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Abstract

In this paper, the problem of identifying linear discrete-time systems from noisy input and output data is addressed. Several
existing methods based on higher-order statistics are presented. It is shown that they stem from the same set of equations and
can thus be united from the viewpoint of extended instrumental variable methods. A numerical example is presented which
confirms the theoretical results. Some possible extensions of the methods are then given.
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1 Introduction

Identification of errors-in-variables (EIV) models has
been a very active domain of research in the past few
years (see e.g. (Mahata and Garnier 2006, Mahata
2007, Diversi et al. 2007, Hong et al. 2007, Pintelon and
Schoukens 2007, Thil et al. 2007, Söderström 2008, Thil
et al. 2008b)), and a survey paper gathering most of
the known developments has been recently published
(Söderström 2007).

Most of the research has been concerned with estimat-
ing the parameters of discrete-time EIV models with
the help of second-order statistics. Nonetheless, a re-
cently published paper (Thil et al. 2008a) has shown
that continuous-time EIV model identification can be
successfully handled using higher-order statistics (HOS).
Although much work has been conducted in the HOS
field for EIV model identification in the 90’s, it seems
that several questions concerning the practical use of
HOS for system identification remain to be answered.

The aim of this paper is to present some HOS-based

⋆ This work was supported by a research grant from the Aus-
tralian Research Council.

methods for EIV model identification in a unified way.
More precisely, the links between the methods developed
in (Inouye and Tsuchiya 1991, Chen and Chen 1994)
and the discrete-time version of an algorithm presented
in (Thil et al. 2008a) are explored. It is shown that these
methods stem from the same set of equations. Simula-
tion results support the theoretical analysis, and some
possible extensions for future work are given.

2 Errors-in-variables framework

Consider a discrete-time, linear, time-invariant EIV sys-
tem. The noise-free input/output signals are related by

yo(t) = Go(q)uo(t) (1)

where q is the forward operator and Go(·) is the transfer
operator of the ‘true’ system. The input and output sig-
nals are both contaminated by noise sequences, denoted
as ũ and ỹ, respectively. The data-generating system is
thus given by






yo(t) = Go(q)uo(t)

u(t) = uo(t) + ũ(t)

y(t) = yo(t) + ỹ(t)

(2)
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It is then parameterized as follows:






y(t) = G(q, θ)
(
u(t) − ũ(t)

)
+ ỹ(t)

G(q, θ) = B(q−1,θ)/A(q−1,θ)

A(q−1,θ) = 1 + a1q
−1 + ... + ana

q−na

B(q−1,θ) = b0 + b1q
−1 + ... + bnb

q−nb

(3)

with na > nb and θT = [a1 . . . ana
b0 . . . bnb

]. Equa-
tion (3) can be rewritten as

y(t) = ϕT(t)θ + v(t,θ) (4)

v(t, θ) = ỹ(t) − ϕ̃T(t)θ (5)

where the regression vector is given by

ϕT(t) =
[
− y(t − 1) . . . − y(t − na)

u(t) . . . u(t − nb)
]

(6)

and ϕ̃(t) is defined in a similar way to ϕ(t), but with u
and y being replaced by ũ and ỹ, respectively. The prob-
lem of identifying this errors-in-variables model is con-
cerned with consistently estimating the parameter vec-
tor θ from the noisy input/output data {u(t), y(t)}N

t=1
.

2.1 Notations

As the input and output noises are additive, linear func-
tions of the measured signals can be broken down into
two parts: one part made up of the noise-free signals’ con-
tribution (denoted with an ‘o’ subscript) and the other
made up of the noises’ contribution (denoted with the
‘˜ ’ sign). For example, the regression vector ϕ can be
decomposed into

ϕ(t) = ϕo(t) + ϕ̃(t) (7)

The following notations are used in the sequel for the
correlation vectors and matrices

Rϕϕ = Ē
{
ϕ(t)ϕT(t)

}
, rϕy = Ē{ϕ(t)y(t)} (8)

where Ē{·} stands for (see (Ljung 1999))

Ē{f(t)} = lim
N→∞

1

N

N∑

t=1

E{f(t)} (9)

The notation used for the third-order cumulants is

Cx1x2x3
(τ1, τ2) = Ē{x1(t)x2(t + τ1)x3(t + τ2)} (10)

= Cx1x2x3
(τ ) (11)

where, for the sake of conciseness, τ denotes [τ1, τ2].

2.2 Assumptions and elements of structure

The following assumptions are needed

A1. The system (1) is asymptotically stable, and all the
system modes are observable and controllable;

A2. The signals uo, ũ and ỹ are stationary, ergodic and
zero-mean;

A3. The signals ũ and ỹ are assumed to be uncorrelated
with the input uo.

For methods based on second-order statistics to give
unbiased estimates, it is usually assumed (and often
implicitly) that the ‘true’ system belongs to the con-
sidered model set, a situation referred to as S ∈ M⋆

(Ljung 1999). However, this notation has been intro-
duced for systems with noise-free inputs, and – being too
general – is not properly suited for errors-in-variables
models. Indeed, more often that not, the input and out-
put noises and the noise-free input must be modeled.
Thus, some additional notations must be introduced.
The whole ‘true’ system includes

(1) the ‘true’ process Go and its associated model set
G⋆ = {G(·,θ)},

(2) the ‘true’ noise processes H ũ
o , H ỹ

o and their associ-
ated model set H⋆ =

{
H ũ(·,η), H ỹ(·,η)

}
,

(3) the ‘true’ noise-free input process Huo

o and its as-
sociated model set E⋆ = {Huo(·,η)},

where η is a vector gathering the parameters of noises
models and noise-free input models.

In addition to assuming that the ‘true’ process belongs
to the model set, i.e., Go ∈ G⋆, most methods based on
second-order statistics require that the noises’ models
belong to the model set, i.e.,

(
H ũ

o , H ỹ
o

)
∈ H⋆. A few even

require that the noise-free input is adequately modeled,
and thus that Huo

o ∈ E⋆. For example, the maximum
likelihood and prediction error methods require such as-
sumptions (Söderström 1981, Söderström 2007).

On the contrary, methods based on higher-order statis-
tics do not require structural assumptions on the input
and output noises ũ, ỹ, and on the noise-free input uo.
The only structural assumption needed is

A4. The true process belongs to the model set: Go ∈ G⋆.

The input and output noises can thus be arbitrarily
coloured (and even mutually correlated), and there is
no structural assumption on the noise-free input. How-
ever, for the higher-order cumulants of the noises to be
zero and for the higher-order cumulants of the noise-
free input not to be zero, distributional assumptions are
needed. These distributional assumptions differ whether
third- or fourth-order cumulants are used. For the third-
order cumulants,
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A5a. The input and output noises ũ, ỹ have symmetric
probability density functions (pdf’s),

A6a. The noise-free input uo has a skewed pdf.

For the fourth-order cumulants,

A5b. The input and output noises ũ, ỹ have Gaussian
pdf’s,

A6b. The noise-free input uo has a non-Gaussian pdf.

In the sequel, the focus will be placed on the case of third-
order cumulants, and consequently the assumptions A1-
A4 and A5a-A6a are supposed to be satisfied.

3 Identification methods using HOS

3.1 Properties of HOS

The identification techniques presented in this paper are
based on higher-order statistics (see e.g. (Brillinger 1981,
Mendel 1991)). Here we recall a few of the numerous
properties of higher-order cumulants.

P1. Multilinearity: cumulants are linear with respect to
each of their arguments;

P2. Additivity: if two random vectors are independent,
then the cumulant of their sum equals the sum of
their cumulants;

P3. The third-order cumulant of a random variable with
a symmetric pdf is equal to zero.

From assumptions A3, A5a, A6a and using properties
P2, P3, the following holds

Cuuy(τ ) = Cu0u0y0
(τ ) + Cũũỹ(τ ) = Cu0u0y0

(τ )

Cuuu(τ ) = Cu0u0u0
(τ ) + Cũũũ(τ ) = Cu0u0u0

(τ )

The third-order (cross-)cumulants of the input and out-
put signals are thus insensitive to symmetrically dis-
tributed noises. Note that this result is still valid for the
third-order (cross-)cumulant of any combination of in-
put and output signals.

3.2 Higher-order statistic-based LS method

A simple least-squares (LS) method based on higher-
order statistics has been introduced in (Thil et al. 2008a)
for continuous-time EIV model identification, and its
statistical analysis has been conducted in (Thil et al.
2008c). Here we give a brief overview of the method.

The EIV model can be shown to satisfy the following
third-order cumulants equation

Cuuy(τ ) =
B(q−1,θ)

A(q−1,θ)
Cuuu(τ ) (12)

which can be expressed in a linear regression form as

Cuuy(τ ) = ϕT

uuy(τ )θ (13)

where

ϕT

uuy(τ )=
[
−Cuuy(τ1, τ2− 1) . . . −Cuuy(τ1, τ2− na)

Cuuu(τ1, τ2) . . . Cuuu(τ1, τ2− nb)
]

(14)

Due to the stationarity of the signals, the linear re-
gression model (13) does not depend on the time t,
but on τ1 and τ2, the time lags appearing in the third-
order cumulants. Should all that information be used? If
not, what part should be chosen? These questions must
be answered with the properties of cumulants in mind
(symmetries), as well as the problem of their estima-
tion (larger time lags imply less accuracy). In (Thil et
al. 2008a), the chosen cumulant slice was τ1 = 0 and
0 6 τ2 6 M − 1; and the purpose of the user-selected
parameter M is to avoid the use of third-order cumu-
lants with large time-lags. The reason for this is that as
the time-lag increases, the cumulants estimates are cal-
culated from less and less data, thus being less and less
reliable (Thil et al. 2008a). It yields





Cuuy(0, 0)
...

Cuuy(0, M − 1)




=





ϕT

uuy(0, 0)
...

ϕT

uuy(0, M − 1)




θ (15)

which may be written in a compact form as

C = ΦTθ (16)

An estimate of the parameter vector θ can then be
obtained by solving the system of equations (16) in a
least squares sense, yielding the so-called third-order
cumulant-based LS (called tocls for short) estimator

θ⋆
tocls

=
(
ΦΦT

)
−1

ΦC (17)

It should also be noted that, instead of (12), the following
third-order cumulants equations can also be used:

Cuyy(τ ) =
B(q−1,θ)

A(q−1,θ)
Cuyu(τ ) (18)

Cyyy(τ ) =
B(q−1,θ)

A(q−1,θ)
Cyyu(τ ) (19)

It is yet unclear which equations should be used. Explor-
ing how the properties of the system and the signals may
influence this choice is a difficult task and an interesting
topic for future research.
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3.3 Higher-order statistic-based IV method

Another solution is to use an instrumental variable (IV)
approach instead of a least squares method to handle the
parameter estimation. Indeed, the classical IV approach
can be modified in order to use third-order cumulants.
Here we briefly recall the higher-order IV method intro-
duced in (Inouye and Tsuchiya 1991).

The starting point is the model equation written in a
linear regression form (4)-(5). Define an instrumental
vector as

zT(t) =
[
− y2(t − 1) . . . − y2(t − na)

u2(t) . . . u2(t − nb)
]

(20)

that is, a vector containing the square of each element of
the regression vector ϕ(t). Now multiplying (4) by z(t)
and taking the expectation of the result yields

rzy = Rzϕθ + rzv (21)

where Rzϕ = Ē
{
z(t)ϕT(t)

}
. The vectors and matrices

appearing in (21) contain third-order cumulants. Taking
a closer look at rzv, we can see that

rzv = Ē{z(t)v(t, θ)} = Ē{z̃(t)v(t, θ)} = 0 (22)

Here we first used the fact that the noise-free input signal
uo is uncorrelated with the input and output noises ũ and
ỹ [A3], and then the fact that the noises have a symmetric
distribution [A5a]. The parameter vector θ can thus be
estimated using (21). Moreover, if the input signal uo

is third-order white, the matrix Rzϕ is generically non-
singular (Inouye and Tsuchiya 1991). An IV estimator
based on third-order cumulants is therefore obtained as

θ⋆
tociv

= R−1

zϕrzy (23)

where tociv stands for Third-Order Cumulant-based In-
strumental Variable.

3.4 Higher-order correlation method

In (Chen and Chen 1994) a higher-order correlation
method (hocm) is described to estimate the order and
the parameters of an EIV model. It is striking to note
that, in that paper, the parameters are estimated in
the exact same way as in the tociv method presented in
(Inouye and Tsuchiya 1991), recalled in the preceding
subsection. Indeed, although the presentation differs,
their parameter estimate is exactly given by (23), the
instrumental vector being identical in both papers.

4 A unifying analysis

As stated before, the tocls method originates from the
following equations

Cuuy(τ ) =
B(q−1,θ)

A(q−1,θ)
Cuuu(τ ) (24)

Cuyy(τ ) =
B(q−1,θ)

A(q−1,θ)
Cuyu(τ ) (25)

Cyyy(τ ) =
B(q−1,θ)

A(q−1,θ)
Cyyu(τ ) (26)

Now we take a closer look at equation (21), which forms
the basis of the tociv method. It can be noticed that it
may be broken down into two parts (see (29)):

(1) the first na lines stem from the linear regression
based on (26), with τ1 = 0 and 1 6 τ2 6 na;

(2) the other nb+1 lines stem from the linear regression
based on (24), with τ1 = 0 and 0 6 τ2 6 nb.

Note that in (29) the stationarity of the involved sig-
nals is necessary, so this result is only true for N → ∞.
The tociv method of (Inouye and Tsuchiya 1991) is thus
closely linked to the tocls method in terms of using equa-
tions (24) and (26), and with an implicit choice of the
cumulant slice.

Inversely, equation (16) of the tocls method can be writ-
ten as

rzy = Rzϕθ (27)

with

zT =
[
u2(t) u2(t − 1) . . . u2(t − M + 1)

]
(28)

The tocls method can thus be viewed as an extended
version of the tociv method (called tocxiv for short), since
the instrumental vector (28) is of dimension M , i.e.,
larger than the dimension of θ.

The three methods presented in the preceding section
use the same set of equations to estimate the parame-
ter vector. The only differences between them are which
equations (or combination of equations) are used, and
how many of those equations are used.

5 Numerical example

The objective of this section is to assess the results of
Section 4. To this end, several variants of those algo-
rithms are used to estimate the parameters of the two
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



−Cyyy(0, 1)
...

−Cyyy(0, na)

Cuuy(0, 0)
...

Cuuy(0, nb)





=





Cyyy(0, 0) · · · Cyyy(0, 1 − na) −Cyyu(0, 1) · · · −Cyyu(0, 1 − nb)
...

. . .
...

...
. . .

...

Cyyy(0, na − 1) · · · Cyyy(0, 0) −Cyyu(0, na) · · · −Cyyu(0, na − nb)

−Cuuy(0,−1) · · · −Cuuy(0,−na) Cuuu(0, 0) · · · Cuuu(0,−nb)
...

. . .
...

...
. . .

...

−Cuuy(0, nb − 1) · · · −Cuuy(0, nb − na) Cuuu(0, nb) · · · Cuuu(0, 0)









a1

...

ana

b0

...

bnb





(29)

following systems, that have different properties

System 1: Go(q) =
1q−1 + 0.5q−2

1 − 1.5q−1 + 0.7q−2
(30)

System 2: Go(q) =
0.5 − 0.25q−1 + 0.15q−2

1 + 0.5q−1 − 0.125q−2
(31)

The Bode diagrams of these systems are given on Fig-
ure 1. While the system 1 is commonly used as a bench-

10
−3

10
−2

10
−1

10
0

−20

−10

0

10

20

M
a
g
n
it
u
d
e
 (

d
B

)

10
−3

10
−2

10
−1

10
0

−200

−100

0

Frequency (rad/s)

P
h
a
s
e
 (

d
e
g
)

System 1

System 2

Fig. 1. Bode diagrams of System 1 and System 2.

mark (it exhibits properties one would expect from an
adequately tuned second-order system), the second sys-
tem is a bit less ‘ideal’. The simulation conditions are the
same for both systems. The noise-free input is obtained
as the output of

Huo

o (q) =
1

1 − 0.2q−1 + 0.5q−2
(32)

which is excited by a white exponential noise. The in-
put and output noises are defined as the outputs of the
following MA filters

H ũ
o (q)=1−2.33q−1+0.75q−2+0.5q−3+0.3q−4−1.4q−5

H ỹ
o (q)=1 + 0.2q−1 − 0.3q−2 + 0.4q−3

which are excited by white uniform noises. The variances
of these white noises are then set to obtain a signal-
to-noise ratio equal to about 10 dB on both input and
output of each system. The length of the data set is
N = 5000. The results of Monte Carlo simulations of
nmc = 200 runs are displayed in Table 1 and Table 2
respectively for the two systems, where the mean and
standard deviation of the estimates, together with the
normalized root mean square error (NRMSE) on the
parameter estimates, are given, where

NRMSE =

√√√√ 1

nmc

nmc∑

j=1

||θ̂j − θ||2

||θ||2
(33)

The algorithms appearing in Tables 1-2 are 1

- tociv and hocm are the – identical – methods developed
in (Inouye and Tsuchiya 1991) and (Chen and Chen
1994), respectively;

- tocxiv is an extension of tociv, using an instrumental
vector of dimension M , larger than θ, and solving the
over-determined system in a least-squares sense;

- the ‘variants’ of the algorithms are linked to the equa-
tions used to estimate the parameter vector. Those
labelled as ‘u only’ use only (24), while those labelled
as ‘u&y’ use (24) and (26).

Discussion
Although their actual implementations are different, the
tociv and hocm methods give exactly the same results,
which confirms that these two methods are identical.
Like the basic instrumental variable methods using
second-order statistics, these methods are prone to nu-
merical instability when the matrix to be inverted is ill-
conditioned; see especially the results of tociv obtained
for the second system. However, their performances are
improved by allowing the instrumental vector to be of
a dimension larger than θ (compare the results of tociv

and tocxiv, especially for the second system in Table 2).

1 It should be noted that algorithms using different combi-
nations of (24)–(26) have been tested. Since no version ap-
peared to be uniformly best, only the results of the compared
methods have been included.
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Variant M a1 =−1.5 a2 = 0.7 b0 = 0 b1 = 1.0 b2 = 0.5 NRMSE

hocm − Same as tociv below

tociv u&y −
−1.5048
±0.0041

0.7052
±0.0046

−0.0069
±0.0027

1.0071
±0.0033

0.4891
±0.0123

0.91

tocxiv

u&y 30 −1.4948
±0.0002

0.6959
±0.0001

0.0038
±0.0092

0.9878
±0.0080

0.5029
±0.0069

0.88

u only 30 −1.4852
±0.0003

0.6859
±0.0002

−0.0053
±0.0024

0.9983
±0.0026

0.5101
±0.0039

0.57

tocls

u&y 30 −1.4948
±0.0001

0.6958
±0.0001

0.0055
±0.0083

0.9791
±0.0093

0.5099
±0.0042

0.84

u only 30 −1.4847
±0.0003

0.6853
±0.0002

−0.0055
±0.0024

0.9988
±0.0026

0.5099
±0.0039

0.57

Table 1. Monte Carlo simulation results for System 1 (see (30)).

Variant M a1 =0.5 a2 =−0.125 b0 = 0.5 b1 =−0.25 b2 = 0.15 NRMSE

hocm − Same as tociv below

tociv u&y −
0.6148
±0.3565

−0.0191
±0.2745

0.4998
±0.0001

−0.1936
±0.0886

0.1481
±0.0008

6.31

tocxiv

u&y 30 0.5087
±0.0041

−0.1191
±0.0031

0.5005
±0.0001

−0.2462
±0.0010

0.1494
±0.0001

0.87

u only 30 0.5160
±0.0042

−0.1136
±0.0032

0.4995
±0.0001

−0.2420
±0.0010

0.1477
±0.0001

0.90

tocls

u&y 30 0.5092
±0.0041

−0.1189
±0.0031

0.5003
±0.0001

−0.2461
±0.0009

0.1493
±0.0001

0.86

u only 30 0.5168
±0.0042

−0.1132
±0.0032

0.4993
±0.0001

−0.2418
±0.0010

0.1476
±0.0001

0.90

Table 2. Monte Carlo simulation results for System 2 (see (31)).

Regarding the comparison of the tocxiv and tocls meth-
ods, since the dimension of the instrumental vector in
tocxiv and the number of additional equations in tocls

are chosen to be the same, the ‘u only’ variant of these
two methods should give the same results, just as the
‘u&y’ variant. Their results are indeed quite similar, es-
pecially for the ‘u only’ variant. However, slight differ-
ences may be noticed between them. That can be ex-
plained by the way the estimation is conducted. In the
case of the tocls method, the third-order cumulants are
first estimated, and then the parameter vector is esti-
mated using those estimates. In the tocxiv method, both
the third-order cumulant estimation and the parameter
vector estimation are conducted in one step. This leads
the third-order cumulant estimates to be less accurate
since they are not obtained from the maximum amount
of available data. Also, none of the ‘u&y’ and the ‘u only’
variants is uniformly best. Depending on the system and
on the signals, they alternatively give the best results.

6 Conclusion and perspectives

This paper has been concerned with exhibiting the links
between the parameter estimation methods introduced
in (Inouye and Tsuchiya 1991, Chen and Chen 1994, Thil
et al. 2008a). It has been shown that these higher-order
statistic-based methods are based on the same set of
equations, and thus can be interpreted as extended in-
strumental variable methods. The numerical simulations
have confirmed these results. It should also be noted
that the same analysis can be conducted for the meth-
ods using fourth-order cumulants (see (Inouye and Suga
1994) for the instrumental variable method and (Thil et

al. 2007) for the least-squares method).

Now that the similarities between the methods have been
pointed out, future work will investigate the ‘classical ex-
tensions’ of IV estimators, such as weighting and filter-
ing. It would also be interesting to explore how asymp-
totic results derived for second-order IV methods can be
adapted to the higher-order case.
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Söderström, T. (2008). Extending the Frisch scheme for
errors-in-variables identification to correlated output noise.
International Journal of Adaptive Control and Signal
Processing 22(1), 55–73.

Thil, S., H. Garnier and M. Gilson (2008a). Third–order
cumulants based methods for continuous–time errors–in–
variables model identification. Automatica 44(3), 647–658.

Thil, S., H. Garnier, M. Gilson
and K. Mahata (2007). Continuous-time model identification
from noisy input/output measurements using fourth-order
cumulants. In: 46th IEEE Conference on Decision and
Control (CDC’2007). New Orleans, LA, USA.

Thil, S., M. Gilson and H. Garnier (2008b). On instrumental
variable methods for errors-in-variables model identification.
In: 17th IFAC World Congress. Seoul, Korea.
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