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An approach for the state estimation of Takagi-Sugeno modelsral
application to sensor fault diagnosis

Dalil Ichalal, Bendt Marx, Jo& Ragot, Didier Maquin

Abstract— In this paper, a new method to design an observer convergence conditions used Lipschitz conditions whieh ar
for nonlinear systems described by Takagi-Sugeno (TS) model, very restrictive.
wit_h _unmeasurable premise varigbles, is prop_osed. Most of In this paper, another method is proposed by using a TS
existing work on TS models consider models with measurable . -
decision variables. As a consequence, these works cannotmOdeI aPProaCh to design observer_s fqr nonllne_zar systems.
be applied when the decision variables are not available to e consider the case where the weighting functions depend
measurement. The idea of the proposed approach is to re- on unmeasurable decision variables (the state of the system
write the TS model with unmeasurable premise variable into an  Section Il introduces the problem and some background. In
uncertain TS model by introducing the estimated state in the -~ gection 1|, the main results to design the observer arengive
model. The convergence of the state estimation error is studied . . -
using the Lyapunov theory and the stability conditions are under LN_” formulation. The Ide_a IS t(_) tran_sform the TS_
given in terms of Linear Matrix Inequalities (LMIs). Finally, an  System with unmeasurable premise variable into an uncertai
academic example is given to illustrate the proposed approach, TS system with estimated premise variable. And by using
with an application to sensor fault detection and isolation using the Lyapunov theory and th€, optimization techniques,
an observer bank. the convergence conditions are proposed. Finally, in @ecti

Index Terms— Nonlinear systems, Takagi-Sugeno models, Y, imulation example is given for stat timation and
state estimation, unmeasurable premise variable, uncertain » & Simulation example 1S given 1or state estumation a

systems, L, optimization, sensor fault diagnosis. sensor fault detection and isolation.

| INTRODUCTION II. NOTATIONS AND PROBLEM STATEMENT

The Takagi-Sugeno (TS) fuzzy model is a popular ané‘ Takagi-Sugeno structure

important modeling framework due, on the one hand, to Consider a nonlinear system described by

its ability to represent with a good precision a large class @(t) = f(z,u)

of nonlinear systems and, on the other hand, to its ease of { y(t) = h(z,u) (1)
manipulation from the mathematical point of view compared

to the original nonlinear models. In the literature, inging ~1he TS fuzzy modeling allows to represent the behavior

attention has been devoted to TS fuzzy models specia}f & nonlinear system (1) by the interpolation of a set
in the fields of control, state estimation and diagnosis d¥f linear sub-models. Each sub-model contributes to the

nonlinear systems. global behavior of the nonlinear system through a weighting
The problem of state estimation of nonlinear system@&inction u;(¢(¢)). The TS structure is given by

can be viewed as the heart of control systems and model- ) r

based diagnosis. In [7] and [16], quadratic and non-quiadrat a(t) = 32 pi(§(t)(Asz(t) + Biu(t))

stability conditions for TS fuzzy models are established i (2)
using the Lyapunov theory and the Linear Matrix Inequality y(t) = 121 pi(§(2))(Ciz(t) + Diu(t))

formalism (LMI). In [12] and [15], the authors proposed _ ) _
less conservative conditions for ensuring the stabilitg anwherez(t) € R™ is the state vecton(t) € R™ is the input
a method for designing a feedback control law to stabiliz¥ector, y() € R” represents the output vectot; € R"*",
TS systems. The problem of model-based diagnosis has beén € R**™, Ci € R”*™ and D; € RP*™ are known
studied in [1], [10] and [13]. matrices. Finally, _the functlonai(_g(t)) are th_e weighting

In the literature, only a few works dealt with the problemfunctions depending on the variablegt) which can be
of state estimation of nonlinear systems described by T@easurable (as the input or the output of the system) or
models with unmeasurable premise variables. In [3] and [4]°0n Mmeasurable variables (as the state of the system). These
the Thau-Luenberger observer was extended to this classdfictions verify the following properties

systems. The authors of [5] proposed a sliding mode observer r
for TS systems with unmeasurable premise variables. The 12:31 pi(€(t)) =1 (3)
problem which can be pointed out is the fact that the 0<u(t) <1 Vie{l,2,..,r}

Al the authors are with the Centre de Recherche en In order to obtain a TS model (2) from (1) different meth-
Automatique de  Nancy (CRAN), Nancy-Univelsit 2, av- gds exist such as linearizing the equation (1) around some
enue de la fdt de Haye 54516 Vandoeuvre-les-Nancy . . d usi d ighting f iohe. T
{dalil.ichalal, benoit.marx, jose.ragot, operating points and using adequate weighting functiohs.

di di er. maqui n}@nsem i npl - nancy. fr most interesting and important way to obtain a TS model



is the well-known transformation by nonlinear sector [17]C. Notations and preliminaries

Indeed, this transformation allows to obtain an exact TS The considered systems are those described by the equa-

representation of (1). It is proved in [18] that if an outpution (2) with weighting functions depending on the state of
affected by disturbance (which cannot be avoided in prakticthe system. In most of the practical situation, the sensor

situations) is considered as a decision variable, the métiai |ocation does not depend on the operating point. As a
TS system does not represent precisely the model given EMnsequence, considering = C, = ... = C is realistic.
(1) of a nonlinear system. It is also pointed out that if thgn order to ease the calculus, no direct transfer froft)

output is nonlinear with respect to the state of the systegg y(t) is considered but the cage # 0 can be dealt with
it is difficult or even impossible to obtain a TS model bysjmilarly. The system (2) becomes

nonlinear sector transformation with the output as a premis -
variable. These facts motivate the will to take the state of (t) = > pi(x(t))(Aiz(t) + Biu(t))
the system as premise variable in order to describe a wider i=l
: y(t) = Cx(t)
class of nonlinear systems. _ _ _
The use of TS fuzzy models allows to generalize som@hich can be re-written in the form
tools developed in the linear domain to the nonlinear system . g .
This representation is very interesting in the sense that it B(t) = Z (i(@(0)) (Aiz(t) + Biu(t))
simplifies the stability studies of nonlinear systems arel th =1
design of control laws and observers. In [7], [11], [12], the + 0i(t)(Aiw(t) + Byu(t)) ®)
stability and stabilization tools are inspired from thedstu where
of linear systems. In [2], [13], the authors worked on the 0;(t) = pi(x(t)) — pi(&(t))
problem of state estimation and application for diagnosis Let us define
of TS fuzzy systems. The proposed approaches in these T
last papers are the generalization of the classical observe AA(t) = Z&(t)Ai
(Luenberger Observer and Unknown Input Observer (U1O)) i—1
to the nonlinear domain. = AYA(t)Ea (6)

B. Problem statement AB(t) = Y 6(t)Bi
1=1

In the context of fault diagnosis of nonlinear systems by = BXp()Ep @)
TS approach, the problem of fault isolation is not pOSSibk\?vhere
with only one model. Indeed, if the actuator fault isolation
problem is considered, constructing a bank of observersin A= A1 -+ A, | Ea=[IL, ... I,
order to isolate faults is not possible because if iHe S (), - 0
input is used as a premise variable, then all the observers
considering that thé” input, then the state estimation is not :
decoupled from this input. The same problem is encountered 0 e 0 ()
when trying to isolate the sensor faults with a TS model
which output is the premise variable. The solution for this
problem which is largely used in the literature is to develop () m - 0
two different TS models for the same nonlinear system. Yp(t) = :
The first TS model uses the input of the system as premise
variable in order to isolate sensor faults. In the second one
dedicated to actuator fault isolation, the output of thedeays _
is the premise variable. To overcome this difficulty, thedllows to write

(4)

0 e 6 ()
The convex sum property of the weighting functions

proposed solution is to develop only one TS model which —1<6i(t) <1
uses the state of the system as premise variable for thifen
nonlipear §ystem; then. the problems of actuator and sensor STHSA(t) < T g
fault isolation can be simultaneously solved. In fact, ofie o SLHSp(t) <1 (8)
the key points in the diagnosis procedure is the observ% B
design. e system (5) becomes

The TS model structure also appears in the framework i(t) = f: i (2(8)) ((Ai + AA®))z(t)
of cryptanalysis and chaotic systems. In [8], based on these i=1 Q)
models and considering that the output of the system is the +(B; + AB(t))u(t))
premise variable, a new observer design method is proposed y(t) = Cx(t)

in order to achieve synchronization. It is pointed out that Finally, the system (4) with unmeasurable premise variable
using the unknown state as a premise variable will improvis transformed into an equivalent uncertain TS model with
the synchronization process security. known premise variable (9).



I11. OBSERVER DESIGN

Proof: The proof of the theorem 1 is established by

For the uncertain model (9), the following observer jdusing the following quadratic Lyapunov function candidate

proposed

B(t) = ; i (E(8)) (A () + Biu(t) + L(y(t) — §(2)))

y(t) = Ci(t)
(10)

V=elPe,, P=PT>0 (20)
Its derivative with regard to time is given by
V =¢lPe, + el Pé, (21)

The gainsL; must be determined to ensure the asymptotic BY Using the dynamic of the state estimation error (13),

convergence of the estimated statdo the actual state of
the systeme. In the sequel, for the sake of simplicity, the
time variablet will be omitted.

Let us define the state estimation error

€E=Tr—Xx

(11)

ruled by the following equation

é= Z 15(2) (Ai — LiC)e) + AAz + ABu  (12)
=1

the following is obtained

T T
D> i@ () (el Al Peq + el PAjjeq

i=1 j=1
’U/TBZ;PGQ + GZ;PBZ‘]"U,)

1%
+ (22)
The state estimation error is the output of (13) defined by

e(t) = He, (23)

where

H=1[I 0] (24)

Note that the dynamic equation describing the state esti-

mation error depends on the inpuft) and on the state(t).
Then the problem of designing the observer (10) reduces

The system (12) is stable and the gdip of the transfer
feom w(t) to e(t) is bounded byy if the following condition

finding the gainsL; in order that the system (12) generatingholds [6]

e(t) is stable and that the influence af(¢t) on e(t) is
minimized.

Let us define the augmented vectgr= [e” 277, from
which the following augmented system is obtained

V+2T2—72uTu<0 (25)

By substituting (22) and (23) in (25), the following in-
equality is obtained

L - T 1T Tp3
€q = Z Z 1i (&) () (Aijeq + Biju) (13) ; ; pi(@)pj(x)(eq AjjPea + e PAijeq
where e + uTBg;Pea + egPBiju +elHHe, — v*ulu) <0
(26)
Aij = { q())l ijl ] » Bij = { %? ] ,®i = Ai - LiC or equivalently
(14) T T T 5

Theorem 1:The system (12) is stable and tifg gain of dZZm@)w(@ [ ‘Zz ] [ BXTlP J_DBQZ} ] [ €q } <0
the transfer fromu(¢) to the state estimation error is boundedi—=1 j—: g v Y
by ~, if there exists two positive and symmetric matrid@s (27)
and P,, matricesK;, and positive scalars;, A, and¥ such where B B
that the following LMIs holdy 4,5 € {1,..,7} Xij=ALP+PA;+H"H (28)

\Di 0 0 Pl.A Pllg
0 = P,B; 0 0
0 BfP, —3I+XMELEg 0 0 <0
AT Py 0 0 - 0
BT Py 0 0 0 =Xl
(15)
where
U, =ATP + P A, - K,C-CTKl'+1  (16)
Ej = A Py + PyAj + MELE, (17)
The gains of the observer are computed from
L; = P['K; (18)
Lo-gain fromw(t) to e(t) is obtained by
T=V7 (19)

According to the convex sum property of the weighting
functionsy;, the inequality (27) holds if (29) is satisfied
ATP+PAy;+HTH PB, -
BZJ*P 7721 <O, VZ,j S {17..,7’}
(29)
Let us consider the following particular form of the matrix
P 0

P P10 n ]

By substituting (14), (24) and (30), equation (29) can be
written as

(30)

TP + P®; + 1 P,AA  PAB
AATpl A?PQ + PQA]' PQBJ‘ <0 (31)
ABT.Pl BJTPQ —721

Notice that the inequality (31) is time-dependent due to the
termsAA(t) and AB(t). However, these latter are bounded.



Firstly let us re-write (31) separating the time-dependemith

terms.
[ TP+ P®;+ 1 0 0
0 AfPQ + PA; PyBj
I 0 BT P, -1
[ 0 PIAA PAB
+ AAT Py 0 0 <0 (32)
| ABTP, 0 0
w
The time-dependent matri¥/ is decomposed as follows
wW=09+9" (33)
where

0 PAA P AB
Q=10 0 0
0 0 0

According to the definition o\ A(t) andAB(t) given in
(6) and (7), the matrix@ is written as follows

0= PBA P(l)B 0 Za(®)Ba 0 (34)
L0 Y Lo 0 Semms

To be able to boundV, let us introduce the following
lemma
Lemma 1:Consider X and Y with appropriate dimen-

sions and? a positive definite matrix. the following property

is verified

XTYy +YTX < XTOX+YTQ'y Q>0 (35)
Applying this Lemma ta/V (33) with 2 defined as follows

[ aro0
A
we obtain
w < eqltel +vTau (37)
where
P A P B
0= 0 0 (38)
0 0
10 2A<t)EA 0
=10 "0 ss0)Es (39)

After some computations using the properties3df(¢)
(8) andX5(¢) (8), we obtain

Y 0 0
W< | 0 MEYEA 0 (40)
0 0 N ELEg
where
Y = A\ 'PLAAT P + )\ P BBT P (41)

SubstitutingWV (40) in (32), the following is obtained

= 0 0
0 Ej PQBj <0 (42)
0 BIP, —~°I+\E}Es

E=0TP + P®; + M\ 'PLAATP + A PBBT P + 1 (43)

The matrix inequality (42) is not linear with regard to the
variablesP;, P, L;, A1, A3 and~. In order to solve these
matrix inequalities, it is necessary to linearize them ttaob
LMIs. To do this, we will use the Schur complement and
some variable changek’; = P, L; andy = ~? which allows

to obtain (15).

Then, the convergence conditions of the state estima-
tion error are given in Linear Matrix Inequalities (LMIS)
in the theorem 1. ]

Remark 1:Form the theorm 1, th€, gain of the transfer
from u(t) to e(t) is chosen before the computation of LMIs
(15). In order to increase the quality of the state recon-
struction and obtaining an optimal observer, it is possible
to minimize theL, gain~ of the transfer fromu(t) to e(¢).
Then, the problem to solve becomes

min ¥ s.t. (15
Py, Py, K A 1,2 7 ( )
IV. APPLICATION TO SENSOR FAULT ISOLATION

The proposed observer can be used in order to construct
a scheme for sensor fault detection and isolation (FDI) of
a nonlinear system represented by a TS fuzzy model. The
measured output is defined y¢):

y(t) = y(t) + f (1) + w(t) (44)

wheref(¢) represents the sensor fault vector arnd) a zero-
mean noise vector. Several fault detection methods based on
the state estimation allow the sensor fault detection and is
lation (see, for example, [9] and [14] for further detailoab
these methods). Classic observer schemes (for example,
Dedicated Observer Scheme (DOS) or Generalized Observer
Scheme (GOS)) can be employed in order to generate faults
accentuated signals also called residual signals.

In this paper, the scheme represented in the figure 1.
is used, for a system with two outputs. Each of the two
observers used one of the two outputs; that allows to gemerat
four residuals.

J1(8) fo(t) wi(t) wo(t)
Wt Uy (t
u( ) > System 1~1< )
: Ga(t)
—_— r(t)
P O—m2(t)
L Ju(t)
o Observer 1 T
> > U12(t)
y
: > Tzl(t)
b O————— » (t)
— U1 (1
Observer 2 d ‘?21( )
> > Uoo(t)
Fig. 1. Scheme for sensor fault detection and isolation

A theoretic decision logic is developed to see how the
faults affect the residual signals which are defined asvi@lo

735 (t) = ¥ (t) — 9i (1) (45)



whereg; (t) are the components gft) andg,; are the com- The state estimation error converges (see figure 1) and the
ponents of the reconstructed outputs with tHeobserver.  gain of the transfer fromu(t) to e(t) is bounded byy =
0.0894 since the inputu(t) (see fig. 2) is bounded by 1, the
state estimation error is bounded fpy= 0.0894 that may be

i represents the observer number gnthe output number. considered as acceptable when considering the magnitude of
The outputij (¢) is affected by the faulf; (¢) and the outputs the state (see fig. 4).

1<i<2, 1<5<2

11 (t) 12 (t) T21 (t) 7992 (t) 12
i) |2 ? 1 0
fa(t) | O 1 ? ? .
TABLE |

0.8
DECISION LOGIC

0.6

72(t) is fault free. Consequently, the observer 1 is corrupted
by the fault f1(¢) and the residual signals;;(t) can be o4
different from zero. However, the fact that the system is
nonlinear, a compensation phenomenons can appear and th °*
influence of the fault can be masked on the residuals, then,
in the incidence table, “?” is used to say that no decision can °
be taken. But, the state reconstruction given by the observe

2 is correct because this observer uses the fault free outpu™% s 1 15 2 25 3 a5 4 a5 s
y2(t). Therefore, the residual signals; are sensitive to the
fault f1(¢) which represented by “1” in the incidence table.
A similar reasoning can be used to detect the fdult).

Fig. 2. Inputu(t) of the system

V. EXAMPLE L —
A. State estimation 08 — ol
Let us consider the system (4) defined by the following . |
matrices '
[ -2 1 1 -3 2 =2 o4 1
A= 1 =3 0 |,4=|5 -3 0 o ]
2 1 -8 1 2 -4
L i
[ 1 0.5
Bi=|05|,B=1| 1 O“ é H °
| 0.5 0.25 -0 ]
The weighting functions are defined by: o6l i
_ l-tanh(z) ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘
M1 (1‘) - 2 . 14tanh(w1) 70'80 0.5 1 15 2 25 3 35 4 45 5
pa(x) = 1 — () = Hanh)

L . Fig. 3. State estimation error
Minimizing the gain¥y of the transfer fromu(¢) to the state

estimation erroe(t) subject to the LMIs given in the theorem _ .
1, gives the following results B. Sensor fault diagnosis
Let us consider the same system as in the previous

—35.66 121.56 —37.01 121.47 .
. _ subsection. The sensors are now assumed to be affected by
L, = 57.61 63.59 | ,Lo= 56.10 68.80 |, fault 4 noi ¢ q ibed by (46). Th
1592 —9.55 0925  —6.09 aults and noise measurements as described by (46). The
faults are given by
0.05 —-0.03 0.07
<t<
P =| —003 04 —0.06 |, fi(t) :{ é deﬁvﬁe?e
0.07 —0.06 0.3
1 6<t<8
3.01 1.11 0.35 fa(t) :{ — =
P= | 111 234 007 |, 0 elsewhere

0-350.07 109 The residual signals obtained from the first observer can
Al = 3.47, Ay = 0.0028 x 107°, v = 0.0894 only detect the sensor faufk(¢) which affects the second



observer bank to detect and isolate sensor faults. Theestter
of our approach is the fact that the Lipschitz conditions is
not required to construct the observer; thus the weighting
functions can be more general, which allows to say that this
approach is less restrictive than the approach based on the
Lipschitz condition proposed in [5]. The future works will
concern the study of the conservativeness of the proposed
conditions related to the use of a quadratic Lyapunov func-
tion by using other kinds of Lyapunov functions in the one
hand, and in the diagnosis problem, the amelioration ot faul
detection in the presence of disturbances by minimizing the
0 effects of these last and maximizing the effects of the gault
-06h i on the residual signals, in the other hand.
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