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Abstract— We present a new method based on fuzzy proximity
for scoring and ranking relevant documents according to the user’s
information need. Our study takes place in the information retrieval
domain and uses the terms localization in documents, we assume that
the more the occurrences of the query terms are found close to each
other in a document the more this document must be in the top of the
retrieved document list. After a brief description of some traditional
models and the few approaches which use proximity between the
occurrences of terms, we present our “sphere of influence” model
which scores documents according to the fuzzy proximity between
the query terms in them. First, we detail this model and then we
demonstrate that our model includes the traditional ones.

I. INTRODUCTION

The information retrieval domain which is well known with

the www search engines uses different models. These models

give a way to select and rank documents answering user’s

information needs. There are three main kinds of models [1] :

(i) set theoretic models (Boolean model, fuzzy set model and

extended Boolean model) (ii) algebraic models (vector model and

latent semantic indexing) and (iii) probabilistic models (inference

network, bayesian network and belief network).

Our focus is on the two first kinds of models and on one of

the first ideas about IR given by Luhn [2] : “It is here proposed

that the frequency of word occurrences in an article furnishes a

useful measurement of word significance. It is further proposed

that the relative position within a sentence of words having

given values of significance furnishes a useful measurement for

determining the significance of sentences. The significance factor

of a sentence will therefore be based on a combination of these

two measurement”.

The first aspect, dealing with term frequency, was developed

in the algebraic models but the second, about the relative position

of words – thus the term occurrence proximity – wasn’t deeply

studied.

First of all, the section 2 reminds two classical information

retrieval models and the few approaches using term proximity.

Then, the section 3 presents our sphere of influence model. After-

wards, we explain how we can derive boolean and vector method

in our model. Finally, the section 5 presents the conclusion.

II. STATE OF THE ART

Information retrieval systems based on classical models use

an indexing method to build the documents representation. The

index is usually grounded on term occurrences. In this study, T

is the set of terms and D the set of documents.

In the classical Boolean model, each document is represented

by the set of terms occurring in its text and the query is a boolean

expression. The query is represented by a tree whose leaves are

terms and nodes are AND and OR operators. In this model, the

relevance decision criterion is binary : the document score is in

the set {0, 1}. So the main drawback is that the responses cannot

be ranked. Nevertheless, the main advantage is that the query

language is quite expressive.

Various models are based on term frequencies which catch the

Luhn’s first idea. In the vector model the weight w (d , t ) of the

term t in the document d usually depends in increase order on

term frequency and in decrease order on document frequency –

that is to say the number of documents where a given term occurs.

The document score can be computed with various formulas

based on the tf ·idf scheme (tf stands for term frequency and idf

stands for inverse document frequency). Documents and queries

are represented by term vectors. The similarity measure between

a document and a query can be taken as the cosine of the angle

between the document and the query vectors. The query model

is a bag of words so it is simple but less expressive than the

Boolean one. The main advantage of this model over the Boolean

one is the capacity to arrange documents according to their score,

so they can be shown in decrease system relevance order to the

user. This ranking capacity is fundamental in information retrieval

because the evaluation methods use this to compare systems. So,

the lack of ranking in Boolean model led to the introduction of

extended Boolean model [3] and fuzzy set models [4].

In order to graduate the score given by the basic Boolean

model, different models based on fuzzy set theory were built [4].

In these models, a function µ t is associated to each term t ∈ T .

This function expresses the membership level of the documents to

the fuzzy set corresponding to a term t . In this model, a query is

also represented by a tree. The membership level to a node with

the OR operator (resp. AND) is the maximum (resp. minimum)

of its sons’ membership level, that is to say this node is the fuzzy

union (resp. intersection) of its sons’ fuzzy subsets. Finally, we

have a membership level at the query tree root. This permits to

score a document with a value in the interval [0, 1] which allows

to rank documents on the contrary to the basic Boolean model.

These three latest models (Boolean, vector and fuzzy models)

do not consider the position of term occurrences. A classic ex-

tension of Boolean model adds an operator to the query language

to express proximity constraints. This operator is called NEAR,

ADJacent, or WINDOW in the systems which implement it [5]. It

works like the AND operator with a constraint on the position of

term occurrences. It allows to specify a maximal distance between

two term occurrences. For example, if we want to find A and B

with a distance of 5 or less, we give the query: A NEAR 5

B. In our model, we do not use the NEAR operator because it

can only be used with leaves and its generalization to sub-trees
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is not consistant [6]. Some works deal with the implementation

issues of these operators and their consequences on the index.

Keen studied [7], [8] the recall and precision performances of

different implementations of the proximity operator and showed

that the NEAR operator improves the precision for the retrieved

documents set. However, the relevance is still binary and the

documents cannot be ranked.

Some recent approaches straightly use term proximity to score

the documents [9], [10], [11]. These methods start with the

selection of intervals which contain the query terms in the

documents. Each method has its own rules to select the intervals.

Clarke and al. method [9], [12], [13] selects the shortest intervals

which contain all the query terms so that the selected intervals

are not nested. In Hawking and al. method [10], for each term

occurrence, the shortest interval which contains all the terms and

beginning on this occurrence is selected. The Rasolfo and al.

method [11] selects the intervals including two query terms and

the interval length has to be less than 5 words. Then, each interval

obtains a score (the shorter the interval, the higher its score)

and contributes to the global score of the document. Finally, the

document score is the sum of the selected intervals scores. The

results with these methods are reported to be better than those

obtained with the classical ones [14]. The next section present

our model based on proximity.

III. OUR MODEL

On one hand, the Boolean model takes into account the mem-

bership of a term in a document to a term and on the other hand,

the vector model takes into account the term frequency. These

two models proceed with a global approach of the influence

of any term, on the the score of the documents according to

the query. This means that the relevance score does not depend

on the position of terms occurrences. However, meaning of the

sentences in a document doesn’t only depend on the vocabulary

used but on the arrangement of the vocabulary terms too. Thus,

our model is local in the sense that we modelize the locality of

term occurrences influence. At a given position, we can consider

two notions of locality:

• A term proximity :

At a precise text location, are we near a query term occur-

rence? This proximity will be graduated and so it will be a

“fuzzy proximity”.

• A local relevance :

Is a precise text location relevant to a query term? The more

occurrences are nearby this location, the higher it will be

considered relevant.

In each case, an influence function is used to represent the

influence of the words. Such a function is a relation from

to [0, 1] with a finite support, increasing on −, decreasing

on +. Various functions can be used. Firstly, it’s possible

to choose different function families (Hamming, Hanning or

Gaussian functions, rectangular or triangular functions and so

on). Then, in a family, it’s possible to choose various values for

the function parameters, for instance to obtain different influence

function for the query terms. In particular, we call k the parameter

which allows to control the support of the function and defines

0

1

0 1 2 3 4 5 6 7 8 9 10 11 12

0

1

0 1 4 6 7 8 9 10 11 12

Fig. 1. At the position x = 3, the fuzzy proximity value is the maximum value
between the fuzzy proximity values of occurrences in positions x = 2 and x = 5
thus this of occurrence at the position x = 2

the influence area length. The triangular influence function can

be expressed with :

f (x ) = max(
k − |x |

k
, 0).

For one term occurrence at position i , the translation g(x ) =
f (x − i ) of an influence function f , allows to modelize the fuzzy

proximity to this occurrence (resp. the local relevance carried by

this occurrence).

In both models, the query evaluation for a given document

is computed from the leaves. Firstly, the local relevance value

functions (resp. fuzzy proximity) of query terms associated to

the tree leaves are computed. These functions are defined at each

position x in the documents. Then, going upward, these functions

are combined at each tree level using the functional operators

assigned to the OR and AND operators. Finally, we compute the

document score by integrating the local relevance value function

(resp. fuzzy proximity) obtained at the query tree root.

A. Fuzzy proximity model

It is natural to consider that the fuzzy proximity value p
d
t (x )

to a given term t at a position x of a document d is the proximity

value of the nearest occurrence of the term t . For example,

consider the document of figure 1 where the term t occurs at

the positions 2, 5 and 10. The fuzzy proximity value at the

position x = 3 is that of the nearest occurrence that is to say

the occurrence at the position 2.

The influence functions defined before are decreasing with

regard to the distance to 0, so the fuzzy proximity function to

a term occurrence are decreasing with regard to the distance

to the occurrence position. So obtaining the proximity value of

the nearest occurrence consists in taking the maximum of the

different fuzzy proximity functions of the different occurrences :

p
d
t (x ) = max

i∈Occ(t,d)
f (x − i )

where O cc(t , d ) is the set of the term t occurrences positions in

the document d and f is the chosen influence function.

These functionsx �→ p
d
t (x ) are associated to the query tree

leaves. We now want to define the fuzzy proximity value functions

at the internal nodes of the query tree. Given a node, the function

will be defined with the fuzzy proximity functions of its sons.

Consider two documents, the first one including the terms B

an C at the positions 7 and 12 (cf. fig. 2) and the second one

including two occurrences of the term B at the same positions (cf.

fig. 3). The function p
d
B (resp. p

d
C) associates to each position in

the document d the fuzzy proximity value to the term B (resp. C).

Consider the query B OR C, for such an information need, finding

B or C in the text is equivalent. Thus we want the same proximity

2



d 1 A B C

4 5 6 7 8 9 10 11 12 13 14 15 16

0

1

3 6 9 12 15

♦♦♦
♦
♦
♦
♦
♦
♦♦♦

♦♦♦♦♦♦ 0

1

3 6 9 12 15

♦♦♦♦♦♦♦♦
♦♦
♦
♦
♦
♦
♦
♦
♦

r
d1

(B OR C)

0

1

3 6 9 12 15

Fig. 2. Document 1 – fuzzy proximity. The first (resp. second) curve represents
the fuzzy proximity to the term B (resp. term C), the last curve represents the
fuzzy proximity to the query (B OR C).

d 2 A B B

4 5 6 7 8 9 10 11 12 13 14 15 16

0

1

3 6 9 12 15

♦♦♦
♦
♦
♦
♦
♦
♦♦♦

♦♦♦♦♦♦0

1

3 6 9 12 15

♦♦♦♦♦♦♦♦
♦♦
♦
♦
♦
♦
♦
♦
♦ 0

1

3 6 9 12 15

♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦

r
d2

(B OR C)

0

1

3 6 9 12 15

Fig. 3. Document 2 – fuzzy proximity. The first curve represents the influence
functions of the two occurrences of the term B. The second function (influence
function of the term C) is flat because the term C does not occur in the document
d2. The last curve represents the fuzzy proximity to the query (B OR C).

function for these 2 documents (cf. third curve in figures 2 and

3) and this can be obtained with

p
d
B OR C(x ) = max(p

d
B(x ), p

d
C(x )).

We generalize this by setting

p
d
q OR q′ = max(pq , pq′)

for a node which sons are not only terms but are the queries q and

q
′. This corresponds to the operation made in the fuzzy set model

(section 2.3) for the union operation. With this interpretation,

q OR q
′ appears as the (fuzzy) union of the fuzzy sets q and q

′.

By analogy for an AND operator, the fuzzy proximity at a node

q AND q
′ is obtained with

p
d
q AND q′ = min(pq , pq′)

which corresponds to the fuzzy intersection. Moreover, our model

can easily use other functions applied in fuzzy logic for the AND

and OR operators [15], [16]. For example, the OR operator can

be associated to the function max(x + y − 1, 0) and the AND

d 1 A B C
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Fig. 4. Document 1 – local relevance (signal). The first (resp. second) curve
represents the local relevance of the term B (resp. term C), the last curve represents
the local relevance for the query (B OR C).

operator to the function min(x + y , 1) with x and y taken in two

different fuzzy sets.

The last step is to determine the relevance score s(q, d ) for

the document d according to the query q . In the vector model,

the relevance score values are either inner products or cosines.

Both of them are sums that can be interpreted as accumulations

of pieces of relevance. The integral calculus methods capture this

accumulation idea by computing the surface below a curve. So,

we express the score as

s(q, d ) =

∫ +∞

−∞

p
d
q(x ) dx .

An approximation consists in adding the fuzzy proximity values

at each position x of the document, the result is a score in +.

This score depends on the fuzzy proximity of each term. We

have already experimented this alternative (fuzzy proximity) of

our sphere of influence model, some results are available in [17].

B. Local relevance model

In this approach, we consider that the term occurrences give

a piece of local relevance around their positions. The relevance

signal is represented by an influence function like those described

before. We use these functions to compute the document rele-

vance score. First of all, we consider the signals for each query

term occurrence. Then given a term t and a document d , in

order to gather the different pieces of relevance given by each

occurrence of t , at each text position we add the local relevance

values (signals) computed for all the term occurrences and we

express the local relevance at the text position x with

r
d
t (x ) =

∑
i∈Occ(t,d)

f (x − i ).

For the query evaluation, we have to combine the signals

according to the AND and OR operators. Firstly, we consider

the case of disjunctive queries. As in the proximity model, we

want that the contribution of either two occurrences of the same

term B or one of the term B and one of the term C are equivalent.
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d 2 A B B
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Fig. 5. Document 2 – local relevance (signal). The first curve represents the
influence functions of the two occurrences of the term B. The second function
(influence function of the term C) is flat because the term C does not occur in
the document d2. The last curve represents the local relevance to the query (B
OR C).

A 0.125

B 0.625 C 0.125

+ OR 0.75

× AND 0.09375

Fig. 6. The query tree for A AND (B OR C). The local relevance values at
position 8.5 are at the leaves, the functions used at the nodes are before the
boolean operators and the evaluations of these functions are displayed at each
nodes.

So, we set for the OR operator

r
d
q OR q′ = r

d
q + r

d
q′ .

We must define a functional operator to apply on AND nodes.

If we try to use the min function as in the fuzzy proximity model,

the query A AND (B OR C) leads to an incoherence. In fact, we

should have r
d
((A AND (B OR C)) = r

d
(A AND B) OR (A AND C)) at

each position of the document d , but this is not the case. For

example, at the position x = 8.5 in the first document where A,

B and C occur, the local relevance values at the position x are

r
d
A = 0.125, r

d
B = 0.625 and r

d
C = 0.125, we obtain :

r
d1

(A AND (B OR C))
(8.5) = min(0.12, 0.12 + 0.62) = 0.12

and

r
d1

((A AND B) OR (A AND C))(8.5)

= min(0.12, 0.62) + min(0.12, 0.12) = 0.24

so, the Morgan’s laws are not verified and we cannot use this

function at the operator AND nodes of the tree. These laws can

simply be verified by setting for the AND operator

r
d
q AND q′ = r

d
q · r

d
q′ .

The figures 4 and 5 show the local relevance value functions for

the query (B OR C) of the two example documents, in this second

model we also have the same local relevance for the query if the

A 0.125 B 0.625

× AND 0.078125

A 0.125 C 0.125

× AND 0.015625

+ OR 0.09375

Fig. 7. The query tree for (A OR B) AND (A OR C). The local relevance values
at position 8.5 are at the leaves, the functions used at the nodes are before the
boolean operators and the evaluations of these functions are displayed at each
nodes.

document contains an occurrence of B or C at the position x = 7
and x = 12. In the figure 6, the query (A AND (B OR C)) is

represented with the values of the local relevance function to the

document d 1 at the position x = 8.5. The values are computed

bottom up using addition for OR nodes and multiplication for

AND nodes. The value at the root is used to compute the score.

The same evaluation is shown for the query ((A AND B) OR

(A AND C)) in figure 7 which is another boolean expression to

formulate the information need.

As in the fuzzy proximity case, the score of the document d

for a given query q is defined with

s(q, d ) =

∫ +∞

−∞

r
d
q (x ) dx .

The score, in +, is totally determined by the local relevance

values so it allows to take into account the relative position

between terms which corresponds to the second Luhn’s idea (cf.

section 1).

IV. SPECIAL CASES

Varying the parameter k allows to control the influence sphere

width. With such variations the usual formulations of the classical

models like the coordination level, the vector and the Boolean

ones can be derived.

A. Coordination level and vector model

In the information retrieval domain, one of the first similarity

measures between a document and a query was the coordination

level. In this case, the query is a set of keywords. Computing

the relevance score by the coordination level method consists in

counting the query terms occurrences number in a document. We

can reproduce this behaviour in our model by :

1) choosing a rectangular influence function of width 1 and

height 1 (cf. fig. 8) ; so the sphere of influence of any term

occurrence is limited to this occurrence as the spheres of

influence do not overlap,

2) using a disjunctive query.

So, by only taking into account the raw term frequency, our

computing method is equivalent to the coordination level one.

The behaviour of the vector model can be reproduced if we

assign at the positions where the query terms occur a local

relevance value (resp. fuzzy proximity value) which depends on

the document frequency1. so, we get documents scores which

1We can also use various idf functions with normalised value for that.
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0

1

-1 − 1
2 0 + 1

2 1

Fig. 8. Influence function which limits the influence area, the zero value match
with the normalized idf value for the given term.

depend on document frequency and term frequency which well

corresponds to the vector model.

B. Boolean Model

In our fuzzy proximity model, if the sphere of influence is

extended to the whole document, what will be done by taking

limits when the parameter k tends towards the infinity, our

computing method behaves like the Boolean one. Here is the

demonstration.

First of all, an influence function which is a rectangular

function of width 2k and height 1
2k

x �→
1

2k
· [−k,l+k](x )

will be used2. This function is illustrated in figure 9.

0

1
2k

-1 −k 0 +k 1

Fig. 9. Rectangular influence function.

Given a term t and a document d of length l +1, we maximize

the function p
d
t at any position x

p
d
t (x ) = max

i∈Occ(d,t)
f (x − i ) ≤ max

i∈[0,l]
f (x − i ) ≤

1

2k
· [−k,l+k](x ).

Given a query q , this maximisation is true for every leaf,

so trivially it is true for every nodes in the tree. Using this

maximization at the tree root, we have

sk(q, d ) =

∫ +∞

−∞

p
d
q(x ) dx ≤

∫ +∞

−∞

1

2k
· [−k,l+k] dx =

l + 2k

2k

and

lim
k→+∞

sk(q, d ) ≤ lim
k→+∞

l + 2k

2k
= 1.

A query q in our model is composed of leaves with terms

and internal nodes with AND and OR operators. When such

a query is developped by distributing the AND operators

over the OR operators, we obtain a disjunctive normal form

q = q1 OR q2 OR . . . OR qn where all the conjunctive terms3

(qi)1≤i≤n are composed of elements of T. Such a document

scores to 1 in the Boolean model and we will now proove that

limk→+∞ sk(q, d ) is equal to 1.

2
E denotes the characteristic function of the set E.

3Here, “term” is used in its algebraic meaning.

Consider now a document which matches the boolean query.

Such a document matches at least one of the (qi)1≤i≤n, say qi0 .

And we have

p
d
q = max

1≤i≤n
p

d
qi

≥ p
d
qi0

.

Remembering that qi0 is a conjunctive query, it can be written

t 1 AND t 2 AND . . . AND t k for some (t j)1≤j≤k ⊂ T . As d

matches (qi0), each term t j , for 1 ≤ j ≤ k , appears in the

document d . The function r
d

qi0 is the “intersection” of every

influence functions and thus is the “intersection” of the two

farthest one. Let us denotes u (resp. v ) the first (resp. the last)

position where an occurrence of one of the (t j)1≤j≤k does appear,

formally

u = min
⋃

1≤j≤k

O cc(t j , d )

and

v = max
⋃

1≤j≤k

O cc(t j , d ).

With these notations, we can derive

p
d
qi0

= p
d
t1 AND ... AND tk

= min
1≤j≤k

p
d
tj

and this is equal to min(p
d
U , p

d
V ) for the term U that appears at

position u in d and for the term V that appears at position v in d

(cf. fig 10). As p
d
U = 1

2k
· [u−k,u+k] and p

d
V = 1

2k
· [v−k,v+k] we

have min(p
d
u, p

d
v) = [v−k,u+k] (as shown by 10). So we have

p
d
q(x ) ≥ p

d
qi0

(x ) =
1

2k
· [v−k,u+k](x )

and then

sk(q, d ) =

∫ +∞

−∞

p
d
q(x )dx ≥

∫ +∞

−∞

1

2k
· [v−k,u+k](x )dx .

The last sum can be computed:

∫ +∞

−∞

1

2k
· [v−k,v+k](x )dx =

1

2k
·(u +k )−(v−k ) =

2k + (u − v )

2k

so

lim
k→+∞

sk(q, d ) ≥ lim
k→+∞

2k − u + v

2k
= 1.

0

1
2k

u-k u v-k u+k v v+k

Fig. 10. The intersection of the rectangles represents the local document
relevance. We have two term occurrences one at position u and the other one
at position v.

As we previously proved that this limit was lower than 1, it is

then equal to 1.

Reciprocally, consider now a document d which does not match

the boolean query. So d does not match any of the (qi)1≤i≤n.

Given some i , 1 ≤ i ≤ n , qi is a conjunctive query :

t 1 AND t 2 AND . . . AND t k
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and at least one of the (t j), 1 ≤ j ≤ k , say t j0 does not appear

in the document d . So

(∀x ) p
d
tj0

(x ) = 0,

and then

(∀x ) p
d
qi

(x ) = 0,

and finally,

p
d
q = max

1≤i≤n
p

d
qi

= 0.

Thus, the integral is zero whatever the value of k and its limits

is zero too.

Therefore, on one hand if a document d matches a boolean

query q we showed that limk→+∞ sk(q, d ) = 1 and on the

other hand if the document d doesn’t match the query q

we have sk(q, d ) = 0 for any value of k , so a function

limk→+∞ sk(q, d ) = 0. So we proved that the classic Boolean

scores can be retrieved by our model when we consider the limit

as k tends towards the infinity.

V. CONCLUSION

In this paper, firstly, we reminded the classical models and

made the link with the use of term occurrences proximity in

information retrieval. Then, from our assumption that documents

having nearby query terms occurrences should be highly ranked,

we detailed our “sphere of influence” model which uses boolean

queries. We also have seen that classical information retrieval

models are special cases either with k = 1
2 for the vector model

or with k → ∞ for the Boolean model. Actually, this parameter

controls the spread of the terms occurrences influence. A value

about 5 specifies a phrase level proximity. A value from 15 to

30 is at the sentence level and a value near 100 at the paragraph

level. Consequently, our model reaches our first aim that is to say

scoring a document according to the query terms localisation but

also can be set to reproduce the behaviour of classical information

retrieval models.
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