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Equilibrium states and Riemann's zeta function  
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ISMANS, 44 Ave. F.A. Bartholdi, 72000 Le Mans, France 

 
 
Summary : Il is argued that the generalisation of the mechanical principles to other variables 
than localisation, velocity and momentum leads to the laws of generalized dynamics under the 
condition of continuous and derivable space time. However, when the fractality arises, the 
mechanics principles may no more be extended especially because the time and space 
singularity appears on the boundary and creates curvature. There is no more equilibrium state, 
but only a horizon which might play a same role as equilibrium but does not close the 
problem - especially the problem of the invariance of the energy - which requires two 
complementary factors: a first one related to the closure in the dimensional space, and the 
second to scan dissymmetry stemming from the default of tilling the space time. A new 
discreet time arises from fractality. It leads irreversible thermodynamic properties. Space and 
time singularities lead to the relation between the above mentioned problematic and the 
Riemann zeta functions as well as its zeros.  
 
Historical context 
 
The relationship between the dynamics and thermodynamics was developed in a conflicting 
historical context in which the Newtonian mechanics, as the Queen of the sciences, has 
always driven the paradigms and made many eminent and unquestionable scientists, such as 
Boltzmann Duhem or Prigogine, expiatory victims accused to be deviationist (I. Stengers, 
1997). 
 
The mechanics was formed gradually over four centuries along successive stages dating back 
to the smart experience of Galilée (1564-1642) which turns out to initiate the theoretical 
quarrels between Leibnitz (1646-1716: mv ) and Descartes (1596-1650 : 2mv ) on the one 
hand around the vis viva (living forces), and posthumously with Newton (1642-1727) on the 
other hand. Although it was Galilée and Leibnitz who claimed the measurability of 
acceleration, it was Newton who won the first round with the expression linking the force to 
the mass ( 2

21 / rmmF  ) for two body system which is the first foundation for Kepler laws. 
 
The next step of the mechanics is called Lagrangian event by Stengers (1997). This step 
begins with the principle of d'Alembert (virtual work) who suggested the independence of 
external forces with respect to internal bonds (dipoles). These forces, if deriving from a 
potential, are independent of the kinetic global state of the system (in motion or not). This 
leads to the second law of Newton mF   updated by Euler (1707-1783) and then by 
Lagrange (1736-1813). All systems and motions, reversible or irreversible, are commonly 
represented by an ensemble of points with neither spatial nor temporal extension. 
Consequently, due to the hidden permanent internal/external correlations, the simple concept 
of friction, depending on velocity and, in practice, on spatial extension, has been dropped out. 
So, there is no irreversible loss. The equilibrium of interior links (having central role) makes 
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the notion of cause, which is completely balanced by the effect, disappear. The universality of 
mechanics emerges naturally from the absence of dissipation.  
 
This reasoning applied to motion results in the principle of virtual work. The conservation of 
the living force T leads to the state function called Lagrangian ( VTL  ). It is the states 
associated with Lagrangian that can be related to the work (W) and gives sense to the potential 
V. At this step, the causality match precisely the effect, property which excludes all loss 
functions and gives rise to state function. Only the initial and final states count in the 
formulation of the dynamics. Hence there is an optimal path, or, put it in another way, there is 
a variational principle stuck on this optimal path. 
 
From these principles, the mechanics is the sole theory axiomatically constructed on the 
paradoxical time reversibility (Albert, Coveney, Prigogine). The momentum mvp   is 
introduced into it as a thermodynamic intensive variable which is nothing but the velocity 
itself. The energy of variation, or of motion, is fixed by the differential of the intensity p  

such that vdpdu  . Finally the energy gets a quadratic form 22/1 mvu   which gives rise to 
very useful quadratic properties (Deheuvels) allowing analytical solution of dynamic 
problems. Inversely, the fine properties of the quadratic form become the intrinsic properties 
of this mechanical theory.  
 
Lagrange will have two descendants whose diverging visions turns out to be conceptually 
formulated in very different even conflicting manners: irreversible in both time and phase 
space (see below) for Carnot and reversible with time symmetry for Hamilton who swear 
allegiance to the queen of sciences and his paradigms with his two beautiful symmetric 

equation 
x

H
p




   and 
p

H
x




  where ),,( tpxH  is the Hamiltonian given by a sum: 

H=T+V. Then the conservation of energy, that is the absence of dissipation, requires 0



t

H
. 

 
We will come back to Carnot (1796-1832) at the end of this paper since his result on 
irreversibility implicitly guides our reasoning. It is Hamilton (1805-1865) who takes the role 
of guiding line. As shown above, Hamilton constructed a very concise formulation in 
establishing the equivalence between the degree of spatial freedom and the degree of 
dynamical freedom. The velocity is postulated as a variable independent of another one: the 
position, hence an N body system in 3 dimensional space has 6N degree of freedom forming 
the phase space and then a principle of conservation arises. This choice of Hamilton leads to 
the definition of a quantity called Hamiltonian ( VTH  ) whose conservation is in the heart 
of mechanics2. Therefore mechanics has to consider non conservative properties through 
extensions/approximations which preserve the beauty of the quadratic properties. The system 
can be considered as an object on its own thanks to the principle of Poincaré )0( rotdiv  or 
equivalently to the absence of monopole which possibly will break, at the boundary, the 
symmetry imposed by the principle of d'Alembert. The Hamiltonian approach leads to the 
normal modes as the solution of the dynamic, that is tie  , a solution of the operator 222

xt c   

which is symmetrical in t and x, and invariant with respect to the inversion of t and v, meaning 
the absence of time arrow and space orientation. The harmonic analysis naturally becomes a 
central tool of the mechanics.  
                                                 
2 This conservation is crucial for most of the Hamiltonian systems, although a hamiltonian system may not 
conserve its energy (Arnold) in some special cases where there are, for example, nonconservative forces. 
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In the perspective of confirmation of the emergence of irreversibility from statistics, Badiali, 
after Souriau, added to the above analysis some complementary elements, as for example the 
symplectical step (Libermann, Souriau). He extended (2008-9) the analysis of Stengers (I. 
Stengers, 2003) to quantum mechanics by making the different construction steps of the 
mechanics into hierarchical stages: the Heisenberg step, the Schrodinger step and the 
Feynman step, each of them giving rise to subtle additions of new concepts and not only new 
point of view on the existing concepts. These additional concepts (Badiali) lift the degeneracy 
of physical laws which remained circumstantial despite their generalities [C* algebra 
(Murphy) associated with Heisenberg and the algebra of von Neumann in statistics, fractal 
trajectories, the role of automorphism and of time with the Tomita theorem and the KMS 
conditions applied (or not) to the path integrals of Feynman (Feynmann)]. Following A. 
Connes (A. Connes) and Roveli (2007) approaches, Badiali's work is an interesting deepening 

into dynamical foundation of thermodynamics ( )ˆexp( HZ  ). Admitting the multiplicity of 
paths (Feynman), it offers a more fundamental understanding of the ambiguous status of time 
in the absence of geodesic but also  
 

 the exponential character of partition function in the standard case 
 the status of the H theorem in statitical mechanics and the meaning of Loschmidt-

Zemerlo’s controversy ( inversion of all velocities of all particles ) 
 the status of the Lagrangian action  12 tML  as relativistic invariant which is distinct 

from the Euclidean action  Hdt  

 The absence of Hamiltonian invariant in General Relativity from the factual curvature 
of space-time 

 
The work of Badiali  sheds light for example on the question whether or not exists a time 
constant beyond which it is possible to introduce the thermodynamics constraints and 
irreversibility since inside of which the physics loses both the notion of means and its 
experimental attributes. One more time the key concept of time seems completely associated 
with the concept of velocity which appears a posteriori as a generic character of the 
mechanics (Targ). But one can ask  the following question, i.e., why the reversibility of time 
might be a justification of the notion of velocity which imposes de facto, not de jure, the non 
commutativity of space-time (Connes, Roveli), and how the heuristic hypotheses might have 
been later changed to commutativity from the space-time homogeneity principle (Noether). 
  
Such an assertion has been questioned by an engineering work on the dynamics of ‘energy’ 
transfer in fractal geometry (Le Méhauté 1982-1984). Contesting, from the consideration of 
fractal geometry, the universality of Hamilton point of view, the authors questioned the status 
of velocity as a dynamical state variable in fractal media. This position opposes the 
distribution theory and experiments against the opinions ofsome authors searching for the 
marginal adaptation of classical mechanics to the fractal limit conditions (Gouyet, Stauffer, 
Vannimenus). In such a media, there exists an intrinsic anomalous link between space and 
time, determined by the fractal structure, which is more general than the notion of velocity. 
This new variable ( 1tLd ) is needed by the consideration of the non differentiability (Tricot) 
of ‘generalized phase’ space and hence by the approach of Fourier transformation. This 
transformation leads to inter-scale strong correlations inside the set of Hamiltonian normal 
modes (states) or related coarse-graining analysis. The pertinence of this idea was initially 
supported by the observation that the diffusion constant represents only a particular case of 
that new class of generalized variables ( 12 tL ).  
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The Fourier transform, as the main tool of this distribution approach, implies a singular self-
similar tiling of space-time (Bedford, Hirsch). By using adequate gauges this tiling can be 
 

 either Euclidean (d=1) if the space is continuous, without energy in the dipole 
(d'Alembert) but with arbitrariness of rules for the choice of self-similar tiling  
(topology of torus), and with velocity as a state function of the dynamics.  

 or, if d=2, hyperbolic (Toubiana) by the consideration of discreet space as an 
ensemble of singular points coupled with self-similar topology of punctuated 
torus (Bedford). We will all the same emphasize that there are two classes of 
possible tiling, that will upset the viewpoint which is after all orthodox. 

 
In fact, whatever is the topological difference of self-similar space-time tiling (fundamental 
group and domain) between the Euclidean (d=1) and hyperbolic ( 1d ) approaches (Berline), 
both tilings require to ground the time concept via a dynamics (Badiali, Bedford). The tiling 
points out the scales carried by two automorphisms: one concerning the space and one 
concerning the time. The last one AA   is based on a variable  , where must be 

normalized from space either in the external form of velocity (Euclidean), or in an internal 
form of a time constant 1  which requires an heuristic hypotheses on space time 
relationship. Badiali (2009) reported the same kind of problem for the Feynman’s path 
integral of quantum Mechanics on the basis of the theorem of Tomita-Takazati – there exist a 
one parameter group of automorphism which leaves the algebra globally invariant. In fractal 
geometry this parameter is complex (Le Méhauté 1997) and involves non commutativity with 
respect to time (see below). Hence a specific dissipation arises. 
 
This is easy to understand. In the Euclidean case, due to the fact that the only singular point is 
the, somewhat arbitrary, original point of the axis, the paving leads to the torus topology of 
the dynamics (Hirsch). This introduces the operator 222

xt c   into a formulation associated 

with the existence of normal modes of the space-time manifold and of cycles, or their 
equivalent in quantum mechanics (Hilbert space, eigenvalues or eigenfunctions). In this 
approach, the reversibility is obviously the consequence of our arbitrary adjustment of the 
scales we use for the dynamics (coarse graining without specific correlations due to the only 
spatial character of the Fourier transform of a velocity). We are here at the centre of the 
paradox which opposes the mechanics to the thermodynamics and Hamilton to Carnot; a 
paradox stressed by Prigogine and his students who, after De Donder, turned out to make the 
irreversibility (viewed from mechanics) a metaphysical property relative to the arbitrariness of 
imposing ad hoc approximation of measure on a continuous and homogeneous space-time 
(Noether). This conclusion is a petitio principii since it assumes a priori the absence of 
correlations and of the pertinence of the basic Hamiltonian concepts such as velocity.  
 
If we keep the debates at the same level of analysis, the situation may partially change if the 
space-time or the phase space is considered as a distribution of singularity (Schwartz) and 
more specifically a scaled set of singularities (Le Méhaute, Mandelbrot).  As a matter of fact, 
if space-time become discreet, due to some mathematical constraints imposed by the 
singularities (Schwartz), the impossibility (unless for the case where the time is infinite) of 
interpreting the singularities gives rise to non commutating properties at infinity.  Therefore 
irreversible factors emerge from collective properties of these singularities. The analytical and 
topological reasons are the following. The singularity exists on its own and is independent of 
whatever analysis scale and approach, especially for the initial or final equilibrium state with 
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 ,0t ,  that is, for all 0,  in Fourier space. Every test function (Schwartz) used to 

characterize the singularity leads an energy u  as a mathematical asymptote, and a limit 

distribution r . This test function must be a coarse graining procedure characterized by 
renormalisation properties. It is in practice the test function which allows an access to the 
singularities. Like derivation it implicitly carries the variable of time through the 
automorphism driven by the procedure. It is just this function which couples in Fourier space 
the intrinsic properties with the external characteristics of the test signal. In practice, and 
except in a few number of cases, the convolution, which points out the correlations, breaks the 
Hamiltonian properties and introduces a new time factor.  
 
The modalities for Poincaré tiling of the standard tree-hyperbolic space-time (Berline, Hirsch, 
Toubiana) partly mimic the exponential relaxation process in the Fourier space and  clearly 
give rise to geodesics (analogy between arc of circle and transfer exponential function leading 
standard harmonic ratio, see Figure 1). The coarse graining may lead to some irreversibility 
factors through the discreet variable  Z =R as well as through the relaxation time 

RCc   /1  (Figure 1).  Nevertheless, the above analogical viewpoint of irreversibility is 

still to be strengthened from the consideration of algebraic topology so that it is more robust 
against possible objection from mechanics. Therefore we should move farther to fractal 
environment starting from Poincaré tiling ( Figure 1) and introducing fractal correlations.  

 
 

 
Figure 1 : Hyperbolic tiling of a complex plan using of dynamical functions on 




i

R
Z




1
)(  (hyperbolic 

geodesics), in relation with the modalities of  exponential relaxation. Notice the harmonic ratio cvu  //   

where vu / is a hyperbolic distance. The boundary of the punctuated torus built from Poincaré tiling has an 
angle at infinity equal to zero. 
 
 
Scaling correlations 
 
As we have previously indicated (Le Méhauté 2005), the topology coming from the tiling in 
fractal medium can be founded neither on the periodic fundamental domain of the Poincaré 
type [stemming from the orthodox hyperbolicity (Bedford, Berline)] because the analogy 
pointed out above seems an ad doc representation, nor a fortiori on the simple torus, but on 
the punctuated torus opened on the boundary. We assert that it is just this singular 
punctuation, carrying the geometry correlations inside it, which leads the dynamic to intrinsic 
irreversibility. It is imposed by the space time parameterisation of the geometry (manifold of 

geodesics). Through an extended harmonic ratio      cvu //   which controls its value, 

)(Z

i

 c /
uv
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the angle over the punctuation (at infinity) definitely breaks the symmetry associated with the 
operators accessible to the normal modes and makes the physics on the torus questionable but 
also the physics on Poincaré punctuated torus (Bedford). In order to show all the subtleties 
related to the emerging punctuations opened on the boundary, we will make a detour by the 
analytical foundation of electrodynamics, a son of the differential geometry. 
 
External algebra and their reductions 
 
The orthodox physics is based on the homogeneous space-time structure (Noether). 
According to Kant, space-time is an a priori frame of human conscience but, according to the 
disciplines, science needs to classify the operating variables in the right space-time for the 
description of reality. Both points of view have to be related. Starting from the example of  
electrodynamic variables, we can interpret the laws of electrodynamics (Le Méhauté, 1989, 
1995) as shown in Figure 2 in a 3 dimensional schematic view, with the extensive variables 
on a back plane, the intensive variables on a first plane separated by a certain ‘distance’ which 
represents the matter . The spatial gradients are given in horizontal direction and the temporal 
gradients in the vertical direction. 
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Figure 2 : 3D representation of the empirical variables for the Maxwell equations of standard electrodynamics. 
The time is necessary for the expression of flux and moments. However, it cannot be extended without giving a 
sense to the notion of velocity. The velocity appears as the key factor to give a meaning to space time 
differentiable manifold and even to give a meaning to external algebra, that is to rise the concept of matter (here 
seen through L and C)   
 
This figure contribute to the geometrical representation of the operator Laplacian ux  

( ))(.)(.( Arotrotugraddiv  ) as well as to d'Alembertian ),()( 22 txudc tx   and give rise to 

normalizable forces JBqEF  . The limit conditions impose, among other things, the 

continuity equations 0 divJ
dt

dq
 upon the dynamics. Geometrically, this results in the laws 

formulated through the Maxwell equations. Hence we find 0




tc

B
rotE  ; 

0divB  ;

q

divE   ;
ctc

E
rotB







 , the quadratic form of energy  22

2

1

2

1
BEU   and 

BcES   by analogy to the mechanics concerning the momentum density. The 
electromagnetic wave emerges from the diagram with the forms 

0
22

2





E

tc

E
; 0

22

2





B

tc

B
. The suppression of the potential vector A simplifies the 

diagram which has only one source of extensity and leads to a diffusive form 
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0




t

UC
U . The quantum mechanics is only a reduced form of the same geometrical 

approach even if the latter is, for this purpose, transformed into the complex space: 

),()(
2

),( trrV
m

tr
t

i  



 


 

 . Figure 2 is a simple representation of the geometric 

differential properties which support the Maxwell equations (Spivak). 
 
This diagram can be simplified in the way of E. Vieil (Vieil, 2008-2010) according to the 
principle of d'Alembert, by considering that the notion of scalar and vectorial spatial gradient 
naturally enters into the definition of state. According to Vieil, the link defines the dipoles. 
Like Lagrange and d’Alembert proposal and following the expression of mechanical energy 
( FdlU  ), Vieil considers two classes of coupled variables which, independently from their 
thermodynamic nature (active for qU  or reactive for q ), obey the conservation of energy.  

                                              dqEU qq             qqq dpI   

q  is the transferred extensive quantity similar to the momentum in mechanics, qE  is the 

related field 1, from which the transfer arises, qI  is the flux of q, that is q and qp  is the 

momentum (field 2 : B) from which the force can be derived. We then get Figure 3.  
 
 

 
 
Figure 3 : Graphic representation of the variables of all physical process according to Vieil (2009). One notices 
the disappearance of spatial gradient with respect to the Figure 2. This diagram authorizes the extension of the 
mechanic concept to other field of the thermodynamics (electricity, chemistry, surface and thermal properties). 
Far from that point it authorized the analysis of the coupling between different fields (Energy conversion). 
 
Although Vieil turns out to be able to find the concept of dipole, and hence the concept of 
discreet space, the advantage of his approach with respect to the generalized expression of the 
external algebra in Figure 2, that is to delete some variables in order to keep only the temporal 
derivation, is legitimate only if the notion of velocity is a priori taken for granted. In view of 
this implicit hypothesis and in the frame of an analogy with mechanics, it is possible to 
suggest from Vieil’s proposals one further step with a homogenous version of the diagram by 
extending the formalism into reciprocal space, i.e., by using, to represent the temporal part, 
the Fourier transformation (with the normal mode of frequency i ). We get then Figure 4. 
This approach turns out to transform the variables of Vieil, especially     qqq pEI ,0, , into 

singular points of the fundamental topologic domain based on an automorphism of the 
Poincaré type (Figure 4), so that the variables are associated with a dynamics over q which is 
invariant from the viewpoint of the dipole energy )0(qE . 
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Figure 4 : Double representation in  tL,  and in    iZ ,(  of the dynamics founded on the Vieil’s variables. 

Here the fundamental extensity q in space-time gives rise to an ensemble of fundamental variables in frequency 
space. These variables acquire physical sense only asymptotically in accordance with the exponential relaxation 
(the hyperbolic geodesics represented by cyclic arc). The reversibility in time and frequency is conserved by the 
factual symmetry. One notices that in order to work out this diagram, Vieil cancelled the spatial gradient 
(implicit he admit the principle of d'Alembert).  
 
 
 
This figure allows us to introduce the following links: 
 

 between the gauges of measure related to velocity  tL / . The Fourier transformation 
of the velocity )(  is associated with a length and )(Z  the impedance of the 
dynamics is therefore related to an ‘interface’ for exchange. This relationship seems 
very conceptual but it naturally comes from the simple experience with complex 
medium (storage of energy, viscoelastic dynamics, thermodynamics of crystallization 
and percolation). In Fourier space, a flux is only a charge (capacity) proportional with 
the factor Z, to a force (impedance, see Ohm law U=ZI  for example). In the absence 
of the source  ,  the flux density is equal, with a geometrical constant, to the force. 
Hence, in Fourier space, Z/1  is nothing but the measure of the interface of energy 
storage or exchange (length, surface, etc). From this which is the basement of the 
TEISI model (Le Méhauté 1982), a generalization of the concept of capacity named 
Fractance is authorized. Hence it is in practice possible to put in the diagram two 
different representations, i.e., the representation based on  tL,  and the one with 

  iZ ),(  which take into account the concept of velocity. Assuming the presence of 
a temporal horizon, Z is a variable linked to )(  by a relation of Mobius type 

)(

1
1

)(

1




Z
. The term 1 indicates the presence of a source of dissipation  , that 

is of a resistance, so a dissipative term clearly related to the behaviour at infinity ( on 
the punctuation). This relation expresses both the pertinent transformation of 
displacement associated with a source which can be shifted according to our will and a 
pertinent inversion of the variable associated with the possible construction of 
reciprocal tiling (for example the diagram of Brillouin in solid state physics). Among 

t

q

)(qI

)0(qE

qp

L

i

-q R

)(Z
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consequences the relation 1)( i  which implicitly expresses the pertinence of the 
concept of velocity and resolves the problematic by asserting the conservation of 
measure in two reciprocal phase spaces  ], tL  and   iZ ),( . The introduction of the 

complex variable i is due to the arbitrariness of  with respect to , or to the 
conservation of certain velocity.  

 
Figure 4 surprisingly keeps the Hamiltonian characteristics . The transformation of Fourier of 
a velocity is a length )(  a gauge of the reciprocal space. In this framework, R appears as a 

limit of ),0(  Z . The two extensities  )(, qIq  have a spatial localization in the sense 

of )0(   but the two intensities  qq pE ),0( , which are respectively the force constituting 

the spatial pivot, and the momentum the frequency characteristic, have singular position on 
the axis. The physical sense of the diagram is obvious. In space-time, there is no other 
extensity in the thermodynamic sense than the dipole  qq ,  accessible at long time limit of 

the dynamics. The dipole  qq ,  is in addition the sole source of the energy )0(qE . The 

resistance is strictly related to the geometrical distance of the dipoles. If the space time is 
homogeneous, this distance is related to a length and the resistance is an ad doc distance.   
 
The above analysis sheds light on the physical signification of the constants L and C. These 
constants are of spatial nature: progression and regression in the definition of the dipole 
through C, and cycle in the definition of the moment through L. The simplest understanding 
of these constants is supported by the homogeneity of the state functions in the sense of Euler 

     qSqS    where S is certain measure in space-time-matter. In this way, whenever we 

write qCUq  , the expression dqEU qq   takes place by the time derivation 

qtq URCdU   where RC  appears as a time constant. Obviously, this constant plays a 

central role whenever the dynamics is described with a series of stationary states without any 
correlation, hence the orthodox physic arises from differential integer analysis: 
 

operator 
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1
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
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Geodesic  t  or  1
0

 Ltv  

Exponential response

 12
0

 tLD  

Diffusive response 

 1
0

 Ltv  

Wave response 
 
Table 1: Differential operators of different integer order for different dynamical processes. 

 
 
 

All this above statements are relative to an elementary examination of the extended 
differentiable paradigm of the mechanics. But what happens if the phase space becomes 
fractal and non differentiable? A non standard heuristic reasoning (Hoskins, Le Méhauté) can 
lead to conceptual difficulties concerning the notion of measure (Tricot) and the notion of 
dynamic and geodesics which can only be reached via distribution theory (Schwartz).  
 
To summarize the advantage of the orthodox viewpoint -presented above, which nevertheless 
conjugates the Fourier time-space   iZ ),(  with the standard time-space  ], tL -, as a seed 
for future develoments, it naturally suggests, from geodesic geometry, the extension of the 
analytical form of the function  )(Z  to the form  )(Z . This analytical extension of first 
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order (half circle, zero angle on the boundary, standard harmonic ratio, Poincaré paving) into 
fractional order representation (see below) conserves the hyperbolic character of the geodesic 
(circle arc), expands the harmonic ratio into fractional one, restricts its Fourier space-time 
expansion and gives rise to the boundary singular behaviour. The related topological 
extension, widely justified experimentally (see reference in Le Méhauté 1990 and 1997), 
reinforces, in addition, a consequence of the heuristic hypothesis formulated in the TEISI 
model (Transfert d'Energie sur Interface Self-similaire). This model is founded on the 
projection of fractal phase space onto the Fourier space and on the conservation of measure in 
that space by taking into account the fractal property in a generalization of the concept of 

velocity through   1)( /1 i . 
 
This detour by the fractality will shed light on the real limits of the mechanistic philosophy if 
one keeps the point of view of Noether, of d’Alembert and of Hamilton for answering the 
question of irreversibility as a simple consequence of our cognitive incapability and of 
approximation (Prigogine).  This detour leads to the consequence of the geometry of the 
complex environments, that is, of the generalized metric of the space-time, on the 
determination of irreversibility. Let us now enter into the details of the analysis 
 
 
Equilibrium and periodicity 
 
What does the concept of resistance mean? The answer can be given indirectly by the 
reasoning around the differential equation of first order which describes the proportionality of 
the flux to the force pushing the system to equilibrium. This equation will be later expended 
under the form of fractional differential equation. We used here the word equilibrium which, 
as shown below, contains certain ambiguity. To understand it, the basic differential equation 

)]()([
1

)( tUtU
RC

tU
dt

d
   must be used. The horizon represented by the equilibrium 

)(U  imposes to the dynamics a source   conducted by an external force which behaves 
as teleonomical characteristic. The Fourier transform of this equation is nothing but 




iRC
Z




1

1
)( , the impedance of a parallel RC circuit with 

)(

)(
)(







U

U
Z . The solution 

of that equation is an exponential function /)( tetU   where RC . We get the notion of 

time constant from this particular case. The presence of R in  is an explicit dynamical 
expression of the existence of an asymptotic state called equilibrium (horizon) but also it 
signals a thermodynamic irreversibility. In other words, the question is: is there an 
equilibrium thermodynamics state only under the condition of the existence a priori of a 
dynamics having exponential solution? As a matter of fact, the exponential is the only 
function which contains, locally, all the information carried globally by the dynamics. It is the 
only function that is analogous to its derivation. Put it in another way, one does not define 
intrinsic equilibrium just confined in its local behaviour without reference to irreversible 
global process characterized by the presence of R. Let us observe that the exponential 
formulation guarantees also the periodicity of the standard state through the link arising via 
the standard algebra (standard relation between summation and multiplication (Nivanen)). 
This periodicity can also be found from tiling the space. Is it associated with the presence of 
hyperbolic geodesic giving a sense to the least action and to the variational calculus, in both 
configuration space and Fourier space? Does it authorize the reduction of chaos to certain 
form of determinism mechanistic (Mandelbrot 2004, Prigogine)? Some (mathematically 
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coherent) answers to these questions can be found in the fractality and fractionarity of the 
dynamic. 
 
Fractality, fractionarity and associated topology  
 
On the basis of the experience in the fields of storage of energy in fractal media (Le Méhauté, 
1982), one of the authors has concluded long ago that geometry is the source of entropy. This 
conclusion was latter confirmed by the propagation of electromagnetic waves in 
heterogeneous media (Jonscher 1983, Le Méhauté 1989-91) as well as in viscoelastic media 
(unpublished). Conversely, many authors show that fractal born easily from flows of 
aggregation, percolation, deposition etc (Sapoval). If these observations does not have 
sufficiently robust conceptual basis to relate geometry and irreversibility they bring to the 
laboratory sufficient reasons to address theoretical questions based on the dynamics of non 
standard hyperbolic geometries. 
 
The introduction of irreversibility into mechanics via the emblematic equation of first order is 
a tool to extend the mechanical analysis into Poincaré hyperbolic environment (Figure 4). 
Nevertheless, as shown by the TEISI model, the operator of fractional derivation in time 

(Poldubny, Samko, Spanier):   idTF t )(  describes the fractal like dynamics. Hence the 

generic first order equation suggests a simple canonical extension of the dynamics using a 
fractional order operator. It is this operator which, making a breakthrough in the standard 
differential analysis, questions with respect to irreversibility, the paradigms of differential 
physics and then the mechanics . This can be briefly remind in table 1 without reference to the 
relationship between these operators and the fractal geometry established elsewhere (Le 
Méhauté, 1990-1997), 

 

x
f

t 






0



 
x

D
t 







02/1

2/1

 
x

f
t r 2

2

0 









 

  Ltf0  

Power law response 

 12
0

 tLD  

Diffusive response 

  tLfr
2

0,  

Fracton response 
 

Table 2: Fractional differential operators of different orders. Note the difference from the corresponding 
operators in Table 1. 

 
The interest of the generalization of differential analysis is to get geodesic and differential 
link between qIq   and qq Ep   controlled by a unique transfer function of the form 

  


i
Z




1

1
)( . This analytical form is associated with an -hyperbolic geodesic in 

Fourier space (arc of circle). With a nonexclusive example d/1  for a -fractionnal 
differential form in a fractal space of dimension d, the geodesic can be related to an energy 
transfer through a d-fractal interface according to the -differential equation 

)]()([
1

)(
/1

/1

/1

tUtU
RC

tU
dt

d
d

d

d







   (Le Méhauté 1982). The diagram 5 shows this particular 

mode of representation in the space  tL,  conjugated to the space   iZ ),( . 
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Figure 5 : Elementary form of the fractional transfer function of order  (impedance) on the basis  tL,  

and   iZ ),( . With the lifting of degeneracy of standard time, one sees the interesting aspect of the use of the 

two basis. The partial arc of the circle discloses the presence of a geodesic in a right space of representation. The 
spatial extension of this arc in space-time and frequency discloses the fractal character of a sub-manifold 

(hyperbolic distance given by    1//  cvu and the control of the dynamic by a fractional differential 

equation. This representation reveals in addition the singularity at the boundary required to close any quadratic 
form. This singularity will be associated to the opened punctuation of the torus, tiling of the manifold, which 
support the dynamic and therefore the geodesics.  The fractal contribution leads the appearance of a new time 

component  t  which does not play the same role as a new spatial contribution  L . This difference will play a 

major role in the understanding of irreversibility (Figure 8) 
 
The figure 5 discloses the restriction of the Poincaré hyperbolic geodesic (standard semi 
circle) which can produce a symmetry breaking (boundary properties). This fractal 
consequence on the dynamics implies the disappearance of state functions and the rising of a 
nonextensive algebra (Nivanen) for the assessment of the thermodynamic extensity and 
intensity variables addressed for instance by Vieil’s analysis. One of the consequences of the 
formal analysis related to the symmetry breaking is a generalization of the normal exponential 
and logarithmic functions used in an extended statistical thermodynamics developed for 
complex media (Nivanen). More over, in the framework of the statistical mechanics, this 
extension leads to the generalization of the statistical laws taking into account the 
incompleteness of the estimation field of the random variables (Ou,Wang) and to a more 
general mathematical measure on non extensive set (El Kaabouchi).  
 
Although power laws does not lead to the convergence of the temporal series, this analysis 
paradoxically maintains the concept of horizon )(tU . This concept is factually extended to 
the notion of equilibrium as an expansion of internal scaling correlations. This equilibrium in 
the sense of a quadratic form, is the result of a conjugation between two complementary 

L

t 
 


i

Z



1

1
)(

 i
R 

 L

 t

i
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power laws behaviour with characteristics  et 1- ,taking into account the fractional order of 
the singularity on the boundary.  
 
Even on waiting if possible, of the construction of the generalized exterior algebra, the 
algebraic and geometric formulations show a proximity, noticed long time ago, between the 
diffusive operators and the operator of order ½. Let us remind that the diffusive operators 
conjugate conventionally the equation of first order and the equation of continuity. Such a 
definition may probably be bypassed if we observe that, with 1)( 2 i  , a generalized 

velocity exist which takes the dimensional form  2/1Lt   
 
In the absence of a dual basis  tL,   and   iZ ),(  and taking into account the transfer 

impedance 
  


i

Z



1

1
)(  with 2/1 , we might believe that the introduction of the 

fractality expands the transformation of the dynamics solely into a double effect (i) scaling 
(through  ), on the one hand, and (ii) a rotation of axis without temporal consequence on 
the complex plan (through i ), on the other. However, as shown by the representation using 
the double basis (Figure 1 to 5), there is an additional major effect than mentioned above. The 
geometric treatment of the parameterization of )(Z  imposes a lifting of the degeneracy of 

the punctuated singularity on the boundary (short or long time)    tL , . One may say that 

the initial Poincaré like singularity at the boundary, a point so that it has neither spatial nor 
temporal extension (Figure 1), acquires an emerging structure coming from the correlations 
related to the -distribution. The fractality rises time-space singularity. 
 
The splitting of the singularity on the boundary, due to the collective properties of the 
hyperbolic geodesic, affects the dynamics through the border properties in the space 
  iZ ),( . They implicitly impose a curvature of all space time  tL, . Besides the scaling 
properties, the dynamics undergoes the effect of acceleration hidden behind the fractionality. 
The notion of time can not be reduced to a simple cyclic series (state functions from Fourier 
transformation or eigenfunctions in Hilbert space) since crucial space time correlations are 
partially lost in the sole geodesic. There is an irreducible space time residue which closes the 
energy invariance and therefore the entropy measure as a state function whenever a fractal 
dynamics takes place. 
 
The additional transformation related to the splitting of singularity on the boundary plays the 
role of the closure of the fractal system in order to put it in contact with a thermostat. This 
closure returns the vocation of Noetherian invariant to the energy (Kosmann-Schwarzbach), i.e., 
to the relative quadratic form3. This quadratic closure shows another advantage: it gives a 
nominal equivalence to the two complementary parts of the arcs of circle, and then reduces, as 
shown in Figure 5, their inverse transformation with respect to the pole within two parallel 
straight lines, affected by the similar, but not equal, singularities on the boundary. More 
precisely, these two singularities denoted by ( 

 R, , 

1
,R ) are complementary one to another in 

the quadratic form. This analysis turns out to modify the diagram to construct the Figure 6. 
This figure underlines both the role of the splitting singularity in a representation leading to 

                                                 
3Although the conceptual tools of extension of exterior algebra are not mature at this stage, one can attribute the 
existence of magnetic monopoles to such property (unpublished). 
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the tiling extension, and the two singularities 1
,


 R , 21

,




R  sharing R as a common variable 

linking the fractal with the thermo-state (periodic conditions for whole boundary; quadratic 
global form) , that is with a certain value of temperature. 
 
Let the arcs of circle be denoted by )(Z  and )(1 Z , we can generalize the periodic and 

non periodic hyperbolic tiling of the complex plan (Berline) using these geodesics. It is in fact 
possible to use the elementary tile from Figure 5 in order to cover the space. The tiling takes 
place in an imperfect manner with two distinct components, for the pavement: a covered and 
an uncovered singular zone. Despite its operational simplicity – it is in fact possible to 
reproduce simply the techniques of tiling of a plan and of the circle of Poincaré – this tiling is 
worthy to be mathematically deepened since it contains obviously open questions about the 
topological, and analytic formulation of the related automorphisms and associated dynamic.  

 
 
Figure 6 : Extension of the Poincaré fundamental domain required for the singular tiling of the space-time when 
the dynamics is controlled by a fractional differential equation. We can notice the splitting of the energy related 
to the appearance of the singularities at the boundary as well as the complementary metric character of these 
singularities. Such a diagram opens plenty of questions in topology as well as in the physics of fractal media.  
The appearance of the singularity at the boundary is clearly related to the concept of emergence in physics. The 
rising of this singularity may even sheds light upon the question of emergence in complex systems.  
 
Let us notice that the to semi circle are related to backward and forward geodesics. What will 
interest us now is not only the tiling question but the question of degeneracy of the tilling 
which occurs when 2/1 . We noticed previously the specific role of the factor 2/1  
which returns the problematic to the case of diffusion in a field of Noetherian space-time. 
Extended at tiling, the singularities represented by the factor ½ return the spatial and temporal 
problematic to the question of the zeros of the Riemann zeta function. What happens if 

2/11   ? The Figures 5 and 6 clearly indicate a mechanism of fusion-confusion of 
singularities and dynamics. The angle of phase becoming equal to 4/ , the resonance of the 
quadratic form becomes the limit of the two fractal forms of )(2/1 Z ; RR 2.1

, , 1
,


 R = 11

,




R , 

2/2/1
, RRL  . In practice, the imperfect pavement proposed above and the related geodesics 

degenerates into a dual singularity. (Le Méhauté, 2009). The problem of zeros of the zeta 
Riemann function arises. 
 

)(i

0


 

 1

)( 0,0

qE

)1(  i

 


i
Z



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1
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Zeta function 

The zeta function is given by a sum of a series of power functions 





1

1
)(

 


s
s  with 

 is  . One recognizes (Le Méhauté, 2008-2009) in the real part of the zeta function the 
hyperbolic distance measured on a fractal  arc of circle given by )(Z  which allows one to 

plunge the whole problematic relative to this series and also to its avatars ( )(s  function and 

L functions) into the complex plan. We also recognize, in each of the forward (+) and 
backward (-) arcs of the intersected circles )(Z , )(Z , )(1 Z  and )(1 Z  the real 

part of the four symmetrical components of the Riemann function, i.e., 
 )1(),1(),(),( ssss    where  is  .  
 
We know in addition that the zeros of the zeta function are discreet and infinite in number 
since they are related to the prime numbers (Edwards, Slater). The zeros come in practice 
from an ultra-degeneracy over the tiling. Because the variable   is free and used for the 
screening of the complex plan, what happens from the degeneracy of the tiling of chaotic zeta 
trajectory with  is relative only to the functions )(Z )(Z )(1 Z )(1 Z ? This 

degeneracy appears for 2/1 .  , which is convergent with 2/1 , will transform the 
intersection of the arcs into a fusion of the arcs, making the incomplete tiling disappear. There 
is no more difference of parameterization between backward and forward. The generalized 

harmonic relation     2/1// cvu    sends to the infinity the quadratic resonance factor 

underlining the complementary   and 1  transfer function )(iZ  (Figure 7) and therefore 

the resonance of the quadratic substructure managing the energy.  
 
This is just the content of the Riemann conjecture which occurs as a necessity when the 
dynamic representation of the singularities from )(Z )(Z )(1 Z )(1 Z vanishes. 

The time gives to the conjecture its specific representation (Figure 7 and 8) and, through a 
derivation of order ½, returns the problematic in the continuous field of the type  22

0
2

xt v   to 

a classical diffusive xt D 2/1  and to an almost symmetric gravitational 

problematic   2/1/1 xt   . The precision ‘almost’ points out the fact that to exchange L to t 

we must take into account a shift R which introduces a fundamental irreversibility; the price 
for the emergence of the matter.   
 



16 

 
 
Figure 7 : A schema showing the approach leading to the zeros of the zeta function of Riemann from the 

expressions of different )(Z . The real term in the zeta function is nothing but an extension 

   1//  cvu of a hyperbolic distance (harmonic ratio) of  order measured on )(Z . This use of 

)(Z  allows one to plunge the real part of zeta function into complex space and hence to disclose a link 

between the real part in  and the complex part in This double plunging relates 

)(Z )(Z )(1 Z )(1 Z  to ),(s ),(s ),1( s ),1( s   being a screening variable as 

well as a metric variable, the degeneracy observed for the zero of the zeta function will be first related to 

)(Z common property. The diagram, given at the neighbour of zero, points out the residue of tiling. It  

shows that the degeneracy is clearly obtained for  2/1  (see also Figure 8). Additional properties related to 
prime number are related to the  screening. 
 
 
The Riemann conjecture tells us that, beyond the equilibrium in the traditional sense as a 
result of exponential relaxation, and for all fractal dynamics, there is no equilibrium in the 
strict sense of the word but a conjugated state of two complementary ‘dynamics’ in   and 

1 . This duality of the system, -thanks to the additional independent variable   playing the 
role of temperature-, can make the system converge punctually to a non dissipative state (zero 
of zeta function) which is therefore stable state. This happens in some particular situations 
where the chaos becomes again the Brownian like chaos with the dissociation of the 
properties of the space from the dynamics (velocity) according to Hamiltonian properties i.e., 
integrable character. From the work of Stengers, we notice the whole cognitive difficulty in 
the treatment of irreversibility. It is because the Hamiltonian system is integrable that the 
balance between cause and effect is reached and that subsequently the notion of irreversibility 
disappears. On the contrary, the new vision introduced by the fractal dynamics is the 
paradigm of a geometrically irreversible dynamics.  
 




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Figure 8: This is the case of =1/2 giving rise to the degeneracy of the tiling. The geometry partly disappears 
here. The time constant of the sub quadratic form tends to infinity. The space time can no more be tiled as usual. 
More precisely, the residual discreetness is only reducible within two complementary discreet subspace-times 

 2/12/1 , tL   and  2/112/11 , 
Lt  . The complete analysis requires (i) a complex representation of the time 

  0
2/1 it  , (ii) a complex representation of the space   0

2/1 ilL   (iii) a quasi-commutative exchange 

between both ‘transfer functions’ Z (discreet or not), subject to the introduction of the irreversible terms R which 

belongs to a distribution of ),( 00 lR  . R takes into account the shift associated with the non commutative 

permutation of  tL, ,  that is, the non commutative relation between diffusive constant  12  tLD  on the one 

hand which control the  2 dimensional degenerate chaos  
  2/1

00

0




il

l


  and the 2 dimensional 

gravitation constant  12/1:  Lt  under the control of  
  2/1

00

0

li



  on the other hand. In the 

absence of spatial and time gauge, ),( 00 lR   must be the distribution of prime number. Due to the introduction 

of a shift into the exchange tL   irreversibility is therefore a factor of the discreet space time structure when 
=1/2, that is at the degenerate state. There is Time/Temperature sub-relation due to incomplete algebra of space 
time (Nivanen). 
 
 
The -dynamics carries on itself a requirement for taking into account the fractal set of 
singularities and the correlations between scales (dendritic growth, aggregation, extremum 
phenomena, etc) hence the irreversibility appears naturally (Le Méhauté 1989). If the dynamic 
is controlled in the frame of chaotic environment, this environment must impose an ½ 
fractional dynamic to have any hope to reach a non dissipative Hamiltonian properties. The 
fact that the zeros of the zeta function are related to the stable quantum Hamiltonian in 
Hilbert’s space, is just a consequence of fractal space time game of hide and seek around time 
and space of the dimension 1 or 2.  
 
 
Facing the mechanics:  the thermo-dynamics 
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The breaking of the symmetry, -evidenced by the presence of the singular zeros of the 
Riemann zeta function-, is introduced here from the fractional dynamics. This dynamics is 
very different from the one induced by the baker's transformation (no trajectory and no point 
object in phase space but only the expanding or contracting lines (Prigogine 1980)). However, 
the fractal chaos and the fractional dynamics related to -differential forms do not exclude the 
concept of trajectory which can be found through the generalized hyperbolic geodesics 
underlining )(Z . Precisely, if one excludes the particular cases 2/1 , the dynamics 

which interpolate the rare non dissipative signatures are in general irreversible. 2/1  is 
characterized by an intrinsic hidden quantified irreversibility. Despite the history of the Queen 
of sciences which makes integrable system, optimal trajectories, variational principles, 
asymptotic equilibrium state, and the paradigms fixing stable and unforgettable references 
with plenty of symmetries, the fractional dynamics turns out to indicate the contrary, i.e., the 
generality of the dissipative system. Although the dynamics with chaotic character are still 
related to optimal trajectories, these trajectories raise dual singularities on the boundary. They 
are irreducible in   iZ ),(  space as well as in the space  tL, . These singularities are dual 
also because the collective correlations of the trajectory bear additional ‘elements’, -we mean 
emerging organisation and group transformation-, on the trajectory and its boundary, which 
makes the system couple with the thermostat or the environment. For 2/1  the dual 
singularity is its own ‘thermostat’. That is why the idea of the relation between irreversibility 
and approximation keep probably a part of truth. 
 
The respectful criticism of the works of Hamilton from fractional analysis, leads the 
emergence of the geometrical irreversibility. Carnot belongs to the world of the engineering, a 
world of action, of objective intelligence, of creativity, and of progress; a world grounded by 
the following question in mind « what happens if… ? » (Stengers).  Like many engineers who 
constructed the innovation progressively without experimental facilities, Carnot, first 
followed by his heir Clausius, who coined the term 'entropy'4, completed with conceptual 
vigour the work of Watt and then Thomson, by taking the irreversibility as an initial data and 
not as a by-product of mechanics. By inventing a cycle composed of isothermal and adiabatic 
processes, Carnot mimicked, in the field of caloric technology, the equilibrium of Lagrangian 
forces with the hypothesis that the state of matter can split the standard space-time (Stengers). 
The principle of causality does not correspond only to the laws of nature but to a will which 
drives the action and faces the reaction. Even if the system is opened it acquires a new kind of 
universality.   Contrary to the ideal regular pendulum which denies the difference between the 
cause and effect in conserving one in another, a clock, introducing the irregularities of 
mechanical world and the correlations between the irregularities, is a device based on non 
harmonic relation between space and time    1// cvu  . Notice that there is no need of 

the presence of the observer in order that the space-time geometry gives rise to the 
irregularities. It suffices that the homogeneity of space time, postulated by Noether to disclose 
the invariance of energy, be broken in some catastrophic circumstances. Independent from the 
presence or not of the observer, the internal energy of a clock is not conserved. Many years 
will be necessary for Clausius and Thomson to shed light on this question and to introduce the 
concept of entropy TdQdS   as a state function. In the analysis given above, the group of 
transformation associated to the dual singularity plays the same role as the Carnot’s cycle and 
therefore the dual singularity contains some quantum of entropy and negentropy. Many 

                                                 
4 'Entropy' was invented from the Greek words en meaning in and tropē meaning transformation or turning 
towards implying dissipation of mechanical energy into non available energy. 
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decades will be yet necessary for understanding this assertion as well as many others related 
to the singularity of the topological opened punctuation.   
 
The geometrical irreversibility is a major characteristic at least for the systems affected by 
scaling laws. This is exactly what shown by the battery, a 'faitiche' of the thermodynamic 
counter culture (Le Méhauté 1989). The engineering of the battery, -a controllable source of 
dissipation associated with the fractal geometry of the electrodes , hence a seed for 
irreversibility-, offers a right experimental way to understand the importance of the fractional 
dynamic in the world of energy. The engineering problem of battery optimization for 
example, makes the geometrical structure of the matter a deep source of adjustable 
dissipation. Hence it is requiered to consider the fractionality of the dynamics of transport and 
of exchange.  The -dynamics contains all the appropriate singularities for the emergence of 
dissipation and of the associated scaling laws. Among these laws, the Peukert law (Le 
Méhauté 1989) which points out a scaled covariance of space-time (Nottale) and the 
emergence of new type of invariance with respect to the time (see also WLF laws or the 
relation temps/temperature). The time, as a sensor, is in practice a parameter of exploration of 
the Riemannian manifolds affected by singularities. These manifolds cannot be reduced to 
their local Euclidean projection. In this simple state of equilibrium -or of stationary- their 
surfaces vibrate according to the well defined normal modes even if these modes are of 
infinite number (Hilbert space) and controlled by the boundary conditions. This first 
approximation forgets the cuttings, the collages, and other overlapping of surfaces, or, in a 
word, the singularities which give rise to dissipative structures. The fractal based manifolds 
authorize the use of -fractional equation to disclose the ‘anomalous’ behaviour.  It was a 
chance to have to our disposable devices (batterie, tires, cables etc), but also singular matter 
(supraconductivity and fluidity or monopoles) to strengthen the new point of view proposed 
herein and to check it experimentally. In spite of the lack of mathematical studies on the 
topology associated with fractal geometry, these devices and this singular matter offer an 
opportunity to disclose the relationship between -dynamic, geodesic and tiling and to 
emphasize its role in the dissipation of energy and even in some circumstances  with the 
decrease of entropy (emergence). A lot of work must still be done with the fractional operator 
opening new scientific territories which have to be explored.  It will be done if we just drop 
the umbrella of the Hamiltonian mechanics which tells us nothing about our freedom of 
creation and nothing but a beautiful immobile eternity of a world without life and creation 
(Stengers). 
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