifurcation from the trivial solution
occurs at (M,ε∗) only if the kernel of L(·, ε∗) is non trivial. We will first assume that it
is one-dimensional. More precisely with the above notation (in particular (2.12), (4.3)),
we suppose

p := 1 − f ′(M) > 0 (5.1)

and that there exists a positive integer k∗ such that if

ε∗ :=
1 ±√

p

λk∗

> 0 (5.2)

then
kerL(·, ε∗) = 〈ϕk∗

〉. (5.3)

Recall that Proposition 4.1 gives necessary and sufficient conditions for (5.3) to hold in
terms of the data of the problem. For simplicity we will put

ϕ∗ = ϕk∗
, λ∗ = λk∗

. (5.4)

Our main tool for the analysis of bifurcations is the Lyapunov-Schmidt method (see for
instance [Kie04, CH82, AP93]). Since the operator L(·, ε∗) is self-adjoint with compact
resolvent, the set

{ ϕk

‖ϕk‖2
| k ∈ N \ {0}

}

is a spectral basis in L̇2(Ω). Thus

dim kerL(·, ε∗) = codim R(L(·, ε∗)),
where R(L(·, ε∗)) ⊂ L̇2(Ω) denotes the range of L(·, ε∗), and

L̇2(Ω) = R(L(·, ε∗)) ⊕ kerL(·, ε∗)
V̇0 =

(

R(L(·, ε∗)) ∩ V̇0

)

⊕ kerL(·, ε∗).

The decomposition of L̇2(Ω), in turn, defines the projections

Q : L̇2(Ω) → R(L(·, ε∗)) along kerL(·, ε∗)
P := I − Q : L̇2(Ω) → kerL(·, ε∗).

(5.5)

Denoting by (·, ·)2 the L2-scalar product, there holds

Pv =
(v, ϕ∗)2
‖ϕ∗‖2

2

ϕ∗ = 2(v, ϕ∗)2ϕ∗, ∀v ∈ L̇2(Ω). (5.6)

In the sequel, we will sometimes identify the vector Pv with its coordinate in the basis
ϕ∗; namely we will write Pv = 2(v, ϕ∗)2.

We decompose every v ∈ V̇0 in a unique way into

v = yϕ∗ + w2, (5.7)

where y ∈ R and w2 belongs to ϕ⊥
∗ , the orthogonal space of ϕ∗ in V̇0. Integrations by

parts yield

ϕ⊥
∗ =

{

v ∈ V̇0 | (v, ϕ∗)2 = 0
}

. (5.8)

Then the solutions to (2.14) are given by

y ∈ R, w2 ∈ ϕ⊥
∗ , ε > 0, yL(ϕ∗, ε) + L(w2, ε) + N(yϕ∗ + w2) = 0. (5.9)
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Projection on R(L(·, ε∗)). Applying Q to (5.9), we obtain

yQL(ϕ∗, ε) + QL(w2, ε) + QN(yϕ∗ + w2) = 0 in L̇2(Ω). (5.10)

By the Implicit Function Theorem, for (y, ε, w2) close to (0, ε∗, 0), this equation is equiv-
alent to

w2 = w2(y, ε), w2(0, ε∗) = 0, (5.11)

where w2(·, ·) is defined and smooth from some neighbourhood of (0, ε∗) into some
neighbourhood of 0 in R(L(·, ε∗)) (see for instance [Kie04, Section I-2]). Next, letting
w2 = w2(y, ε) in (5.10) and differentiating w.r.t y, we obtain ∂yw2(0, ε∗) = 0. Moreover,
since w2(y, ε) is the unique local solution to (5.10), it results that w2(0, ε) = 0 for ε close
to ε∗. Hence, we may write w2 under the form

w2(y, ε) = yv2(y, ε), (5.12)

where the new function v2, defined by

v2(y, ε) :=

∫ 1

0
∂yw2(yt, ε) dt,

satisfies v2(0, ε∗) = 0 since ∂yw2(0, ε∗) = 0. By setting,

N(v, y) := f ′′(M)
2

(

v2 −
∫

Ω
v2dx

)

+ y f ′′′(M)
6

(

v3 −
∫

Ω
v3dx

)

, (5.13)

we have N(yv) = y2N(v, y). Then (5.10), (5.12) yield

QL(ϕ∗, ε) + QL(v2(y, ε), ε) + yN(ϕ∗ + v2(y, ε), y) = 0. (5.14)

By differentiating this equation w.r.t. y, evaluating at (y, ε) = (0, ε∗) and using the fact
that N(ϕ∗, 0) = f ′′(M)/2(ϕ2

∗ −
∫

Ω ϕ2
∗) belongs to ϕ⊥

∗ , we obtain that w := ∂yv2(0, ε∗) is
solution to

L(w, ε∗) + f ′′(M)
2

(

ϕ2
∗ −

∫

Ω
ϕ2
∗

)

= 0 in L̇2(Ω). (5.15)

For later use, we will compute w. Testing (5.15) with ϕk for k 6= k∗, we get
∫

Ω
wL(ϕk, ε∗) dx + f ′′(M)

2

∫

Ω
ϕ2
∗ϕk dx = 0.

Since ϕk is an eigenfunction of L(·, ε∗) with eigenvalue (ε∗λk − 1)2 − p, which is non zero
by (5.3), we obtain using also ϕ2

∗ = 1
2ϕ2k∗

+ 1
2 ,

∫

Ω
wϕk dx =

−f ′′(M)/4

(ε∗λk − 1)2 − p

∫

Ω
ϕ2k∗

ϕk dx.

Moreover, (ϕ2k∗
, ϕk)2 = 1

2δ2k∗,k, thus

w = ∂yv2(0, ε∗) =
−f ′′(M)/4

(ε∗λ2k∗
− 1)2 − p

ϕ2k∗
. (5.16)

Projection on 〈ϕk∗
〉. By setting, in view of (5.5),

g(y, ε) := PL(ϕ∗, ε) + PL(v2(y, ε), ε) + yPN(ϕ∗ + v2(y, ε), y), (5.17)

(5.9) and (5.12) yield

g(y, ε) = 0 in L̇2(Ω). (5.18)
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Since ε2
∗ϕ

(4)
∗ + 2ε∗ϕ

(2)
∗ + f ′(M)ϕ∗ = 0, we get with (5.6),

∂εg(0, ε∗) = 2
ε∗λ∗ − f ′(M)

ε∗
ϕ∗. (5.19)

Moreover ∂yg(0, ε∗) = 0 (use PN(ϕ∗, 0) = 0) and the second derivative is given in the
following Lemma.

Lemma 5.1. With the notations above, in particular (5.12) and (5.17), assume that
p ≥ 0 and (5.2), (5.3) hold. Then

∂2
yg(0, ε∗) = 4f ′′(M)

∫

Ω
ϕ2
∗ ∂yv2(0, ε∗) dx +

2

3
f ′′′(M)

∫

Ω
ϕ4
∗ dx

=
−f ′′(M)2/4

(ε∗λ2k∗
− 1)2 − p

+ f ′′′(M)/4.

Proof. We compute ∂2
yg(0, ε∗) from (5.17) and use the relation

∂y

{

PN(ϕ∗ + v2(y, ε∗), y)
}

∣

∣y=0
= 2f ′′(M)

∫

Ω
ϕ2
∗ ∂yv2(0, ε∗) dx +

1

3
f ′′′(M)

∫

Ω
ϕ4
∗ dx

to get the first equality. Next, we obtain thanks to (5.16),
∫

Ω
∂yv2(0, ε∗)ϕ

2
∗ dx =

−f ′′(M)/4

(ε∗λ2k∗
− 1)2 − p

∫

Ω
ϕ2k∗

ϕ2
∗ dx (5.20)

and the second equality follows since ϕ2
∗ = 1

2ϕ2k∗
+ 1

2 and
∫

Ω ϕ4
∗ dx = 3/8. �

Observe that ∂εg(0, ε∗) 6= 0 by (5.1), (5.2) and (5.19). Thus the Implicit Function
Theorem yields that, for (y, ε) close to (0, ε∗), (5.18) is equivalent to

ε = ε(y) = ε∗ + O(y).

In particular,

g(y, ε(y)) = 0. (5.21)

Differentiating this equation and using ∂yg(0, ε∗) = 0, we obtain

ε̇(0) = 0 (5.22)

and, thanks to Lemma 5.1 and (5.19),

ε̈(0) = −
∂2

yg(0, ε∗)

∂εg(0, ε∗)
=

ε∗/8

ε∗λ∗ − f ′(M)

( f ′′(M)2

(ε∗λ2k∗
− 1)2 − p

− f ′′′(M)
)

. (5.23)

The following statement is typical from bifurcation results obtained by the Implicit Func-
tion Theorem.

Theorem 5.2. Assume that (5.1)-(5.3) hold. Then
• (0, ε∗) is a bifurcation point for Equation (2.14);
• there exists locally a unique branch of non trivial solutions through (0, ε∗);

• there exists a neighbourhood N × I of (0, ε∗) in Ẇ0 × R, such that every solution to
(2.14) in N × I belongs to this branch.
Moreover, if

(ε∗λ2k∗
− 1)2 − p 6= f ′′2

/

f ′′′(M) (5.24)
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then non trivial solutions (v, ε) to (2.14) exist in N × I if and only if ε̈(0)(ε − ε∗) > 0
where ε̈(0) is given by (5.23). In that case, these solutions admit the following expansion

v ≃ ±
√

2
ε̈(0)(ε − ε∗)ϕ∗ in V̇0. (5.25)

Proof of Theorem 5.2. It follows from the above analysis. In particular, (5.14), (5.21)

give local existence and uniqueness in V̇0 × R of the branch {(v(y), ε(y)) | y ∈ (−δ, δ)} of
non trivial solutions satisfying v(0) = 0 and

ε(y) = ε∗ + ε̈(0)
2 y2 + O(y3).

If we want a result in the weaker topology of Ẇ0, we need to consider weak solutions to
(2.8), as in the proof of Proposition 3.1. To be more specific, let Ẇ ′

0 be the dual space

of Ẇ0 and

A : L̇2(Ω) → Ẇ ′
0, u 7→ −u′′.

Then Ẇ ′
0 eqquiped with the bilinear form

(f, g)Ẇ ′

0

= (A−1f,A−1g)2,

is a Hilbert space. The above bifurcation analysis can be made in the spaces Ẇ0, Ẇ ′
0

instead of V̇0 and L̇2(Ω). Besides, since strong solutions are weak solutions and the
bifurcation branches are locally unique, we obtain the third assertion of the theorem.
Finally, assuming ε̈(0) 6= 0 i.e. (5.24), we deduce the approximation (5.25). �

Remark 5.1. • (5.25) means that, if (v, ε) is a solution to (2.14) then there exists δ ∈
{−1, 1} such that

|ε − ε∗|−1/2‖v − δ
√

2
ε̈(0) (ε − ε∗)ϕ∗‖V̇0

−−−→
ε→ε∗

0.

• If we go back to the original unknown u = M + v then Theorem 5.2 yields that (2.8)
has exactly three solutions in M + N if ε ∈ I satisfies ε̈(0)(ε − ε∗) > 0. Otherwise if
ε̈(0)(ε − ε∗) < 0 then u = M is the unique solution in M + N .
• Under the assumptions (5.1)-(5.3), it results from the proof above that if we param-
eterize the bifurcating branch along kerL(·, ε∗) = 〈ϕ∗〉 then each point (u, ε) on this
branch has the following representation

u = u(y) = M + v(y) = M + y
(

ϕ∗ + v2(y, ε(y))
)

for y ∼ 0. (5.26)

�

Next, some properties of the bifurcation branches will be investigated. First we will
describe the shape of these branches near bifurcation points. The usual classification in
super/sub critical bifurcation is not well suitable here since it depends on the choice of
the parameter. For example, if ε̈(0) > 0 then according to Theorem 5.2,

u = u(ε) ≃ M +
√

2
ε̈(0) (ε − ε∗)ϕ∗, for ε ∼ ε∗, ε > ε∗,

and the bifurcation is supercritical. On the other hand, L := 1/
√

ε is also a convenient
parameter and is used as a bifurcation parameter in Section 6. Setting L∗ = 1/

√
ε∗, we

have

u(ε) = u(L) ≃ M +

√

2

ε̈(0)

L∗ + L

L2L2
∗

(L∗ − L)ϕ∗, for L ∼ L∗, L < L∗,
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and the same bifurcation is now subcritical. Notice that the function w defined by

w(y) := u(
√

εy) ∀y ∈ (0, L),

is solution to

w(4) + 2w(2) + f(w) =
1

L

∫ L

0
f(w) dy in (0, L).

Then, in this equation, the parameter L = 1/
√

ε is the length L of the domain. For
these reasons, and in agreement with the figures of Section 6, we will use the following
definition.

Definition 5.1. Under the assumptions of Theorem 5.2, let

εk∗
:=

1 +
√

p

λk∗

, εk∗
:=

1 −√
p

λk∗

.

Then we will say that the bifurcation branch given by (5.25) is convex at (0, ε∗) if

ε̈(0)
(εk∗

+ εk∗

2
− ε∗

)

> 0.

If this quantity is negative, the branch is concave at (0, ε∗).

Remark 5.2. If the branch is convex at ε∗ = εk∗
then it remains locally in the half space

V0 × (−∞, εk∗
) containing the conjugate bifurcation point (0, εk∗

). �

The number

p0 :=
(−4 +

√
10M2 + 1

5

)2

will be useful in the next result. Note that if M2 < 3/2, then 0 < p0 = p0(M) ≤ 9/25
with p0(M) = 9/25 if and only if M = 0.

Theorem 5.3. Under the assumptions of Theorem 5.2, the concavity at (0, ε∗) of the
bifurcating branch is as follows.
• If ε∗ = εk∗

then
• if M2 ≤ 3/2 then it is convex;
• if M2 > 3/2 then

• if p < p0 then the branch is concave;
• if p > p0 then it is convex.

• If 0 < p < 1 and ε∗ = εk∗
then

• if M2 ≥ 3/2 then
• if p < 9/25 then the branch is concave;
• if p > 9/25 then it is convex;

• if M2 < 3/2 then
• if p ∈ (p0, 9/25) then the branch is concave;
• if p 6∈ [p0, 9/25] then it is convex.

Notice that the convexity or concavity at (0, ε∗) does not depend on k∗.

Proof. By Definition 5.1, the proof consists essentially in computing the sign of ε̈(0). By
(5.23), it is equal to

ε̈(0) =
ε∗/8

ε∗λ∗ − f ′(M)

f ′′(M)2 − f ′′′(M)P (ε∗λ2k∗
)

P (ε∗λ2k∗
)

, (5.27)
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where P (X) := (X − 1)2 − p, for every X ∈ R. We will now find the sign of these
numbers.
Sign of ε∗λ∗ − f ′(M). If ε∗ = εk∗

then ε∗λ∗ − f ′(M) = p +
√

p is positive. If p < 1
and ε∗ = εk∗

then ε∗λ∗ − f ′(M) = p −√
p is negative.

Sign of P (ε∗λ2k∗
). If ε∗ = εk∗

then ε 7→ P (ελ2k∗
) has two roots ε2k∗

and ε2k∗
. Since

ε2k∗
< ε2k∗

< ε∗, it results that P (ε∗λ2k∗
) > 0. If p < 1 and ε∗ = εk∗

then ε2k∗
< ε∗.

Moreover

ε∗ − ε2k∗
=

3 − 5
√

p

4λk∗

.

Thus P (ε∗λ2k∗
) > 0 if and only if p < 9/25. It should be noticed that p = 9/25 yields

that P (ε∗λ2k∗
) = 0 and kerL(·, ε∗) is generated by ϕk∗

and ϕ2k∗
. However, this kernel

has dimension one by assumption. Hence p cannot be equal to 9/25. With the notation
of Proposition 4.1, the case p = 9/25 corresponds to the case p = p2k∗,k∗

.
Sign of A := f ′′(M)2 − f ′′′(M)P (ε∗λ2k∗

).
Since P (ε∗λ2k∗

) = 3(8ε∗λ∗ − 5f ′(M)) and f ′′(M) = 6M , there holds

A/18 = 2M2 − 8ε∗λ∗ + 5f ′(M).

If ε∗ = εk∗
then A/18 = −5p − 8

√
p + 2M2 − 3. Hence, we can find easily the sign of A

by observing that A = 0 if p = p0 and M2 > 3/2. If M2 ≤ 3/2 then A < 0 for every
positive p. If ε∗ = εk∗

then A/18 = −5p+8
√

p+2M2−3. The sign of A is determinated
as in the previous case.

The assertions of the theorem follow from the above analysis. �

Principle of Exchange of Stability. It expresses that when the trivial solution loose
its stability, then the bifurcating branch recovers the stability lost by the trivial solution.
More precisely, in accordance with [Kie04], we give the following definition.

Definition 5.2. Let S ⊂ V̇0 × (0,∞) be a branch of solutions to (2.14) bifurcating from
(0, ε∗). We say that S satisfies the Principle of Exchange of Stability at (0, ε∗) if
• the trivial branch (0, (0,∞)) changes its stability at (0, ε∗), i.e. from stable for ε < ε∗
becomes unstable for ε > ε∗, or conversely;
• for every (v, ε) ∈ S with v 6= 0, (v, ε) and (0, ε) have opposite stability.

The Principle of Exchange of Stability is illustrated in Figure 2 for a supercritical
bifurcation. In order to prove that this principles holds for (2.14), we first need a pa-
rameterization of the eigenmodes. We recall that ϕ⊥

∗ is given by (5.8) and that

P (X) := (X − 1)2 − p, ∀X ∈ R. (5.28)

Proposition 5.4. Under the assumptions of Theorem 5.2, there exist δ > 0, and smooth
functions µ : (−δ, δ) → R and w2 : (−δ, δ) → ϕ⊥

∗ such that µ(0) = 0, w2(0) = 0 and

DvF (v(y), ε(y))
(

ϕ∗ + w2(y)
)

= µ(y)
(

ϕ∗ + w2(y)
)

∀y ∈ (−δ, δ), (5.29)

where F is defined by (2.13) and v(·) by (5.26). Moreover, µ̇(0) = 0 and (see (5.17),
Lemma 5.1)

µ̈(0) = 2∂2
yg(0, ε∗) = −f ′′(M)2 − f ′′′(M)P (ε∗λ2k∗

)

2P (ε∗λ2k∗
)

.

In (5.29), {v(y), ε(y) | y ∈ (−δ, δ)} is the bifurcating branch and (ϕ∗ + w2(·), µ(·)) is a
one parameter family of eigenmodes.



14 MORGAN PIERRE & ARNAUD ROUGIREL

εε∗

v stableunstablestable
Figure 2. Principle of Exchange of Stability

Proof. The existence of smooth functions µ(·) and w2(·) satisfying (5.29) follows from
[Kie04, Proposition I.7.2] . Hence there remains to compute the derivative of µ. For this,
since w2(y) belongs to ϕ⊥

∗ , the function

A(y) := PDvF (v(y), ε(y))
(

ϕ∗ + w2(y)
)

satisfies A(y) = µ(y)ϕ∗ by (5.29). Moreover, recalling (5.13), we have

yDN(yv) = y2DvN(v, y).

Thus, by differentiating (5.29) w.r.t. y,

Ȧ(y) = PL(ẇ2, ε) + P∂εL(ϕ∗ + w2, ε)ε̇ + PDvN(ϕ∗ + v2, y)(ϕ∗ + w2)

+ yP∂y

{

DvN(ϕ∗ + v2, y)(ϕ∗ + w2)
}

. (5.30)

Since PL(·, ε∗) = 0, ε̇(0) = 0 (see (5.22)) and v2(0, ε∗) = w2(0) = 0,

Ȧ(0) = PDvN(ϕ∗, 0)ϕ∗ = P
(

f ′′(M)
(

ϕ2
∗ −

∫

Ω
ϕ2
∗

)

)

= 0,

according to (5.6). Thus, µ̇(0) = 0. Differentiating (5.30), we obtain

Ä(0) = P∂εL(ϕ∗, ε∗)ε̈(0) + 2P∂y

{

DvN(ϕ∗ + v2, y)(ϕ∗ + w2)
}

∣

∣y=0
. (5.31)

This latter term is equal to

4f ′′(M)

∫

Ω
ϕ2
∗∂y

{

v2(y, ε(y))
}

∣

∣y=0
dx + 4f ′′(M)

∫

Ω
ϕ2
∗ẇ(0) + 2f ′′′(M)

∫

Ω
ϕ4
∗ dx.

Moreover since ε̇(0) = 0,

∂y

{

v2(y, ε(y))
}

∣

∣y=0
= ∂yv2(0, ε∗).

Thus the first integral is given by (5.20). For the second integral, we observe that
ẇ(0) = 2∂yv2(0, ε∗). Indeed, arguing as in (5.30) but projecting instead on ϕ⊥

∗ , we
obtain

L(ẇ(0), ε∗) + f ′′(M)
(

ϕ2
∗ −

∫

Ω
ϕ2
∗

)

= 0.

the claim follows by comparison with (5.15).
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Then, in view of Lemma 5.1,

2P∂y

{

DvN(ϕ∗ + v2, y)(ϕ∗ + w2)
}

∣

∣y=0
(5.32)

= 3
(

4f ′′(M)

∫

Ω
ϕ2
∗∂yv2(0, ε∗) dx +

2

3
f ′′′(M)

∫

Ω
ϕ4
∗ dx

)

= 3∂2
yg(0, ε∗). (5.33)

Since P∂εL(ϕ∗, ε∗) = P (2ε∗ϕ
(4)
∗ + 2ϕ

(2)
∗ ) = ∂εg(0, ε∗), we obtain with (5.31), (5.33) and

(5.23),

Ä(0) = 2∂2
yg(0, ε∗).

The value of ∂2
yg(0, ε∗) is given by Lemma 5.1. We conclude by noticing that µ̈(0)ϕ∗ =

Ä(0). �

Theorem 5.5. Let us assume (5.1)-(5.3) and

P (ε∗λ2k∗
) 6= f ′′2/f ′′′(M). (5.34)

If the trivial branch changes its stability at (0, ε∗) then the Principle of Exchange of
Stability holds at (0, ε∗) for Equation (2.14).

Recall that Proposition 4.2 gives necessary and sufficient conditions for the trivial
branch to change its stability at (0, ε∗).

Proof. By assumption v = 0 changes its stability at (0, ε∗). With (5.3), we deduce that
all the eigenvalues of L(·, ε∗) are positive except (ε∗λk∗

− 1)2 − p, which is zero. By
continuity of the eigenvalues, the stability of the bifurcating branch will be determinated
by the sign of the function µ given in Proposition 5.4. Since µ̇(0) = 0,

µ(y) =
1

2
µ̈(0)y2 + O(y3).

By (5.34) and Proposition 5.4, µ̈(0) 6= 0. Thus its sign determinates the stability of the
bifurcation branch. Since v = 0 changes its stability at (0, ε∗), ε 7→ P (ελ∗) changes its
sign at ε = ε∗. Thus, we must have P ′(ε∗λk∗

) = 2(ε∗λk∗
− 1) 6= 0.

• If it is positive then v = 0 is unstable for ε < ε∗ and stable if ε > ε∗. Moreover,
ε∗ = εk∗

hence ε∗λk∗
− f ′(M) > 0 since p > 0. Thus by (5.23), (5.19) and Proposition

5.4,

sgn ε̈(0) = − sgn ∂2
yg(0, ε∗) = − sgn µ̈(0).

If ε̈(0) > 0 then µ̈(0) < 0, ε = ε(y) > ε∗ and the branch is unstable. Hence the Principle
of Exchange of Stability holds in this case. We check also in the same way that it remains
true for ε̈(0) < 0.
• If P ′(ε∗λk∗

) = 2(ε∗λk∗
− 1) < 0 then v = 0 is stable for ε < ε∗ and unstable if ε > ε∗.

In that case, we must have ε∗ = εk∗
. Consequently, p ∈ (0, 1) and

ε∗λk∗
− f ′(M) = p −√

p < 0.

Thus ε̈(0) and µ̈(0) possess the same sign. If µ̈(0) > (<)0 then the bifurcating branch is
stable (resp. unstable) for ε > (<)ε∗ and the Principle of Exchange of Stability holds.
This completes the proof of the Theorem. �
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Comparison between the energy of the trivial and bifurcating solutions. In
many situation, the stability of the trivial solution does not change at the bifurcation
point (0, ε∗). For example, Proposition 4.2 shows that v = 0 does not change its stability
if ε ∈ (0, εk+

). Thus, in these cases, it can be interesting to compare the energy of the
trivial solution (0, ε) with the energy of the non trivial solutions obtained by bifurcation
theory. This is done in the theorem below by using the notion of convexity of a bifurcation
branch introduced in Definition 5.1. We recall that the energy of a solution (v, ε) to (2.14)
is E(M + v, ε) where E is defined by (2.9).

Theorem 5.6. Assume that (5.1)-(5.3) and (5.24) hold. If the bifurcation branch of
solutions to (2.14) is convex at (0, ε∗) then (0, ε∗) is a local maximizer of the energy
along this branch. If it is concave at (0, ε∗) then (0, ε∗) is a local minimizer the energy
along the branch.

Proof. By using the representation (5.26) of the bifurcation branch and noticing that

DuE
(

u(y), ε(y)
)

= 0 in L̇2(Ω),

we have

d

dy
E
(

u(y), ε(y)
)

= DεE
(

u(y), ε(y)
)

ε̇(y)

= ε̇/ε(y)

∫

Ω
ε2u2

xx − εu2
x dx,

where ε̇ denotes the derivative w.r.t. y. If we denote by A(y) the above integral then

Ȧ(y) =

∫

Ω
2ε̇εu2

xx + 2ε2u̇xxuxx − ε̇u2
x − 2εu̇xux dx.

Since u(0) = M , u̇(0) = ϕ∗ and ε̇(0) = 0 by (5.22), we obtain Ȧ(0) = 0. Moreover,

Ä(0) =

∫

Ω
ε2
∗u̇

2
xx(0) − 2ε∗u̇

2
x(0) dx

=

∫

Ω
2ε2

∗λ
2
∗ϕ

2
∗ − 2ε∗λ∗ϕ

2
∗ dx

= ε2
∗λ

2
∗ − ε∗λ∗.

Since ε2
∗λ

2
∗ − 2ε∗λ∗ + f ′(M) = 0, we have

Ä(0) = ε∗λ∗ − f ′(M) =

{

p +
√

p > 0 if ε∗ = εk∗

p −√
p < 0 if 0 < p < 1 and ε∗ = εk∗

.

From the above computations, we deduce that

d

dy
E
(

u(y), ε(y)
)

=
ε̈Ä(0)

2ε∗
y3 + O(y4).

Hence, for y close to 0,

sgn
d

dy
E
(

u(y), ε(y)
)

=

{

sgn ε̈(0)y if ε∗ = εk∗

− sgn ε̈(0)y if 0 < p < 1 and ε∗ = εk∗

.

If the branch is convex at (0, ε∗) then ε̈(0)(
εk∗

+εk∗

2 − ε∗) > 0.
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• If ε∗ = εk∗
then ε̈(0) < 0 and

sgn
d

dy
E
(

u(y), ε(y)
)

= − sgn y (5.35)

• In the other case, ε̈(0) > 0 and (5.35) still holds.
Thus (0, ε∗) is a local maximizer of the energy. The concave situation is treated analo-
gously and is left to the reader. This completes the proof of the theorem. �

5.1. The case p = 0. According to Proposition 4.1, bifurcation occurs at (0, ε∗) only if
there exists a positive integer k∗ such that

ε∗ :=
1

λk∗

=
1

λ∗
. (5.36)

This case is critical since f ′(M) = 1 and ∂εg(0, ε∗) = 0 according to (5.19) hence (5.23)
does not make sense. Besides, ε∗ is a root of

ε 7→ (ελ∗ − 1)2 − p

with multiplicity two. Nevertheless, (5.3) remains true (by Proposition 4.1) and by using
Newton polygon’s method (see for instance [Kie04, Section I-15] ), we can prove the
following result.

Theorem 5.7. Let us assume that p = 0, (5.36) holds and

f ′′(M)2 − 9f ′′′(M) > 0 (5.37)

then (0, ε∗) is a bifurcation point for Equation (2.14) and there exist locally two distinct
branches of solutions through (0, ε∗), namely (v+(·), ·) and (v−(·), ·). Besides,

v±(ε) = ±ε − ε∗
ε̃0

ϕ∗ + O
(

(ε − ε∗)
2
)

in V̇0,

where ε̃0 is given by (5.40) below.

Proof. The projection on R(L(·, ε∗)) still gives the local solution (5.12) to (5.10). How-
ever, since f ′(M) = 1− p = 1, we have ∂εg(0, ε∗) = 0 by (5.19). Standard computations
then give

∂2
εg(0, ε∗) = 2P (ϕ

(4)
∗ ) = 2λ2

∗ϕ∗ 6= 0 (5.38)

∂yεg(0, ε∗) = 0.

Hence
g(y, ε) = 1

2∂2
yg(0, ε∗)y

2 + 1
2∂2

εg(0, ε∗)(ε − ε∗)
2 + h.o.t.

According to Newton’s polygon method, we put ε = ε∗ + yε̃, where ε̃ ∈ R is a new
parameter. Then

g(y, ε∗ + yε̃) = 1
2y2
(

∂2
yg(0, ε∗) + ∂2

εg(0, ε∗)ε̃
2 + R(y, ε̃)

)

, (5.39)

where R : R → 〈ϕ∗〉 satisfies R(0, ·) = 0 and ∂ε̃R(0, ·) = 0 since g is analytic and R
contains higher order terms according to Newton’s polygon method. By Lemma 5.1 and
(5.36),

∂2
yg(0, ε∗) =

1

4

( −f ′′(M)2

(ε∗λ2k∗
− 1)2

+ f ′′′(M)
)

=
1

36
(−f ′′(M)2 + 9f ′′′(M)).

Thus, from (5.37), (5.38), there exists ε̃0 > 0 satisfying

∂2
yg(0, ε∗) + ∂2

εg(0, ε∗)ε̃
2
0 = 0.
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That is to say

ε̃0 =
1

6

(f ′′(M)2 − 9f ′′′(M)

2λ2
∗

)1/2
. (5.40)

Moreover, since ∂ε̃R(0, ε̃0) = 0 and 2∂2
ε g(0, ε∗)ε̃0 6= 0, the Implicit Function Theorem

yields the existence of a positive number δ and some functions ε̃+, ε̃− : (−δ, δ) → R such
that ε̃+(0) = ε̃0, ε̃−(0) = −ε̃0 and

∂2
yg(0, ε∗) + ∂2

εg(0, ε∗)ε̃±(y)2 + R(y, ε̃±(y)) = 0, ∀y ∈ (−δ, δ).

If we put ε±(y) := ε∗ + yε̃±(y) = ε∗ ± yε̃0 + O(y2) then, in view of (5.39),

v±(y) := y
(

ϕ∗ + v2(y, ε±(y))
)

give branches of solutions. Going back to the original parameter ε, we get

v = v±(ε) = ±ε − ε∗
ε̃0

ϕ∗ + O
(

(ε − ε∗)
2
)

, for ε ∼ ε∗.

Moreover, since v2(y, ε±(y)) ∈ ϕ⊥
∗ , we have

(v±(ε), ϕ∗)2 = ±ε − ε∗
2ε̃0

for ε ∼ ε∗,

hence u+(ε) 6= u−(ε) if ε is close enough to ε∗. This completes the proof of the theorem.
�

5.2. Symmetries. We will prove that bifurcating solutions obtained by Theorem 5.2
heritate some symmetry properties from ϕ∗. We first show that these solutions are 2/k∗-
periodic functions, if they are correctly extend to R. For this purpose, for any u in L2(Ω),
we define T (u) ∈ L2

loc(R) as the periodic function with period 2 such that T (u) = u in Ω
and

T (u)(x) = u(2 − x) for a.e. x ∈ [1, 2]. (5.41)

Note that T (ϕk) = cos(kπ·) for any k ≥ 1.

Proposition 5.8. Under the assumptions (5.1)-(5.3), there exists a neighbourhood N1×
I1 of (0, ε∗) in V̇0 × R such that if (v, ε) ∈ N1 × I1 is solution to (2.14) then T (v) is a
2/k∗-periodic function.

Proof. The idea is to restrict the bifurcation analysis to 2/k∗-periodic functions. For
every positive number α, we introduce the following spaces

V̇0,α =
{

v ∈ V̇0 |T (v) is α-periodic
}

L̇2
α(Ω) =

{

v ∈ L̇2(Ω) |T (v) is α-periodic
}

.

Let k∗ be the positive integer satisfying (5.2), (5.3). It is clear that
{ ϕmk∗

‖ϕmk∗
‖2

|m ∈ N \ {0}
}

⊂ V̇0,2/k∗

is a spectral basis in L̇2
2/k∗

(Ω) for the operator L(·, ε∗). Thus the bifurcation analysis of

the beginning of this section may be carried out in the space L̇2
2/k∗

(Ω). In particular, if

L(·, ε∗) is viewed as an operator from V̇0,2/k∗
into L̇2

2/k∗

(Ω), we have

L̇2
2/k∗

(Ω) = R(L(·, ε∗)) ⊕ kerL(·, ε∗)

V̇0,2/k∗
=
(

R(L(·, ε∗)) ∩ V̇0,2/k∗

)

⊕ kerL(·, ε∗).
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Arguing as in the proof of Theorem 5.2, we obtain a branch of solutions in V̇0,2/k∗
×(0,∞).

We conclude by using the local uniqueness of the bifurcation branches. �

Proposition 5.9. Under the assumptions (5.1)-(5.3) and (5.24), let B the largest ball

of V̇0 centered at 0 and contained in N1. Let

SJ =
{(

v(y), ε(y)
)

| y ∈ J
}

be the bifurcation branch (5.26) included in B × I1, where J is some real interval con-
taining 0. Then, for every y ∈ J , −y belongs to J , (v(−y), ε(y)) ∈ SJ and

v(−y) = v(y)(· + 1/k∗) in Ω. (5.42)

In particular, (v(y)(· + 1/k∗), ε(y)) is also solution to (2.14).

In (5.42), v(y)(· + 1/k∗) stands for the restriction of T (v(y))(· + 1/k∗) to Ω, where T
is defined by (5.41).

Proof. For y ∈ J , we put
w = T (v(y))∣

∣(0,2)
.

Then w ∈ H4(0, 2) and

w(i) =

{

1IΩT
(

v(i)(y)
)

− 1I[1,2)T
(

v(i)(y)
)

for i ∈ {1, 3}
T
(

v(y)(i)
)

∣

∣(0,2)
for i ∈ {2, 4} . (5.43)

Then w0 := w(· + 1/k∗)∣
∣Ω

satisfies

ε(y)2w
(4)
0 + 2ε(y)w

(2)
0 + f(M + w0) =

∫

Ω
f(M + w0) dx in L2(Ω). (5.44)

Moreover since L(·, ε∗) is a self-adjoint operator with compact resolvent,

v(y) =
∑

k≥1

xkϕk in L2(Ω)

and
∑

k≥1

P (ε∗λk)
2x2

k < ∞,

where xk := 2(v(y), ϕk)2. Thus, using also Proposition 5.8,

v(y) =
∑

m≥1

xmk∗
ϕmk∗

in H4(Ω). (5.45)

We will show that w0 ∈ V0. For this, since T is a bounded linear operator from L2(Ω)
into L2(0, 2), we have

T (v(y))∣
∣(0,2)

=
∑

m≥1

xmk∗
T (ϕmk∗

)∣
∣(0,2)

in H4(0, 2).

Thus

w0 =
∑

m≥1

(−1)mxmk∗
ϕmk∗

in H4(Ω) (5.46)

w
(i)
0 =

∑

m≥1

(−1)mxmk∗
ϕ

(i)
mk∗

in H4−i(Ω), ∀i = 1, 2, 3.
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As a consequence, w
(1)
0 = w

(3)
0 = 0 on ∂Ω and w0 ∈ V0.

With (5.44), we deduce that (w0, ε(y)) is solution to (2.14). Furthermore, ‖w0‖V̇0
=

‖v(y)‖V̇0
thus (w0, ε(y)) ∈ B × I1. Since the solutions to (2.14) in B × I1 belong to SJ ,

(w0, ε(y)) ∈ SJ . That is to say, there exists z ∈ J such that

(w0, ε(y)) = (v(z), ε(z)) ∈ SJ . (5.47)

By (5.26), (5.46), we have

P
(

v(z)
)

= zϕk∗
= −xk∗

ϕk∗
= −P

(

v(y)
)

= −yϕk∗
.

Thus z = −y ; then v(−y) = w0 satisfies (5.42) and (v(−y), ε(y)) ∈ SJ by (5.47). This
completes the proof of the proposition. �

5.3. Two-dimensional kernel. We will implement the Lyapunov-Schmidt method when
the kernel of L(·, ε∗) has dimension two. According to Proposition 4.1, this is the case if
and only if there exist p ∈ (0, 1), 1 ≤ k∗ < k∗∗ and ε∗ > 0 such that

ε∗λk∗
:= 1 +

√
p (5.48)

ε∗λk∗∗
:= 1 −√

p. (5.49)

As above we put

ϕ∗ = ϕk∗
, ϕ∗∗ = ϕk∗∗

, λ∗ = λk∗
, λ∗∗ = λk∗∗

,

where λk = (kπ)2 and ϕk = cos(kπ·). Then

kerL(·, ε∗) = 〈ϕ∗, ϕ∗∗〉. (5.50)

Besides, we will assume that

k∗ 6= 2k∗∗, k∗ 6= 3k∗∗. (5.51)

We define the projection P , Q as in (5.5) but instead of (5.6), we have

Pv = 2(v, ϕ∗)2ϕ∗ + 2(v, ϕ∗∗)2ϕ∗∗, ∀v ∈ L̇2(Ω). (5.52)

We decompose every v ∈ V̇0 in a unique way into v = ϕ + v2 where ϕ ∈ kerL(·, ε∗) and

v2 ∈ 〈ϕ∗, ϕ∗∗〉⊥, the orthogonal space of 〈ϕ∗, ϕ∗∗〉 in V̇0. Then (2.14) is equivalent to
{

ε > 0, (ϕ, v2) ∈ kerL(·, ε∗) × 〈ϕ∗, ϕ∗∗〉⊥,

L(ϕ, ε) + L(v2, ε) + N(ϕ + v2) = 0 in L̇2(Ω).
(5.53)

Projection on R(L(·, ε∗)). Applying Q to (5.53) and using the Implicit Function
Theorem, we obtain a smooth function v2 defined in some neighbourhood N of (0, ε∗)
into R(L(·, ε∗)) such that

QL(ϕ, ε) + QL(v2(ϕ, ε), ε) + QN(ϕ + v2(ϕ, ε)) = 0 in L̇2(Ω), (5.54)

for every (ϕ, ε) in N . Next in a standard way, we derive

v2(0, ε∗) = ∂εv2(0, ε∗) = 0, ∂ϕv2(0, ε∗) = 0. (5.55)

For later use, we will compute ∂2
ϕv2(0, ε∗).
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Proposition 5.10. Under assumptions (5.48)-(5.51), for every ϕ = αϕ∗ +βϕ∗∗ with α,
β real, there holds

∂2
ϕv2(0, ε∗)(ϕ,ϕ) = x2k∗

ϕ2k∗
+ xk∗+k∗∗

ϕk∗+k∗∗
+ xk∗−k∗∗

ϕk∗−k∗∗
+ x2k∗∗

ϕ2k∗∗
,

where

x2k∗
= −f ′′(M)

α2

2P (ε∗λ2k∗
)

xk∗+k∗∗
= −f ′′(M)

αβ

P (ε∗λk∗+k∗∗
)

xk∗−k∗∗
= −f ′′(M)

αβ

P (ε∗λk∗−k∗∗
)

x2k∗∗
= −f ′′(M)

β2

2P (ε∗λ2k∗∗
)
.

Proof. By differentiating (5.54) twice w.r.t. ϕ, w := ∂2
ϕv2(0, ε∗) solves

QL(w, ε∗) + Qf ′′(M)
(

ϕ2 −
∫

Ω
ϕ2
)

= 0 in L̇2(Ω).

Since k∗ 6= 2k∗∗, we check that ϕ2 −
∫

Ω ϕ2 ∈ R(L(·, ε∗)). Thus

L(w, ε∗) + f ′′(M)
(

ϕ2 −
∫

Ω
ϕ2
)

= 0.

Testing the above equation with ϕk, using w ∈ 〈ϕ∗, ϕ∗∗〉⊥ and

ϕ2 −
∫

Ω
ϕ2 =

α2

2
ϕ2k∗

+ αβϕk∗+k∗∗
+ αβϕk∗−k∗∗

+
β2

2
ϕ2k∗∗

,

we obtain the expansion of w. �

Projection on 〈ϕ∗, ϕ∗∗〉. By setting for (ϕ, ε) close to (0, ε∗),

g(ϕ, ε) := PL(ϕ, ε) + PL(v2(ϕ, ε), ε) + PN(ϕ + v2(ϕ, ε), y),

we are led to solve

g(ϕ, ε) = 0 in 〈ϕ∗, ϕ∗∗〉. (5.56)

We have

∂ϕg(ϕ, ε) = PL(·, ε) + PL(∂ϕv2, ε) + PDvN(ϕ + v2)(Id〈ϕ∗ ,ϕ∗∗〉 + ∂ϕv2). (5.57)

Then with (5.55),

∂εg(0, ε∗) = ∂2
εg(0, ε∗) = 0, ∂ϕg(0, ε∗) = 0

∂2
ϕg(0, ε∗)(ϕ,ϕ) = 0 ∀ϕ ∈ 〈ϕ∗, ϕ∗∗〉. (5.58)

Indeed,

∂2
ϕg(0, ε) = PL(∂2

ϕv2, ε) + PD2
vN(ϕ + v2)

[

Id〈ϕ∗,ϕ∗∗〉 + ∂ϕv2

]2
+ PDvN(ϕ + v2)∂

2
ϕv2.

Hence

∂2
ϕg(0, ε∗)(ϕ,ϕ) = P

(

f ′′(M)(ϕ2 −
∫

Ω
ϕ2)
)

.

Moreover, (ϕ2, ϕ∗)2 = (ϕ2, ϕ∗∗)2 = 0 since k∗ 6= 2k∗∗. Hence (5.58) holds (see (5.52)).
By differentiating (5.57) w.r.t. ε, we obtain for all (α, β) ∈ R

2,

∂ϕεg(0, ε∗)(αϕ∗ + βϕ∗∗) = 2α
ε∗λ∗ − f ′(M)

ε∗
ϕ∗ + 2β

ε∗λ∗∗ − f ′(M)

ε∗
ϕ∗∗. (5.59)
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Also

∂3
ϕg(0, ε∗)(ϕ,ϕ, ϕ) = P

(

f ′′′(M)ϕ3
∗

)

+ 3P
(

f ′′(M)ϕ∂2
ϕv2(0, ε∗)(ϕ,ϕ)

)

. (5.60)

By Proposition 5.10 and 3k∗∗ 6= k∗, we deduce that

3P
(

f ′′(M)ϕ∂2
ϕv2(0, ε∗)(ϕ,ϕ)

)

=
3

2
f ′′(M)

(

x2k∗
α + (xk∗+k∗∗

+ xk∗−k∗∗
)β
)

ϕ∗

+
3

2
f ′′(M)

(

(xk∗+k∗∗
+ xk∗−k∗∗

)α + x2k∗∗
β
)

ϕ∗∗.

Moreover

P
(

f ′′′(M)ϕ3
)

=
3

2
f ′′′(M)

(α3

2
+ αβ2

)

ϕ∗ +
3

2
f ′′′(M)

(β3

2
+ α2β

)

ϕ∗∗.

Thus by (5.60),

∂3
ϕg(0, ε∗)(ϕ,ϕ, ϕ) =

3

2

{

f ′′′(M)
(α3

2
+ αβ2

)

+ f ′′(M)
(

x2k∗
α + (xk∗+k∗∗

+ xk∗−k∗∗
)β
)

}

ϕ∗ (5.61)

+
3

2

{

f ′′′(M)
(β3

2
+ α2β

)

+ f ′′(M)
(

(xk∗+k∗∗
+ xk∗−k∗∗

)α + x2k∗∗
β
)

}

ϕ∗∗.

The following theorem states a bifurcation result when the kernel of the linearized oper-
ator is two-dimensional.

Theorem 5.11. Under assumptions (5.48)-(5.50), (0, ε∗) is a bifurcation point for Equa-
tion (2.14) and there exists a branch (v∗(·), ε(·)) of non trivial solutions through (0, ε∗).
Besides, if

P (ε∗λ2k∗
) 6= f ′′2/f ′′′(M)

then these solutions satisfy

v∗(ε) ≃ ±
√

2
ε̈∗(0)

(ε − ε∗)ϕ∗ in V̇0,

where

ε̈∗(0) =
ε∗/8

ε∗λ∗ − f ′(M)

( f ′′(M)2

P (ε∗λ2k∗
)
− f ′′′(M)

)

and ε ∼ ε∗ is such that ε̈∗(0)(ε − ε∗) > 0. Moreover, if k∗ 6= 2k∗∗, k∗ 6= 3k∗∗ and

P (ε∗λ2k∗∗
) 6= f ′′2/f ′′′(M) (5.62)

then there is another bifurcation branch through (0, ε∗) satisfying

v∗∗(ε) ≃ ±
√

2
ε̈∗∗(0)

(ε − ε∗)ϕ∗∗ in V̇0, (5.63)

where

ε̈∗∗(0) =
ε∗/8

ε∗λ∗∗ − f ′(M)

( f ′′(M)2

P (ε∗λ2k∗∗
)
− f ′′′(M)

)

(5.64)

and ε̈∗∗(0)(ε − ε∗) > 0.

Remark 5.3. • ε∗λ∗ − f ′(M) and ε∗λ∗∗ − f ′(M) are non zero due to (5.48), (5.49) and
0 < p < 1.
• P (ε∗λ2k∗∗

) = 0 if and only if ε∗ = ε2k∗∗
or ε∗ = ε2k∗∗

(see (4.4)). By (5.49), ε∗ = εk∗∗
6=

ε2k∗∗
. By (5.48), ε∗ = εk∗

; thus ε∗ = ε2k∗∗
yields 2k∗∗ = k∗. It results from (5.51) that

P (ε∗λ2k∗∗
) 6= 0 in (5.64).

• The sign of ε̈∗ε̈∗∗(0) determinates if the branches (v∗, ε), (v∗∗, ε) are in the same half
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space of V̇0 × R with boundary V̇0 × {ε∗}. From Theorem 5.3, we deduce that they are
in the same half space (i.e. ε̈∗ε̈∗∗(0) > 0) if

min(p0, 9/25) < p < max(p0, 9/25).

Proof of Theorem 5.11. According to the proof of Proposition 5.8 and using the space
L̇2

2/k∗

(Ω), the bifurcation analysis can be reduced to the case where the kernel of L(·, ε∗)
is 〈ϕk∗

〉. Thus arguing as in the proof of Theorem 5.2, we obtain the branch (v∗, ε). If

k∗ is not a multiple of k∗∗ then we work in the space L̇2
2/k∗∗

(Ω) to get the second branch

(v∗∗, ε).
However if k∗ = mk∗∗ with m ∈ N, m ≥ 4, the dimension of the kernel of L(·, ε∗)

cannot be reduced. Hence we will use the Newton polygon method (see [Kie04, Section
I-15]) for Equation (5.56) in order to prove that there is a bifurcation branch tangent to
ϕ∗∗. By (5.58)

g(ϕ, ε) = ∂ϕεg(0, ε∗)ϕ(ε − ε∗) + 1
6∂3

ϕg(0, ε∗)(ϕ,ϕ, ϕ) + h.o.t.

Let ε̃ := ε − ε∗ be positive and ϕ = ε̃1/2ϕ̃. We have

g(ε̃1/2ϕ̃, ε∗ + ε̃) = ε̃3/2
(

∂ϕεg(0, ε∗)ϕ̃ + 1
6∂3

ϕg(0, ε∗)(ϕ̃, ϕ̃, ϕ̃) + R(ϕ̃, ε̃)
)

,

where R(·, 0) = 0 and ∂ϕ̃R(·, 0) = 0 since g is analytic and R contains higher order terms
according to Newton’s polygon method. By the Implicit Function Theorem,

g(ε̃1/2ϕ̃, ε∗ + ε̃) = 0

has non trivial solutions for (ϕ̃, ε̃) close to (ϕ̃0, 0) if there exists β 6= 0 such that the
function ϕ̃0 := βϕ∗∗ satisfies the two conditions:

∂ϕεg(0, ε∗)ϕ̃0 + 1
6∂3

ϕg(0, ε∗)(ϕ̃0, ϕ̃0, ϕ̃0) = 0 (5.65)

∂ϕεg(0, ε∗) · +1
6Dϕ̃

(

∂3
ϕg(0, ε∗)(ϕ̃, ϕ̃, ϕ̃)

)

∣

∣ϕ̃=ϕ̃0

is an isomorphism of kerL(·, ε∗). (5.66)

By (5.59), (5.61), Proposition 5.10 and (5.64), non trivial solutions to (5.65) are given
by

β2 = 2/ε̈∗∗(0). (5.67)

Observe that there exists β ∈ R satisfying (5.67) since ε̈∗∗(0) > 0. Indeed, λ∗∗ < λ2k∗∗
<

λ∗ since m > 2 thus P (ε∗λ2k∗∗
) < 0. Moreover ε∗λ∗∗ − f ′(M) = p − √

p < 0 since
p ∈ (0, 1). Thus ε̈∗∗(0) > 0 in view of (5.64).

The matrix of the linear mapping in (5.66) is diagonal with coefficients

2
ε∗λ∗ − f ′(M)

ε∗
+

1

4

(

f ′′′(M) − f ′′(M)2
( 1

P (ε∗λk∗+k∗∗
)

+
1

P (ε∗λk∗−k∗∗
)

)

)

β2

2
ε∗λ∗∗ − f ′(M)

ε∗
+

3

8

(

f ′′′(M) − f ′′(M)2

P (ε∗λ2k∗∗
)

)

β2.

By (5.64), (5.67), this latter entry is equal to −4(ε∗λ∗∗ − f ′(M))/ε∗ 6= 0. Hence if the
former entry above is non zero then (5.66) holds. Since ε∗λ∗ − f ′(M) is positive, it is
enough to show that

1

P (ε∗λk∗+k∗∗
)

+
1

P (ε∗λk∗−k∗∗
)

=
P (ε∗λk∗+k∗∗

) + P (ε∗λk∗−k∗∗
)

P (ε∗λk∗+k∗∗
)P (ε∗λk∗−k∗∗

)
< 0. (5.68)
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The denominator is negative since m > 2. Next, we have

P (ε∗λk∗+k∗∗
) =

(

(m + 1)2ε∗(πk∗∗)
2 − 1

)2 − p

= (1 −√
p)m(m + 2)

(

− (m2 + 2m + 2)
√

p + (m + 1)2 − 1
)

.

Now,

1 +
√

p = ε∗λk∗
= m2ε∗λk∗∗

= m2(1 −√
p),

thus

√
p =

m2 − 1

m2 + 1
.

Then

P (ε∗λk∗+k∗∗
) = (1 −√

p)
2m

m2 + 1
(m + 2)(2m + 1).

In the same way, we have

P (ε∗λk∗−k∗∗
) = (1 −√

p)
2m

m2 + 1
(m − 2)(−2m + 1).

From these two equalities, it results that

P (ε∗λk∗+k∗∗
) + P (ε∗λk∗−k∗∗

) = (1 −√
p)

20m2

m2 + 1
> 0,

and (5.68) follows. Hence (5.66) is proved.
Denoting by β the positive solution to (5.67), we deduce from the above analysis that

there exists a continuous function ϕ̃ : [0, δ) → kerL(·, ε∗) such that ϕ̃(0) = βϕ∗∗ and

g(ε̃1/2ϕ̃(ε̃), ε∗ + ε̃) = 0, ∀ε̃ ∈ [0, δ). (5.69)

By setting ϕ(ε) := (ε − ε∗)
1/2ϕ̃(ε − ε∗) and

v∗∗(ε) := ϕ(ε) + v2(ϕ(ε), ε), ∀ε ∈ [ε∗, ε∗ + δ),

we deduce with (5.54), (5.56) that (v∗∗(ε), ε) is a solution to (2.14). Moreover, with

ϕ(ε) = (ε − ε∗)
1/2βϕ∗∗ + o(ε − ε∗)

1/2,

(5.67) and (5.55), we obtain

v∗∗(ε) ≃
√

2
ε̈∗∗(0)

(ε − ε∗)ϕ∗∗ in V̇0.

If we consider the solution to (5.69) satisfying ϕ̃(0) = −βϕ∗∗, we obtain the “negative”
branch of v∗∗. Hence (5.63) follows which completes the proof of the Theorem. �

6. Numerical simulations

The results of Section 5 provide a description of solutions to equation (2.14) near a
bifurcation point. In this section, we illustrate and extend these results by numerical
simulations.
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Figure 3. Case M = 0, r = −0.1 (p = 0.1)
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Figure 4. Stable solution for M = 0, r = −0.1 (L ≈ 5.07π)

6.1. Numerical method and technical aspects. In order to deal easily with the
boundary conditions, we have chosen to discretize equation (2.14), or equivalently, (2.8),
by a finite element method. In order to deal with the bilaplacian term, we use a splitting
method as in, for instance, [EFM89, IP08, BRV07]. More precisely, letting w = −εu(2),
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we see that (2.8) is equivalent to finding (u,w, c) ∈ W0 × W0 × R such that










w = −εu(2)

−εw(2) − 2w + f(u) = c
∫ 1
0 udx = M.

(6.1)

Define X = H1(0, 1). The variational formulation of (6.1) is: find (u,w, c) ∈ X ×X ×R

such that










(w,ϕ) = ε(u′, ϕ′), ∀ϕ ∈ X

ε(w′, χ′) − 2(w,χ) + (f(u), χ) = c(1, χ), ∀χ ∈ X

(u, 1) = M,

(6.2)

where (·, ·) denotes the L2(Ω)-scalar product. Notice that by elliptic regularity, any
solution (u,w, c) ∈ X ×X ×R of (6.2) satisfies u,w ∈ H2(Ω); integration by parts shows
that the boundary conditions are also satisfied, so that u,w ∈ W0 and any solution
of (6.2) is also a solution of (6.1) (the converse is obvious).

For the discretization of (6.2) we use conforming P 1 finite elements. We let h =
1/(N − 1) with N ≥ 2, we let xi = ih for i = 0, 1, . . . , N − 1 and we define

Xh =
{

uh ∈ C0([0, 1]), uh
|[xi,xi+1]

is affine ∀i ∈ {0, . . . , N − 2}
}

.

The discrete version of (6.2) reads: find (uh, wh, c) ∈ Xh × Xh × R such that










ε(uh′, ϕh′) − (wh, ϕh) = 0, ∀ϕh ∈ Xh

ε(wh′, χh′) − 2(wh, χh) + (f(uh), χh) − c(1, χh) = 0, ∀χh ∈ Xh

(uh, 1) − M = 0.

(6.3)

For the actual resolution of (6.3), we use the nodal basis (χi)0≤i≤N−1 ∈ (Xh)N , defined
by

χi(xj) = δij , 0 ≤ i, j ≤ N − 1.

Letting uh =
∑N−1

i=0 uiχi, wh =
∑N−1

i=0 wiχi, and defining the matrices

(A)ij = (χ′
i, χ

′
j), (B)ij = (χi, χj), for 0 ≤ i, j ≤ N − 1

and

U =







u0
...

uN−1






, W =







w0
...

wN−1






, F h(U) =







(f(uh), χ0)
...

(f(uh), χN−1)






,

the matrix formulation of (6.3) reads










εAU − BW = 0

εAW − 2BW + F h(U) − cD = 0

DtU − M = 0,

(6.4)

where D ∈ R
N is defined by (D)i = (χi, 1) for 0 ≤ i ≤ N − 1. Denoting G(U,W, c, ε) the

left-hand side of (6.4), we are left to study

G(U,W, c, ε) = 0 (6.5)

with G : R
N × R

N × R × (0,+∞) → R
N × R

N × R smooth.
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Equation (6.5) defines implicitly (U,W, c) as a function of ε, in the neighbourhood of
any solution (Ū , W̄ , c̄, ε̄) such that ∂U,W,cG(Ū , W̄ , c̄, ε̄) is invertible. For the numerical res-
olution of (6.5), we use standard path-following methods. We have more precisely imple-
mented, with the SCILAB software, a version of the predictor-corrector Algorithm 2.3.3
in [Mei00], with a fixed stepsize. Detection of bifurcation points and branch switching
at such points were also treated by standard methods [Mei00]. In view of (5.25), the
starting point (U0,W0, c0, ε0) on a branch is (generally) found by setting ε0 = 1/λk and
by computing (U0,W0, c0) by a Newton algorithm initialized with a ϕk = cos(kπ·) profile;
the amplitude of this initial guess is chosen by testing several cases.

We present here some of the bifurcation diagrams that were obtained, with h = 1/150.
For numerical integration, the Gauss quadrature formula of order 5 with 3 points was
used, so that the nonlinear term is computed exactly (up to computer accuracy). For
the ease of representation, the x-axis in every bifurcation diagram represents L/π, with
L = ε−1/2 (see Section 5 for an interpretation of L), and the y-axis represents uh(0) = u0.
For this reason, we will equivalently consider L or ε as the bifurcation parameter, and
we define

Lk := ε
−1/2
k and Lk := ε

−1/2
k . (6.6)

Note that p = 1 − f ′(M) = −3M2 − r.
In the figures, the blue color is associated to stable solutions; more generally, every

color represents a certain number of negative eigenvalues of the hessian of the energy (2.9)

at u in Ẇ0 (0 is blue, 1 is green, 2 is cyan, 3 is red, 4 is purple, 5 is yellow, 6 is black).
For a discrete solution uh of (6.3), this number was computed numerically, as explained
below. It is possible to show that this number of negative eigenvalues is equal to the
dimension of the unstable manifold of the solution u considered as an equilibrium point
of the evolution phase field crystal equation (2.7).

We first find the discrete energy associated to the formulation (6.4): eliminating W ,
we see that (6.4) is equivalent to finding U ∈ R

N such that
{

ε2AB−1AU − 2εAU + F h(U) = cD,

DtU = M.
(6.7)

Noticing that F h(U) = ∇Gh(U), where

Gh(U) =

∫

Ω
g

(

N−1
∑

i=0

uiχi(x)

)

dx, with g′(σ) = f(σ),

we see that U satisfies (6.7) if and only if U is a critical point of the energy

Eh(U) =
ε2

2
U tAB−1AU − εU tAU + Gh(U)

under the constraint DtU = M ; the constant c is a Lagrange multiplier. In order to
find the number of negative eigenvalues associated to U , we compute numerically the
spectrum of the hessian of Eh at U , restricted to the subspace {V ∈ R

N : DtV = 0}.

6.2. Numerical results. The figures are organized as follows. We first have repre-
sented, in Figures 3-9, some numerical results for the value M = 0 and various negative
values of r, namely, r = −0.1, −0.25, −0.5, −0.75 and −1. Then, in Figures 10-16,
we show some results for the value r = −0.5 and various positive values of M , namely
M = 0.1, M = 0.24 and M =

√

0.4/3 ≈ 0.365 (notice that negative values of M can
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Figure 5. Case M = 0, r = −0.25 (p = 0.25)
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Figure 6. Case M = 0, r = −0.5 (p = 0.5)

be deduced by symmetry, changing M into −M , so that we may only consider M ≥ 0).
Finally, in Figures 18-22, the value of M is 2, and r takes the values −12.1, −12 and
−11.9.
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Figure 7. 1st and 2nd curve for M = 0, r = −0.75 (p = 0.75)
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Figure 8. An unstable solution for M = 0, r = −0.75 (L ≈ 2.25π)

In Figure 3, for M = 0 and r = −0.1, with L varying from 0+ to 6π, the horizontal
line corresponds to the trivial solution u ≡ 0. The first curve on the left which intersects
this horizontal line corresponds to a bifurcating branch initialized with a ϕ1 profile. The
intersections occur at

L1 = ε
−1/2
1 ≈ 0.87π and L̄1 = ε

−1/2
1 ≈ 1.21π.
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The numerical values of L1 and L1 (which can be found by a zoom on the graphic) are
in excellent agreement with the theoretical values given by (4.4).

Similarly, the kth curve on Figure 3 (counting from left to right, and for k from 1 to 6)
corresponds to a bifurcation branch initialized by a ϕk profile: it intersects the horizontal
line at Lk and Lk > Lk. The solution on this curve is 2/k-periodic, in agreement
with Proposition 5.8 (which states this only locally, near the bifurcation). Notice that
when two different curves intersect on Figure 3, it does not generally correspond to a
bifurcation, but just to a common value of u(0) and L. Figure 4 represents for instance
the profile of a (numerical) solution u on the 5th curve, for L ≈ 5.07π: it is a stable
solution close to (but distinct from) u(0)ϕ5.

Recall that the blue color is associated to stable states. In Figure 3, we observe that
for L small (ε large), the constant is stable, and for L large (ε small), it is unstable. The
stability of the trivial solution is exactly as described in Proposition 4.2, with k+ = 3 and
L3 ≈ 2.61π. The Principle of Exchange of Stability is satisfied for ε ≥ εk+

, as predicted
by Theorem 5.5. We also see that when L/π = k with k an integer, the stable solution
has a ϕk-like profile: we recover here a fundamental feature of the Phase Field Crystal
model for small M , as pointed out by Elder and Grant [EG04, Section II.B and Fig. 2].
For non integer values of L/π, there are sometimes two different profiles of stable states:
for instance, when L ≈ 5.55π, the ϕ5 and ϕ6-like profiles are both stable.
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Figure 9. Case M = 0, r = −1 (p = 1)

In Figure 5, which corresponds to the case M = 0 and r = −0.25, we observe similar
features: for k = 1, 2, . . . , there is a curve joining Lk to Lk, and which corresponds to
a ϕk-like profile. As previously, every curve is symmetric with respect to the horizontal
axis: this illustrates the fact that if u is a solution of (2.8) for M = 0, then so is −u; in
this case, the solution Tu(·+1/k), given by Proposition 5.9, is equal to −u. The stability
of the constant is again as detailed in Proposition 4.2, with k+ = 2. For L/π = k with k
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an integer, the stable state has a ϕk profile. We note that every curve is the boundary
of a convex domain: this agrees with Theorem 5.3 (which only proves this assertion near
the bifurcation points).

Figure 6, for M = 0 and r = −0.5 displays the same features (with k+ = 1 this
time). Something new happens in Figure 7, for M = 0 and r = −0.75, where we have
only represented the first and second curves, for sake of clarity: the first curve is more
complex, and it does not define the boundary of a convex domain any more. In addition
to the ϕ1 profile near L1 ≈ 0.73π and L1 ≈ 2.73π, a new (yet unstable) profile arises for
some L between these two limiting values: it is illustrated on Figure 8 for L ≈ 2.25π. A
similar phenomenon happens for every curve.

Figure 9 is the case M = 0 and r = −1. Since p = 1, there is only one positive
bifurcation value εk, for every integer k. Every curve starting near Lk with a ϕk profile
looks like an elaborated version of the curve in Figure 8: some new (unstable) profiles
appear; the curve does not seem to end for L large: this agrees with the fact that Lk

goes to +∞ as p → 1−. Otherwise, the bifurcation diagram shows the same features
(symmetry, stable solutions, local convexity) as the previous ones.

Let us point out that the bifurcation diagrams for M = 0 and r < −1 (which are
not shown here, but that we have computed for r down to −12) show the same features
as in the case M = 0, r = −1. We also point out that the solutions (u,w, c) of (6.1)
corresponding to the bifurcation diagrams of Figures 3-9 with M = 0 satisfy (at least nu-
merically) c = 0. These solutions are therefore solution of the Swift-Hohenberg equation
(compare with the results in [PR03, PR04, PW07, VdBPT01]).
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Figure 10. Case M = 0.1, r = −0.5 (p = 0.47)

Figure 10 is the bifurcation diagram for M = 0.1, r = −0.5: it has many differences
with the case M = 0, r = −0.5 of Figure 6. There is no longer one single curve joining εk

and εk; there is one loop starting from εk, and a different (small) loop starting from εk.
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Figure 11. A stable solution M = 0.1, r = −0.5 (L ≈ 1.60π)
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Figure 12. Case M = 0.24, r = −0.5 (p = 0.3272)

These curves are no longer symmetric with respect to the horizontal axis: this illustrate
the fact that equation (2.8) has less symmetry when M 6= 0, since there is no more
reason for 2M − u to be a solution of (2.8) if u is. Every curve is locally convex at εk

or εk, in agreement with Theorem 5.3 (notice that p = 0.47 > 9/25 = 0.36). The curve
associated to εk is no longer the boundary of a convex domain: this reflects the fact that
the profile of a solution is close to ϕk for ε close to εk, but it undergoes some important
changes when ε is far from εk. This is illustrated in Figure 11 by the profile of a stable
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Figure 13. Case M = 0.24, r = −0.5 (detail)
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Figure 14. Case M =
√

0.4/3 ≈ 0.365, r = −0.5 (p = 0.1)

solution for L ≈ 1.60π; this solution belongs to the curve bifurcating from L1 ≈ 0.77π.
However, we still notice that for L = kπ with k integer, the stable solution has a ϕk-like
profile, as in the previous cases.
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Figure 15. Case M =
√

0.4/3, r = −0.5 (detail, with the stable state)
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Figure 16. Solution of least energy for M =
√

0.4/3, r = −0.5 and L = 7π

Figure 12, which is the case M = 0.24 and r = −0.5, is similar to Figure 10 in many
ways. The main difference it that the curve associated to εk is locally concave at εk

(see also Figure 13 – note that the right intersection of the small closed curve with the
horizontal line is not a bifurcation point; the left intersection is L1 ≈ 1.53), in agreement
with Theorem 5.3 and Definition 5.1. Indeed, in this case we have M2 < 3/2, p0 ≈ 0.301
and p = 0.3272 so that p0 < p < 9/25. The curve associated to εk is seen to be locally
convex at εk, as predicted since M2 < 3/2. We also notice that the curve starting from
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Figure 17. Solution of least energy for M =
√

0.4/3, r = −0.5 and L ≈ 20π

εk and the curve starting from ε2k are tangent at u(0) ≈ 0.17 (see Figure 13 for the case
k = 1 and L ≈ 1.6π). For both curves, the profile of the solution at the point of tangency
is (graphically) close to M + (u(0) − M)ϕ2k.

In Figure 14, we still have r = −0.5, but M =
√

0.4/3 ≈ 0.365 is slightly larger than
previously. The bifurcation diagram is similar to that of Figure 3 (M = 0, r = −0.1):
there is only one curve joining εk to εk, and this curve is (surprisingly) symmetric with
respect to the constant solution, and convex. The (apparent) symmetry of the bifurcation
diagram is a consequence of Proposition 5.9 together with the fact that the profile of a
solution on the kth curve is close to M + (u(0) − M)ϕk. In fact, we have p = 0.1,
exactly as in Figure 3, so that the values of εk and εk are the same in both cases. As a
consequence, the curves on Figures 14 and 3 have similar features near εk and εk; there is
however, a big difference concerning the stable states. When L ≈ kπ with k integer and
large (say, k = 6, 7), the ϕk profile is no longer stable in Figure 14: its unstable manifold
has dimension 1. Such a situation was partly predicted by Elder and Grant [EG04, Fig.
2]: their analysis shows that the case M ≈ 0.365 and r = −0.5 corresponds to a situation
where liquid and solid can coexist.

For completeness, we have computed the stable state in this case, by programming the
evolution equation as in [BRV07, IP08], and starting the evolution from a random profile:
the evolution equation can be seen as a minimization algorithm. The profile of the state
of least energy is represented in Figure 16 for L = 7π. Starting from similar profiles,
we were able to complete the bifurcation diagram of Figure 14. The result is shown in
Figure 15. We observe a symmetry breaking, related to the profile of the solution of
least energy. The value of L is small here, in comparison with the situation analysized
by Elder and Grant [EG04], so that it is not clear whether this profile represents a liquid
and solid coexistence. For this reason, we have also computed solutions for larger values
of L, starting from this profile, and using our path-following method with a smaller space
stepsize h = 1/200. The result is shown in Figure 17, for L ≈ 20π : this solution is stable,
and we checked that that evolution equation initialized with a random profile converges
(for a large number of time steps) to a similar profile. Thus, Figure 17 represents a
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solution of least energy, and it corresponds to a liquid/solid coexistence, as predicted by
Elder and Grant.
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Figure 18. Case M = 2, r = −12.1 (p = 0.1)
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Figure 19. Solution of least energy for M = −2, r = −12.1 and L/π ≈ 3.96
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Figure 20. Case M = 2, r = −12 (p = 0)
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Figure 21. Case M = 2, r = −12 (detail)

In Figure 18, the coefficients M = 2 and r = −12.1 were chosen in order to illustrate
a situation, predicted by Theorem 5.2, where the curve is not locally convex near εk.
Indeed, for these coefficients, we have M2 = 4 > 3/2, p0 ≈ 0.231 and p = 0.1, so that
p < p0 < 9/25: the bifurcating branch is therefore concave at εk and at εk, as seen on
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Figure 22. Case M = 2, r = −11.9 (p = −0.1)

the figure. Because of the concavity, the solution bifurcating from ε1 is unstable near ε1,
as a consequence of the Principle of Exchange of Stability (Theorem 5.5). The solution
of least energy, represented on Figure 19 for L ≈ 3.96π has an unexpected profile, very
different from ϕk; it was obtained by bifurcation from ε1 with the ϕ1 profile. This profile
is also confirmed by the evolution equation started from a random profile.

Figures 20 and 21 with M = 2 and r = −12 show a bifurcation diagram in the case
p = 0: it illustrates the result of Theorem 5.7. Notice that assumption (5.37) is equivalent
to M2 > 3/2, so that it is satisfied here.

Finally, Figure 22 with M = 2 and r = −11.9 shows numerical results obtained in
the case p = −0.1. It appears as a continuous perturbation of the diagram shown in
Figure 20, although our bifurcation approach is of no use here, since p < 0 and we know
that there is no bifurcation from the constant state. Other methods should be considered
for a better understanding of this case.
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