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Summary. Transcendental numbers form a fascinating subject: so little is known about the
nature of analytic constants that more research is needed in this area. Even when one is
interested only in numbers like π and eπ that are related to the classical exponential func-
tion, it turns out that elliptic functions are required (so far, this should not last forever!) to
prove transcendence results and get a better understanding of the situation.

First we briefly recall some of the basic transcendence results related to the exponential
function (Section 1). Next, in Section 2, we survey the main properties of elliptic functions
that are involved in transcendence theory.

We survey transcendence theory of values of elliptic functions in Section 3, linear
independence in Section 4, and algebraic independence in Section 5. This splitting is some-
what artificial but convenient. Moreover, we restrict ourselves to elliptic functions, even when
many results are only special cases of statements valid for abelian functions. A number of
related topics are not considered here (e.g., heights, p-adic theory, theta functions, Diophantine
geometry on elliptic curves).
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1 Exponential Function and Transcendence

We start with a very brief list of some of the main transcendence results concerning
numbers related to the exponential function. References are, for instance, [13, 83,
89, 120, 192, 207, 211, 233].

Next, we point out some properties of the exponential function, the elliptic
analogue of which we shall consider later (Section 2.1).

1.1 Short Survey on the Transcendence of Numbers Related to the
Exponential Function

Hermite, Lindemann, and Weierstrass

The first transcendence result for a number related to the exponential function is
Hermite’s theorem on the transcendence of e.

Theorem 1 (Hermite, 1873). The number e is transcendental.

This means that for any nonzero polynomial P ∈ Z[X], the number P(e) is not
zero. We denote by Q the set of algebraic numbers. Hence Hermite’s theorem can be
written e �∈ Q. A complex number is called transcendental if it is transcendental over
Q, or over Q, which is the same. Also we shall say that complex numbers θ1, . . . , θn

are algebraically independent if they are algebraically independent over Q, which is
the same as over Q: for any nonzero polynomial P in n variables (and coefficients in
Z, Q, or Q), the number P(θ1, . . . , θn) is not zero.

The second result in chronological order is Lindemann’s theorem on the
transcendence of π .

Theorem 2 (Lindemann, 1882). The number π is transcendental.

The next result contains the transcendence of both numbers e and π :

Theorem 3 (Hermite–Lindemann, 1882). For α ∈ Q
×

, any nonzero logarithm
log α of α is transcendental.

We denote by L the Q-vector space of logarithms of algebraic numbers:

L = {
log α ; α ∈ Q

×} = {
� ∈ C ; e� ∈ Q

×} = exp−1(Q
×
).

Hence Theorem 3 means that L ∩Q = {0}. An alternative form is the following:

Theorem 4 (Hermite–Lindemann, 1882). For any β ∈ Q
×

, the number eβ is tran-
scendental.

The first result of algebraic independence for the values of the exponential func-
tion goes back to the end of the nineteenth century.
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Theorem 5 (Lindemann–Weierstrass, 1885). Let β1, . . . , βn be Q-linearly
independent algebraic numbers. Then the numbers eβ1, . . . , eβn are algebraically
independent.

Again, there is an alternative form of Theorem 5: it amounts to a statement of
linear independence.

Theorem 6 (Lindemann–Weierstrass, 1885). Let γ1, . . . , γm be distinct algebraic
numbers. Then the numbers eγ1, . . . , eγm are linearly independent over Q.

It is not difficult to check that Theorem 6 is equivalent to Theorem 5 with the
conclusion that eβ1, . . . , eβn are algebraically independent over Q; since it is equi-
valent to saying that eβ1, . . . , eβn are algebraically independent over Q, one does not
lose anything if one changes the conclusion of Theorem 6 by stating that the numbers
eγ1, . . . , eγm are linearly independent over Q.

Hilbert’s Seventh Problem, Gel’fond and Schneider

The solution of Hilbert’s seventh problem on the transcendence of αβ was obtained
by Gel’fond and Schneider in 1934 (see [89, 207]).

Theorem 7 (Gel’fond–Schneider, 1934). For α and β algebraic numbers with
α �= 0 and β �∈ Q and for any choice of log α �= 0, the number αβ = exp(β log α) is
transcendental.

This means that the two algebraically independent functions ez and eβz cannot
take algebraic values at the points log α (A.O. Gel’fond) and also that the two alge-
braically independent functions z and αz = ez log α cannot take algebraic values at
the points m + nβ with (m, n) ∈ Z

2 (Th. Schneider).
Examples (quoted by D. Hilbert in 1900) of numbers whose transcendence

follows from Theorem 7 are 2
√

2 and eπ (recall that eiπ = −1). The transcendence
of eπ had already been proved in 1929 by A.O. Gel’fond.

Here is an equivalent statement to Theorem 7:

Theorem 8 (Gel’fond–Schneider, 1934). Let log α1, log α2 be two nonzero
logarithms of algebraic numbers. Assume that the quotient (log α1)/(log α2) is
irrational. Then this quotient is transcendental.

Linear Independence of Logarithms of Algebraic Numbers

The generalization of Theorem 8 to more than two logarithms, conjectured by
A.O. Gel’fond [89], was proved by A. Baker in 1966. His results include not only
Theorem 8 but also Theorem 3.

Theorem 9 (Baker, 1966). Let log α1, . . . , log αn be Q-linearly independent
logarithms of algebraic numbers. Then the numbers 1, log α1, . . . , log αn are linearly
independent over the field Q.
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The Six Exponentials Theorem and the Four Exponentials Conjecture

The next result, which does not follow from any of the previously mentioned results,
was proved independently in the 1940s by C.L. Siegel (unpublished) and in the 1960s
by S. Lang and K. Ramachandra (see [120, 191, 238]; see also Problem 1 in [207]
for the four exponentials conjecture). As suggested by K. Ramachandra (see [192]
Section 3.1, Theorem 2), Theorem 10 also follows from Schneider’s criterion proved
in 1949 [206].

Theorem 10 (Six Exponentials Theorem). Let x1, . . . , xd be Q-linearly indepen-
dent complex numbers and let y1, . . . , y� be Q-linearly independent complex
numbers. Assume �d > �+ d. Then at least one of the �d numbers

exi y j (1 ≤ i ≤ d, 1 ≤ j ≤ �)

is transcendental.

Notice that the condition �d > �+ d can be written (� ≥ 2 and d ≥ 3) or (� ≥ 3
and d ≥ 2); it suffices to consider the case �d = 6 (hence the name of the result).
Therefore, Theorem 10 can be stated in an equivalent form:

Theorem 11 (Six Exponentials Theorem—logarithmic form). Let

M =
(

log α1 log α2 log α3

log β1 log β2 log β3

)

be a 2-by-3 matrix whose entries are logarithms of algebraic numbers. Assume that
the three columns are linearly independent over Q and the two rows are also linearly
independent over Q. Then the matrix M has rank 2.

It is expected that the condition d� > d + � in Theorem 10 is too restrictive and
that the same conclusion holds in the case d = � = 2. We state this conjecture in the
logarithmic form:

Conjecture 12 (Four exponentials conjecture — logarithmic form). Let

M =
(

log α1 log α2

log β1 log β2

)

be a 2-by-2 matrix whose entries are logarithms of algebraic numbers. Assume that
the two columns are linearly independent over Q and that the two rows are also
linearly independent over Q. Then the matrix M has rank 2.

Algebraic Independence

In 1948 and 1949, A.O. Gel’fond extended his solution of Hilbert’s seventh problem
to a result of algebraic independence [89]. One of his theorems is that the two
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numbers 2
3√2 and 2

3√4 are algebraically independent. His general statements can
be seen as extensions of Theorem 10 into a result of algebraic independence (in
spite of the fact that Theorem 10 was stated and proved only several years later).
In his original work, Gel’fond needed a stronger assumption, namely a measure of
linear independence of the xi ’s as well as of the y j ’s. This assumption was removed
in the early 1970s by R. Tijdeman [217] (further references, especially to papers by
A.A. Smelev and W.D. Brownawell, are given in [230]; see also [35, 235, 236, 242]).

Theorem 13. Let x1, . . . , xd be Q-linearly independent complex numbers and let
y1, . . . , y� be Q-linearly independent complex numbers.
1. If d� ≥ 2(d + �), then at least two of the d� numbers

exi y j (1 ≤ i ≤ d, 1 ≤ j ≤ �)

are algebraically independent.
2. If d� ≥ d + 2�, then at least two of the d�+ d numbers

xi , exi y j (1 ≤ i ≤ d, 1 ≤ j ≤ �)

are algebraically independent.
3. If d� > d + �, then at least two of the d�+ d + � numbers

xi , y j , exi y j (1 ≤ i ≤ d, 1 ≤ j ≤ �)

are algebraically independent.
4. If d = � = 2 and if the two numbers ex1 y1 and ex1 y2 are algebraic, then at least
two of the six numbers

x1, x2, y1, y2, ex2 y1, ex2 y2

are algebraically independent.

From the last part of Theorem 13, taking x1 = y1 = iπ and x2 = y2 = 1, one
deduces that at least one of the two following statements is true:
(i) The number eπ2

is transcendental.
(ii) The two numbers e and π are algebraically independent.

One expects that both statements are true.
If it were possible to prove that under the assumptions of Theorem 13, at least

two of the eight numbers

x1, x2, y1, y2, ex1 y1, ex1 y2, ex2 y1, ex2 y2

are algebraically independent, one would deduce the algebraic independence of the
two numbers π and eπ (take x1 = 1, x2 = i , y1 = π , y2 = iπ ; see Corollary 48
below).

For results concerning large transcendence degree, see Section 5.3 below.
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1.2 The Exponential Function

The exponential function
exp : C→ C

×,

z 
→ ez,

satisfies both a differential equation and an addition formula:

d

dz
ez = ez, ez1+z2 = ez1ez2 .

It is a homomorphism of the additive group C of complex numbers onto the multi-
plicative group C

× of nonzero complex numbers, with kernel

ker exp = 2π iZ.

Hence it yields an isomorphism between the quotient additive group C/2π iZ and
the multiplicative group C

×.
The group C

× is the group of complex points of the multiplicative group Gm ;
z 
→ ez is the exponential function of the multiplicative group Gm . We shall replace
this algebraic group by an elliptic curve. We could replace it also by other commu-
tative algebraic groups. As a first example, the exponential function of the additive
group Ga is

C→ C,

z 
→ z.

More general examples are commutative linear algebraic groups; over an alge-
braically closed field, these are nothing else than products of several copies of the
additive and multiplicative group. Further examples of algebraic groups are abelian
varieties. In full generality, algebraic groups are extensions of abelian varieties by
commutative linear algebraic groups. See, for instance, [120, 158, 233].

2 Elliptic Curves and Elliptic Functions

Among many references for this section are the books by S. Lang [127],
K. Chandrasekharan [43], and J. Silverman [212, 213]. See also the book by
M. Hindry and J. Silverman [99].

2.1 Basic Concepts

An elliptic curve may be defined as

– y2 = C(x) for a square-free cubic polynomial C(x),
– a connected compact Lie group of dimension 1,
– a complex torus C/�, where � is a lattice in C,
– a Riemann surface of genus 1,
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– a nonsingular cubic in P2(C) (together with a point at infinity),
– an algebraic group of dimension 1, with underlying projective algebraic variety.

We shall use the Weierstrass form

E = {(t : x : y) ; y2t = 4x3 − g2xt2 − g3t3} ⊂ P2.

Here g2 and g3 are complex numbers, with the only assumption g3
2 �= 27g2

3,
which means that the discriminant of the polynomial 4X3 − g2 X − g3 does not
vanish.

An analytic parametrization of the complex points E(C) of E is given by means
of the Weierstrass elliptic function ℘, which satisfies the differential equation

℘ ′2 = 4℘3 − g2℘ − g3. (1)

It has a double pole at the origin with principal part 1/z2 and also satisfies an addition
formula

℘(z1 + z2) = −℘(z1)− ℘(z2)+ 1

4
·
(

℘ ′(z1)− ℘ ′(z2)

℘ (z1)− ℘(z2)

)2

. (2)

The exponential map of the Lie group E(C) is

expE : C→ E(C),

z 
→ (1 : ℘(z) : ℘ ′(z)).

The kernel of this map is a lattice in C (that is, a discrete rank-2 subgroup),

� = ker expE = {ω ∈ C ; ℘(z + ω) = ℘(z)} = Zω1 + Zω2.

Hence expE induces an isomorphism between the quotient additive group C/� and
E(C) with the law given by (2). The elements of � are the periods of ℘. A pair
(ω1, ω2) of fundamental periods is given by (cf. [244] Section 20.32, Example 1)

ωi = 2
∫ ∞

ei

dx√
4x3 − g2x − g3

(i = 1, 2),

where
4x3 − g2x − g3 = 4(x − e1)(x − e2)(x − e3).

Indeed, since ℘ ′ is periodic and odd, it vanishes at ω1/2, ω2/2 and (ω1 + ω2)/2;
hence the values of ℘ at these points are the three distinct complex numbers e1, e2,
and e3 (recall that the discriminant of 4x3 − g2x − g3 is not 0).

Conversely, given a lattice �, there is a unique Weierstrass elliptic function ℘�

whose period lattice is � (see Section 2.5). We denote its invariants in the differential
equation (1) by g2(�) and g3(�).

We shall be interested mainly (but not only) in elliptic curves that are defined
over the field of algebraic numbers: they have a Weierstrass equation with algebraic
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g2 and g3. However, we shall also use the Weierstrass elliptic function associated
with the lattice λ�, where λ ∈ C

× may be transcendental; the relations are

℘λ�(λz) = λ−2℘�(z), g2(λ�) = λ−4g2(�), g3(λ�) = λ−6g3(�). (3)

The lattice � = Z + Zτ , where τ is a complex number with positive imaginary
part, satisfies

g2(Z+ Zτ ) = 60G2(τ ) and g3(Z+ Zτ ) = 140G3(τ ),

where Gk(τ ) (with k ≥ 2) are the Eisenstein series (see, for instance, [48]
Section 3.2, [208] Section 7.2.3, [116] Section 3.2 or [212] Section 6.3 — the
normalization in [254] p. 240 is different):

Gk(τ ) =
∑

(m,n)∈Z2\{(0,0)}
(m + nτ )−2k . (4)

2.2 Morphisms between Elliptic Curves. The Modular Invariant

If � and �′ are two lattices in C and if f : C/� → C/�′ is an analytic homo-
morphism, then the map C→ C/�→ C/�′ factors through a homothecy C→ C

given by some λ ∈ C such that λ� ⊂ �′:

C
λ−−−−→ C

↓ ↓
C/� −−−−→

f
C/�′

If f �= 0, then λ ∈ C
× and f is surjective.

Conversely, if there exists λ ∈ C such that λ� ⊂ �′, then fλ(x +�) = λx +�′
defines an analytic surjective homomorphism fλ : C/� → C/�′. In this case λ�
is a subgroup of finite index in �′; hence the kernel of fλ is finite and there exists
μ ∈ C

× with μ�′ ⊂ �: the two elliptic curves C/� and C/�′ are isogenous.
If � and �∗ are two lattices, ℘ and ℘∗ the associated Weierstrass elliptic func-

tions, and g2, g3 the invariants of ℘, the following statements are equivalent:

(i) There is a 2×2 matrix with rational coefficients that maps a basis of � to a basis
of �∗.

(ii) There exists λ ∈ Q
× such that λ� ⊂ �∗.

(iii) There exists λ ∈ Z \ {0} such that λ� ⊂ �∗.
(iv) The two functions ℘ and ℘∗ are algebraically dependent over the field Q(g2, g3).
(v) The two functions ℘ and ℘∗ are algebraically dependent over C.

The map fλ is an isomorphism if and only if λ� = �′.
The number

j = 1728g3
2

g3
2 − 27g2

3



7 Elliptic Functions and Transcendence 151

is the modular invariant of the elliptic curve E . Two elliptic curves over C are
isomorphic if and only if they have the same modular invariant.

Set τ = ω2/ω1, q = e2π iτ and J (e2π iτ ) = j (τ ). Then

J (q) = q−1

(
1+ 240

∞∑

m=1

m3 qm

1− qm

)3 ∞∏

n=1

(1− qn)−24

= 1

q
+ 744+ 196884 q + 21493760 q2 + · · · .

See [142] Section 4.12 or [208] Sections 7.3.3 and 7.4.

2.3 Endomorphisms of an Elliptic Curve; Complex Multiplication

Let � be a lattice in C. The set of analytic endomorphisms of C/� is the subring

End(C/�) = { fλ ; λ ∈ C with λ� ⊂ �}
of C. We also call it the ring of endomorphisms of the associated elliptic curve, or of
the corresponding Weierstrass ℘ function, and we identify it with the subring

{λ ∈ C ; λ� ⊂ �}
of C. The field of endomorphisms is the quotient field End(C/�)⊗Z Q of this ring.

If λ ∈ C satisfies λ� ⊂ �, then λ is either a rational integer or an algebraic
integer in an imaginary quadratic field. For such a λ, ℘�(λz) is a rational function
of ℘�(z); the degree of the numerator is λ2 if λ ∈ Z and N(λ) otherwise (here, N is
the norm of the imaginary quadratic field); the degree of the denominator is λ2 − 1
if λ ∈ Z and N(λ) − 1 otherwise.

Let E be the elliptic curve attached to the Weierstrass ℘ function. The ring of
endomorphisms End(E) of E is either Z or an order in an imaginary quadratic field
k. The latter case arises if and only if the quotient τ = ω2/ω1 of a pair of fundamental
periods is a quadratic number; in this case the field of endomorphisms of E is k =
Q(τ ) and the curve E has complex multiplication; this is the so-called CM case. This
means also that the two functions ℘(z) and ℘(τ z) are algebraically dependent. In
this case, the value j (τ ) of the modular invariant j is an algebraic integer whose
degree is the class number of the quadratic field k = Q(τ ).

Remark 14. From Theorem 7 one deduces the transcendence of the number

eπ
√

163 = 262 537 412 640 768 743.999 999 999 999 250 072 59 . . . .

If we set

τ = 1+ i
√

163

2
, q = e2π iτ = −e−π

√
163,

then the class number of the imaginary quadratic field Q(τ ) is 1, we have j (τ ) =
−(640 320)3, and
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∣∣∣∣ j (τ )− 1

q
− 744

∣∣∣∣ < 10−12.

Also ([57] Section 2.4)
(

eπ
√

163 − 744
)1/3 = 640 319.999 999 999 999 999 999 999 999 390 31 . . . .

Let ℘ be a Weierstrass elliptic function with field of endomorphisms k. Hence
k = Q if the associated elliptic curve has no complex multiplication, while in
the other case k is an imaginary quadratic field, namely k = Q(τ ), where τ is
the quotient of two linearly independent periods of ℘. Let u1, . . . , ud be nonzero
complex numbers. Then the functions ℘(u1z), . . . , ℘ (ud z) are algebraically inde-
pendent (over C or over Q(g2, g3); this is equivalent) if and only if the numbers
u1, . . . , ud are linearly independent over k. This generalizes the fact that ℘(z) and
℘(τ z) are algebraically dependent if and only if the elliptic curve has complex
multiplication. Much more general and deeper results of algebraic independence of
functions (exponential and elliptic functions, zeta functions, . . . ) were proved by
W.D. Brownawell and K.K. Kubota [37].

If ℘ is a Weierstrass elliptic function with algebraic invariants g2 and g3, if E is
the associated elliptic curve, and if k denotes its field of endomorphisms, then the set

LE = � ∪ {
u ∈ C \� ; ℘(u) ∈ Q}

is a k-vector subspace of C: this is the set of elliptic logarithms of algebraic points
on E . It plays a role with respect to E similar to the role of L for the multiplicative
group Gm .

Let k = Q(
√−d) be an imaginary quadratic field with class number h(−d) = h.

There are h nonisomorphic elliptic curves E1, . . . , Eh with ring of endomorphisms
the ring of integers of k. The numbers j (Ei ) are conjugate algebraic integers of
degree h; each of them generates the Hilbert class field H of k (maximal unramified
abelian extension of k). The Galois group of H/k is isomorphic to the ideal class
group of k.

Since the group of roots of units of an imaginary quadratic field is {−1,+1}
except for Q(i) and Q(), where  = e2π i/3, it follows that there are exactly two
elliptic curves over Q (up to isomorphism) having an automorphism group bigger
than {−1,+1}. They correspond to Weierstrass elliptic functions ℘ for which there
exists a complex number λ �= ±1 with λ2℘(λz) = ℘(z).

The first one has g3 = 0 and j = 1728. An explicit value for a pair of funda-
mental periods of the elliptic curve

y2t = 4x3 − 4xt2

follows from computations by Legendre using Gauss’s lemniscate function ([244]
Section 22.8) and yields (see [4], as well as Appendix 1 of [241])

ω1 =
∫ ∞

1

dx√
x3 − x

= 1

2
B(1/4, 1/2) = �(1/4)2

23/2π1/2 and ω2 = iω1. (5)
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The lattice Z[i ] has g2 = 4ω4
1. Thus

∑

(m,n)∈Z2\{(0,0)}
(m + ni)−4 = �(1/4)8

26 · 3 · 5 · π2
·

The second one has g2 = 0 and j = 0. Again from computations by Legendre ([244]
Section 22.81 II) one deduces that a pair of fundamental periods of the elliptic curve

y2t = 4x3 − 4t3

is (see once more [4] and Appendix 1 of [241])

ω1 =
∫ ∞

1

dx√
x3 − 1

= 1

3
B(1/6, 1/2) = �(1/3)3

24/3π
and ω2 = ω1. (6)

The lattice Z[] has g3 = 4ω6
1. Thus

∑

(m,n)∈Z2\{(0,0)}
(m + n)−6 = �(1/3)18

28 · 5 · 7 · π6 ·

These two examples involve special values of Euler’s gamma function

�(z) =
∫ ∞

0
e−t t z · dt

t
= e−γ zz−1

∞∏

n=1

(
1+ z

n

)−1
ez/n, (7)

where

γ = lim
n→∞

(
n∑

k=1

1

k
− log n

)
= 0.577 215 664 901 532 860 606 512 09 . . .

is Euler’s constant (Section 12.1 in [244]), while Euler’s beta function is

B(a, b) = �(a)�(b)

�(a + b)
=

∫ 1

0
xa−1(1− x)b−1dx .

More generally, the formula of Chowla and Selberg (1966) [44] (see also [9, 95, 96,
115, 117, 234] for related results) expresses periods of elliptic curves with complex
multiplication as products of gamma values: if k is an imaginary quadratic field and
O an order in k, if E is an elliptic curve with complex multiplication by O, then the
corresponding lattice � determines a vector space � ⊗Z Q that is invariant under
the action of k and thus has the form k · ω for some ω ∈ C

× defined up to elements
in k×. In particular, if O is the ring of integers Zk of k, then

ω = α
√

π
∏

0<a<d
(a,d)=1

�(a/d)wε(a)/4h,

where α is a nonzero algebraic number, w is the number of roots of unity in k, h is
the class number of k, and ε is the Dirichlet character modulo the discriminant d
of k.
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2.4 Standard Relations among Gamma Values

Euler’s gamma function satisfies the following relations ([244] Chapter XII):
(Translation)

�(z + 1) = z�(z);

(Reflection)

�(z)�(1 − z) = π

sin(πz)
;

(Multiplication) For any positive integer n,

n−1∏

k=0

�

(
z + k

n

)
= (2π)(n−1)/2n−nz+(1/2)�(nz).

D. Rohrlich conjectured that any multiplicative relation among gamma values is a
consequence of these standard relations, while S. Lang was more optimistic (see
[125], [128] I Chapter 2 Appendix p. 66 and [9] Chapter 24):

Conjecture 15 (D. Rohrlich). Any multiplicative relation

πb/2
∏

a∈Q
�(a)ma ∈ Q

with b and ma in Z is a consequence of the standard relations.

Conjecture 16 (S. Lang). Any algebraic dependence relation with algebraic coeffi-
cients among the numbers (2π)−1/2�(a) with a ∈ Q is in the ideal generated by the
standard relations.

2.5 Quasiperiods of Elliptic Curves and Elliptic Integrals of the Second Kind

Let � = Zω1 + Zω2 be a lattice in C. The Weierstrass canonical product attached
to this lattice is the entire function σ� defined by ([244] Section 20.42)

σ�(z) = z
∏

ω∈�\{0}

(
1− z

ω

)
e

z
ω+ z2

2ω2 ·

It has a simple zero at any point of �.
Hence the Weierstrass sigma function plays, for the lattice �, the role that is

played by the function

z
∏

n≥1

(
1− z

n

)
ez/n = −eγ z�(−z)−1

for the set of positive integers N \ {0} = {1, 2, . . . } (see the infinite product (7) for
Euler’s gamma function), and also by the function
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π−1 sin(πz) = z
∏

n∈Z\{0}

(
1− z

n

)
ez/n

for the set Z of rational integers ([43] Section 4.2).
The Weierstrass sigma function σ associated with a lattice in C is an entire

function of order 2:

lim sup
r→∞

1

log r
· log log sup

|z|=r
|σ(z)| = 2;

the product σ 2℘ is also an entire function of order 2 (this can be checked using
infinite products, but it is easier to use the quasiperiodicity of σ , see formula (8)
below).

The logarithmic derivative of the sigma function is the Weierstrass zeta func-
tion ζ = σ ′/σ whose Laurent expansion at the origin is ([127] Section 18.3, [208]
Section 7.2.3 and [212] Section 6.3, Theorem 3.5)

ζ(z) = 1

z
−

∑

k≥2

skz2k−1,

where for k ∈ Z, k ≥ 2,

sk = sk(�) =
∑

ω∈�
ω �=0

ω−2k = ω−2k
1 Gk(τ )

(recall (4); also τ = ω2/ω1).
The derivative of ζ is −℘. From

℘ ′′ = 6℘2 − (g2/2)

one deduces that sk(�) is a homogeneous polynomial in Q[g2, g3] of weight 2k for
the graduation of Q[g2, g3] determined by assigning to g2 the degree 4 and to g3 the
degree 6.

As a side remark, we notice that for any u ∈ C \� we have

Q(g2, g3) ⊂ Q
(
℘(u), ℘ ′(u), ℘ ′′(u)

)
.

Since its derivative is periodic, the function ζ is quasiperiodic: for each ω ∈ � there
is a complex number η = η(ω) such that

ζ(z + ω) = ζ(z)+ η.

These numbers η are the quasiperiods of the elliptic curve. If (ω1, ω2) is a pair of
fundamental periods and if we set η1 = η(ω1) and η2 = η(ω2), then, for (a, b) ∈ Z

2,

η(aω1 + bω2) = aη1 + bη2.
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Returning to the sigma function, one deduces that

σ(z + ωi ) = −σ(z) exp(ηi (z + (ωi/2))) (i = 1, 2). (8)

The zeta function also satisfies an addition formula:

ζ(z1 + z2) = ζ(z1)+ ζ(z2)+ 1

2
· ℘
′(z1)− ℘ ′(z2)

℘ (z1)− ℘(z2)
·

The Legendre relation relating the periods and the quasiperiods

ω2η1 − ω1η2 = 2π i,

when ω2/ω1 has positive imaginary part, can be obtained by integrating ζ(z) along
the boundary of a fundamental parallelogram ([43] Section 4.2, [124] Section 1.6,
[244] Section 20.411).

In the case of complex multiplication, if τ is the quotient of a pair of fundamental
periods of ℘, then the function ζ(τ z) is algebraic over the field Q(g2, g3, z, ℘ (z),
ζ(z)).

Examples ([4, 241]). For the curve y2t = 4x3 − 4xt2, the quasiperiods attached to
the above-mentioned pair of fundamental periods (5) are

η1 = π

ω1
= (2π)3/2

�(1/4)2
, η2 = −iη1; (9)

it follows that the fields Q(ω1, ω2, η1, η2) and Q
(
π,�(1/4)

)
have the same algebraic

closure over Q, hence the same transcendence degree. For the curve y2t = 4x3−4t3

with periods (6), they are

η1 = 2π√
3ω1
= 27/3π2

31/2�(1/3)3
, η2 = 2η1. (10)

In this case the fields Q(ω1, ω2, η1, η2) and Q
(
π,�(1/3)

)
have the same algebraic

closure over Q, hence the same transcendence degree.

2.6 Elliptic Integrals

Let
E = {(t : x : y) ∈ P2; y2t = 4x3 − g2xt2 − g3t3}

be an elliptic curve. The field of rational (meromorphic) functions on E over C is
C(E) = C(℘,℘ ′) = C(x, y), where x and y are related by the cubic equation
y2 = 4x3 − g2x − g3. Under the isomorphism C/�→ E(C) given by (1 : ℘ : ℘ ′),
the differential form dz is mapped to dx/y. The holomorphic differential forms on
C/� are λ dz with λ ∈ C.
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The differential form dζ = ζ ′/ζ is mapped to −x dx/y. The differential forms
of the second kind on E(C) are a dz+b dζ+dχ , where a and b are complex numbers
and χ ∈ C(x, y) is a meromorphic function on E .

Assume that the elliptic curve E is defined over Q: the invariants g2 and g3 are
algebraic. We shall be interested in differential forms defined over Q. Those of the
second kind are a dz + b dζ + dχ , where a and b are algebraic numbers and χ ∈
Q(x, y).

An elliptic integral (see [244] Section 22.7; see also [43] Section 1.4 and [212]
Section 6.1) is an integral ∫

R(x, y)dx,

where R is a rational function of x and y, while y2 is a polynomial in x of degree
3 or 4 without multiple roots, with the proviso that the integral cannot be integrated
by means of elementary functions. One may transform this integral as follows: one
reduces it to an integral of dx/

√
P(x), where P is a polynomial of third or fourth

degree; in case P has degree 4, one replaces it with a degree-3 polynomial by sending
one root to infinity; finally, one reduces it to a Weierstrass equation by means of a
birational transformation. The value of the integral is not modified.

For transcendence purposes, if the initial differential form is defined over Q, then
all these transformations involve only algebraic numbers.

We refer to Section 22.7 of [244] for the definition of elliptic integrals of the first,
second, and third kinds.

3 Transcendence Results of Numbers Related to Elliptic
Functions

3.1 Elliptic Analogue of Lindemann’s Theorem on the Transcendence of π and
the Hermite–Lindemann Theorem on the Transcendence of log α

The first transcendence result on periods of elliptic functions was proved by
C.L. Siegel [210] as early as 1932.

Theorem 17 (Siegel, 1932). Let ℘ be a Weierstrass elliptic function with period
lattice Zω1 +Zω2. Assume that the invariants g2 and g3 of ℘ are algebraic. Then at
least one of the two numbers ω1, ω2 is transcendental.

One main feature of Siegel’s proof is that he used Dirichlet’s box principle (the
so-called Thue–Siegel lemma, which is included in his 1929 paper) to construct an
auxiliary function. This idea turned out to be of fundamental importance for the
solution of Hilbert’s seventh problem by Gel’fond and Schneider two years later.

In the case of complex multiplication, it follows from Theorem 17 that any
nonzero period of ℘ is transcendental.

From formulas (5) and (6) it follows as a consequence of Siegel’s 1932 result
[210] that both numbers �(1/4)4/π and �(1/3)3/π are transcendental.
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Other consequences of Siegel’s result concern the transcendence of the length of
an arc of an ellipse [207, 211]:

2
∫ b

−b

√

1+ a2x2

b4 − b2x2
dx

for algebraic a and b, as well as the transcendence of an arc of the lemniscate
(x2 + y2)2 = 2a2(x2 − y2) with a algebraic.

A further example of application of Siegel’s theorem [211] is the transcendence
of values of hypergeometric series related to elliptic integrals

K (z) =
∫ 1

0

dx√
(1− x2)(1− z2x2)

= π

2
· 2 F1(1/2, 1/2 ; 1

∣∣ z2),

where 2 F1 denotes the Gauss hypergeometric series

2 F1
(
a, b ; c

∣∣ z
) =

∞∑

n=0

(a)n(b)n

(c)n
· zn

n!

with (a)n = a(a + 1) · · · (a + n − 1).
Further results on this topic were obtained by Th. Schneider [203] in 1934 and

in joint work by K. Mahler and J. Popken [190] in 1935 using Siegel’s method.
These results were superseded by Th. Schneider’s fundamental memoir [204] in
1936 in which he proved a number of definitive results on the subject, including the
following:

Theorem 18 (Schneider, 1936). Assume that the invariants g2 and g3 of ℘ are
algebraic. Then for any nonzero period ω of ℘, the numbers ω and η(ω) are
transcendental.

It follows from Theorem 18 that any nonzero period of an elliptic integral of the
first or second kind is transcendental:

Corollary 19. Let E be an elliptic curve over Q, p1 and p2 two algebraic points on
E(Q), w a differential form of the first or second kind on E that is defined over Q,
holomorphic at p1 and p2, and is not the differential of a rational function. Let γ be
a path on E from p1 to p2. In case p1 = p2 one assumes that γ is not homologous
to 0. Then the number ∫

γ
w

is transcendental.

Examples. Using Corollary 19 and formulas (9) and (10), one deduces that the
numbers

�(1/4)4/π3 and �(1/3)3/π2

are transcendental.
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The main results of Schneider’s 1936 paper [204] are as follows (see also [207]):

Theorem 20 (Schneider, 1936).
1. Let ℘ be a Weierstrass elliptic function with algebraic invariants g2, g3. Let β be a

nonzero algebraic number. Then β is not a pole of ℘ and ℘(β) is transcendental.
More generally, if a and b are two algebraic numbers with (a, b) �= (0, 0), then for
any u ∈ C\� at least one of the two numbers ℘(u), au+bζ(u) is transcendental.

2. Let ℘ and ℘∗ be two algebraically independent elliptic functions with algebraic
invariants g2, g3, g∗2 , g∗3 . If t ∈ C is not a pole of ℘ or of ℘∗, then at least one of
the two numbers ℘(t) and ℘∗(t) is transcendental.

3. Let ℘ be a Weierstrass elliptic function with algebraic invariants g2, g3. Then for
any t ∈ C \�, at least one of the two numbers ℘(t), et is transcendental.

It follows from Theorem 20.2 that the quotient of an elliptic integral of the first
kind (between algebraic points) by a nonzero period is either in the field of endo-
morphisms (hence a rational number, or a quadratic number in the field of complex
multiplication), or a transcendental number.

Here is another important consequence of Theorem 20.2.

Corollary 21 (Schneider, 1936). Let τ ∈ H be a complex number in the upper half-
plane �m(τ ) > 0 such that j (τ ) is algebraic. Then τ is algebraic if and only if τ is
imaginary quadratic.

In this connection we quote Schneider’s second problem in [207], which is still
open (see Wakabayashi’s papers [226, 227, 228]):

Open Problem. Prove Corollary 21 without using elliptic functions.

Sketch of proof of Corollary 21 as a consequence of part 2 of Theorem 20. Assume
that both τ ∈ H and j (τ ) are algebraic. There exists an elliptic function with alge-
braic invariants g2, g3 and periods ω1, ω2 such that

τ = ω2

ω1
and j (τ ) = 1728g3

2

g3
2 − 27g2

3

·

Set ℘∗(z) = τ 2℘(τ z). Then ℘∗ is a Weierstrass function with algebraic invari-
ants g∗2, g∗3. For u = ω1/2 the two numbers ℘(u) and ℘∗(u) are algebraic. Hence
the two functions ℘(z) and ℘∗(z) are algebraically dependent. It follows that the
corresponding elliptic curve has nontrivial endomorphisms; therefore τ is quadratic.

�
A quantitative refinement of Schneider’s theorem on the transcendence of j (τ )

given by A. Faisant and G. Philibert in 1984 [74] became useful 10 years later in
connection with Nesterenko’s result (see Section 5). See also [75].

We will not review the results related to abelian integrals, but only quote the first
result on this topic, which involves the Jacobian of a Fermat curve: in 1941 Schneider
[205] proved that for a and b in Q with a, b and a + b not in Z, the number
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B(a, b) = �(a)�(b)

�(a + b)

is transcendental. We notice that in his 1932 paper [210], C.L. Siegel had already
announced partial results on the values of the Euler gamma function (see also [19]).

Schneider’s above-mentioned results deal with elliptic (and abelian) integrals of
the first or second kind. His method can be extended to deal with elliptic (and abelian)
integrals of the third kind (this is Schneider’s third problem in [207]).

As pointed out by J.-P. Serre in 1979 [233], it follows from the quasiperiodicity
of the Weierstrass sigma function (8) that the function

Fu(z) = σ(z + u)

σ (z)σ (u)
e−zζ(u)

satisfies
Fu(z + ωi ) = Fu(z)eηi u−ωi ζ(u).

Theorem 22. Let u1 and u2 be two nonzero complex numbers. Assume that g2, g3,
℘(u1), ℘(u2), β are algebraic and Zu1 ∩� = {0}. Then the number

σ(u1 + u2)

σ (u1)σ (u2)
e
(
β−ζ(u1)

)
u2

is transcendental.

From the next corollary, one can deduce that nonzero periods of elliptic integrals
of the third kind are transcendental (see [232]).

Corollary 23. For any nonzero period ω and for any u ∈ C \ �, the number
eωζ(u)−ηu+βω is transcendental.

Further results on elliptic integrals are due to M. Laurent [132]. See also his
papers [134, 135, 136, 137].

Ya. M. Kholyavka wrote several papers devoted to the approximation of tran-
scendental numbers related to elliptic functions [106, 107, 108, 109, 110, 111, 112,
113, 114].

Quantitative estimates (measures of transcendence) related to the results of this
section were derived by N.I. Fel’dman [76, 77, 78, 79, 80]. See also the papers by
S. Lang [119], N.D. Nagaev [165], N. Hirata [101], E. Reyssat [195, 196, 198, 199],
M. Laurent [133], R. Tubbs [219], G. Diaz [64], N. Saradha [202], P. Grinspan [94].

3.2 Elliptic Analogues of the Six Exponentials Theorem

Elliptic analogs of the six exponentials theorem (Theorem 10) were considered by
S. Lang [120] and K. Ramachandra [191] in the 1960s.

Let d1, d2 be nonnegative integers and m a positive integer, let x1, . . . , xd1 be
complex numbers that are linearly independent over Q, let y1, . . . , ym be complex
numbers that are linearly independent over Q, and let u1, . . . , ud2 be nonzero
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complex numbers. We consider Weierstrass elliptic functions ℘1, . . . , ℘d2 and we
denote by K0 the field generated over Q by their invariants g2,k and g3,k (1 ≤
k ≤ d2). We assume that the d2 functions ℘1(u1z), . . . , ℘d2(ud2 z) are algebraically
independent. We denote by K1 the field generated over K0 by the numbers exp(xi y j )
(1 ≤ i ≤ d1, 1 ≤ j ≤ m) together with the numbers ℘k(uk y j ) (1 ≤ k ≤ d2,
1 ≤ j ≤ m). Next, define

K2 = K1(y1, . . . , ym), K3 = K1(x1, . . . , xd1, u1, . . . , ud2),

and let K4 be the compositum of K2 and K3:

K4 = K1(y1, . . . , ym, x1, . . . , xd1, u1, . . . , ud2).

The theorems of Hermite–Lindemann (Theorem 3), Gel’fond–Schneider
(Theorem 7), the six exponentials theorem, and their elliptic analogues due to
Schneider, Lang, and Ramachandra can be stated as follows.

Any one of the four assumptions below will imply d1+d2 > 0; the case in which
d1 (respectively d2) vanishes means that one considers only elliptic (respectively
exponential) functions.

Theorem 24.
1. Assume (d1 + d2)m > m + d1 + 2d2. Then the field K1 has transcendence degree
≥ 1 over Q.

2. Assume either d1 ≥ 1 and m ≥ 2, or d2 ≥ 1 and m ≥ 3. Then K2 has transcen-
dence degree ≥ 1 over Q.

3. Assume d1 + d2 ≥ 2. Then K3 has transcendence degree ≥ 1 over Q.
4. Assume d1 + d2 ≥ 1. Then K4 has transcendence degree ≥ 1 over Q.

Parts 3 and 4 of Theorem 24 are consequences of the Schneider–Lang criterion
[120], which deals with meromorphic functions satisfying differential equations,
while parts 1 and 2 follow from a criterion that involves no differential equations.
Such criteria were given by Schneider [206, 207], Lang [120], and Ramachandra
[191] (see also [228] and [229]).

Theorem 24 also includes Theorem 20 apart from the case b �= 0 in part 1 of
that statement. However, there are extensions of Theorem 24 that include results
on Weierstrass zeta functions (and also on Weierstrass sigma functions in connection
with elliptic integrals of the third kind). See [132, 134, 135, 136, 137, 199, 232, 233].

Here is a corollary of part 1 of Theorem 24 (take d1 = 0, d2 = 3, ℘1 = ℘2 =
℘3 = ℘, m = 4, y1 = 1, y2 ∈ End(E) \ Q, y3 = v1/u1, y4 = y2y3; there is an
alternative proof with d2 = 2 and m = 6).

Corollary 25. Let E be an elliptic curve with algebraic invariants g2, g3. Assume
that E has complex multiplication. Let

M =
(

u1 u2 u3

v1 v2 v3

)
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be a 2 × 3 matrix whose entries are elliptic logarithms of algebraic numbers, i.e.,
ui and vi (i = 1, 2, 3) are in LE . Assume that the three columns are linearly inde-
pendent over End(E) and the two rows are also linearly independent over End(E).
Then the matrix M has rank 2.

In the non-CM case, one deduces from Theorem 24 a similar (but weaker) statement
according to which such matrices

(
ui j

)
(where ℘(ui j ) are algebraic numbers) have

rank≥ 2 if they have size 2× 5 (taking d1 = 0, d2 = 2, and m = 5) or 3× 4 (taking
d1 = 0 and either d2 = 3, m = 4 or d2 = 4 and m = 3) instead of 2× 3.

Lower bounds better than 2 for the rank of matrices of larger sizes are known,
but we will not discuss this question here. We just mention the fact that higher-
dimensional considerations are relevant to a problem discussed by B. Mazur on the
density of rational points on varieties [240].

4 Linear Independence of Numbers Related to Elliptic Functions

From Schneider’s theorem (Theorem 20) part 1, one deduces the linear independence
over the field of algebraic numbers of the three numbers 1, ω, and η, when ω is a
nonzero period of a Weierstrass elliptic function (with algebraic invariants g2 and
g3) and η = η(ω) is the associated quasiperiod of the corresponding Weierstrass
zeta function. However, the Gel’fond–Schneider method in one variable alone does
not yield strong results of linear independence. Baker’s method is better suited for
this purpose.

4.1 Linear Independence of Periods and Quasiperiods

Baker’s method of proof for his theorem (Theorem 9) on linear independence of
logarithms of algebraic numbers was used as early as 1969 and 1970 by A. Baker
himself [12, 10] when he proved the transcendence of linear combinations with alge-
braic coefficients of the numbers ω1, ω2, η1, and η2 associated with an elliptic curve
having algebraic invariants g2 and g3. His method is effective: it provides quantita-
tive Diophantine estimates [11].

In 1971, J. Coates [52] proved the transcendence of linear combinations with
algebraic coefficients of ω1, ω2, η1, η2, and 2π i . Moreover, he proved in [51, 53,
54, 55] that in the non-CM case, the three numbers ω1, ω2, and 2π i are Q-linearly
independent. Further results including usual logarithms of algebraic numbers are due
to T. Harase in 1974 and 1976 [97, 98].

The final result on the question of linear dependence of periods and quasiperiods
for a single elliptic function was given by D.W. Masser in 1975 [143, 144].

Theorem 26 (Masser, 1975). Let ℘ be a Weierstrass elliptic function with algebraic
invariants g2 and g3, denote by ζ the corresponding Weierstrass zeta function, let
ω1, ω2 be a basis of the period lattice of ℘, and let η1, η2 be the associated quasi-
periods of ζ . Then the six numbers 1, ω1, ω2, η1, η2, and 2π i span a Q-vector space
of dimension 6 in the non-CM case, 4 in the CM case:
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dim
Q
{1, ω1, ω2, η1, η2, 2π i} = 2+ 2 dim

Q
{ω1, ω2}.

The fact that the dimension is 4 in the CM case means that there are two inde-
pendent linear relations among these six numbers. One of them is ω2 = τω1 with
τ ∈ Q. The second one (see [144]; see also [37]) can be written

C2τη2 − ACη1 + γω1 = 0,

where A + B X + C X2 is the minimal polynomial of τ over Z and γ is an element
in Q(g2, g3, τ ).

In [144], D.W. Masser also produced quantitative estimates (measures of linear
independence). In 1976, R. Franklin and D.W. Masser [85, 151] obtained an exten-
sion involving a logarithm of an algebraic number.

Further results can be found in papers by P. Bundschuh [40], S. Lang’s surveys
[121, 122], D.W. Masser [152, 154], M. Anderson [5], and in the joint paper [6] by
M. Anderson and D.W. Masser.

4.2 Elliptic Analogue of Baker’s Theorem

The elliptic analogue of Baker’s theorem on linear independence of logarithms was
proved by D.W. Masser in 1974 [143, 144] in the CM case.

His proof also yields quantitative estimates (measures of linear independence of
elliptic logarithms of algebraic points on an elliptic curve). Such estimates have a
number of applications: this was shown by A.O. Gel’fond for usual logarithms of
algebraic numbers [89], and further consequences of such lower bounds in the case
of elliptic curves for solving Diophantine equations (integer points on elliptic curves)
were derived by S. Lang [126].

Lower bounds for linear combinations of elliptic logarithms in the CM case were
obtained by several mathematicians including J. Coates [52], D.W. Masser [145, 149,
150], J. Coates and S. Lang [56], M. Anderson [5]. The work of Yu Kunrui [253]
yields similar estimates, but his method is not that of Baker–Masser: instead of using
a generalization of Gel’fand’s solution to Hilbert’s seventh problem, Yu Kunrui uses
a generalization in several variables of Schneider’s solution to the same problem.
Again, this method is restricted to the CM case.

The question of linear independence of elliptic logarithms in the non-CM case
was settled only in 1980 by D. Bertrand and D.W. Masser [30, 31]. They found a
new proof of Baker’s theorem using functions of several variables, and they were
able to extend this argument to the situation of elliptic functions, either with or with-
out complex multiplication. The criterion they use is the one that Schneider estab-
lished in 1949 [205] for his proof of the transcendence of beta values. This criterion
(revisited by S. Lang in [120]) deals with Cartesian products. From the several vari-
ables point of view, this is a rather degenerate situation; much deeper results are
available, including Bombieri’s solution in 1970 of Nagata’s conjecture [120, 233],
which involves Hörmander L2-estimates for analytic functions of several variables.
However Bombieri’s theorem does not seem to yield new transcendence results,
so far.
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So far, these deeper results do not give further transcendence results in our
context.

Theorem 27 (D.W. Masser 1974 for the CM case, D. Bertrand and D.W. Masser
1980 for the non-CM case). Let ℘ be a Weierstrass elliptic function with algebraic
invariants g2, g3 and field of endomorphisms k. Let u1, . . . , un be k-linearly inde-
pendent complex numbers. Assume, for 1 ≤ i ≤ n, that either ui ∈ � or ℘(ui ) ∈ Q.
Then the numbers 1, u1, . . . , un are linearly independent over the field Q.

This means that for an elliptic curve E that is defined over Q, if u1, . . . , un are
elements in LE that are linearly independent over the field of endomorphisms of E,
then the numbers 1, u1, . . . , un are linearly independent over Q.

The method of Bertrand–Masser yields only weak Diophantine estimates
(measures of linear independence of logarithms).

4.3 Further Results of Linear Independence

Theorem 26 deals only with periods and quasiperiods associated with one lattice;
Theorem 27 deals only with elliptic logarithms of algebraic points on one elliptic
curve. A far-reaching generalization of both results was achieved by G. Wüstholz in
1987 [249, 250, 251] when he succeeded in extending Baker’s theorem to abelian
varieties and integrals, and, more generally, to commutative algebraic groups. If we
restrict his general result to products of a commutative linear group, of copies of
elliptic curves, and of extensions of elliptic curves by the additive or the multiplicative
group, the resulting statement settles the questions of linear independence of
logarithms of algebraic numbers and of elliptic logarithms of algebraic points,
including periods, quasiperiods, elliptic integrals of the first, second, or third kind.
This is a main step toward an answer to the questions of M. Kontsevich and D. Zagier
on periods [118].

Wüstholz’s method can be extended to yield measures of linear independence
of logarithms of algebraic points on an algebraic group. The first effective such
lower bounds were given in 1989 [188, 189]. As a special case, they provide the
first measures of linear independence for elliptic logarithms that is also valid in the
non-CM case. More generally, they give effective lower bounds for any nonvanishing
linear combination of logarithms of algebraic points on algebraic groups (including
usual logarithms, elliptic logarithms, elliptic integrals of any kind).

Refinements were obtained by N. Hirata-Kohno [100, 101, 102, 103, 104],
S. David [60], N. Hirata-Kohno and S. David [62], M. Ably [2, 3], and É. Gaudron
[86, 87, 88], who uses not only Hirata’s reduction argument, but also the work of
J-B. Bost [33] (slope inequalities) involving Arakelov’s theory. For instance, thanks
to the recent work of David and Hirata-Kohno on the one hand, of Gaudron on
the other, one knows that the above-mentioned nonvanishing linear combinations
of logarithms of algebraic points are not Liouville numbers.

In the p-adic case there is a paper of G. Rémond and F. Urfels [194] dealing with
two elliptic logarithms.
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Further applications to elliptic curves of the Baker–Masser–Wüstholz method
were derived by D.W. Masser and G. Wüstholz [163, 164].

A survey on questions related to the isogeny theorem is [178]. Other surveys
dealing with the questions of small points, Bogomolov conjecture, and the André
Oort conjecture are [59, 61]. We do not cover these aspects of the theory in the
present paper. Other related topics that would deserve more attention are the theory
of height and theta functions as well as ultrametric questions.

Extensions of the above-mentioned results to abelian varieties were considered
by D.W. Masser [145, 146, 147, 148, 149, 150, 153, 155, 156, 157], S. Lang [123],
J. Coates and S. Lang [56], D. Bertrand and Y.Z. Flicker [28], Y.Z. Flicker [84],
D. Bertrand [25, 26]. For instance, J. Wolfart and G. Wüstholz [245] have shown that
the only linear dependence relations with algebraic coefficients between the values
B(a, b) of the Euler beta function at points (a, b) ∈ Q

2 are those that follow from
the Deligne–Koblitz–Ogus relations (see further references in [243]).

5 Algebraic Independence of Numbers Related to Elliptic
Functions

5.1 Small Transcendence Degree

We keep the notation and assumptions of Section 3.2.
The following extension of Theorem 24 to a result of algebraic independence

containing Gel’fond’s 1948 results on the exponential function (see Section 1.1) is
a consequence of the work of many mathematicians, including A.O. Gel’fond [89],
A.A. S̆melev [214, 215], W.D. Brownawell [35], W.D. Brownawell and K.K. Kubota
[37], G. Wüstholz [246], D.W. Masser and G. Wüstholz [160], and others (further
references are given in [35, 235, 236]).

Theorem 28.
1. Assume (d1 + d2)m ≥ 2(m + d1 + 2d2). Then the field K1 has transcendence

degree ≥ 2 over Q.
2. Assume (d1 + d2)m ≥ m + 2(d1 + 2d2). Then K2 has transcendence degree ≥ 2

over Q.
3. Assume (d1 + d2)m ≥ 2m + d1 + 2d2. Then K3 has transcendence degree ≥ 2

over Q.
4. Assume (d1 + d2)m > m + d1 + 2d2. Then K4 has transcendence degree ≥ 2

over Q.

Quantitative estimates (measures of algebraic independence) exist (R. Tubbs
[220] and E.M. Jabbouri [105]).

Further related results are due to N.I. Fel’dman [81, 82], R. Tubbs [219, 220,
221, 222, 223, 224], É. Reyssat [201], M. Toyoda and T. Yasuda [218]. See also the
measure of algebraic independence given by M. Ably in [1] and by S.O. Shestakov
in [209].
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A survey on results related to small transcendence degree is given in [236] (see
also Chapter 13 of [177]).

Again, as for Theorem 24, there are extensions of Theorem 28 that include results
on Weierstrass zeta functions as well as on functions of several variables, with a
number of consequences related to abelian functions [237].

5.2 Algebraic Independence of Periods and Quasiperiods

In the 1970s, G.V. Chudnovsky proved strong results of algebraic independence
(small transcendence degree) related to elliptic functions. One of his most specta-
cular contributions was obtained in 1976 [45] (see also [48] and [50]):

Theorem 29 (G.V. Chudnovsky, 1976). Let ℘ be a Weierstrass elliptic function with
invariants g2, g3. Let (ω1, ω2) be a basis of the lattice period of ℘ and η1 = η(ω1),
η2 = η(ω2) the associated quasiperiods of the associated Weierstrass zeta func-
tion. Then at least two of the numbers g2, g3, ω1, ω2, η1, η2 are algebraically
independent.

A more precise result ([50] Chapter 7, Theorem 3.1) is that for any nonzero
period ω, at least two of the four numbers g2, g3, ω/π, η/ω (with η = η(ω)) are
algebraically independent.

In the case that g2 and g3 are algebraic, one deduces from Theorem 29 that two
among the four numbers ω1, ω2, η1, η2 are algebraically independent; this state-
ment is also a consequence of the next result (Theorem 4 of [48]; see also [50, 235]):

Theorem 30 (G.V. Chudnovsky, 1981). Assume that g2 and g3 are algebraic. Let
ω be a nonzero period of ℘, set η = η(ω), and let u be a complex number that is
not a period such that u and ω are Q-linearly independent: u �∈ Qω ∪ �. Assume
℘(u) ∈ Q. Then the two numbers

ζ(u)− η

ω
u,

η

ω

are algebraically independent.

From Theorem 29 or Theorem 30 one deduces the following result:

Corollary 31. Let ω be a nonzero period of ℘ and η = η(ω). If g2 and g3 are
algebraic, then the two numbers π/ω and η/ω are algebraically independent.

The following consequence of Corollary 31 shows that in the CM case,
Chudnovsky’s results are sharp:

Corollary 32. Assume that g2 and g3 are algebraic and the elliptic curve has
complex multiplication. Let ω be a nonzero period of ℘. Then the two numbers ω
and π are algebraically independent.
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As a consequence of formulas (5) and (6), one deduces the following corollary:

Corollary 33. The numbers π and �(1/4) are algebraically independent. Also the
numbers π and �(1/3) are algebraically independent.

In connection with these results let us quote a conjecture of S. Lang from 1971
[121] p. 652.

Conjecture 34. If j (τ ) is algebraic with j ′(τ ) �= 0, then j ′(τ ) is transcendental.

According to Siegel’s relation (see [121] p. 652 and [66] Section 1.2.5 p. 165),

j ′(τ ) = 18
ω2

1

2π i
· g3

g2
· j (τ ).

Conjecture 34 amounts to the transcendence of ω2/π . Hence Corollary 32 implies
that Conjecture 34 is true at least in the CM case (see [22]):

Corollary 35. If τ ∈ H is quadratic and j ′(τ ) �= 0, then π and j ′(τ ) are alge-
braically independent.

A quantitative refinement (measure of algebraic independence) of Corollary 31
due to G. Philibert [181] turns out to be useful in connection with Nesterenko’s work
in 1996 (further references on this topic are given in [239]).

A transcendence measure for �(1/4) was obtained by P. Philippon [186, 187]
and S. Bruiltet [39]:

Theorem 36. For P ∈ Z[X, Y ] with degree d and height H ,

log |P(π, �(1/4)| > −10326((log H + d log(d + 1)
)
d2(log(d + 1)

)2
.

Corollary 37. The number �(1/4) is not a Liouville number:
∣∣∣∣�(1/4)− p

q

∣∣∣∣ >
1

q10330 ·

Further algebraic independence results can be found in papers including those
of D. Bertrand [20, 23], G.V. Chudnovsky [49] (however, see Zbl 0456.10016) Au: Please verify.
and E. Reyssat [197, 200] (see also the Bourbaki lecture [231] and the book of
E.B. Burger and R. Tubbs [42]). Among Chudnovsky’s other contributions are results
dealing with G-functions (see [50]; see also Y. André’s work [7, 8]).

We conclude this section with the following open problem, which simultaneously
generalizes Theorems 29 and 30 of G.V. Chudnovsky.

Conjecture 38. Let ℘ be a Weierstrass elliptic function with invariants g2, g3, let ω
be a nonzero period of ℘, set η = η(ω), and let u ∈ C \ {Qω∪�}. Then at least two
of the five numbers

g2, g3, ℘ (u), ζ(u)− η

ω
u,

η

ω

are algebraically independent.

rns
Highlight
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Chudnovsky’s method was extended by K.G. Vasil’ev [225] and P. Grinspan
[94], who proved that at least two of the three numbers π , �(1/5), and �(2/5) are
algebraically independent. Their proof involves the Jacobian of the Fermat curve
X5 + Y 5 = Z5, which contains an abelian variety of dimension 2 as a factor. See
also Pellarin’s papers [179, 180].

5.3 Large Transcendence Degree

Another important (and earlier) contribution of G.V. Chudnovsky goes back to 1974,
when he worked on extending Gel’fond’s method in order to prove results on large
transcendence degree (see references in [50, 231]).

Chudnovsky proved that three of the numbers

αβ, αβ2
, . . . , αβd−1

(11)

are algebraically independent if α is a nonzero algebraic number, log α a nonzero
logarithm of α, and β an algebraic number of degree d ≥ 7. The same year, with a
much more difficult and highly technical proof, he made the first substantial progress
toward a proof that there exist at least n algebraically independent numbers in the
set (11), provided that d ≥ 2n − 1. This was a remarkable achievement since no
such result providing a lower bound for the transcendence degree was known (see
[235] Section 2.1). Later, thanks to the work of several mathematicians, including
P. Philippon (see [182] for his trick involving the introduction of redundant variables)
and Yu. V. Nesterenko [166, 167, 168], the proof was completed and the exponential
lower bound for d was reduced to a polynomial bound, until G. Diaz [63] obtained
the best known results so far: the transcendence degree is at least [(d + 1)/2].

During a short time, thanks to the work of Philippon, the elliptic results dealing
with large transcendence degree where stronger than the exponential ones (see [235]
p. 561).

Further results of algebraic independence related to elliptic functions are given
in [46, 48, 50, 169, 170, 171, 197, 231].

In 1980, G.V. Chudnovsky [47] proved the Lindemann–Weierstrass theorem for
n = 2 and n = 3 (small transcendence degree) by means of a clever variation of
Gel’fond’s method. At the same time he obtained the elliptic analogue in the CM
case of the Lindemann–Weierstrass theorem for n = 2 and n = 3 in [46] and [47].
Also in [46] he announces further results of small transcendence degree (algebraic
independence of four numbers).

This method was extended to large transcendence degree by P. Philippon [183,
184, 185] and G. Wüstholz [247, 248], who also succeeded in 1982 to prove the ellip-
tic analogue of the Lindemann–Weierstrass theorem on the algebraic independence
of eα1, . . . , eαn in the CM case:

Theorem 39. Let ℘ be a Weierstrass elliptic function with algebraic invariants
g2, g3 and complex multiplication. Let α1, . . . , αm be algebraic numbers that are
linearly independent over the field of endomorphisms of E. Then the numbers
℘(α1), . . . , ℘ (αn) are algebraically independent.
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The same conclusion should also hold in the non-CM case; so far, only the
algebraic independence of at least n/2 of these numbers is known.

Further results on large transcendence degree are due to D.W. Masser and
G. Wüstholz [161, 162], W.D. Brownawell [36], W.D. Brownawell and R. Tubbs
[38], M. Takeuchi [216].

A survey on algebraic independence was written in 1979 by W.D. Brownawell
[35]. The period prior to 1984 is covered by [235] (see also [236]), while [242] gives
references for the period 1984–1997. A more recent reference is [177] Chapter 14.

5.4 Modular Functions and Ramanujan Functions

Ramanujan [193] introduced the following functions:

P(q) = 1− 24
∞∑

n=1

nqn

1− qn
, Q(q) = 1+ 240

∞∑

n=1

n3qn

1− qn
,

R(q) = 1− 504
∞∑

n=1

n5qn

1− qn
·

They are special cases of Fourier expansions of Eisenstein series. Recall the Bernoulli
numbers Bk defined by

z

ez − 1
= 1− z

2
+
∞∑

k=1

(−1)k+1 Bk
z2k

(2k)!
,

B1 = 1/6, B2 = 1/30, B3 = 1/42.

For k ≥ 1 the normalized Eisenstein series of weight k is ([116] Section 3.2, Propo-
sition 6, [208] Section 7.4.2)

E2k(q) = 1+ (−1)k 4k

Bk

∞∑

n=1

n2k−1qn

1− qn
·

The connection with (4) is

E2k(q) = 1

2ζ(2k)
· Gk(τ ),

for k ≥ 2, where q = e2π iτ ([48] Section 3.2, Proposition 6). In particular,

G2(τ ) = π4

32 · 5 · E4(q), G3(τ ) = 2π6

33 · 5 · 7 · E6(q).

With Ramanujan’s notation we have

P(q) = E2(q), Q(q) = E4(q), R(q) = E6(q).
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The discriminant � and the modular invariant J are related to these functions by
Jacobi’s product formula ([127] Section 18.4 and [208] Sections 7.2.3, 7.3.3, 7.4.4)

� = (2π)12

123
· (Q3 − R2) = (2π)12q

∞∏

n=1

(1− qn)24

and

J = (2π)12 Q3

�
= (24325G2)

3

�
·

Let q be a complex number, 0 < |q| < 1. There exists τ in the upper half-plane H
such that q = e2π iτ . Select any twelfth root ω of �(q). The invariants g2 and g3 of
the Weierstrass ℘ function attached to the lattice (Z + Zτ )ω satisfy g3

2 − 27g2
3 = 1

and (see [66] Section 1.2.2 p. 163, [127], Section 4.2, Proposition 4 and Section 18.3)

P(q) = 3
ω

π
· η

π
, Q(q) = 3

4

(ω

π

)4
g2, R(q) = 27

8

(ω

π

)6
g3.

According to formulas (5) and (6), here are a few special values (see, for instance,
[4], [177] Section 3.1 and [241]).

– For τ = i , q = e−2π ,

P(e−2π ) = 3

π
, Q(e−2π) = 3

(ω1

π

)4
, R(e−2π) = 0, and

�(e−2π) = 26ω12
1 , (12)

with

ω1 = �(1/4)2

√
8π

= 2.6220575542 . . . .

– For τ = , q = −e−π
√

3,

P(−e−π
√

3) = 2
√

3

π
, Q(−e−π

√
3) = 0, R(−e−π

√
3) = 27

2

(ω1

π

)6
,

�(−e−π
√

3) = −2433ω12
1 , (13)

with

ω1 = �(1/3)3

24/3π
= 2.428650648 . . . .

5.5 Mahler–Manin Problem on J(q)

After Schneider’s theorem (Corollary 21) on the transcendence of the values of the
modular function j (τ ), the first results on Eisenstein series (cf. Section 5.6) go back
to 1977 with D. Bertrand’s work [21, 19]. See also his papers [18, 20, 23, 24], his
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work [29] with M. Laurent on values of theta functions, and Yanchenko’s paper
[252]. Further related results are Theorems 5 and 6 (p. 344) and Theorem 4 (p. 347)
in Chudnovsky’s lecture at the Helsinki ICM in 1978 [48].

The first transcendence proof using modular forms is due to a team from St
Étienne (K. Barré-Sirieix, G. Diaz, F. Gramain and G. Philibert), whence the nick-
name théorème stéphanois for the next result; see [16] (see also [91, 92, 90] and
Chapter 2 of [177]). Theorem 40 answers a conjecture of K. Mahler [139, 140] in
the complex case and of Yu. V. Manin [142] in the p-adic case. Manin’s question on
the arithmetic nature of the p-adic number J (q) is motivated by Mazur’s theory, but
he also asked “an obvious analogue” in the complex case; see Conjecture 43 below).
We state the result only in the complex case; the paper [16] solves both cases.

Theorem 40 (K. Barré, G. Diaz, F. Gramain, G. Philibert, 1996). Let q ∈ C,
0 < |q| < 1. If q is algebraic, then J (q) is transcendental.

The solution of Manin’s problem in the p-adic case has several consequences.
It is a tool both for R. Greenberg in his study of zeros of p-adic L functions and
for H. Hida, J. Tilouine, and É. Urban in their solution of the main conjecture for
the Selmer group of the symmetric square of an elliptic curve with multiplicative
reduction at p (references are given in [239]).

The proof of Theorem 40 involves upper bounds for the growth of the coefficients
of the modular function J (q). Such estimates were produced first by K. Mahler [141]
Section 3. A refined estimate, due to N. Brisebarre and G. Philibert [34], for the
coefficients ck(m) (which are nonnegative rational integers) in

(
q J (q)

)k =
∞∑

m=0

ck(m)qm

is
ck(m) ≤ e4

√
km .

According to a remark by D. Bertrand (Lemma 1 in [241] and Lemma 2.4 p. 17 in
[177]; see also Lemma 2 in [15] and Lemma 1 in [27]), the upper bound

|c̃N,k(m)| ≤ C N m12N

(0 ≤ k ≤ N , N ≥ 1, m ≥ 1, with an absolute constant C) for the coefficients in the
Taylor development at the origin of �2N J k ,

�(q)2N J (q)k =
∞∑

m=1

c̃Nk (m)qm,

is sufficient for the proof of Theorem 40 and is an easy consequence of a theorem of
Hecke ([208] Section 7.4.3, Theorem 5), together with the fact that �2 and �2 J are
parabolic modular forms of weight 24.
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One of the main tools involved in the proof of Theorem 40 is an estimate for the
degrees and height of J (qn) in terms of J (q) (which is assumed to be algebraic) and
n ≥ 1. There exists a symmetric polynomial �n ∈ Z[X, Y ], of degree

ψ(n) = n
∏

p|n

(
1+ 1

p

)

in each variable, such that �n(J (q), J (qn)) = 0. Again, K. Mahler was the first to
investigate the coefficients of the polynomial �n(X, Y ): in [141] he proved that its
length (sum of the absolute values of the coefficients) satisfies

L(�n) ≤ ecn3/2

with an absolute constant c. In the special case n = 2m he had an earlier stronger
result in [140], namely

L(�n) ≤ 257nn36n,

and he claimed (see [140] p. 97) that if the sharper upper bound

L(�n) ≤ 2Cn

with a positive absolute constant C > 0 were true for n = 2m , he could prove
Theorem 40. However, in 1984, P. Cohen [58] produced asymptotic estimates that
show that Mahler’s expectation was too optimistic:

lim
n=2m
m→∞

1

n log n
log L(�n) = 9.

In fact she proved more precise results, without the condition n = 2m , which imply,
for instance, log L(�n) ∼ 6ψ(n) log n for n→∞.

Further related results are given in [67] (G. Diaz and G. Philibert) for the
j -function and [159] (D.W. Masser) for the ℘-function.

The proof of [16] can be adapted to yield quantitative estimates [14, 15].
A reformulation of Theorem 40 on the transcendence of J (q) is the following

mixed analogue of the four exponentials conjecture (Conjecture 12):

Corollary 41. Let log α be a logarithm of a nonzero algebraic number. Let
Zω1 + Zω2 be a lattice with algebraic invariants g2, g3. Then the determinant

∣∣∣∣
ω1 log α

ω2 2π i

∣∣∣∣

does not vanish.

The four exponentials conjecture for the product of an elliptic curve by the multi-
plicative group is the following more general open problem:
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Conjecture 42. Let ℘ be a Weierstrass elliptic function with algebraic invariants g2,
g3. Let E be the corresponding elliptic curve, u1 and u2 two elements in LE , and
log α1, log α2 two logarithms of algebraic numbers. Assume further that the two
rows of the matrix

M =
(

u1 log α1

u2 log α2

)

are linearly independent over Q. Then the determinant of M does not vanish.

Another special case of Conjecture 42, stronger than Corollary 41, is the next
question of Yu. V. Manin, who asks in Section 4.2 of [142] to determine the nature
of the invariant of the complex elliptic curve having periods 1 and a quotient
(log α1)/(log α2) of two logarithms of algebraic numbers:

Conjecture 43 (Yu.V. Manin). Let log α1 and log α2 be two nonzero logarithms of
algebraic numbers and let Zω1 + Zω2 be a lattice with algebraic invariants g2 and
g3. Then

ω1

ω2
�= log α1

log α2
.

In this direction let us quote some of the open problems raised by G. Diaz
[65, 66].

Conjecture 44 (G. Diaz).
1. For any z ∈ C with |z| = 1 and z �= ±1, the number e2π iz is transcendental.
2. If q is an algebraic number with 0 < |q| < 1 such that J (q) ∈ [0, 1728], then
q ∈ R.
3. The function J is injective on the set of algebraic numbers α with 0 < |α| < 1.

Remark (G. Diaz). Part 3 of Conjecture 44 implies the other two and also follows
from the four exponentials conjecture. It also follows from the next conjecture of
D. Bertrand.

Conjecture 45 (D. Bertrand). If α1 and α2 are two multiplicatively independent
algebraic numbers in the domain {q ∈ C ; 0 < |q| < 1}, then the two numbers
J (α1) and J (α2) are algebraically independent.

Conjecture 45 (see [27], where Section 5 is devoted to conjectural statements
inspired by a conjecture of Oort and André) implies the special case of the four
exponentials conjecture, where two of the algebraic numbers are roots of unity and
the two others have modulus �= 1.

5.6 Nesterenko’s Theorem

In 1976 [18], D. Bertrand pointed out that Schneider’s theorem the transcendence of
ω/π implies the following statement:
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For any q ∈ C with 0 < |q| < 1, at least one of the two numbers Q(q), R(q) is
transcendental.

He also proved in [18] the p-adic analogue by means of a new version of
the Schneider–Lang criterion for meromorphic functions (he allows one essential
singularity), which he applied to Jacobi–Tate elliptic functions (see also [252]). Two
years later [20], he noticed that Theorem 29 yields the following:
For any q ∈ C with 0 < |q| < 1, at least two of the numbers P(q), Q(q), R(q) are
algebraically independent.

The following result of Yu. V. Nesterenko [172, 173] (see also [175, 176, 239,
241, 32] as well as Chapters 3 and 4 of [177]) goes one step further:

Theorem 46 (Nesterenko, 1996). For any q ∈ C with 0 < |q| < 1, three of the four
numbers q, P(q), Q(q), R(q) are algebraically independent.

Among the tools used by Nesterenko in his proof is the following result due to
K. Mahler [138] (see also Chapter 1 of [177]):

The functions P, Q, R are algebraically independent over C(q).
Also he uses the fact that they satisfy a system of differential equations for D =

q d/dq discovered by S. Ramanujan in 1916 [193] (see also Chapters 1 and 3 of
[177]):

12
DP

P
= P − Q

P
, 3

DQ

Q
= P − R

Q
, 2

DR

R
= P − Q2

R
·

One of the main steps in his original proof [172, 173] is the following zero estimate:

Theorem 47 (Nesterenko’s zero estimate). Let L0 and L be positive integers, A ∈
C[q, X1, X2, X3] a nonzero polynomial in four variables of degree ≤ L0 in q and
≤ L in each of the three other variables X1, X2, X3. Then the multiplicity at the
origin of the analytic function A

(
q, P(q), Q(q), R(q)

)
is at most 2 · 1045L0 L3.

In the special case in which J (q) is algebraic, P. Philippon [187] produced an
alternative proof for Nesterenko’s result in which this zero estimate is not used;
instead of it, he used Philibert’s measure of algebraic independence for ω/π and
η/π (see [181] and Section 5.2 above). However, Philibert’s proof requires a zero
estimate for algebraic groups.

Using (12) one deduces from Theorem 46 (see [177] Section 3.1, Corollary 1.2)
the following corollary:

Corollary 48. The three numbers π , eπ , �(1/4) are algebraically independent.

Using (13) one deduces (see [177] Section 1.3.1, Corollary 3.2, Remark (ii)) the
following:

Corollary 49. The three numbers π , eπ
√

3, �(1/3) are algebraically independent.

Consequences of Corollary 48 are the transcendence of the numbers

σZ[i](1/2) = 25/4π1/2eπ/8�(1/4)−2
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and (P. Bundschuh [41])

∞∑

n=0

1

n2 + 1
= 1

2
+ π

2
· eπ + e−π

eπ − e−π
·

D. Duverney, K. and K. Nishioka, and I. Shiokawa [68, 69, 70, 71, 72, 73] as
well as D. Bertrand [27] derived from Nesterenko’s theorem a number of interesting
corollaries, including the following ones ([177] Chapter 3).

Corollary 50. The Rogers–Ramanujan continued fraction

RR(α) = 1+ α

1+ α2

1+ α3

1+ . . .

is transcendental for any algebraic α with 0 < |α| < 1.

Corollary 51. Let (Fn)n≥0 be the Fibonacci sequence: F0 = 0, F1 = 1, Fn =
Fn−1 + Fn−2. Then the number

∞∑

n=1

1

F2
n

is transcendental.

Jacobi theta series ([43] Chapter V, [244] Chapter XXI and [177] Section 3.1.3)
are defined by

θ2(q) = 2q1/4
∑

n≥0

qn(n+1) = 2q1/4
∞∏

n=1

(1− q4n)(1+ q2n),

θ3(q) =
∑

n∈Z
qn2 =

∞∏

n=1

(1− q2n)(1+ q2n−1)2,

θ4(q) = θ3(−q) =
∑

n∈Z
(−1)nqn2 =

∞∏

n=1

(1− q2n)(1− q2n−1)2.

Corollary 52. Let i , j and k ∈ {2, 3, 4} with i �= j . Let q ∈ C satisfy 0 < |q| < 1.
Then each of the two fields

Q
(
q, θi (q), θ j (q), Dθk(q)

)
and Q

(
q, θk(q), Dθk(q), D2θk(q)

)

has transcendence degree ≥ 3 over Q.
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As an example, for an algebraic number q ∈ C with 0 < |q| < 1, the three
numbers ∑

n≥0

qn2
,

∑

n≥1

n2qn2
,

∑

n≥1

n4qn2

are algebraically independent. In particular, the number

θ3(q) =
∑

n∈Z
qn2

is transcendental. The number θ3(q) was explicitly considered by Liouville as far
back as 1851 (see [174] p. 295 and [177] p. 30).

The proof by Yu. V. Nesterenko is effective and yields quantitative refinements
(measures of algebraic independence): [93, 174, 187].

5.7 Further Open Problems

Among many open problems, we mention

– the algebraic independence of the three numbers π , �(1/3), �(1/4).
– the algebraic independence of three numbers among π , �(1/5), �(2/5), eπ

√
5.

– the algebraic independence of the four numbers e, π , eπ and �(1/4).

The main conjectures in this domain are due to S. Schanuel, A. Grothendieck,
Y. André [9], and C. Bertolin [17]. Chudnovsky’s proof of the algebraic inde-
pendence of π and �(1/4) involves elliptic functions; Nesterenko’s proof of the
algebraic independence of π and eπ requires modular functions. One may expect
that higher-dimensional objects (abelian varieties, motives) may be required in
order to go further. In this respect we conclude by alluding to the remarkable
progress that has been achieved recently in finite characteristic (after the work by
Jing Yu, G.W. Anderson and D. Thakur, L. Denis, W.D. Brownawell, J.F. Voloch,
M. Papanikolas, among others).
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Delange-Pisot-Poitou, 19e année: 1977/78, Théorie des nombres, Fasc. 2, Secrétariat
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de Nesterenko),” in Formes modulaires et transcendance, Sémin. Congr., vol. 12, Soc.
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Progr. Math., vol. 63, Birkhäuser Boston, Boston, MA, 1986, pp. 67–78.

75. — , “Quelques résultats de transcendance liés à l’invariant modulaire j ,” J. Number
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Boston, MA, 1990, pp. 117–140.

101. — , “Mesures de transcendance pour les quotients de périodes d’intégrales elliptiques,”
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237. — , “Groupes algébriques et grands degrés de transcendance,” Acta Math. 156 (1986),
no. 3–4, pp. 253–302, With an appendix by J. Fresnel.

238. — , “Some transcendental aspects of Ramanujan’s work,” in Proceedings of the
Ramanujan Centennial International Conference (Annamalainagar, 1987), RMS Publ.,
vol. 1, Ramanujan Math. Soc., 1988, pp. 67–76.

239. — , “Sur la nature arithmétique des valeurs de fonctions modulaires,” Astérisque 245
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Trends Math., Birkhäuser and Hindustan Book Agency, Basel and New-Delhi, 2000,
pp. 497–527.

243. — , “Transcendence of periods: the state of the art,” Pure and Applied Mathematics
Quarterly 2 (2006), no. 2, pp. 199–227.

244. E. WHITTAKER & G. WATSON – A course of modern analysis. An introduction to
the general theory on infinite processes and of analytic functions; with an account of
the principal transcendental functions. 4th ed., reprinted, Cambridge: At the University
Press. 608 p., 1962.
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