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Quantum models for synchronously pumped type I optical parametric oscillators (SPOPO) are
presented. The study of the dynamics of SPOPOs, which typically involves millions of coupled
signal longitudinal modes, is significantly simplified when one considers the “supermodes”, which are
independent linear superpositions of all the signal modes diagonalizing the parametric interaction. In
terms of these supermodes the SPOPO dynamics becomes that of about a hundred of independent,
single mode degenerate OPOs, each of them being a squeezer. One derives a general expression
for the squeezing spectrum measured in a balanced homodyne detection experiment, valid for any
temporal shape of the local oscillator. Realistic cases are then studied using both analytical and
numerical methods: the oscillation threshold is derived, and the spectral and temporal shapes of
the squeezed supermodes are characterized.

I. INTRODUCTION

Mode-locked trains of pulses, or frequency combs, have
at the same time the coherence properties of c.w. lasers
and the high peak powers of pulsed lasers. They are po-
tentially perfect tools for generating non-classical states
of light, as they are are at the same time high quality light
sources, free of excess noise, and intense sources able to
induce strong nonlinear effects, and therefore to generate
strongly non-classical states of light, such as squeezed or
quadrature-entangled states.

Frequency combs have been used in many quantum op-
tics experiments, and have efficiently produced non clas-
sical light, either in χ(2) [1, 2, 3] or χ(3) [4, 5, 6, 7, 8, 9,
10, 11] media, but so far in a single-pass configuration in
the nonlinear medium. In this configuration, one needs
very high peak powers, and the system loses somehow
its potential high quality in terms of pulse to pulse co-
herence and transverse profile. Mode locked lasers have
also been used to efficiently generate squeezed states in
optical fibers [12, 13]. The system has the drawback of
generating non-minimal states states of light, because of
the excess noise due to Brillouin scattering in the fiber.

We have recently proposed [14] to use synchronous
optical cavities to recirculate the light in the nonlin-
ear medium, thus enhancing further the nonlinear effects
and imposing the cavity mode structure to the generated
non-classical field. This can be done by building “syn-
chronously pumped OPOs” or SPOPOs. In a SPOPO
the cavity round-trip time is equal to the delay between
successive pulses of the pumping mode-locked laser, so
that the effect of the successive intense pump pulses
add coherently, thus reducing considerably its oscillation
threshold. In [14], a large squeezing effect was predicted
in some “supermodes”, which are well defined linear com-
binations of signal modes of different frequency, but not
studied in detail. In the time domain these supermodes
correspond to trains of pulses of different waveforms, or-
thogonal each other. The purpose of this paper is to

precise the quantum model used to predict the effects
and to investigate in a detailed way, through analytical
or numerical methods, the potentialities of the system in
realistic situations

SPOPOs have already been implemented as efficient
sources of tunable ultra-short pulses [16, 17, 18, 19,
20, 21] their temporal properties have been theoretically
investigated [22, 23, 24], and actively mode-locking of
OPOs has been recently achieved [25].

The decomposition of a pulsed field in terms of a ba-
sis of normal modes, similar to the supermodes we con-
sider in this paper, has been introduced in different con-
texts for a complete quantum characterization of either
the pulsed squeezed light generated by parametric down
conversion [26, 27] or solitons in optical fibers [28]. Such
approaches are strongly connected with the Schmidt de-
composition of two-photon states for the characterization
of pairwise entanglement [29, 30] and the Bloch-Messiah
reduction of any optical circuit characterized by a lin-
ear input-output relation [31]. In this context Menicucci
et al. [32] proposed optical frequency combs as scalable
resources for quantum computation.

The article is organized as follows: we present first
the model that we will use. The system turns out to be
characterized by a real and symmetric matrix L, which
contains all the information about the effective nonlinear
interaction. The eigensystem of L is thus of special rel-
evance and is studied in Section III, where the SPOPO
threshold and several general properties of the spectrum
of L are addressed. An analytical approximation to the
diagonalization is also given that allows a better insight
into the general trends as parameters are varied. In Sec-
tion IV it is shown that the introduced eigenmodes or
supermodes are squeezed, the corresponding eigenvalues
determining the amount of squeezing, which can be mea-
sured in a balanced homodyne detection experiment that
uses as the local oscillator (LO) a field with the same
spectrum as the desired supermode. In Section V one
then studies the squeezing properties of SPOPOs in two
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realistic cases, corresponding to BIBO and KNbO3 crys-
tals, using an appropriate scaling property of the diago-
nalization problem. Finally, an appendix details the case
of the singly resonant SPOPO.

II. THE SPOPO MODEL

A. Evolution equations for the operators

We consider quasi-degenerate collinear type I interac-
tion, by means of which the pumping frequency comb,
at frequencies around 2ω0, is converted by a nonlinear
χ(2) crystal into multimode signal radiation at frequen-
cies around ω0, and vice-versa, where 2ω0 and ω0 are the
two frequencies at which perfect phase matching occurs.
This implies that one has n (2ω0) = n (ω0) ≡ n0, where
n is the crystal refractive index. The nonlinear crystal
is placed inside a high finesse optical cavity of length L,
which is assumed to be dispersion compensated by in-
tracavity dispersive elements, so that all cavity modes
around the frequency ω0 are equally spaced by a com-
mon free spectral range Ω, which is made equal to that of
the pumping laser, thus warranting the synchronization
of the pump to the OPO cavity. This ensures that the
pulse-to-pulse delay of the pump beam coincides with the
cavity round-trip time and successive pump and signal
pulses superpose in time, thus maximizing the strength
of the interaction. Hence the external pump mean field,
which is a phase-locked multimode coherent field, can be
written as

Eext (t) =

√

P

2ε0c

∑

m

iαme−i(2ω0+mΩ)t + c.c., (1)

P is the average laser irradiance (power per unit area),

αm is the normalized (
∑

m |αm|2 = 1) complex spectral
component of longitudinal mode labeled by the integer
index m, and m = 0 corresponds to the phase-matched
mode. As we will be concerned with femtosecond lasers
with pulse durations around 100fs , the number of pump
modes will be typically on the order of 104 − 105.

Two possibilities for pumping can be used: either (i)
the pump also resonates inside the cavity (doubly res-
onant case), which requires in addition dispersion com-
pensation at the pump spectral region, or (ii) the cavity
is transparent for the pump (singly resonant case), a case
which is free from the previous restriction and thus more
amenable for experimentation, at the expense of a higher
threshold, as we will see. We detail more the latter case
in the appendix at the end of this paper. We will limit
here our analysis to non-chirped pumps as chirping re-
quires a more general treatment which will be presented
elsewhere.

As the finesse of the cavity is assumed to be high, the
intracavity signal field operator Ês can be written as a
superposition of cavity modes. Inside the χ(2) crystal,

which extends from z = −l/2 to z = +l/2, one can write

Ês(z, t) =
∑

m

iEs,mŝm(t)um (z) e−iωs,mt + H.c. (2)

where ωs,m = ω0 + mΩ, ŝm (t) is the annihilation oper-
ator for the m-th signal mode in the interaction picture,
verifying standard boson commutation relations

[

ŝm (t) , ŝ†n (t)
]

= δm,n, (3)

um (z) is the spatial profile of mode m, equal to eiks,mz

in the case of ring cavities, while for linear cavities it is
equal to sin [ks,m (z + L/2)], where

ks,m = k (ωs,m) =
n (ωs,m)ωs,m

c
, (4)

is the corresponding wavenumber. Finally Es,m is the
single photon field amplitude, whose value depends on
the type of cavity. For a ring cavity

E(ring)
s,m =

√

~ωs,m

2ε0n (ωs,m)AsL
, (5)

where As is the transverse area of the signal field, while
for a linear cavity

E(linear)
s,m =

√
2E(ring)

s,m . (6)

Note that we are writing the field as a superposition of
plane waves, but the treatment is approximately valid for
Gaussian beams provided that the crystal is placed at the
beam waist and the Rayleigh length is much longer than
the crystal length l. In this case As = πw2

s with ws the
beam radius. Similarly we have Ap = πw2

p for the pump
transverse mode.

The interaction Hamiltonian ĤI describing the para-
metric interaction in the nonlinear crystal is given as
usual by:

ĤI = −AI

+l/2
∫

−l/2

dz
[

Êp (z, t) P̂p (z, t) + Ês (z, t) P̂s (z, t)
]

,

(7)

where P̂s (z, t) and P̂p (z, t) are the nonlinear electric po-
larization at signal and pump frequencies, and AI ac-
counts for the effective area of interaction correspond-
ing to the three-mode overlapping integral across the
transverse plane and, for Gaussian beams, it is given by
A−1

I = A−1
p + 2A−1

s . The calculation of the Hamiltonian
depends on the type of configuration (singly- or doubly
resonant). Here we consider the simpler case of a dou-
bly resonant SPOPO and leave the details of the singly
resonant case for the Appendix.

1. Doubly resonant SPOPO

In this case an expression for the intracavity pump field
operator Êp analogous to (2), now centered around 2ω0,
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can be used and the following expression for ĤI in the
rotating wave approximation is obtained:

ĤI = 2iε0χlAI

∑

m,q

Es,mEs,qEp,m+qfm,q×

× ŝ†m (t) ŝ†q (t) p̂m+q (t) + H.c.,

(8)

where χ is the relevant nonlinear susceptibility, p̂m (t)
and p̂†m (t) are pump boson operators (m = 0 denotes the
phase matched mode) verifying

[

p̂m (t) , p̂†m (t)
]

= δm,n,
and Ep,m is as Es,m with the substitutions ωs,m → ωp,m =
2ω0 + mΩ and As → Ap. The phase-mismatching factor
of the crystal, fm,q, is given by:

fm,q =
sinφm,q

φm,q
, (9)

φm,q being the phase-mismatch angle:

φm,q =
1

2
(kp,m+q − ks,m − ks,q) l. (10)

Making use of the standard input-output formalism
of optical cavities the following set of Heisenberg equa-
tions for the signal annihilation operators ŝm is derived
straightforwardly:

dŝm

dt
= −γsŝm +

√

2γsŝin,m + κ
∑

q
fm,qŝ

†
qp̂m+q, (11)

where the cavity damping rate γs, or cavity linewidth, is
equal to ΩTs

4π , Ts ≪ 1 is the transmission factor of the
single cavity mirror at which losses are assumed to be
concentrated, the coupling constant κ is given by

κ = Gχl
AI

As

√

Ap

(

ω0

n0L

)3/2 √

~

ε0
, (12)

and G is a factor depending on the geometry of the cavity
that amounts to 2 for the ring cavity and to

√
2 for the

linear cavity.
Analogously, the evolution equations for the pump an-

nihilation operators p̂q are:

dp̂q

dt
= −γpp̂q +

√

2γpp̂in,q −
κ

2

∑

m
fm,qŝmŝq−m, (13)

where γp is the cavity damping coefficient evaluated at
pump frequencies.

To get these simple equations, we have assumed that
Es,m = Es,0 ∀m, and neglected the dispersion of the non-
linear susceptibility, which is a very good approximation
as far as the pulses bandwidth is not too large [35]. The
“in” operators correspond to quantum fields entering the
cavity through the coupling mirror. We consider the
case where the input signal field is the vacuum, and the
input pump field a coherent state. We have therefore
〈ŝin,m (t)〉 = 0, 〈p̂in,q (t)〉 = pext,q, and the following cor-
relations

〈

p̂in,m (t) , p̂†in,m′ (t′)
〉

=
〈

ŝin,m (t) , ŝ†in,m′ (t′)
〉

= δm,m′δ (t − t′) , (14)

with the notation
〈

â, b̂
〉

=
〈

(â − 〈â〉)
(

b̂ −
〈

b̂
〉)〉

, the

rest of correlations being null. The mean input field pext,q

is related to the αq and P coefficients introduced in (1)
by:

pext,q =

√

n0ApP

2~ω0
αq. (15)

2. Singly resonant SPOPO

As detailed in the Appendix, in the case where only the
signal field is resonating into the cavity the evolution of
the signal field annihilation operators is given by an ex-
pression identical to (11), but now the pump annihilation
operators are given by

p̂m(t) =G
√

L

c

(

p̂
(+)
in,m(t) + p̂

(−)
in,m(t)

)

+

− G2 L

c
κ

∑

n

fn,m−nŝn(t)ŝm−n(t).
(16)

We see that these operators contain two contributions.
The first one corresponds to the free-field part that is
described by means of two independent boson operators

p̂
(±)
in,m(t) associated to the fields impinging the cavity from

both the directions labeled with the superscripts (±). We
consider the unidirectional pumping case where the input
pump field propagating from left to right (labeled with

(+)) is a coherent state with a mean value of 〈p̂(+)
in,q(t)〉 =

pext,q, while the input pump field propagating form right

to left (and labeled with (−)) is the vacuum 〈p̂(−)
in,q(t)〉 = 0.

The mean input field, pext,q, is still given by Eq. (15),
and the only non-null correlations are:

〈

p̂
(±)
in,m (t) ,

[

p̂
(±)
in,n (t′)

]†
〉

= δm,n δ (t − t′) . (17)

B. The SPOPO below threshold

Below threshold signal modes have a zero mean value,
whereas the pump field is characterized by a huge am-
plitude. One can therefore use a linearization procedure
for the quantum fluctuations, which amounts to setting
p̂m+q → 〈p̂m+q〉 in (11). In the doubly resonant case

〈p̂m+q〉 =
√

2/γp 〈p̂in,m+q〉 =
√

2/γp pext,m+q, as given
by (13), while in the singly resonant case 〈p̂m+q〉 =

G
√

L/c
〈

p̂
(+)
in,m+q

〉

= G
√

L/cpext,m+q, as given by (16).

In both cases the final equations for the signal field ani-
hilation operators are identical:

dŝm

dt
= −γsŝm +

√

2γsŝin,m + γsσ
∑

q
Lm,qŝ

†
q, (18)

where

σ =
√

P/P0, (19)
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is a pump amplitude parameter, and P0 is an important
scaling parameter for the pump, which can be shown to
be the threshold value for the pump in the c.w. regime
(single mode pump configuration). In the optimized con-
figuration for the pump focussing (Ap = As/2), it is equal
to:

P0 = Π0
ε0c

3n2
0T

2
s

2 (χlω0)
2 , (20)

where Π0 is given in Table I for the singly or doubly res-

Π0 Doubly resonant Singly resonant
Linear cavity Tp/16 1
Ring cavity Tp/4 1

TABLE I: Coefficient for retrieving the cw threshold P0 in the
different experimental situations considered.

onant configurations and ring or linear geometries. The
differences arise from the fact that the doubly resonant
case presents an intracavity pump power enhancement
factor of 4/Tp with respect to the singly resonant case
and the crystal is used twice in a linear cavity as com-

pared to the ring one. Hence the ratio P
(doubly)
0 /P

(singly)
0

equals the (very small) pump transmission factor of the
doubly resonant cavity. By way of example, if we con-
sider a singly resonant SPOPO (the geometry does not
matter) based on a BIBO crystal [33] with a thickness
of l = 100 µm and pumped at 0.4 µm, we obtain refer-
ence irradiances P0 of approximate values 14, 344, and
1400 MWcm−2 for Ts = 0.01, 0.05, and 0.1, respectively.
For a typical pump beam radius of 70 µm these irradi-
ances lead to pump powers equal to 2, 53, and 212 kW,
respectively.

The key point for the following analysis is the fact that,
in equations (18), the parametric coupling between the
different signal modes is linear. It is characterized by a
matrix L, with matrix elements:

Lm,q = fm,qαm+q =
sin φm,q

φm,q
αm+q. (21)

When necessary, the phase mismatch angle φm,q, Eq.
(10) can be computed using a Taylor expansion around
2ω0 for the pump wave vectors kp,m and around ω0 for
the signal wave vectors ks,m,

φm,q ≃ β1 (m + q)+β2p (m + q)
2 −β2s

(

m2 + q2
)

, (22)

where

β1 =
1

2
Ω

(

k′
p − k′

s

)

l, (23)

β2p =
1

4
Ω2k′′

p l, (24)

β2s =
1

4
Ω2k′′

s l, (25)

are dispersion coefficients, and k′ and k′′ are the first
and second derivatives of the wave vector with respect to
frequency. Note that the matrix L depends on the cavity
characteristics only through the free spectral range Ω.

III. SPOPO DYNAMICS FOR THE MEAN

FIELDS. DETERMINATION OF THE SPOPO

THRESHOLD

Before calculating the quantum fluctuations of the
SPOPO we analyze first the dynamics of the mean values
of the operators, which is obtained by removing in Eq.
(11) the input noise terms and replacing the operators
by complex numbers:

dsm

dt
= −γssm + γsσ

∑

q

Lm,qs
∗
q . (26)

The solution to Eqs. (26) is of the form

sm (t) = Sk,meλkt, (27)

where k is an index labelling the different solutions, and
the parameters Sk,m and λk obey the following eigenvalue
equation:

λkSk,m = −γsSk,m + γsσ
∑

q

Lm,qS
∗
k,q. (28)

As matrix L is both self-adjoint and real, its eigenval-

ues Λk and eigenvectors ~Lk, of components Lk,m defined
by

ΛkLk,m =
∑

q

Lm,qLk,q (29)

are all real. As γs and σ are also real, it is evident that

two sets of solutions to Eqs. (28) exist, namely S
(+)
k,m =

Lk,m and S
(−)
k,m = iLk,m, with corresponding eigenvalues:

λ
(±)
k = γs (−1 ± σΛk) . (30)

Let us label by index k = 0 the solution of maximum
value of |Λk|. When σ |Λ0| < 1, all the rates λ±

k are neg-
ative, which implies that the null solution for the steady
state signal field is stable. For simplicity of notation, we
will take Λ0 positive in the following, which is a com-

mon situation as shown below [36]. Hence λ
(+)
0 is the

largest eigenvalue and λ
(+)
0 = 0 sets the SPOPO oscilla-

tion threshold, which then occurs when the pump param-
eter σ takes the value 1/Λ0, i.e. for a pump irradiance
P = Pthr equal to:

Pthr = P0/Λ2
0. (31)

The exact value of Λ0, and therefore of the SPOPO
threshold, depends on the exact shape of the phase
matching curve and on the exact spectrum of the pump
laser. As will be shown in Sec. V, the theoretical SPOPO
threshold can be extremely low, of the order of the cw
single mode threshold divided by the number of pump
modes.
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Let us now define the normalized amplitude pumping
rate r by

r =
√

P/Pthr, (32)

or r = σΛ0, so that the threshold occurs at r = 1. The
eigenvalues λk become

λ
(±)
k = γs

(

−1 ± r
Λk

Λ0

)

. (33)

We will call supermodes the set of Sk,m values for a
given k, which corresponds physically to the different
spectral components of the signal field, and critical su-

permode S
(+)
k=0,m, the one associated with λ

(+)
0 , which

is the eigenvalue changing its sign at threshold. Above
threshold, this critical mode will be the “lasing” one, i.e.
the one having a non-zero mean amplitude when r > 1.
Note that the supermodes are independent of pump (Eq.
29),but not the eigenvalues (Eq. 30).

We note that the supermode in quadrature with re-

spect to the critical one, S
(−)
0 = iS

(+)
0 , has an associ-

ated eigenvalue λ
(−)
0 = −2γs at threshold, Eq. (33) with

r = 1, which is the lowest eigenvalue below- or at thresh-

old. This property is obvious: Should λ
(−)
k < −2γs for

some k, then rΛk

Λ0
should be larger than 1, what is incom-

patible with the fact that
∣

∣

∣

Λk

Λ0

∣

∣

∣
< 1 by definition and the

condition r < 1. The fact that there exists an eigenvector

whose damping rate (λ
(−)
0 = −2γs at threshold) is twice

that of the passive cavity has important consequences on
the squeezing properties of the SPOPO, as it occurs in
other OPO configurations [37].

IV. QUANTUM FLUCTUATIONS OF THE

SPOPO BELOW THRESHOLD

A. Fluctuation spectrum for the supermodes

We can now determine the quantum fluctuations of
the signal field in a SPOPO below threshold. Let us
introduce the following operators:

Ŝk(t) =
∑

m

Lk,mŝm(t), (34)

Ŝin,k(t) =
∑

m

Lk,mŝin,m(t). (35)

As ~Lk · ~Lk′ ≡ ∑

m Lk,mLk′,m = δk,k′ , one has trivially

[

Ŝk(t), Ŝ†
k′ (t)

]

= δk,k′ ,
[

Ŝin,k(t), Ŝ†
in,k′(t

′)
]

= δk,k′δ(t − t′),

and the correlation
〈

Ŝin,k(t), Ŝ†
in,k′(t

′)
〉

= δk,k′δ (t − t′) , (36)

as well. Hence Ŝk and Ŝin,k are the annihilation opera-
tors of a combination of signal modes of different frequen-
cies, which are the eigenmodes of the linearized evolution
equation (26). The corresponding creation operator ap-
plied to the vacuum state creates a photon in a single
supermode which globally describes the frequency comb,
or train of pulses. Analogously one can define supermode
output operators

Ŝout,k(t) =
∑

m

Lk,mŝout,m(t), (37)

where the output boson operator ŝout,m (t) relates to the
intracavity and input boson operators through the usual
input-output relation of high finesse optical cavities,

ŝout,m (t) = −ŝin,m (t) +
√

2γsŝm (t) . (38)

One can then write:

d

dt
Ŝk = −γsŜk + γsσΛkŜ†

k +
√

2γsŜin,k. (39)

Let us now define quadrature hermitian operators Ŝ
(±)
k

by:

Ŝ
(+)
k = Ŝk + Ŝ†

k, (40)

Ŝ
(−)
k = −i

(

Ŝk − Ŝ†
k

)

, (41)

and analogously for Ŝin,k and Ŝout,k, which obey the fol-
lowing equations:

d

dt
Ŝ

(±)
k = λ

(±)
k Ŝ

(±)
k +

√

2γsŜ
(±)
in,k, (42)

with λ
(±)
k given by Eq. (30). These relations enable us

to determine the intracavity quadrature operators in the

Fourier domain S̃
(±)
k (ω)

iωS̃
(±)
k (ω) = λ

(±)
k S̃±(ω) +

√

2γsS̃
(±)
in,k(ω). (43)

Finally, the usual input-output relation on the coupling
mirror (38), which can be written as

s̃out,m(ω) = −s̃in,m(ω) +
√

2γss̃m(ω), (44)

being s̃out,m(ω) the Fourier transform of the output bo-
son operator ŝout,m (t), extends by linearity to any su-
permode operator as the mirror is assumed to have a
transmission independent of the mode frequency. One
then obtains the following expression for the quadrature
component in Fourier space of any signal supermode,

S̃
(±)
out,k(ω) = v

(±)
k (ω) S̃

(±)
in,k(ω), (45)

v
(±)
k (ω) =

γs (1 ± rΛk/Λ0) − iω

γs (−1 ± rΛk/Λ0) + iω
. (46)

One has also, for the operators in Fourier space:

〈

S̃
(a)
in,k (ω1) S̃

(b)
in,l (ω2)

〉

=
η(a,b)

2π
δklδ (ω1 + ω2) (47)

a = ±, b = ± (48)

with η(+,+) = η(−,−) = 1 and η(+,−) = −η(−,+) = i.
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B. Homodyne detection

The variances of the quadrature operators can be
measured using the usual balanced homodyne detection
scheme: the local oscillator (LO) is in the present case a
coherent mode-locked multimode field EL (t) having the
same repetition rate as the pump laser:

EL (t) = E−
L (t) + E+

L (t) (49)

E−
L (t) = iǫL

∑

m

eme−iωs,mt, (50)

E+
L (t) =

[

E−
L (t)

]∗
, (51)

where
∑

m |em|2 = 1, and ǫL is the LO field total am-
plitude factor. The output signal exiting the SPOPO,
Ês,out (t), is combined with EL (t) in a 50%–50% beam
splitter, the intensity of the two output ports is measured
using photodiodes of unity quantum efficiency, and their
difference constitutes the homodyne signal. Writing

Ês,out (t) = Ê−
s,out (t) + Ê+

s,out (t) ,

Ê−
s,out (t) = iEout

∑

n
ŝout,m (t) e−iωs,mt,

Ê+
s,out (t) =

[

Ê−
s,out (t)

]†

,

where Eout is a proportionality constant. If sufficiently
fast detectors were used the measurement would give an
instantaneous signal represented by the operator

ı̂ (t) =
1

ǫLEout

[

E−
L (t) Ê+

s,out (t) + E+
L (t) Ê−

s,out (t)
]

.

When detectors are not so fast (we are considering inter-
pulse separations on the order of few ns) they average
over many pulses along their response time τd and ı̂ must

be substituted by ı̂H (t) = 1
τd

∫ t+τd/2

t−τd/2
dt′ı̂ (t′), which can

be very well approximated by

ı̂H (t) =
∑

m

[

emŝ†out,m (t) + e∗mŝout,m (t)
]

, (52)

where we considered that τd ≫ 2π/Ω and used that

ŝout,m (t) and ŝ†out,m (t) vary little during the time τd

[38], what roughly requires that τd ≪ γ−1
s . Note that

this case, namely 2π/Ω ≪ τd ≪ γ−1
s , is sensible as

γ−1
s = 2T−1

s (2π/Ω), where Ts ≪ 1 is the transmission
factor of the single cavity mirror at which signal losses
are assumed to be concentrated. Then operator ı̂H (52)
represents the outcome of a balanced homodyne detec-
tion that uses as a local oscillator a modelocked laser with
the same repetition rate as the SPOPO and with spectral
components given by em. The variance of ı̂H measures
then the fluctuations of the projection of the output field
on the local oscillator.

1. Perfect mode matching case

When the coefficients em of the LO field spectral de-
composition are equal, apart from a global phase φL,

to the coefficients Lk,m of the k-th supermode, em =
eiφLLk,m, one measures, according to (52), a photocur-
rent difference proportional to

ı̂H (t) = eiφL Ŝ†
out,k(t) + e−iφL Ŝout,k(t)

= Ŝ
(+)
out,k(t) cosφL + Ŝ

(−)
out,k(t) sin φL. (53)

The two following variances, depending on the local
oscillator phase value φL, are measured (see next subsec-
tion for the demonstration),

V
(−)
k (ω) = v

(−)
k (ω) v

(−)
k (−ω) =

γ2
s (1 − rΛk/Λ0)

2
+ ω2

γ2
s (1 + rΛk/Λ0)

2
+ ω2

,

(54)

V
(+)
k (ω) = v

(+)
k (ω) v

(+)
k (−ω) =

1

V
(−)
k (ω)

, (55)

where v
(±)
k are given in (46). Equations (54,55) show

that the device produces, as expected, a minimum un-
certainty state and that quantum noise reduction below
the standard quantum limit (equal here to 1) is achieved
for any supermode characterized by a non-zero Λk value.
Clearly which quadrature is squeezed depends on the sign

of Λk/Λ0, so that when positive, it is Ŝ
(−)
k the squeezed

quadrature (phase-quadrature squeezing) and vice-versa
(amplitude-quadrature squeezing). The smallest fluctua-
tions are obtained close to threshold (r = 1) and at zero
Fourier frequency (ω = 0):

(Vk)min =

(

Λ0 − |Λk|
Λ0 + |Λk|

)2

(56)

In particular, if one uses as the local oscillator a copy
of the critical mode k = 0 (identical to the one oscil-
lating just above the threshold r = 1) one then gets
perfect squeezing just below threshold and at zero noise
frequency, just like in the c.w. single mode case. But
modes of k 6= 0 may be also significantly squeezed, pro-
vided that |Λk/Λ0| is not much different from 1. In the
next Section we analyze the behavior of the squeezing
levels just described.

Our multi-mode approach of the problem has therefore
allowed us to extract from all the possible linear combi-
nations of signal modes the ones in which the quantum
properties are concentrated.

2. General case

As always in quantum optics, the measurement of a
high degree of squeezing in SPOPOs requires the use
of a mode matched LO, namely of spectral components
em = eiφLLk,m. It is not always an easy task and was
recognized in [1] as the main experimental limitation in
pulsed squeezing. With the present ultrashort pulses,
one can use pulse shaping techniques with the help of
dispersive elements and programmable phase modulators
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[39, 40, 41]. In view of future experiments, it is important
to determine the noise levels measured using a LO of ar-
bitrary shape, in order to know the accuracy with which
the perfectly modematched LO must be approached us-
ing pulse shaping techniques. We derive in this section
the noise spectrum for a LO of arbitrary shape, that we
will use in section VI.

Let us define the projections of the LO frequency comb
onto the supermodes Lk, as

dk =
∑

m

Lk,mem. (57)

This expression can be inverted to yield

em =
∑

k

Lk,mdk, (58)

where the well known result
∑

k Lk,mLk,n = δm,n involv-
ing the elements of a basis has been used. Substitution
of Eq. (58) into Eq. (52) yields

ı̂H (t) =
∑

k

[

Re (dk) Ŝ
(+)
out,k(t) + Im (dk) Ŝ

(−)
out,k(t)

]

, (59)

where the quadrature operators, Eq. (40), have been
used.

The noise variance spectrum associated to ı̂H (t),
V (ω), can be computed as

V (ω) =

∫ +∞

−∞

dτ 〈̂ıH (t) ı̂H (t + τ)〉 e−iωτ . (60)

Using Eqs. (45), (46), (47) and (52), it is finally equal
to:

V (ω) =
∑

k

{

(Redk)
2
v
(+)
k (ω) v

(+)
k (−ω)+

+ (Imdk)
2
v
(−)
k (ω) v

(−)
k (−ω)+

+i Redk Imdk

[

v
(+)
k (ω) v

(−)
k (−ω)+

−v
(−)
k (ω) v

(+)
k (−ω)

]}

. (61)

Equation (61) gives the general expression of the squeez-
ing spectrum corresponding to a generic LO defined by
its supermodal amplitudes dk given by Eq. (57). When
the LO is proportional to the supermode labeled by k,
say em = eiφLLk,m, and φL = 0, π/2, the two special
quadratures (40) are selected and the results (54) and
(55) are recovered.

V. DIAGONALIZATION OF THE MATRIX L:

ANALYTICAL AND NUMERICAL RESULTS

We have seen that all the properties of the SPOPO are
directly related to the series of eigenvalues Λk, depending
both on the phase matching properties of the crystal and

N
1

N2

.m=0

.q
=

0

mm

Aq

d

w

w
m

q

-

=
0

w

w

w

m

q

0

+

=
2

FIG. 1: (Color online) Sketch of the phase-matching matrix
fm,q in the space of the integer numbers {m, q} corresponding
to frequencies {ωm, ωq}. In white are represented the regions
of optimal phase-matching while in blue the unmatched re-
gions.

pump spectral characteristics. We will consider now in
more detail the characteristics of these eigenvalues.

Fig. 1 shows schematically the typical appearance of

the phase-mismatch matrix fm,q =
sin φm,q

φm,q
(Eq. (22)),

for a typical configuration (see Section VI for details and
real examples). It has the shape of a hyperbola, whose
branches, of width N1, display a minimum distance be-
tween them called d. Another relevant quantity is the
“width” N2 marked in the figure. These quantities will
be useful for determining the Gaussian limit, that we will
consider in the next section.

The matrix L is the product of fm,q with the pump
spectrum αm+q. As the last quantity is constant for
m + q = constant, the pump selects a portion of ma-
trix fm,q, roughly given by the intersection of fm,q with
a straight band oriented along the direction m + q =
2mmax, where mmax corresponds to the maximum of the
pump spectrum.

A. Analytical approach

When the pump spectrum is not very broad, the re-
sulting nonzero matrix elements of L are confined within
an “ellipse” whose principal axes are oriented along the
directions m + q = 0 and m− q = 0. In this case one can
forget the secondary maxima of the sinc function and use
a Gaussian approximation for the phase-matching ma-
trix:

fm,q = e
− 1

2

“

m+q
N1

”2

e
− 1

2

“

m−q
N2

”2

, (62)

The form for fm,q follows from the approximations sin x
x ≃

e
−x2

η1 and sin x2

x2 ≃ e
− x2

η2 [27], where the parameters η1

and η2 can be opportunely chosen so that the results
from the diagonalization of the coupling matrix obtained
from (62) match optimally to the results of the numerical
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diagonalization of Lm,q. By choosing them as η1 = 5 and
η2 = 12, the following expressions for the widths N1 and
N2 can be obtained:

N1 =

√

5/2

|β1|
, (63)

N2 =
2
√

3
√

|β2s|
. (64)

where the β coefficients are the ones introduced in (23),
(24), (25).

Let us assume in addition that the pump has a Gaus-
sian spectrum centered at 2ω0:

αm = π− 1
4 N

− 1
2

p e
− 1

2

“

m
Np

”2

(65)

where
∑ |αm|2 = 1 and Np = (Ωτp)

−1
is a measure of

the number of pump modes. The matrix elements Lm,q

are then equal to:

Lm,q = e
− 1

2

“

m+q
N1

”2

e
− 1

2

“

m−q
N2

”2 1

π1/4
√

Np

e
− 1

2

“

m+q
Np

”2

.

(66)
The Gaussian approximation (66) is correct as far as

the interplay between the pump spectrum and the phase-
matching is opportune. More quantitatively speaking, we
have to demand that the two branches of the hyperbola
in Fig. 1 are sufficiently separated each other, which
corresponds to require that d ≫ N1 (we will consider d &
10N1), and the pump width is sufficiently smaller than
the width of phase-matching function along the direction
m− q = 0, which corresponds to the condition Np . N1.
These conditions lead to the following bounds:

β2
1

∣

∣β2p − 1
2β2s

∣

∣

> 20, 2 |β1|Np < 1.

In terms of the crystal parameters and of the pump pulse
duration these validity limits can be cast as

l > 20

∣

∣k′′
p − 1

2k′′
s

∣

∣

(

k′
p − k′

s

)2 , (67)

τp >
∣

∣k′
p − k′

s

∣

∣ l. (68)

For a BIBO crystal under typical conditions the above
inequalities read l > 0.2 µm (hence it is not a serious
condition) and τp > 400 fs × l/mm. Hence, for a crystal
length l = 1 mm, τp should be larger than 400 fs in order
that the Gaussian approximation is valid, while for l =
0.1 mm the condition is met just for τp > 40 fs. We note
that condition (67) means that the pump duration should
be longer than the temporal walk-off between signal and
pump modes along their propagation inside the crystal.

The eigenvalues of such a matrix turn out to have a
simple analytical expression at the continuous limit, i.e.
when one can replace in (29) the sum by an integral, so
that:

ΛkLk (m) =

∫

dqL (m, q)Lk (q) , (69)

(note that we changed the notation from indices to argu-
ments).

The eigenvalues are given by

Λk = Λ0ρ
k, (70)

where

Λ0 = π1/4
√

2Np

√

τ2
p

τ2
1 + τ2

p

, (71)

ρ = −1 + 2

√

τ2
2

τ2
1 + τ2

p

, (72)

and

τ1 =

∣

∣k′
p − k′

s

∣

∣ l√
10

, τ2 =

√

|k′′
s | l

4
√

3
, (73)

Λ0 and ρ are given in the limit τ2 ≪ τ1, which holds
unless the crystal length l < 0.1µm; hence ρ is very close
to −1. Equation (70) corresponds then to an alternating
geometric progression of ratio ρ, whose first element Λ0

is positive.

The eigenvectors are similar to the well-known
Hermite-Gauss TEMpq transverse modes. They are given
by

Lk,m =
1

√

k!2k
√

πNs

e−
1
2 (

m
Ns

)
2

Hk

(

m

Ns

)

, (74)

where Hk is the Hermite polynomial of order k, and Ns

is the number of signal modes. Hermite-Gauss functions
being simply proportional to their Fourier transforms,
their temporal shape is exactly the same as their spectral
shape. The pulse duration of the zeroth mode, τs, is given
by

τ2
s = 2τ2

√

τ2
1 + τ2

p . (75)

Under typical conditions [42] the times τ1 and τ2 are on
the order of τ1 ∼ 100 fs and τ2 ∼ 5 fs for a crystal length
l = 1 mm, and in general τ2 ≪ τ1 whenever l & 0.1 µm.
Note that the condition (67) implies that τ2

p ≫ τ2
1 , so

that Λ2
0 ≃ 2

√
πNp.

We are then led to the important conclusion that, ac-
cording to Eq. (31), the SPOPO threshold is roughly
equal to the cw single mode threshold P0 divided by the
number of pump modes, and can be therefore very low.
For example, if Np = 2× 104 (corresponding to τp = 100
fs and a cavity length L = 2 m) and considering the
case already discussed (a 100 µm-thick BIBO based lin-
ear SPOPO pumped at 0.4 µm), we expect, for Ts = 0.01,

a pump irradiance at threshold P
(singly)
thr of 0.1 kWcm−2,

and an average pump power of 16 mW for a typical pump
beam radius of 70 µm.
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B. Numerical approach

In the general case one must diagonalize numerically
the 105×105 matrix L. The situation can be dramatically
simplified from the computational viewpoint by noting
that a scale transformation affecting the SPOPO param-
eters allows diagonalization of a much smaller matrix.

Let us now consider a set of parameters defined by

β′
1 = κβ1, β′

2p = κ2β2p, β′
2s = κ2β2s, (76)

N ′
p = κ−1Np (77)

with κ a large and positive real number. Let us call
L′ (m, q) the value of the matrix element with these new
parameters. The form of the matrix coefficients L (m, q)
when the phase mismatch coefficient φm,q has been re-
placed by its approximate value (22) implies that :

L′ (m, q) =
√

κL (κm, κq) . (78)

Let us set the eigenvalue problem for L′:

Λ′
kL′

k (m) =

∫

dqL′ (m, q)L′
k (q) , (79)

where we added a prime to denote the new eigen-
elements. Using (78) and performing the change of vari-
ables x = κm, y = κq, one finds that:

Λk =
√

κΛ′
k, (80)

Lk,m = L′
k (m/κ) . (81)

These two relations are very useful as they allow to com-
pute numerically eigenvalues and eigenvectors of L in
terms of the corresponding ones of much smaller matrix
L′ because, according to (78), the support of L′ is much
reduced as compared with that of L. In any case the
value for κ must be chosen adequately in the sense that
the diagonalization of the toy problem can be cast in the
integral form (79) so as to keep L′ a smooth function of
(m, q).

As a by-product of the demonstration an interesting
prediction on the influence of the cavity length can be
drawn: consider that, given a SPOPO, we modify its
length according to L′ = κ−1L. This modifies the free
spectral range as Ω′ = κΩ and the new SPOPO param-
eters relate to the old ones as in (76) and (77). Hence
(79) leads to

Λ′
k =

√

L′/LΛk. (82)

This is the case in particular for Λ0 and the new pump
threshold becomes P ′

thr = (L/L′)Pthr. Hence increas-
ing the cavity length (and correspondingly decreasing the
repetition rate) decreases the threshold accordingly.

VI. APPLICATION OF RESULTS IN

REALISTIC CASES

In this Section we discuss the threshold and squeezing
properties of experimentally realizable SPOPOs. This

study requires the numerical diagonalization of the ma-
trix L. We have explored many different configurations
involving different pump pulse durations τp, different cav-
ity lengths L, different crystal thicknesses l and even dif-
ferent phase-matching conditions (critical and noncriti-
cal) that give rise to different dispersion properties. We
have considered both BIBO and KNbO3 crystals and
have obtained similar results in the sense that the an-
alytical approach given above describes very well what is
numerically found in the region (67), no matter the par-
ticular values of the parameters. When that condition
gets violated, deviations from the analytical result are
obviously found but they affect mostly the behavior of
the eigenvectors, not so much the one of the eigenvalues.
As the analytical limit is the best also from an experimen-
tal viewpoint (there the eigenvectors are Hermite-Gauss
modes, which can be reasonably easily produced exper-
imentally) we consider here one case that clearly fulfills
condition (67) with parameters compatible with the ex-
perimental setup that is currently under preparation. For
the sake of completeness we also consider another one
that “slightly” violates condition (67). We wish to re-
mark that these cases are representative of what we have
found in an exhaustive study. Finally, when condition
(67) is more severely violated large deviations from the
Hermite-Gauss case are observed that give rise in fact to
new phenomena that deserve a study on their own and
are not treated here.

The cases we discuss here correspond to collinear, de-
generate type I critical phase-matching at 0.4µm pump-
ing of a BIBO crystal [33], obtained when the pump po-
larization is ordinary (parallel to the direction Ox) and
that of the signal is extraordinary (o → e + e). Us-
ing Sellmeier’s coefficients for BIBO we obtain that such
phase-matching occurs at an angle θ = 151◦ between
the direction Oy and the direction of propagation of the
pump (and the signal) beam, in agreement with [43]. For
this configuration we obtain the values for the dispersion
parameters reported in Table II. Also given in that table
are the values of the free spectral range Ω and pump pulse
duration τp that will be used along this section. We shall
assume a pump with Gaussian spectrum and centered at
the phase-matched frequency 2ω0. Finally we consider
three different values of the crystal length:

case A: l = 0.1 mm,

case B: l = 0.5 mm,

case C: l = 5 mm,

With all these values one can compute the phase mis-
match angle φ in the second order dispersion approxima-
tion, see Eq. (22), and finally the matrix L.

Case A verifies well the condition (67), which reads
here τp > 40 fs. On the contrary cases B and C do not
verify it, which now reads τp > 200 fs and τp > 2000 fs,
respectively.
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(a)BIBO dispersion parameters

k′ (s m−1) k′′ (s2 m−1)

pump 6.6537 × 10−9 4.7248 × 10−25

signal 6.2664 × 10−9 1.6420 × 10−25

(b)Pump
parameters

Ω (MHz) τp (fs)
2π × 75 100

TABLE II: Dispersion parameters for BIBO crystal and
pumping field.

A. Case A

In the next figure we show the matrix L corresponding
to this case. Fig. 2 corresponds to the frequency (inte-
ger indexes) representation, which is the actual matrix
to be diagonalized. Phase matching occurs in the lighter
regions. Darker regions are highly phase-mismatched.
Results of the numerical diagonalization, obtained as ex-
plained in Section VB by using a scale factor κ = 1000,
are shown in Figs. (3) and (4).

In the singly resonant case, a threshold of Wthr ≃
29 mW is readily obtained from Eq. (31) for the cor-
responding eigenvalue Λ0 ≃ 270, by considering a trans-
mission factor of Ts = 0.01 and a beam waist of 70 µm.
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FIG. 2: (Color online) Case A: L matrix.
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FIG. 3: (Color online) Case A. Spectrum of eigenvalues.
Comparison between the numerical and analytical solutions.
Among about 105 supermodes only a relatively small part
(∼ 40) is dynamically significative.

−10 −5 0 5 10
0

0.02

0.04

0.06

m (×105)

 

 

(a)

−10 −5 0 5 10
−0.05

−0.025

0

0.025

0.05

m (×105)

 

 

(b)

−10 −5 0 5 10
−0.05

−0.025

0

0.025

0.05

m (×105)

 

 

(c)

−10 −5 0 5 10
−0.05

−0.025

0

0.025

0.05

m (×105)

 

 

(d)

FIG. 4: (Color online) Case A. Comparison between the nu-
merical (solid blue line) and the analytical (dotted red line)
solutions of the eigenvectors associated to the four highest
|Λk|.

This results are in perfect agreement with the analytical
value predictable by the expression Eq. (71). For a dou-
bly resonant cavity this result has to be multiplied by
means the correction factor that accounts for the geom-
etry and is reported in Table I.

From Eqs. (54) and (55) we can calculate also the
noise reduction corresponding to the first four eigen-
vectors shown in Fig. 4 for a zero noise frequency.
Evidently we are assuming to be able to master the
spectral shape of the local oscillator in order to ex-
actly match it to the supermode whose noise variance
spectrum is to be measured. Nevertheless, the opti-
mization of mode-matching between the local oscilla-
tor and a specific supermode can result a difficult task
even when pulse shaping techniques are used. Let’s con-
sider, then, the case where the best we can do is to deal
with a local oscillator shaped as a Gauss-Hermite poly-

nomial ek,m = π−1/4N
−1/2
L e−

1
2
(m/NL)2eiφLHk (m/NL),

where NL is the number of longitudinal modes of the lo-
cal oscillator comb. In such situation the variances have
to be evaluated using the general expression Eq. (61),
where the noise variance spectrum is given by the sum of
all the supermodes noise variance spectra weighted by the
mode matching parameters dk, which describe how well
each supermode projects on the local oscillator field. In
Table III we compare the degree of squeezing measured in
the situation of perfect mode-matching and the situation
where the best local oscillator is Gauss-Hermite function
of adjustable spectral width, for a pumping power 20%
below threshold (i.e. r = 0.9). In the latter case, the
minimum noise is obtained around NL ≃ 2.2× 105. Such
comparison evidences the fact that the differences be-
tween the two situations are small. Hence, the exact
knowledge of the supermodes shape is not necessary and
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Vk (dB) k = 0 k = 1 k = 2 k = 3
perfect −25.6 −24.9 −24.1 −23.3
G-H −25.5 −24.8 −23.8 −22.6

TABLE III: Case A. Comparison between the noise variances
evaluated, at ω = 0 and r = 0.9, in the case of perfect mode
matching of the LO with the supermodes corresponding to
k = 0, 1, 2, 3 and the case where the LO is the Gauss-Hermite
(G-H) function described by the spectral amplitudes ek,m and
NL = 2.2 × 105.

a good degree of mode matching can be obtained simply
controlling the spectral width of a Gauss-Hermite local
oscillator. Evidently this circumstance is verified as far
as the condition for the Gaussian approximation of the
coupling matrix is respected.However, the number of su-
permodes that present marked quantum characteristics
results to be greater than four. By considering, in a qual-
itative way, that −5 dB is a still significative degree of
squeezing, we found that all the supermodes correspond-
ing to the first 45 higher values of |Λk| have variances
smaller than the considered bound. This is an impor-
tant result since it proves that SPOPOs are multi-mode
sources of non-classical light.

B. Case B

In the next figure we show the matrix L corresponding
to this case. Fig. 5 corresponds to the frequency (integer
indexes) representation, which is the actual matrix to be
diagonalized. Phase matching occurs in the lighter re-
gions, while darker regions are highly phase-mismatched.
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FIG. 5: (Color online) Case B: L matrix.

Results of the numerical diagonalization, obtained as
explained in Section VB by using a scale factor κ = 1000,
are shown in Figs. 6 and 7.

In the singly resonant case, a threshold of Wthr ≃
1.5 mW is readily obtained from Eq. (31) for the cor-
responding eigenvalue Λ0 ≃ 235, by considering a trans-
mission of Ts = 0.01 and a beam waist of 70 µm. The
threshold obtained from the analytical solution is about
1.6 mW, which is not too much different from the exact
solution. Hence, even if the experimental situation con-
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FIG. 6: (Color online) Case B. Spectrum of eigenvalues.
Comparison between the numerical and analytical solutions.
Among about 105 supermodes only a relatively small part
(∼ 23) is dynamically significative.
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FIG. 7: (Color online) Case B. Comparison between the nu-
merical (solid blue line) and the analytical (dotted red line)
solutions of the eigenvectors associated to the four highest
|Λk|.

sidered here does not strictly verify the conditions for
Gaussian approximation, we find still a good agreement
between the numerical and the analytical predictions. A
qualitative statement about the good agreement between
the numerical and analytical solutions can be grounded
also from the comparison between the eigenvalues shown
in Fig. 7.

Assuming perfect mode matching, from Eqs. (54) and
(55) we can calculate also the noise reduction correspond-
ing to the first four eigenvectors shown in Fig. 7 at
the carrying frequency and 20% below threshold (i.e.
r = 0.9) and compare it to the general case where the lo-
cal oscillator is described by the Gauss-Hermite spectral
amplitudes ek,m. In this case, the detection is optimized
for a spectral width of about NL ≃ 1.2 × 105. The re-
sults are reported in Table IV. In this case, the amount
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Vk (dB) k = 0 k = 1 k = 2 k = 3
perfect −25.6 −24.1 −22.6 −21.0
G-H −23.9 −20.8 −17.9 −15.0

TABLE IV: Case B. Comparison between the noise variances
evaluated, at ω = 0 and r = 0.9, in the case of perfect mode
matching of the LO with the supermodes corresponding to
k = 0, 1, 2, 3 and the case where the LO is the Gauss-Hermite
(G-H) function described by the spectral amplitudes ek,m and
NL = 1.2 × 105.

of squeezing detected using a Gauss-Hermite local oscil-
lator, despite of the optimization of its spectral width, is
not as much as the perfect case, even if still significative.
This result is a consequence of the fact that the situa-
tion now considered is slightly violating the bounds for
the Gaussian approximation and, hence, the supermodes
have spectral amplitudes that are no more characterized
by Gauss-Hermite functions. Nevertheless, even if Gaus-
sian approximation is not perfect, its prediction capabil-
ity is still relevant.

Since we are interested to SOPOs as multi-mode
sources for non-classical light, let’s consider the same
qualitative argument we considered in the previous sec-
tion. In this case about 23 supermodes present a degree
of squeezing greater -5 dB. Despite the fact that, with
respect to the 0.1mm-thick crystal, the number of super-
modes that characterize the SPOPOs output is smaller,
it can still be considered highly multi-mode.

C. Case C

The last case we consider corresponds to a configu-
ration that is strongly non-Gaussian. This can be di-
rectly observed by comparing the matrix L obtained in
this case and reported in Fig. 8 with the matrices for
cases A and B. In fact, since the pump pulse duration
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5 )
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FIG. 8: (Color online) Case C: L matrix. The inset is the
magnification of the matrix around the phase-matched fre-
quency corresponding to m = 0, q = 0.

τp is much smaller than the temporal walk-off |k′
p − k′

s|l,
in the space {m, q}, the pump bandwidth Np is larger
than the phase-matching bandwidth N1 (see Fig. 1).
Consequently, the pump selects not only the principal
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FIG. 9: (Color online) Case B. Spectrum of eigenvalues.
Comparison between the numerical and analytical solutions.
Among about 105 supermodes only a relatively small part
(∼ 125) is dynamically significative.
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FIG. 10: (Color online) Case C. Comparison between the
numerical (solid blue line) and the analytical (dotted red line)
solutions of the eigenvectors associated to the four highest
|Λk|.

peak of the “sinc” function corresponding to the phase-
matching matrix fm,q, but also several secondary max-
ima. This has an important consequence for what con-
cerns the eigenvectors and eigenvalues of L, obtained as
explained in Section VB by using a scale factor κ = 200,
that we report in Figs. 9 and 10.

In Fig. 9, the spectrum of the eigenvalues obtained
from the analytical solution (70) (red circles) shows a
great discrepancy with the eigenvalues obtained from nu-
merical diagonalization of L, as expected. In particular,
the part of spectrum, corresponding about to the first
50 eigenvalues, flatten around the critical value Λ0 ≃ 36,
while the Gaussian approximation predicts always a geo-
metric progression-like behavior with a critical eigenvalue
ΛGauss

0 ≃ 44. In the same experimental configuration
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Vk (dB) k = 0 k = 1 k = 2 k = 3
perfect −25.58 −25.58 −25.57 −25.57
G-H −25.27 −24.28 −22.51 −20.22

TABLE V: Case C. Comparison between the noise variances
evaluated, at ω = 0 and r = 0.9, in the case of perfect mode
matching of the LO with the supermodes corresponding to
k = 0, 1, 2, 3 and the case where the LO is the Gauss-Hermite
(G-H) function described by the spectral amplitudes ek,m and
NL = 0.08 × 105.

as previous cases (singly resonant cavity, transmission at
signal frequencies of Ts = 0.01 and beam waist of 70 µm),
a threshold of Wthr ≃ 0.67 mW can be obtained from Eq.
(31).

The result of a threshold higher than the one expected
in the Gaussian approximation has a physical explana-
tion. Since, for the time durations involved, the process
of parametric down conversion can be considered almost
instantaneous, for a mode-locked pumping field the peak
power necessary to reach the oscillation threshold is the
result of the coherent contribution of all its modes. This
circumstance is formally expressed by the fact that the
analytical expression for Λ0 (see Eq. (70)) depends on
the number of modes in the pump pulse Np. But, beyond
the Gaussian limit, the fact that Np ≫ N1 implies that
not all the Np pump modes are equally phase-matched
and, then, not all can optimally transfer energy towards
the signal modes. The same phenomenon can be under-
stood even in the temporal domain. In fact the quantity
|k′

p − k′
s|l corresponds to the temporal walk-off accumu-

lated by the pump and signal pulses through a passage in
the nonlinear crystal. When, in a non-Gaussian regime,
the condition (67) is violated, the walk-off between pump
and signal is bigger than the pump width τp and the two
field cannot optimally exchange energy all along the crys-
tal length thus increasing the instantaneous peak power
necessary to reach the oscillation.

On the other hand, in Fig. 10, the eigenvectors re-
trieved in the Gaussian approximation (74) do no more
fit the numerical solutions, as expected. In fact, even
if they still preserve a shape similar to Gauss-Hermite
functions, they result to be shorter in the domain of fre-
quencies and are affected by a small modulation of the
spectral amplitude.

As the previous cases, we consider the quantum prop-
erties of the supermodes and compare the situation of
perfect mode matching of the LO with that of a Gauss-
Hermite LO. In this latter case the detection is optimized
for a spectral width of about NL ≃ 0.08 × 105. The re-
sults are reported in Table V for the eigenvectors corre-
sponding to the first four biggest |Λk| . The fact that
they are close to degeneracy (see Fig. 9) is reflected
in an almost equal reduction of noise variances below
the standard quantum limit. Despite the differences re-
ported between the variances evaluated both by means
of a perfectly mode matched and a Gauss-Hermite LO,
a still significative degree of squeezing can be detected

in realistic situations thus suggesting that the shaping of
the LO is not a critical issue for the experimental con-
figuration considered in this section. Actually, there is
a larger set of supermodes the variances of which are all
close to the value of the critical one. In particular, there
are about 30 supermodes that have variances comprised
in 1 dB, between −24.6 dB and −25.6 dB. Furthermore,
by considering the number of supermodes that present a
noise reduction bigger than −5 dB, one discovers that,
this time, their number amounts to about 125.

D. Discussion on the influence of the crystal length

We have seen that even if the cases A and B do not
verify at the same time the condition (67), the analytical
solution obtained in the Gaussian approximation works
quite well in both cases. Nevertheless, in spite of the fact
that this condition gives an approximately good idea of
the reliability of Gaussian approximation, it is interesting
to study the passage from a perfectly Gaussian case to
a non-Gaussian one trough a “gray” region where the
differences between the two cases are not big.

Let us consider Eq. (70) in the limit of very large
l. In such case, since from Eq. (73) τ1 ≫ τp, then Λ0

asymptotically converges to:

Λ0 ≃ π1/4
√

20Np
τp

|k′
p − k′

s|
1

l
. (83)

This expression indicates that the product Λ0 × l is con-
stant for values of l compatible with a non-Gaussian
regime. In Figure 11, then, we report the values of
this product as a function of the crystal thickness. For
l . 1mm the analytical solution, as expected, is in
good agreement with the numerical one, while for greater
thicknesses the discrepancy is significative. Also this re-
sult is expected, since the analytical solution for the crit-
ical eigenvalue has not validity when the condition (67)
is violated. On the other side, the fact that also the ana-
lytical solution reaches asymptotically, for increasing l, a
plateau suggests a 1/l-like behavior of Λ0. The existence
of such a plateau can be explained from the point of view
of the evolution of the pump and signal pulses in the time
domain. As discussed in the previous section, when the
condition (67) is violated, the walk-off between pump and
signal is bigger than the pump temporal width. As a con-
sequence, the exchange of energy between the two fields
is disadvantaged till a point where the threshold can-
not change anymore even increasing the crystal length.
Since, from Eqs. (20) and (31), Pthr ∝ (Λ0 × l)−2, for
large values of l, then, also the product Λ0 × l reach a
constant value, thus explaining the plateau in Fig. 11.

In the same way, one can explain the discrepancy ob-
served between the two plateaux in Fig. 11. As already
discussed in case C, in non-Gaussian configurations the
pump bandwidth is larger than the phase-matching one,
thus not all the pump modes are phase matched and not
all of them contribute to the final value of the threshold.
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FIG. 11: (Color online) Numerical and analytical curves for
the product Λ0 × l versus the crystal length.

Therefore the number of pump modes actually involved
is smaller than the nominal value Np that should, then,
be corrected.

From a quantum point of view, we have detailed in
the previous sections the noise properties of the super-
modes connected to the first four highest Λk (see Tables
III, IV and V) and we calculated the number of super-
modes showing a squeezing better than −5 dB for getting
a qualitative indication about the “multimodicity” of the
system prepared in a specific experimental configuration.
These results can be appreciated in Fig. 12 where the
noise variances of the supermodes that satisfy this cri-
terium have been traced for the three cases previously
discussed. The curve in the middle corresponds to case
A (l = 0.1mm), a Gaussian configuration. As the thick-
ness of the crystal is increased to l = 0.5 mm (case B)
the condition (67) is violated but the Gaussian approxi-
mation is still good. This means that, even if the value
of Λ0 is decreasing (because we are reducing the number
of pump modes that are phase-matched) the spectrum is
still a geometric progression but with a smaller, in abso-
lute value, common ratio (see ρ in Eq. (70)) thus causing
an overall decrease of the spectrum with respect to the
case A. The consequence is a reduction of the number
of supermodes with a squeezing greater than −5 dB as
it results from the upper curve in Fig. 12 (red circles).
Finally, when the crystal length is further increased to
l = 5mm (case C), we pass to a completely non-Gaussian
configuration where the decrease of the critical eigenvalue
Λ0 (from ∼ 271 for l = 0.1 mm to ∼ 35 for l = 5 mm)
causes a significative deformation of the spectrum and
a non null set of eigenvalues flatten around Λ0. In this
case, since the degree of squeezing for each supermode de-
pends on the ratio |Λk/Λ0| (see Eq. (56)), the amount of
squeezing is globally increased as the lower curve (green
diamonds) in Fig. 12 shows.

These results not only confirm that a SPOPO is a
highly multi-mode device but also show another impor-
tant quality: the malleability for controlling its “mul-
timodicity”. We have seen, in fact, that one can just
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FIG. 12: (Color online) Comparison between cases A (l =
0.1mm, middle curve), B (l = 0.5mm, upper curve) and C
(l = 5mm, lower curve). Noise variancese evaluated, at ω = 0
and r = 0.9, in the case of perfect mode matching of the LO
with the supermodes corresponding to the significative part of
eigenspectrum 0 ≤ k ≤ 150. Among about 105 supermodes
only a relatively small part is significative from a quantum
point of view. In particular, there are 45, 23 and 125 super-
modes, respectively, that are squeezed more than −5 dB.

increase the thickness of the nonlinear crystal in order to
improve the number of supermodes that play an impor-
tant role from a quantum point of view.

In this paper we have presented a study of the eigen-
values and eigenvectors of the matrix L in function of
the crystal length l. However, since both the pump pulse
width and the crystal length are present in Eq. (67), no-
tice that effects similar to those discussed in this section
can be observed by playing with τp and keeping constant
l. In fact the passage from a Gaussian to a non-Gaussian
configuration takes place when the pump bandwidth Np

becomes smaller than the phase-matching one N1 and,
clearly, this can be obtained keeping fixed the latter and
increasing τp (see Fig. 1). Eventually one could even
fix l and τp and play with the group velocity mismatch
by choosing different types of nonlinearities, but, experi-
mentally, this could result in a stiffer malleability of the
device.

VII. CONCLUSION

In this paper, we have shown that both the dynami-
cal and quantum noise properties of the SPOPO depend
on the spectrum of eigenvalues Λk of the linear coupling
matrix L. We have studied in detail this spectrum in
various experimentally feasible configurations, using ei-
ther an analytical approach in some simple limit cases,
or a numerical approach in the general case. It turns out
that among the roughly 100,000 eigenvalues, 99,900 or
so are zero, and about a hundred are significantly dif-
ferent from zero and contribute to the quantum dynam-
ics of the system. SPOPOs are therefore devices which
produce simultaneously many highly squeezed vacuum
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modes. This property can be used to improve the perfor-
mances of metrological methods using frequency combs,
for example to perform ultra-accurate time transfer be-
tween remote clocks beyond the shot noise limit [46]. In
addition, it is well known that if one mixes by one way
or another different squeezed modes, one gets strongly
entangled states [47]. This is also the case here: we will
show in a forthcoming publication that SPOPOs are in-
deed likely to generate various pairs of strongly entangled
supermodes, as well as multipartite entangled states.

More generally, this paper is an example of the fact
that, by using appropriately chosen pump spectra and
phase matching curves, one can reach various eigenvalue
spectra, and therefore tailor at will the quantum proper-
ties of the light generated by the optical system, which
can be useful for example to generate interesting states
for multidimensional quantum information processing.

VIII. APPENDIX : QUANTUM MODEL FOR A

SINGLY RESONANT SPOPO

We detail in this appendix the derivation of the Heisen-
berg equations in the case of a singly resonant degenerate
type I SPOPO, i.e. when the signal field resonates inside
the cavity, but not the pump field. We consider here the
case of the linear Fabry-Perot cavity. The treatment of
this case is more complex than the doubly resonant case
usually considered in theoretical approaches as the pump
field cannot be quantized inside the cavity.

The signal field inside the nonlinear crystal, which ex-
tends from z = −l/2 to z = +l/2, is written as

Ês (z, t) = i
∑

q

Es,q sin (ks,qz
′) ŝq (t) e−iωs,qt + H.c., (84)

where z′ = z + L/2, and Es,q =
√

~ωs,q

ε0n(ωs,q)AsL
. On the

contrary, the pump field is not affected by the cavity and
hence it is given by a continuum of modes. We shall use
the common approach of quantizing the pump field in a
line of length Lp with periodic boundary conditions and,
in the end of the calculations, we will make Lp → ∞. We
thus write

Êp (z, t) = i
∑

m

E (νm) e−iνmt ×

×
[

p̂(+)
m (t) eiκmz + p̂(−)

m (t) e−iκmz
]

+

+ H.c., (85)

where the superscripts (±) label the propagation direc-

tion. E (νm) =
√

~νm

2ε0ApLpn(νm) are single photon field

amplitudes. In the limit Lp → ∞ the frequencies νm

are given by νm = m 2πc
Lp

, m ∈ N, and the wavenumbers

κm = n(νm)νm

c , with n (νm) the crystal refractive index.
Note that we are writing the fields as a superposition
of plane waves, but the treatment is still approximately

valid for Gaussian beams as far as the thin crystal is
placed at the (common) beam waist of pump and sig-
nal, and the Rayleigh lengths are much longer than the
crystal length l. In such case Af = πw2

f with wf the
corresponding beam radius.

The interaction Hamiltonian ĤI is calculated as usual
as in (7). Inserting the expressions of the second order
nonlinear electric polarizations, one obtains the following
form of the interaction Hamiltonian, in which χ is the
second order nonlinear susceptibility (whose dispersion
is neglected):

ĤI (t) = i
ε0χlAI

2

∑

m

∑

q

∑

j

E (νj) Es,mEs,qF
j
m,q ×

× ŝ†m (t) ŝ†q (t)
[

p̂
(+)
j (t) + p̂

(−)
j (t)

]

×

× ei(ωs,m+ωs,q−νj)te−i(ks,m+ks,q)L/2 +

+ H.c., (86)

where we defined the phase-mismatch factor

F j
m,q =

sin
[

(κj − ks,m − ks,q)
l
2

]

(κj − ks,m − ks,q)
l
2

. (87)

In (86) we dropped highly phase mismatched terms, as
usual.

If we introduce new signal boson operators

ŝm,new (t) = ŝm (t) e+iks,mL/2 (88)

the interaction Hamiltonian becomes as (86) but without
the exponential e−i(ks,m+ks,q)L/2. In the following we will
use the new operators but omit the superscript “new” for
simplicity.

From the previous expression of the hamiltonian, one
can derive following Heisenberg equations governing the
time evolution of the pump and signal operators:

dp̂
(±)
j (t)

dt
= −ε0χlAI

2~

∑

m

∑

q

E (νj) Es,mEs,qF
j
m,q ×

× ŝm (t) ŝq (t) e−i(ωs,m+ωs,q−νj)t, (89)

dŝm (t)

dt
=

ε0χlAI

~

∑

q

∑

j

E (νj) Es,mEs,qF
j
m,q ×

× ŝ†q (t)
[

p̂
(+)
j (t) + p̂

(−)
j (t)

]

×

× ei(ωs,m+ωs,q−νj)t. (90)

The integration of the pump equations yields

p̂
(±)
j (t) = p̂

(±)
free,j −

ε0χlAI

2~

∑

m

∑

q

E (νj) Es,mEs,qF
j
m,q ×

×
∫ t

0

dt′ŝm (t′) ŝq (t′) e−i(ωs,m+ωs,q−νj)t
′

, (91)

where p̂
(±)
free,j = p̂

(±)
j (0) is the source-free part of the pump

(the field impinging the nonlinear crystal).
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Using the usual Wigner-Weisskopf approach, valid be-
cause the nonlinear interaction is assumed to be instan-
taneous, and using the approximation

sin
(

Ω
2 t

)

Ω
2

≃ 2πδ (Ω) , (92)

we obtain a value of p̂
(±)
j (t) that one can then insert in

Eq. (90):

p̂
(±)
j (t) = p̂

(±)
free,j (t) +

− πε0χAIl

~

∑

m

∑

q

E (νj) Es,mEs,qF
j
m,q ×

× ŝm (t) ŝq (t) δ (ωs,m + ωs,q − νj) , (93)

We can now pass to the continuum limit. For that we
define continuum pump operators in the following way:

p̂
(±)
free (νj) =

√

Lp

2πc
p̂
(±)
free,j, (94)

which verify

[

p̂
(±)
free (νj) ,

[

p̂
(±)
free (νk)

]†
]

=
Lp

2πc
δj,k −→

Lp→∞
δ (νj − νk) .

(95)

Transforming sums into integrals, we obtain the fol-
lowing equation for the signal modes:

dŝm (t)

dt
=

AI
√

Ap

lχ

√

ε0

4π~c

∑

q

Es,mEs,q ŝ
†
q (t) I(1)

m,q +

− A2
I

Ap
(lχ)

2 ε0

2~c

∑

n

∑

r

∑

q

Es,mEs,qEs,nEs,r ×

× ŝ†q (t) ŝn (t) ŝr (t) I(2)
m,q, (96)

where

I(1)
m,q =

∫

dν

√

ν

n (ν)

sin
[

(k (ν) − ks,m − ks,q)
l
2

]

(k (ν) − ks,m − ks,q)
l
2

×

×
[

p̂
(+)
free (ν) + p̂

(−)
free (ν)

]

ei(ωs,m+ωs,q−ν)t, (97)

I(2)
m,q =

∫

dνδ (ωs,n + ωs,r − ν)
ν

n (ν)
×

× sin
[

(k (ν) − ks,m − ks,q)
l
2

]

(k (ν) − ks,m − ks,q)
l
2

×

× sin
[

(k (ν) − ks,n − ks,r)
l
2

]

(k (ν) − ks,n − ks,r)
l
2

×

× ei(ωs,m+ωs,q−ν)t. (98)

In order to calculate the first integral, we write it as a
sum over frequency intervals of width Ω and centered at

frequencies ωp,r = 2ω0 + rΩ, r ∈ Z. Thus I1 becomes

I(1)
m,q ≃ ei(ωs,m+ωs,q)t

∑

r

√

ωp,r

n (ωp,r)
×

× sin
[

(kp,r − ks,m − ks,q)
l
2

]

(kp,r − ks,m − ks,q)
l
2

×

×
∫

r

dν
[

p̂
(+)
free (ν) + p̂

(−)
free (ν)

]

e−iνt (99)

where kp,r = k (ωp,r) = k (2ω0 + rΩ).
We now define new pump operators

√
2πe−iωp,rtp̂

(±)
in,r (t) =

∫

r

dνe−iνtp̂
(±)
free (ν) . (100)

which can be shown to verify the following property:

〈

p̂
(±)
in,r1

(t1)
[

p̂
(±)
in,r2

(t2)
]†

〉

≃ δr1,r2
δ (t1 − t2) . (101)

I
(1)
m,q now becomes

I(1)
m,q ≃

√
2π

∑

r

√

ωp,r

n (ωp,r)

sin
[

(kp,r − ks,m − ks,q)
l
2

]

(kp,r − ks,m − ks,q)
l
2

×

× ei(ωs,m+ωs,q−ωp,r)t
[

p̂
(+)
in,r (t) + p̂

(−)
in,r (t)

]

. (102)

Retaining only slowly varying terms in the evolution,
and including the losses of the optical cavity at rate γs,
one finally gets:

dŝm (t)

dt
= −γsŝm (t) +

√

2γsŝin,m (t) +

+ g
∑

q

fm,qŝ
†
q (t)

[

p̂
(+)
in,m+q (t) + p̂

(−)
in,m+q (t)

]

+

− g2
∑

n

∑

q

fm,qfn,m+q−n ×

× ŝ†q (t) ŝn (t) ŝm+q−n (t) , (103)

where the coupling constant g is given by

g = χ
AI

As

√

Ap

l

L

(

ω0

n0

)3/2 √

~

ε0c
(104)

and ŝin,m (t) corresponds to the field at signal frequencies
entering the cavity through the coupling mirror. When
that input is coherent or vacuum, the case we consider,
those “in” operators verify the following correlation

〈

ŝin,m (t) ŝ†in,m′ (t′)
〉

= δm,m′δ (t − t′) , (105)

and thus behave as p̂
(±)
in,r (t) (see Eq(101)).

Let us now consider the regime below the oscillation
threshold : the signal modes are almost not excited and
the double sum in (103) can be neglected. Also, the pump
“in” fields can be approximated by their mean values as
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their fluctuation part gives rise to smaller terms, which
are neglected for the same reasons as before. Hence, we
have for a unidirectional pumping :

< p̂
(−)
in,m (t) >= 0 ; < p̂

(+)
in,m (t) >=

√

n0ApP

2~ω0
αm,

(106)
P being the average power per unit area of the mod-
elocked pump laser and

∑

m |αm|2 = 1. Eq. (106) is
obtained by demanding that the pump field correspond-

ing to the set
{

p̂
(+)
in,m (t)

}

equals the external pump field

given by Eq. (1) inside the crystal. The linearized equa-
tions for the SPOPO below threshold finally become

dŝm (t)

dt
= − γsŝ +

√

2γsŝin,m (t)+

+ γsσ
∑

q

fm,qαm+q ŝ
†
q (t) ,

(107)

where

σ =

√

P

P0
; P0 =

ε0c
3n2

0T
2
s

32 (χlω0)
2

(

As

AI

)2

, (108)

In conclusion, we have shown that the linearized equa-

tions (107) formally coincide with those of a doubly res-
onant SPOPO (Eq.(18)), the only difference being the
exact value of P0.
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[14] G. J. de Valcárcel, G. Patera, N. Treps, and C. Fabre,

Phys. Rev. A 74, 061801(R) (2006).
[15] J. A. Levenson, I. Abram, T. Rivera, P. Fayolle, J. C.

Garreau, and P. Grangier, Phys. Rev. Lett. 70, 267
(1993).

[16] A. Piskarskas, V. J. Smil’gyavichyus, and A. Umbrasas,
Sov. Quantum Electron. 18, 155 (1988).

[17] D. C. Edelstein, E. S. Wachman, and C. L. Tang, Appl.
Phys. Lett. 54, 1728 (1989).

[18] G. Mak, Q. Fu, and H. M. van Driel, Appl. Phys. Lett.
60, 542 (1992).

[19] G. T. Maker and A. I. Ferguson, Appl. Phys. Lett 56,
1614 (1990).

[20] M. Ebrahimzadeh, G. J. Hall, and A. I. Ferguson, Opt.
Lett. 16, 1744 (1991).

[21] M. J. McCarty and D. C. Hanna, Opt. Lett. 17, 402
(1992).

[22] E. C. Cheung and J. M. Liu, J. Opt. Soc. Am. B 7, 1385
(1990) and 8, 1491 (1991).

[23] M. J. McCarthy and D. C. Hanna, J. Opt. Soc. Am. B
10, 2180 (1993).

[24] M. F. Becker, D. J. Kuizenga, D. W. Phillion, and A. E.
Siegman, J. Appl. Phys. 45, 3996 (1974).

[25] N. Forget, S. Bahbah, C. Drag, F. Bretenaker, M.
Lef‘ebvre, and E. Rosencher, Actively mode-locked op-
tical parametric oscillator, Opt. Lett. 31, 972 (2006).

[26] R. S. Bennink and R. W. Boyd, Phys. Rev. A 66, 053815
(2002).

[27] W. Wasilewski, A. I. Lvovsky, K. Banaszek, and C.
Radzewicz, Phys. Rev. A 73, 063819 (2006); A. I.
Lvovsky, W. Wasilewski, and K. Banaszek, J. Mod. Opt.
54, 721 (2007).
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