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2UMR Géosciences Azur 6526 CNRS, 250 Rue Albert Einstein Bat. 4, Valbonne 06650, France

Accepted 2003 November 11. Received 2003 October 31; in original form 2003 April 14

S U M M A R Y
An accurate method is developed to characterize the seismic coda phases recorded by small-
aperture arrays. The coda is modelled as a superposition of several interfering wavelets iden-
tified by their arrival time, frequency content, backazimuth and apparent velocity of propa-
gation. The wavelets are caused by the diffraction and refraction of the direct wavefield by
heterogeneities of the propagation medium. The deterministic modelling is different from
the statistical one generally used to retrieve mean parameters of the medium. As the com-
plexity of the medium increases, separation of interfering wavelets needs an accurate time–
frequency–wavenumber decomposition method that consists of detection and characterization
of the different coherent wavelets propagating through the array. Detection is realized by mean
time–frequency decomposition, based on the ridges algorithm. The MUltiple SIgnal Classi-
fication (MUSIC) algorithm, allowing a higher separation of simultaneous wavelets in the
wavenumber domain, is then used to characterize the propagation parameters of the detected
components. An optimal use of the MUSIC algorithm assumes the knowledge of the number
of sources that simultaneously propagate through the array. The new iterative technique pre-
sented here allows the automatic determination of this number of sources. This methodology
is applied to synthetic signals simulated in a heterogeneous medium. Results obtained show
that: (i) the diffracted wavefield may be more energetic than the primary direct one and (ii) the
relative energy diffracted by each heterogeneity is strongly dependent on the location of the
array within the medium. The well-controlled results obtained for the synthetic examples allow
interpretations of the observations made during the Annot experiment in the southern French
Alps in 1998, where four small-aperture arrays were deployed, with small distances between
each array (∼10 km). The time–azimuth–velocity evolutions determined for the earthquakes
recorded during this experiment are used to characterize the heterogeneous structures of the
medium.

Key words: diffraction, lateral heterogeneity, seismic array, seismic coda, seismic wave
propagation.

1 I N T RO D U C T I O N

Many studies have been conducted in order to describe the whole
seismogram recorded during an earthquake. At regional distances
of propagation, the direct wavefield is mainly constituted of Pn,
Pg, Sn and Sg phases, as well as surface waves. These classical
phases are diffracted and refracted by the different heterogeneities
of the medium of propagation and form the coda of the seismo-
gram. Generally the coda results from waves that sample the whole
region between the source and the seismic array. It contains global
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information about the heterogeneous structures of the medium, yet
neither the different seismic wave propagation mechanisms in het-
erogeneous media nor the wave type that compose the coda are fully
understood [see Herraiz & Espinosa (1986) for a complete review].
The classical studies made to understand the coda are based on statis-
tical analysis (Aki 1969; Aki & Chouet 1975; Kopnichev 1977; Sato
1977a,b; Gao et al. 1983). The coda corresponds to backscattered
surface waves generated within an unbounded, homogeneous and
isotropic medium on the surface of which heterogeneities are ran-
domly distributed. The physical processes involved in modelling the
diffraction of the wavefield within the medium range from single- to
multiple-scattering or diffusion processes. Recently, more realistic
models have been used to describe the medium of propagation, tak-
ing into account the velocity contrast at the Moho discontinuity (Wu
1985; Margerin et al. 1999). These different statistical approaches
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578 E. Schisselé et al.

accurately explain the very late part of the coda, from a macroscopic
point of view, and allow the quantification of the quality factor, which
measures the mean degree of heterogeneity of the medium. The early
coda of Pn, Pg, Sn and Sg phases appears more complex and a de-
terministic approach may be used to explain the process of coda
formation. Array observation techniques allow efficient analysis of
highly correlated signals recorded by the sensors that make up the
array. The deterministic component of the seismogram is described
by propagation parameters deduced from the time-shifts within the
array. It is characterized by its arrival time, oscillation frequency and
propagation parameters. Several studies already show the efficiency
of arrays to investigate seismic wavefields (Baumgardt 1990; Dainty
& Toksöz 1990; Gupta et al. 1990; Mykkeltveit et al. 1990; Hedlin
1991). Through array analysis, the different phases identified in the
coda can be related to heterogeneities in the medium of propagation.

Complex situations, with multiple wavelets propagating simul-
taneously through the array, are investigated here. The method de-
veloped here is for the analysis of coda recorded in strongly het-
erogeneous regions. Classical array techniques are generally unable
to correctly describe such seismic wavefields and higher resolution
methods have to be used. A time–frequency–wavenumber method
is developed in Section 2 to accurately analyse the time–azimuth–
velocity evolution of seismograms. In Section 3, the sensitivity of
this method is demonstrated with synthetic seismograms. A set of
data recorded during the Annot experiment is analysed in Section 4.
The heterogeneous structures of the medium are reconstructed us-
ing the time evolution of the propagation parameters determined
by the time–frequency–wavenumber decomposition of several
earthquakes.

2 T I M E – F R E Q U E N C Y – WAV E N U M B E R
D E C O M P O S I T I O N

Seismic wavefield is modelled as a superposition of q < M plane
waves (M being the number of seismometers of the array). A seis-
mogram is thus written (Zerva & Zhang 1996)

�(t, r) =
p∑

j=1

q∑
m=1

Amj exp[−i(kmj · r + υ j t + φmj )] + η(t, r), (1)

where r(x, y) is the seismometer location and t denotes time. For
each time window around t , m (1 ≤ m ≤ q) wavelets may contribute
to the seismograms. Each wavelet is characterized by its frequency
content υ j (υ j = j · �υ and 1 ≤ j ≤ p; �υ is the frequency
sampling interval and p = 1/2Dt where Dt is the duration of the
time series), its wavenumber kmj(k mj/east, kmj/north), its amplitude Amj

and its phase-shift φmj. η (t , r) is the ambient noise depending on
the seismometer location. Noise is assumed randomly distributed in
space and time and uncorrelated with the signal. This model is able
to represent propagation of a primary wavefield and propagation
of secondary phases such as those issued from geological hetero-
geneity diffractions. Time–frequency–wavenumber decomposition
allows the characterization of each of the wavelets by its arrival
time, frequency content and wavenumber vector. The backazimuth
θ = arctan(k east/k north) and the apparent propagation velocity c =
2πv/‖k‖ can then be inferred.

2.1 Classical beam-forming decomposition

The standard method used to estimate the propagation parameters is
the conventional beam-forming estimator. Signals recorded by the

Figure 1. Geometrical configuration of the array used for the simulation
(nine sensors, 250 m aperture).

Figure 2. Signal simulated for one of the sensors of the array. The black
lines referred to as (a) and (b) are the two time windows for which a wavenum-
ber decomposition has been calculated, with the classical beam-forming al-
gorithm (see Fig. 3) and with the MUSIC algorithm (see Fig. 3). The length
of the time window depends on the frequency of the signal.

different seismometers are shifted using a time delay correspond-
ing to a plane wave propagating with wavenumber k before being
summed. Analysis can be performed either in the time domain or in
the frequency domain. Wavenumbers leading to the maximum am-
plitude of the beam-forming estimator are the optimum wavenum-
bers of propagation from which azimuths and apparent velocities
can be deduced. For each time window, a single set of propagation
parameters is generally retrieved and is assumed to correspond to
the dominant (i.e. most energetic and most coherent) wavelet of the
signal analysed. Such a method is well adapted to characterize the
main phases of seismograms (e.g. Pn or Sn) and allows automatic
detection and location of earthquakes (Kvaerna & Doornbos 1985;
Cansi 1995). Nevertheless, beam-forming methods are generally
unable to properly analyse seismic coda where the interferences of
multiple and simultaneous arrivals need powerful and more accu-
rate description. The next example illustrates the usefulness of this
standard method in a complex case where more than one phase
propagates through the array. We simulated the simultaneous prop-
agation of two linear frequency modulations in the frequency range
(1–10 Hz) through a seismic array topology corresponding to the
one used during the Annot experiment (Fig. 1, see Section 4 for
details). The propagation of the two waves is characterized by the
wavenumbers k1 and k2, which correspond to two parameters of
propagation: 135◦N, 3000 m s−1 and 270◦N, 1000 m s−1. Fig. 2 rep-
resents the synthetic signal calculated for one array sensor. Along
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Time–frequency–wavenumber analysis 579

Figure 3. (a1) and (b1): Classical beam-forming decomposition for the two time windows (a) and (b) considered in Fig. 2. (a2) and (b2): MUSIC decomposition
for the two time windows (a) and (b) considered in Fig. 2. The black points represent the theoretical position of wavenumbers k1, and k2 used for the simulation.
The red stars represent the location of the two first maxima of the wavenumber decompositions.

this signal, different time windows are analysed in the wavenumber
domain in order to retrieve the propagation parameters. For each
time window, two waves propagate simultaneously through the ar-
ray with similar spectral characteristics. Two time windows denoted
(a) and (b) are studied to illustrate the ability of the classical beam-
forming method (Kvaerna & Doornbos 1985) to separate the simul-
taneous arrivals. Results are presented on Figs 3(a1) and (b1). The
black points indicate the theoretical positions of k1 and k2 in the
wavenumber domain. Knowing a priori that two waves propagate si-
multaneously through the array, locations near the first two maxima
are searched in the wavenumber domain. The red stars correspond
to the two maxima found. In case (a1), only one of the two waves
is correctly retrieved. The second wave is not retrieved because the
decomposition exhibits aliasing peaks with higher energy than that
of the second wave. Multiple and simultaneous wave arrivals may
induce such high-energy aliasing peaks leading to a wrong estimate
of propagation parameters. Case (b1) is even more dramatic than
case (a1), because neither the first wave nor the second one are
correctly characterized. The two peaks deduced are different from
the theoretical ones. This test shows that even in situations that are
not complex, classical beam-forming methods are unable to prop-
erly characterize the propagation parameters of multiply interfering
wavelets.

2.2 High-resolution time–frequency–wavenumber
decomposition

This section describes the methodology proposed to obtain an accu-
rate time–frequency–wavenumber decomposition of seismograms
recorded by small-aperture arrays. The two main steps of the pro-
cess are: (i) the identification and the selection of the most signifi-
cant time windows of the seismograms, and (ii) the decomposition
of these selected time windows within the frequency–wavenumber
domain in order to determine the propagation parameters of the
different phases that propagate simultaneously.

2.2.1 Ridges algorithm for time–frequency cells identification

The first step of our time–frequency–wavenumber decomposition is
the identification and the selection of the most significant (i.e. the
most energetic and the most coherent) time windows of the seismo-
gram. This time window preselection is useful, because the second
step of our processing is a frequency–wavenumber decomposition,
which does not make sense if the signals are uncorrelated, or if they
have low signal-to-noise ratio.

We performed a time–frequency decomposition in order to find
the temporal repartition of the energy within the signal. Such
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Figure 4. Time–frequency decomposition of the synthetic signal that is
represented in Fig. 2. The ridges algorithm has been used to calculate this
decomposition.

decomposition has the advantage of giving the temporal evolution
of the frequency content, which has to be known if we want to de-
duce from the wavenumber decomposition (in the second step), the
apparent velocities of the different seismic phases.

We implemented the ridges algorithm (Delprat et al. 1992) to
decompose the seismic signal into the time–frequency plane. The
ridges decomposition belongs to the class of short-time Fourier
(STF) transform decomposition methods. Around each time–
frequency cell (t 0, ν 0), the coefficients of this decomposition are
defined by:

STF(t0, ν0) =
∫ +∞

−∞
|z(t)|h(t − t0) exp{2iπ [�z(t) − ν0t]} dt, (2)

where z(t) = |z(t)|exp(2iπ �z(t)) is the analytical signal of the real
seismic signal �(t), defined as z(t) = �(t) − i� H (t) [� H (t) is the
Hilbert transform of �(t)] and h(t) is the short-time window. As
these classical time–frequency decompositions represent only the
modulus of these coefficients within the time–frequency plane, the
ridges algorithm also uses their arguments. The ridges are defined
as the set of time–frequency cells where the argument of the co-
efficients defined by eq. (2) remains stable, which is equivalent to
searching the cells where:

d

dt

{
arg[STF(t, ν)]|t=t0

} = d

dt

{[
�z(t) − ν0t

]|t=t0

} ≈ 0. (3)

As the time derivative of the analytical signal argument is the in-
stantaneous frequency ν i (t), the ridges are also defined as the time–
frequency cells (t 0, ν 0) where ν i (t) = ν 0 (Mallat 1999). The en-
ergy associated with each selected cell is given by the modulus of the
short-time spectrum calculated for this cell. Therefore, the ridges se-
lection simultaneously combines the information given by the mod-
ulus and the argument of the STF spectrum. Fig. 4 shows the ridges
analysis of the signal presented in Fig. 2. A very accurate location of
the energy is obtained in the time–frequency domain. Nevertheless,
one has to keep in mind that in terms of wavelet separation, this
decomposition has exactly the same resolution as the classical STF
spectrum. On one hand, the width of the frequency filter has to be
sufficiently narrow to separate nearby frequency wavelets and, on the
other hand, it has to be sufficiently wide to ensure the time-domain
resolution remains reasonably good. Therefore, the filter width must
be adjusted as a trade-off between both constraints.

Time–frequency decomposition is performed for each signal
recorded in order to calculate a mean time–frequency decompo-
sition for the whole array. This procedure increases the energy of
the ridges that have the same location within the different time–
frequency decompositions and decreases the energy associated with
single ridges that may result from local wavefield interferences or
peculiar local sensor effects. Powerful averaging is possible with
small-aperture arrays but can not be used if the distance between the

different sensors of the array becomes large. The most relevant part
of the energy is assumed here to be located along the ridges of the
mean time–frequency decomposition. This pre-processing consid-
erably reduces the computer time requirement, because it collapses
the 2-D wavenumber analysis domain (t, f ) to the 1-D domain cor-
responding to the ridges found.

2.2.2 MUltiple SIgnal Classification (MUSIC) algorithm for
signal characterization

Decomposition of signals in the wavenumber domain is under-
taken around each sufficiently energetic time–frequency cell located
along different ridges. Decomposition leads to a complete descrip-
tion of the wavefield in the time–frequency–wavenumber domain.
The main limitation of classical frequency–wavenumber decompo-
sitions is their inability to characterize multiple and simultaneous
propagations. For such situations, Capon (1969) and Schmidt (1986)
proposed the use of high-resolution methods. The MUltiple SIgnal
Classification (MUSIC) algorithm is here used to determine the
propagation parameters of the different interfering wavelets. This
algorithm allows the number of phases that propagate simultane-
ously to be chosen. The next section describes key points required
for an effective use of the MUSIC algorithm. The most important
point concerns the determination of the number of phases within a
time–frequency cell. A method is proposed to automatically deter-
mine this parameter.

The MUSIC algorithm (Schmidt 1986) is based on the orthogo-
nal decomposition of the spectral matrix (denoting the data space),
which is then split into signal and noise subspaces. The spectral
matrix describes, frequency by frequency, the interactions between
the different wavelets that propagate simultaneously through the ar-
ray. The orthogonal decomposition of the spectral matrix gives the
eigenvalues and eigenvectors of the data space, which are distributed
as follows:

(i) q large eigenvalues and q related eigenvectors describe the
signal subspace Es (because the spectral matrix is a positive Her-
mitian matrix, all the eigenvalues are positive) and;

(ii) M − q comparatively small eigenvalues and M − q related
eigenvectors describing the noise subspace Es.

The signal subspace contains all the information related to the energy
issued from a coherent propagation through the array: this is the
deterministic part of the signal. The noise subspace is the residual
information and contains the part of the wavefield that cannot be
modelled with coherent plane waves. The signal and noise subspaces
are orthogonal, i.e. the M − q noise eigenvectors are orthogonal to
the q signal eigenvectors. Once the signal and the noise subspaces
have been estimated, the q signal vectors that have the minimum
projection in the noise subspace correspond to the q maxima of the
function:

PMUSIC(k) = 1

|u(k) · En|2 , (4)

where u(k) is the steering vector for the wavenumber k, expressed
by:

u(k) = [exp(ik · r1) exp(ik · r2). . . exp(ik · rM )], (5)

where ri , (1 ≤ i ≤ M) defines the seismometer location. The q
wavenumbers that maximize P MUSIC are the optimum wavenumbers
of the propagation. The results obtained with the MUSIC algorithm
are presented on Fig. 3(a2) and (b2). The first two eigenvectors are
used to describe the signal subspace; the last seven eigenvectors
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Time–frequency–wavenumber analysis 581

thus describe the noise subspace. Theoretically, the same informa-
tion may be obtained using only one eigenvector belonging to the
noise subspace. Practically however, synthetic tests show that taking
into account all the eigenvectors of the noise subspace considerably
increases the accuracy of the propagation parameters. The two waves
are properly separated and the propagation parameters of each of
them are accurately estimated compared with the theoretical ones.
Different studies show that the MUSIC algorithm is well adapted to
separate multiple components (Goldstein & Archuleta 1991a; Zerva
& Zhang 1996) and that it is also very effective in characterizing
the parameters of propagation in the case of low signal-to-noise ra-
tio (Goldstein & Archuleta 1991a; Marcos 1998). This algorithm
has also been used in several works involving the characterization
of seismic phases (Gaffet et al. 1998; Bokelmann & Baisch 1999;
Cornou 2002), measurements of rupture propagation (Goldtstein &
Archuleta 1991b) or location of secondary sources in volcanic stud-
ies (Goldstein & Chouet 1994; Saccorotti et al. 2001; Almendros
et al. 2002).

The main problem addressed here concerns the determination of
the order that must be used to well describe the signal subspace.
The power of the MUSIC algorithm is that it allows the estimation
of the properties of multiple wavelets interfering in the same time–
frequency cell. This advantage also constitutes its main difficulty
because the order of the model has to be correctly estimated in order
to describe the deterministic part of the signal. This is equivalent
to determining the number of phases that propagate simultaneously
through the array, i.e. the number of eigenvectors belonging to each
subspace.

The simplest way to estimate the order of the model is through the
decreasing amplitudes of the eigenvalues profile. The order can be
determined if a clear change occurs in the profile shape allowing the
division of the eigenvalues series. This method is strongly dependent
on operator subjectivity. Statistical methods based on information
theory for model selection (Akaike 1974; Rissanen 1978; Schwartz
1978; Wax & Kailath 1983) try to avoid this subjectivity. Marcos
(1998) shows that such statistical criteria induce an overestimation
of the number of sources if a few samples are used to estimate the
spectral matrix (e.g. when small time windows are used to analyse
the signal).

Another approach consists of modelling the decreasing eigen-
values profile using the noise wavefield. The modelled profile is
compared to the observed one and allows the estimation of the eigen-
value index from which the two profiles differ (Marcos 1998). This
method is not restricted to Gaussian noise, thus allowing the use of
coloured noises. Unfortunately, synthetic tests establish that:

Eigenvalues profile (1 single signal + noise) �= Eigenvalues

profile (1 single signal) + Eigenvalues profile (noise).

The main reason is that if a single wave propagates through the ar-
ray, the first eigenvector describes the part of the signal that remains
coherent at the array sensors. Time-shifts caused by propagation be-
tween the different sensors imply that the energy is partly projected
on the second eigenvector. The energy of the second eigenvalue is
then higher than the energy of the second eigenvalue that would be
obtained if only noise propagated through the array. This effect gets
dramatic when the apparent velocity of the wave gets slower, be-
cause the time-shifts induced by the propagation are then increased.
This effect is enhanced too when the time-window length gets
smaller meaning that only a small number of samples can be used
to evaluate the spectral matrix, which is therefore not always well
defined.

We propose a new technique based on an iterative process se-
lecting the number of eigenvectors used to describe the signal sub-
space. This method allows the automatic choice of the number of
simultaneous propagating wavelets. The process initiates the signal
subspace description with the first eigenvector and then, for each it-
eration, an additional eigenvector is taken into account to complete
the description. The energy explained is estimated at each step and
for each time–frequency cell, by using the propagation parameters
determined. The process stops for each time–frequency cell if no
more energy is explained by adding a supplementary eigenvector
into the signal subspace.

2.2.3 Algorithm for selecting the number of eigenvectors

The algorithm for selecting the number of eigenvectors is derived
hereafter and uses the same notations as Zerva & Zhang (1996).

Let the seismic ground motion be approximated by q sinusoidal
plane waves in a given time–frequency cell:

�̂(t, r) =
q∑

m=1

Am sin(km · r + v0t + φm), (6)

where the time t, frequency v0 and propagation wavenumbers km are
deduced from the time–frequency–wavenumber decomposition. A
complete representation of the wavefield requires the estimation of
the amplitudes Am and phase shifts φm . These two parameters can be
determined from the least-squares minimization of the error function
between the recorded time series � (t, r) and the reconstructed one
�̂(t, r) (eq. 6) with respect to the unknowns Am and φm :

E =
M∑

i=1

N∑
j=1

[�(t j , ri ) − �̂(t j , ri )]
2, (7)

where E is evaluated for each time–frequency cell, N is the number
of time samples in the current time–frequency cell and M is the
number of sensors in the array. Let the unknowns Am and φm be
expressed as:

θ1m = Am cos(φm) and θ2m = Am sin(φm). (8)

Assuming �(t j , ri ) ≈ �̂(t j , ri ), eq. (6) is evaluated for each sample
of the time window and leads to the system


�(t1, ri )
�(t2, ri )

. . .

�(tN , ri )




≈




sin(vt1 + k1 · ri ) cos(vt1 + k1 · ri ) . . .

sin(vt2 + k1 · ri ) cos(vt2 + k1 · ri ) . . .

. . . . . . . . .

sin(vtN + k1 · ri ) cos(vtN + k1 · ri ) . . .







θ11

θ21

. . .

θ2q




, (9)

which can be rewritten as:

{�(ri )} ≈ [X (ri )]{θ̂}. (10)

Eq. (10) can be written for all M stations and the resulting system
to solve becomes:


�(r1)
�(r2)
. . .

�(rM )




≈




X (r1)
X (r2)
. . .

X (rM )


 {θ̂}, orY ≈ X{θ̂}. (11)

The amplitudes and phase shifts of all the signals can be estimated
by computing:

{θ̂} = [X T X ]−1 X T Y. (12)
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Figure 5. Influence of the time evolution of the parameters of propagation when one (left), two (middle) and three (right) eigenvectors are used to describe
the signal subspace. Dotted lines represent the theoretical parameters of propagation. Blue dots are the set of parameter retrieved with the first eigenvector, red
dots with the second eigenvector and green dots with the third eigenvector.

An estimation of the seismic ground motions as defined by eq. (6)
can now be completed. For each supplementary eigenvector intro-
duced in the signal subspace, a new wavenumber decomposition
is performed and a new set of propagation parameters is obtained.
The seismic wavefield is then reconstructed with this new parameter
set and the reconstructed energy is compared to the energy of the
observed wavefield. A gain function G (q,q+1), is derived in order to
compare the energy between observed and reconstructed signals:

G(q,q+1) = MSD(q+1) − MSD(q)

MSD(q)
, (13)

where MSD(q) is the mean square difference between the observed
motion �(t, r) and the estimated one �̂(t, r) and q is the number
of eigenvectors used to describe the signal subspace. The function
G (q,q+1) allows the measurement of the increase of explained en-
ergy associated with the use of one supplementary eigenvector in
order to describe the signal subspace. The process stops when the
introduction of a supplementary eigenvector does not increase the
reconstructed energy. The consequence is that at least two wavenum-
ber decompositions are calculated for each time–frequency cell
analysed.

When uncorrelated wavelets propagate simultaneously through
the array, the amplitude of the eigenvalues may also be used to mea-
sure the energy of each related wavelet in the signal. In such a case,

the explained energy taking into account q eigenvectors equals the
sum of the energy of the first q eigenvalues. Conversely, the situation
is rent when multiple wavelets are highly correlated. In such a case,
the eigenvalues amplitudes can no longer be used to estimate the
weight of each related wavelet in the signal. This trade-off implies
that the eigenvalue amplitudes cannot generally be used to estimate
the quality of reconstruction. The method that we propose to use,
in order to determine the number of eigenvalues, leads to the deter-
mination of the number of wavelets, even in the situation of highly
correlated wavelets.

Propagation parameters are evaluated in the case of the previous
simulated signals for one, two, and three eigenvectors used to de-
scribe the signal subspace (Fig. 5). The blue, green and red dots
correspond to the propagation parameters obtained with the first,
second and third eigenvector, respectively. Propagation parameters
of the two simultaneously propagating waves are optimally retrieved
when two eigenvectors are used. If the number of sources is underes-
timated (one eigenvector), the propagation parameters are incorrect
compared to those used for the simulation. If the number of sources
is overestimated (three eigenvectors), two situations occur:

(i) Even with three eigenvectors, only two sets of parameters are
retrieved in the wavenumber domain and the parameters are similar
to the ones retrieved with two eigenvectors.
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Time–frequency–wavenumber analysis 583

Figure 6. Time evolution of the gain function G12 (blue dots) and G23 (red dots).

(ii) Three sets of parameters are retrieved as illustrated between
7 and 10 s in Fig. 5. The first two sets are close to the theoreti-
cal propagation parameters while the third one (red dots) does not
correspond to any realistic propagation.

Gain functions G 1,2 and G 2,3 are also plotted in Fig. 6. They show
that: (i) the energy explained with two eigenvectors can be 20 per
cent higher than the one explained with a single eigenvector, and (ii)
the energy explained with three eigenvectors is never higher than the
one explained with two eigenvectors and may even be lower. This
example shows that a balance exists between the maximal number
of phases detected and the optimal determination of their propaga-
tion parameters. The optimal equilibrium is reached when the signal
subspace is described with a number of eigenvectors leading to a
maximum of explained energy. Using this criterion, two eigenvec-
tors are mainly selected between 3 and 10 s. Around 8 s, where
destructive interferences between the two frequency modulations
make the signal vanish, a single eigenvector explains more energy
than two. The same behaviour occurs for time windows before 3 s.
Thus, a single eigenvector is also selected. For this time interval,
the frequency content of the simulated signals is low and causes
wavenumber peaks to interfere below the resolution domain of the
array. Separation of the two waves is, therefore, impossible.

The synthetic example processed above illustrates that the MU-
SIC algorithm shows great ability to separate signals that propagate
simultaneously through a seismic array with similar spectral char-
acteristics. Determination of the number of sources is important to
accurately describe the different waves and their propagation pa-
rameters. Estimation of the quantity of explained energy, in each
time–frequency cell, is a discriminator criterion to determine how
many eigenvectors must be used to represent the signal subspace.
Conversely to conventional methods, the power of the peaks identi-
fied using MUSIC decomposition cannot be directly related to the
energy of the different signals and, hence, cannot be used to check
the validity of the propagation parameters determined. The quantity

of reconstructed energy in each time–frequency cell is a valuable
alternative to check the validity of the propagation parameters ob-
tained. Propagation parameters may be retained if the energy they
are able to reconstruct is significantly high. The latter energy is then
associated to each corresponding phase.

3 S Y N T H E T I C DATA
S E T S I M U L AT I O N S

In order to check the resolution of the time–frequency–wavenumber
method described in the previous section, we simulate the seismic
wavefield induced by an explosion in a 2-D heterogeneous medium
(i.e. the third dimension is infinite) using the discrete wavenumber—
boundary integral equation method (Gaffet & Bouchon 1989; Gaffet
1995). The geometrical configuration of the medium of propagation
is presented in Fig. 7. The P- and S-wave velocities equal 4 and 2.3
km s−1, respectively, in the homogeneous part of the medium. The
three elliptically shaped heterogeneities introduced in the medium
are denoted 1, 2 and 3. Velocities inside these heterogeneities are
10 per cent lower than velocities in the homogeneous part of the
medium. Direct and diffracted wavefields are computed for a nine
sensor seismic array that has the same topology as the one used
during the Annot experiment (see Section 4 for details). Two dif-
ferent positions (1 and 2) have been considered for this study and
are marked by black crosses in Fig. 7. The source shape is a Ricker
function with a frequency content centred around 5 Hz. North–south
(NS) and east–west (EW) components calculated for one of the array
sensors are plotted in Figs 8(a) and (b). The theoretical arrival times
of the principle expected phases diffracted by the heterogeneities are
superimposed. In the first synthetic case, the array is in position 1 and
the expected backazimuths of propagation are 315◦N for the seis-
mic source and 270◦N, 180◦N and 66◦N for the heterogeneities 1, 2,
and 3, respectively. Expected velocities of propagation correspond
to the P and S wave of the homogeneous part of the medium. Al-
though only three heterogeneities are introduced in the medium, the

C© 2004 RAS, GJI, 158, 577–591

D
ow

nloaded from
 https://academ

ic.oup.com
/gji/article/158/2/577/770387 by guest on 01 February 2021



584 E. Schisselé et al.

Figure 7. Geometrical configuration of the 2-D medium of propagation.
The locations of the three semi-elliptic heterogeneities introduced in the
medium are represented as well as the location of the seismic explosion.
The black crosses give the location of the two studied positions (1 and 2) of
the seismic array.

Figure 8. North–south (a) and east–west (b) components of the seismic
wave field, calculated for one sensor of the array. The theoretical arrival time
of the expected diffracted phases has been superimposed.

simulated signals shapes display interesting features, characterized
by time-increasing complexities. Such characteristics correspond to
a realistic medium of propagation. At t = 10.5 s, a single wavelet cor-
responding to the seismic source contribution propagates through
the array. Around t = 12 s, the S wave diffracted by the heterogene-
ity 1 and the P wave diffracted by the heterogeneity 2 propagate
nearly simultaneously through the seismic array. Around t = 14.5
s, the wavefield complexity increases because the P wave diffracted
by heterogeneity 3 propagates through the array while contributions
from the heterogeneities 1 and 2 are still present.

The time–frequency–wavenumber decomposition derived in pre-
vious section is applied to these synthetic seismograms in order to
test the ability of the method to separate propagation parameters of
the interfering wavelets. Figs 9(a) and (b) shows the global time–
frequency decompositions calculated for the NS and EW compo-
nents. A 10 per cent threshold of the maximum energy in the time–
frequency domain is applied to select the most energetic ridges.
All time–frequency cells associated with the remaining ridges are
decomposed in the wavenumber domain. For each cell, signals are
filtered using the same frequency band as used in the ridges de-
composition. The cell time length equals three times the dominant
period of the signal. One or several propagation parameters are then
determined. The time evolution of the propagation parameters is
represented in Fig. 10 for the NS wavefield components. The black
dotted lines are the theoretical values of the source backazimuth and
velocities of the homogeneous medium part. The colour associated
with each detection indicates the number of eigenvectors used to
describe the signal subspace. This number mainly varies between
one and two. Three eigenvectors are seldom used.

Between 12 and 13 s, where two wavelets theoretically propagate
simultaneously through the array, some time–frequency cells need a
single eigenvector to describe the signal subspace (i.e. using a second
eigenvector would not explain more energy). Other time–frequency
cells require two eigenvectors (i.e. two waves are detected or, a
greater quantity of energy is explained by two eigenvectors rather
than by a single one). The right side in Fig. 10 displays the ener-
getic distribution of the propagation parameters. The distribution
is deduced from all detections issued from the time–frequency–
wavenumber decomposition. In spite of the apparent dispersion
of propagation parameters, (caused by the graphical representation
method of the left side in Fig. 10, which does not take into account
the energy associated with each detection), the maxima of the en-
ergetic distributions are very close to the theoretical parameters of
propagation. The width of each peak is a measure of the resolution
associated with the determination of each propagation parameter.
Better resolution is obtained for backazimuth determination than
for the apparent velocity estimation, because apparent velocity de-
pends on the wavefield frequency content whereas the backazimuth
does not. The Gabor–Heisenberg inequality (Gabor 1946) implies
an unavoidable trade-off between temporal and spectral resolutions.
The high resolution of the time–frequency ridges analysis is only ap-
parent because it does not take into account the intrinsic uncertainty
associated with each time–frequency cell. Because the velocity re-
mains proportional to the frequency, both uncertainties are coupled.

For this array layout, the energetic distribution shows that the
diffracted wavefield energy is greater than the direct wavefield en-
ergy and that heterogeneity 3 is responsible for the most energetic
part of the diffracted wavefield. In addition, analysis shows that
P and S waves have nearly the same energy.

In the second synthetic case studied here, the seismograms are
calculated for a new position of the array within the same medium
of propagation (Fig. 7, position 2). The same data processing is per-
formed as in the previous section. The energetic distribution of the
propagation parameters is displayed in Fig. 11. For comparison, the
energetic distributions obtained for the array in position 1 is depicted
in the upper part of Fig. 11. The results show that for position 2 of
the array, the heterogeneity 1 dominates the backazimuth distribu-
tion, while for position 1 of the array, the heterogeneity 1 was the
least significant. In addition, the P–S conversion and S diffraction
dominate in position 2 of the array while the energy of P and S waves
remains nearly identical to that for the array in position 1. The latter
shows an important result, i.e. the apparent visibility of the medium
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Time–frequency–wavenumber analysis 585

Figure 9. Mean ridges decompositions for: (a) the north–south components and (b) the east–west components of the wave field.

Figure 10. (Left) Time evolution of the parameters of propagation [direction (top) and apparent velocities (bottom)] calculated for the north–south components.
The colour of each detection is representative of the number of eigenvectors used to estimate the parameters of propagation. (Right) Energetic distribution
of the parameters of propagation [direction (top) and apparent velocities (bottom)] obtained from all the time–frequency–wavenumber detection represented
on the left side.

depends on the array location within the medium. When the array is
translated from position 1 to position 2, the same source enlightens
the same heterogeneities but the quantity of diffracted energy in the
azimuth of the array is greatly different. This last result is impor-
tant for seismic risk assessment studies, where we know that the
shear waves are usually the most destructive. Therefore, it appears
to be important to keep in mind that the relative energy of the con-
verted phases is not only dependent of the kind of heterogeneities
within the medium, but also on the position of the array within the
medium.

Thanks to the tests conducted with these two synthetic data sets,
the time–frequency–wavenumber decomposition allows a very ac-
curate tracking of the propagation parameters. In the following sec-

tion, this method is applied to a real data set recorded during the
Annot experiment in 1998 (Larroque et al. 1999).

4 A P P L I C AT I O N T O T H E
A N N O T E X P E R I M E N T

During 1998 April and May, the Annot experiment conducted in the
southern French Alps consisted of recording the natural seismicity
with four small-aperture arrays, separated 10 km from each other.
One of the initial objectives of this experiment was to determine
if a deterministic component exists in the coda of regional earth-
quakes. In such a case, an accurate derivation of the propagation
parameters is conducted to link each deterministic wave to different
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586 E. Schisselé et al.

Figure 11. Comparison between the energetic distributions of the az-
imuths (left) and the velocities (right) obtained when the array is in position
1 (top) and in position 2 (bottom). The vertical dotted lines correspond to
the theoretical parameters of propagation.

heterogeneities of the medium. In association with the deployment
of the four small-aperture arrays in a geographically limited area,
another objective was to investigate the stability of the wavefield
recorded by the different arrays. The comparison of the characteris-
tics of the coda recorded by each array for different earthquakes, al-
lows the separation of the influence of the heterogeneities located at
regional distances (>10 km) from those at local distances (<10 km).
Influence of regional heterogeneities should be simultaneously ob-
served on the four arrays, whereas the local influence should be
peculiar to each one.

The four arrays deployed in the hamlets of Méailles (ME), Al-
lons (AL), Saint-Benoı̂t (SB) and Ubraye (UB) were composed of
nine short-period Le3D seismometers with sampling rate of 250
Hz. The aperture of each array is 250 m and the minimum dis-
tance between two adjacent sensors of the array is approximately
17 m (Fig. 1). The geometrical configuration of the different arrays
is designed with regards to the objectives of the experiment and
wavenumber characteristics of the waves expected for this experi-
ment. The transfer function of the array (Fig. 12) indicates aliasing
peaks on the circle kalia sin g = 0.06 m−1, implying that the maximum
wavenumber that can be analysed is kmax = kalia sin g/2 = 0.03 m−1.
This value constrains the maximum wave velocity that can be char-
acterized with the arrays for each frequency. Fig. 13 displays the
frequency evolution of the maximum phase velocities that can be
characterized with the Annot array. The small distances between two
different sensors give the Annot arrays the advantage of being well
adapted to characterize high-frequency seismic phases propagating
with slow apparent velocities. The arrays are also able to identify
with less accuracy the waves with higher apparent velocities.

Among the 300 seismic events recorded during the experiment,
23 earthquakes are analysed in this study. The selection criteria were:
a sufficiently large signal-to-noise ratio, the running of a maximum
of seismometers within the arrays and hypocentres close enough
to the arrays (<120 km). The characteristics of these 23 events
are given in Table 1 as derived from the seismic bulletins pub-

Figure 12. Transfer function of the arrays deployed during the Annot exper-
iment. The aliasing peaks are located on the dotted circle and the wavenumber
domain that can be analysed with this array is delimited by the thick circle.

Figure 13. Wavenumber domain that can be analysed with the Annot array,
as a function of frequency and apparent velocity. The horizontal dotted line
represents the maximum wavenumber of this domain.

lished by the Laboratoire de Détection et de Géophysique (Bruyères-
le-Châtel, France), the Renass (Strasbourg, France), Sismalp
(Grenoble, France) and the INGV (Rome, Italy).

A characteristic time–frequency–wavenumber decomposition is
presented in Fig. 14 for each array and for the event named Barcelon-
nette1. The red line indicates the theoretical epicentre backazimuth.
The energy is plotted on the left side for each azimuth and for
all time–frequency cells processed within the frequency domain
ranging from 1 to 10 Hz. The noise wavefield is too highly corre-
lated for frequencies lower than 1 Hz and thus may be confused
with seismic signal. For frequencies higher than 10 Hz, signals
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Table 1. Characteristics of the 23 analysed events.

Date Depth Mag. Lat. Long. Dist. Mean BAZ
yyyy/mm/dd (km) ML (◦) (◦) (km) (◦)

Gardanne cluster

1998/04/16 1.0 3.0 43.43 5.46 113 239
1998/04/27 0.0 2.3 43.46 5.43 114 240
1998/04/15 1.0 3.1 43.44 5.44 120 237
1998/05/18 1.0 3.0 43.43 5.40 123 236
1998/05/08 5.0 2.8 43.32 5.41 122 234
1998/05/15 4.0 2.0 43.34 5.48 118 234

Barcelonnette cluster

1998/05/13 3.0 2.9 44.47 6.26 64 330
1998/05/13 5.0 3.1 44.45 6.30 60 332
1998/04/15 2.0 2.5 44.40 6.40 52 337

Tinée-Cuneo cluster
1998/04/11 2.0 4.0 44.60 7.30 84 34
1998/05/27 2.0 2.3 44.45 7.03 62 39
1998/04/22 4.0 2.6 44.60 7.30 85 34
1998/04/25 −1.0 1.3 44.54 6.86 61 17
1998/05/21 2.0 2.1 44.55 7.05 68 29
1998/05/27 9.0 2.3 44.45 7.06 61 32
1998/05/11 2.0 2.5 44.13 7.00 34 56
1998/05/01 2.0 2.3 44.30 7.30 63 54
1998/04/16 10.0 2.6 44.13 7.14 42 68
1998/04/28 16.0 2.1 44.36 7.38 70 57
1998/05/16 2.0 1.8 44.10 7.00 42 65

Digne cluster

1998/05/06 4.0 3.2 44.1 6.1 47 288

Draguignan cluster

1998/04/14 0.0 1.7 43.54 6.43 51 201

Briançon cluster

1998/05/11 2.0 2.9 44.8 6.7 93 2

are poorly correlated and array analysis can no longer be used to
analyse the waveforms. Fig. 14 shows the signals recorded by each
array. No correlation appears between these different signals and
any waveform can be followed easily from one array to another.
The time–azimuth–velocity distribution confirms that the diffracted
wavefield behaviour associated with each array is different, even if
backazimuths of the earliest detections recorded by each array are
consistent with the theoretical epicentre backazimuth.

A summary of the findings for each array is given below:

(i) Array SB: nearly at the time of the first arrival, multiple sec-
ondary contributions are observed and characterized by azimuths
that differ from the one from the source. The most energetic az-
imuth is correlated with the one from the source.

(ii) Array ME: secondary contributions are observed with back-
azimuths close to the ones observed by the array SB. The main
energetic azimuth of arrival is no longer correlated with the source
backazimuth. Energy propagates mainly with azimuths between 0◦N
and 50◦N.

(iii) Array UB: a large range of azimuths appear with high energy.
Secondary phases still propagate with backazimuths close to the one
observed for SB and ME.

(iv) Array AL: for this event, the most particular features are
observed for this array. Secondary contributions, as observed for the
three other arrays, are nil. Instead, the azimuth decreases slowly with
time, going from the 330◦N direction of the source at the beginning
of the seismogram, to 270◦N at the end.

The study of this earthquake shows that it is not possible to follow
one diffracted waveform from one array to another. Nevertheless,
identical global features are observed, in terms of propagation back-
azimuths for three of the arrays. Similar heterogeneities may have
affected the wave field during its propagation. For array AL, the
energetic distribution of azimuths differs strongly from the distribu-
tion of the other three arrays. Such an observation may be explained
by referring to the results obtained with the simulations done in the
previous section: the visibility of the medium is strongly dependent
on the position of the array in the medium.

We performed the same analysis for the 23 selected events. In a
second step, we used the time–azimuth–velocity evolutions deter-
mined to reconstruct the heterogeneous regions of the medium of
propagation. The strong single-scattering approximation (Aki 1969)
is assumed during the propagation of wavefields between the epi-
centre and the seismic arrays. Under this assumption, diffraction
occurs along an ellipsoid, called a diffraction ellipsoid, the two fo-
cuses of the ellipsoid being the earthquake source and the seismic
array. The ellipsoid size increases with the duration of propagation
of the wave field in the medium. For reconstruction, two supplemen-
tary assumptions are made and are listed below:

(i) The wavefield propagates only in the horizontal plane. The
3-D diffraction ellipsoid becomes a 2-D diffraction ellipse. This as-
sumption is supported by the low values of apparent velocities ob-
served for the different phases of the coda, which show that, between
the diffraction point and the array, the wavefield mainly propagates
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588 E. Schisselé et al.

Figure 14. Time–azimuth–velocity decompositions for one of the event of the Barcelonnette cluster (date: 1998/05/13) recorded by the four arrays SB, ME,
UB and AL. The colours represent the apparent velocities of propagation. One of the signals recorded by each array has also been plotted, on the same scale
for the four arrays. On the left hand side the energetic distributions of the azimuth are represented.
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Time–frequency–wavenumber analysis 589

Figure 15. Superposition of the structural map of the Annot region and the heterogeneous areas [referred to as (a), (b) and (c)] located with the time–azimuth–
velocity evolutions determined for each array deployed during the Annot experiment. All 23 earthquakes have been used to localize these areas.

as surface waves in the uppermost part of the crust. More informa-
tion concerning the depth of the scatterers could be obtained from
the analysis of the three components recorded during the Annot ex-
periment. Unfortunately, the horizontal components show very low
coherence between the different sensors of the array and could not
be used to retrieve the global polarization characteristics (incidence
angle, type of wave) of the seismic wavefield.

(ii) Wave velocities, between the epicentre and the scattering
point, on one hand, and between the scattering point and the
array, on the other hand, are constant. Nevertheless, conversions like
P–P, P–S, S–P or S–S may be caused by diffraction. The kind of
wavefield conversion depends on the duration of propagation of the
wavefield within the medium and on the apparent velocity value de-
duced from the wavenumber analysis. Delays of propagation lower
than the theoretical arrival time of S phase imply that the wave-
field is propagating from the epicentre to the diffraction point with
P-wave velocity. For greater times of propagation, we considered the
S-wave velocity of propagation. Irrespective of the S-phase arrival
time, the wave field is assumed to propagate from the diffraction

point to the array with P-wave velocity if the apparent velocity is
higher than 4 km s−1 and with S-wave velocity otherwise. The val-
ues of the P- and S-wave velocities (6.2 and 3.6 km s−1) used for the
inversion are deduced from the regional tomography by Paul et al.
(2001).

A diffraction ellipse is constructed for each time–frequency de-
tection. The position of the diffraction point is located at the in-
tersection between the ellipse and the backazimuth direction given
by the array analysis. The energy obtained from the array analysis
is attributed to each scattering point. Fig. 15 shows the inversion
obtained for each array using simultaneously the 23 earthquakes se-
lected. The contribution of the source is removed using a mask that
makes the energy vanish for backazimuths equal to the theoretical
epicentre direction ±5◦. The energetic distribution of the scattering
points is superimposed to the structural map of the Annot region.
Observations made by the arrays SB, ME and AL exhibit three main
heterogeneous areas referred (a), (b), and (c) in Fig. 15. Area (a) is
systematically recovered by inversion from the three arrays.
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Geological and structural observations report the presence of the
Parpaillon, the Demandols and the Rouaine fault system in this
north-northeastern region (red lines in Fig. 15). Different studies
show that these faults embedded into the crystalline basement (Sue
1998; Laurent 1998) involve a strong velocity contrast (2 km s−1)
along each of them. A large-scale crystalline heterogeneity, the
Argentera massif is also located in this direction (green line in
Fig. 15). This massif exhibits a velocity contrast of 2 km s−1 between
the overlying sedimentary layers and the basement rock and along
which the diffracted energy is partly located. The different fault
systems and the Argentera massif clearly simultaneously shape the
wavefield propagation.

Areas (b) and (c) appear to be more complex because they are
only visible on the Allons and Saint-Benoı̂t maps. Area (b), south
of Annot, is characterized by important topographic reliefs related
to a thrust fault system. Energy can be trapped into these reliefs
before being back-diffracted into the array azimuths. Area (c) is
located close to the northern part of the Moyenne Durance fault.
Baroux (2000) shows that this fault presents velocity contrast of
2 km s−1 similar to the north-northeastern faults. The Méailles map
does not show any energy coming from areas (b) and (c). This spe-
cific influence, depending on the observation area location, may be
explained as proposed during the synthetic simulation in the previ-
ous section. Energy focused in preferential directions may explain
the observations for this particular array.

The array UB shows a specific feature. All the heterogeneous
areas are located close to the array. The areas (a) and (c), pre-
viously identified, do not exist for array UB. In comparison with
the three other arrays, UB is deployed in a particular structural
plateau environment. For this array, the influence of the regional
areas should also be observed, but strong local effects dominate or
reorientate the wavefield and thus hide the influence of the regional
heterogeneity.

5 D I S C U S S I O N S A N D C O N C L U S I O N S

Coda studies are important for site effects assessments, because the
coda waves constitute the most energetic part of the seismograms.
The phases involved in the coda may also be the most destruc-
tive in strong earthquakes. In order to predict site effects induced
by strong ground shaking, it is essential to understand how geo-
logical medium heterogeneity interacts with the primary wavefield.
In this paper, a high-resolution time–frequency–wavenumber de-
composition method is derived. This decomposition describes the
time–frequency evolution of the backazimuths and apparent veloc-
ities of the different deterministic phases recorded by a seismic
array. The time–frequency decomposition obtained from the ridges
algorithm and performed for each signal is an efficient tool to de-
tect the most energetic and coherent components of the wavefield.
For each selected ridge, the MUSIC algorithm is used to perform
the wavenumber decomposition. On a synthetic example, this al-
gorithm allows a better separation of highly correlated components
than conventional techniques. Higher resolution is reached only if
the number of simultaneous propagating wavelets is correctly esti-
mated. A new criterion based on the wavefield energy reconstruction
is introduced in order to estimate properly the number of phases. The
validity of the time–frequency–wavenumber technique is checked
with two numerical data sets. A detailed evolution of the time–
frequency–azimuth–velocity is obtained. The processing of these
sets of data shows that the image of the medium depends on the
position of the array within the medium. The source–heterogeneity–
array configuration influences strongly the nature (direction and

apparent velocity) of the waves that compose the recorded
coda.

Time–azimuth–velocity evolutions obtained from 23 regional
earthquakes recorded during the Annot experiment are calculated
and show that at least a part of the coda can be characterized by
deterministic processes. These evolutions are used to reconstruct
the heterogeneous areas of the medium of propagation. These areas
are not randomly distributed but are related to structural disconti-
nuities identified in the Annot region. This experiment shows that
small-aperture arrays can be used to retrieve geological informa-
tion related to the main structures of the medium. Comparison of
scattering maps obtained from each array leads to important con-
clusions in site effect assessment. Both regional and local hetero-
geneities are responsible for seismic energy in the coda. There-
fore, the site response is not only controlled by the local struc-
ture but the regional heterogeneity must also be taken into account
to realistically estimate the ground motion amplification in strong
earthquakes.
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