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S U M M A R Y
A new method is presented, to obtain the stress state that best accounts for a set of double couple
focal mechanisms of earthquakes. This method is based on the slip shear stress component
(SSSC) criterion. The sum of the SSSC values is maximized as a function of four unknowns
that describe the reduced stress tensor, including the orientations of the principal stress axes and
the ratio between the principal stress differences. This new method combines two advantages.
First, no choice between the nodal planes of each focal mechanism is needed, because of the
intrinsic properties of the SSSC. Secondly, the runtime is negligible regardless of the size of the
data set, because the inverse problem is solved by analytical means so that the numerical aspects
are reduced to a minimum. For these reasons, the SSSC-based inversion is easily included in
a variety of processes for separating or refining the data. A typical set of focal mechanisms
of earthquakes in Taiwan is processed to illustrate the application and potential of the new
method.
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1 T H E P RO B L E M

The determination of the seismotectonic regime based on the inver-
sion of sets of focal mechanisms of earthquakes has been studied
by several authors (e.g. Angelier 1984; Gephart & Fortsyth 1984;
Mercier & Carey-Gailhardis 1989). Among the most prominent dif-
ficulties of such an inverse analysis were some non-linear or discon-
tinuous mathematical aspects of the inverse problem, and an intrinsic
property of the double couple focal mechanisms, which apparently
required a preliminary choice between the nodal planes.
In this paper, we aim to show first that to perform the inversion of
a data set and obtain the best-fitting stress tensor it is not neces-
sary to choose between the nodal planes of the double couple focal
mechanisms. Secondly, it is demonstrated that the analysis can be
carried out by purely analytical means, which results in an almost
instantaneous resolution of the problem regardless of the size of the
data set. These two main objectives are attained through the use of
a new criterion, the slip shear stress component (SSSC). Both the
properties of this criterion and the mathematical and physical prin-
ciples of the analytical inversion are explored. The corresponding
method was mentioned in an abstract (Angelier 1998), but never
described.

The inverse analysis is considered from both the mathematical
and the mechanical points of view. The final aim of this paper is
to illustrate the numerical application of this new method, based on

consideration of a typical data set of focal mechanisms of earth-
quakes.

2 D E F I N I T I O N O F T H E S L I P S H E A R
S T R E S S C O M P O N E N T

The shear stress slip component, or SSSC, is the component of stress
acting in the slip direction on a fault (Fig. 1). As a vector, the SSSC,
τ s, is the orthogonal projection of the shear stress, τ , onto the slip
vector, s. It is also the orthogonal projection on s of the applied stress
vector, σ. As a value, the SSSC, τs, is the scalar product of τ by the
unit slip vector, s (so that τs is also the scalar product of σ by s).
According to this definition, τs may be negative, indicating that the
calculated stress acts in the opposite sense to that of the observed
slip. Thus, the SSSC value is not the modulus of the SSSC vector,
although their absolute values are identical. Note that throughout
this paper a bold symbol, such as τ , refers to a vector or a tensor
(regular ones refer to scalars or vector moduli).

As an example, let us consider a fault with a movement occurring
in the imposed direction of a given vector s. Situations where there is
an imposed slip direction may result from geometrical interactions
between faulted blocks: the slip cannot occur along the direction
of the shear stress, τ , as would be the case for a fault left free to
move in any direction in the rock mass. This example shows that
the component of stress that may induce motion along s, the real
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Inversion of earthquake focal mechanisms 589

slip direction, is τ s, the SSSC, instead of the shear stress itself, τ .
Remember that the stress and related vectors (includingτ andτ s) are
calculated, whereas the slip vector (s) results from the observation.

Whether or not the slip is explained by the stress depends on
the SSSC value. Within this framework, an important, albeit non-
exclusive, role is played by the angle between the observed slip
direction and the calculated shear stress (Fig. 1). This angle, α,
is simply called the slip-shear angle hereafter. For example, with
a shear stress that is at a small oblique angle to the imposed slip
direction, the SSSC value is positive and close to the magnitude of
the shear stress (Fig. 2a); it reaches τ for zero angle. When the angle
becomes close to 90◦, the SSSC value is small (Fig. 2b); it becomes
zero for an angle of 90◦. For an obtuse angle the SSSC value is
negative; it approaches the shear stress magnitude in absolute value
if the angle is large (Fig. 2c), reaching −τ for an angle of 180◦.
Thus, as α increases, it is more and more difficult to account for

Figure 1. The shear stress slip component, or SSSC. Block diagram show-
ing a reverse left-lateral fault. Two unit vectors define the slip: n, normal to
fault plane, and s, unit slip vector. By convention, n (open arrow) is chosen
in the upper half-space, whereas s (grey arrow) indicates the motion of the
lower block with respect to the upper one, and hence is in the lower half-space
for a reverse fault (upper half-space for a normal fault). Striations as thin
lines on fault plane. Black arrows indicate the shear stress, τ , and the SSSC
vector, τ s. The angle between the calculated shear stress and the actual slip
is α (slip-shear angle).

Figure 2. Variation of the SSSC value (τs) as a function of the slip-shear
angle (α). Unit slip vector as s (grey arrow); shear stress, τ ; and SSSC vector,
τ s (black arrows). Given by the orthogonal projection of τ on s, τs can be
negative. Three cases are shown, with the same shear stress modulus (τ ): (a)
small angle α, close vectors τ s and τ , SSSC value τs close to τ ; (b) angle
α close to 90◦ small SSSC value; (b) large obtuse angle α, close vectors
τ s and τ , SSSC value τs negative and close to −τ . The misfit continuously
increases while α varies from 0 to 180◦.

the observed slip with the calculated shear stress. For large acute
angles (Fig. 2b), the small calculated stress is unlikely to explain the
observed slip, unless the friction coefficient is small and the normal
stress is small or negative. For angles greater than 90◦, this difficulty
becomes an impossibility because the SSSC acts in the opposite
sense with respect to the slip vector (Fig. 2c). The situations where
stress accounts well for slip belong to the type shown in Fig. 2(a),
i.e. with an angle α as small as possible. This kind of criterion has
been adapted in different ways in the stress analyses of fault slip
data sets (Carey & Brunier 1974; Angelier 1975; Etchecopar et al.
1981; Michael 1984).

Geological analyses have revealed that slip occurs on some faults
despite a large angle between the slip vector and the shear stress as a
consequence of geometrical requirements in faulted block patterns,
a situation that is confirmed by modelling (Dupin et al. 1993). For
this reason, it is preferable to consider that the parallelism between
the shear stress and the slip is favourable but not compulsory. If
large enough, the shear stress can induce fault slip along directions
oblique to the shear stress vector. By definition (Fig. 1), the SSSC
value is proportional to the shear stress for a given angle α. Adopting
this value as a criterion in stress-slip relationships thus implies that
the calculated shear stress should be large enough to induce fault
motion along the direction of the actual slip, despite cohesion and
friction. This is a different assumption compared with the Wallace–
Bott hypothesis. Based on this hypothesis, the slip is simply expected
to occur in the direction and sense of shear stress (Wallace 1951;
Bott 1959). The conditions taking the shear stress magnitude into
account were introduced in the inversion by Angelier (1984).

For acute shear slip-shear angles, maximizing the SSSC value
includes an implicit requirement for the shear stress to be large: the
larger the shear stress, the larger the SSSC. For obtuse angles, the
SSSC is negative and its absolute value increases with shear stress,
which accounts for the increasing difficulty in explaining the slip
by stress. Thus, the algebraic SSSC value continuously increases
with the shear stress. Simply considering the shear stress magnitude
would be inappropriate, because a large shear stress with an obtuse
shear slip-shear angle fails to explain the slip (Fig. 2c). On the other
hand, even a zero-angle α cannot account for the slip if the shear
stress is too small to activate the fault. The SSSC value, which
combines the two aspects, is thus adopted herein as a key factor
influencing the occurrence of fault slip. In more detail, the lower
limit of τs for slip to occur depends on the normal stress and the
coefficient of friction through Mohr–Coulomb-type relationships,
an aspect analysed in Section 4 of this paper.

3 I N V A R I A N C E O F T H E S S S C
V A L U E F O R A D O U B L E C O U P L E
F O C A L M E C H A N I S M

The case of double couple focal mechanisms of earthquakes is the
primary target of the inverse problem addressed in this paper. For this
reason, one must take into account the specific ambiguity of these
mechanisms as compared with geological fault slips, that is, the
existence of two, mutually exclusive, fault slips. Two nodal planes
are perpendicular, and for each plane the potential slip vector is
parallel to the normal of the other plane. Only one of the two possible
slip vectors is the actual slip vector (Fig. 3)—it is often unknown
which nodal plane is the fault. This is a major restriction within the
framework of the Wallace–Bott hypothesis (that is, the parallelism
between the shear stress and the fault slip). Assuming that a given
nodal plane is the fault does not imply that the theoretical shear
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590 J. Angelier

Figure 3. The intrinsic ambiguity of the double couple focal mechanism
of an earthquake. The nodal planes are the same in (a) and (b), but the plane
acting as fault differs. In both cases, the active nodal plane, F, is shown with
striations parallel to slip and the shear sense is shown by a couple of open
arrows. The other nodal plane is inactive and indicated by a ghost. Normal
to actual fault as n (open arrow, solid line), shear stress on actual fault as
τ (black arrow). Calculated shear stress on inactive nodal plane as open
dotted arrow. Actual slip and shear stress on fault plane are perpendicular to
inactive nodal plane, but calculated shear stress on inactive nodal plane may
be oblique to the fault plane. Note that (a) and (b) are mutually exclusive.

stress exerted virtually on the other (auxiliary) nodal plane should
be perpendicular to the fault plane: it may be oblique as well (Fig. 3).
Thus, one cannot consider that the Wallace–Bott hypothesis is valid
for the two nodal planes simultaneously. It has been demonstrated
(Angelier 1984) that such an assumption would imply

n1n2n3� (1 − �) = 0, (1)

where n1, n2 and n3 are the direction cosines of the normal to one
of the nodal planes in the system of the principal stress axes, while
� is the ratio between the principal stress differences expressed as
follows (Angelier 1975):

� = σ2 − σ3

σ1 − σ3
. (2)

Eq. (1) shows that except in particular cases a stress tensor does
not simultaneously account for the two possible fault movements of
an earthquake mechanism. The first type of exception, with n1, n2

or n3 being zero, refers to nodal planes containing a principal stress
axis. This is the case for the mechanisms that belong to conjugate
fault patterns in the sense of Anderson (1942). The second type of
exception, with � reaching one of its bound values, 0 or 1, concerns
particular stress states with two principal stresses being equal. It
was illustrated through the inversion of a set of microearthquakes
by Angelier (1984).

The potential for fault slip to occur on each of the nodal planes,
adopting the simplifying assumption of homogeneous stress, de-
pends on the modulus, τs, of the slip component of the shear stress,
which may act on this plane as a function of the stress regime. This
modulus is the same for both the nodal planes, so that the determi-
nation of the SSSC value does not require any choice between them.
Taking advantage of the lack of dependence of the SSSC modulus
on the choice between nodal planes is worthwhile in the stress in-
version of double couple focal mechanisms of earthquakes. This
essential property deserves a demonstration as follows.

Let us consider the two perpendicular unit normal vectors, n1 and
n2, describing the two nodal planes, F1 and F2, of the double couple
mechanism (Fig. 4). The index numbers 1 and 2 are arbitrary. The
stress tensor is T and the stress vector exerted on the nodal plane Fi

is Tni . The SSSC vector, τ si , is the projection of this stress vector on
the potential slip-parallel vector, si (Fig. 1). Thus, the SSSC values,
τs1 and τs2, for the two nodal planes, are given by

Figure 4. Perpendicular nodal planes (F1 and F2) and normal unit vectors
(n1 and n2) of a double couple focal earthquake mechanism. Permitted shear
senses shown by couples of open arrows. Compare with Fig. 3. See eqs (3)
and (4).

τs1 = (Tn1) · s1 and τs2 = (Tn2) · s2, (3)

where the dot denotes the scalar product. If slip occurs on the nodal
plane F1, the slip-parallel unit vector, s1, is perpendicular to F2, so
that s2 and n1 are identical. If slip occurs on F2, the slip-parallel
unit vector, s2, is perpendicular to F1, so that s1 and n2 are identical.
Consequently, the expressions (3) of the SSSC values for planes F1

and F2 can be written as follows:

τs1 = (Tn1) · n2 and τs2 = (Tn2) · n1. (4)

Because of the distributive properties of the products, the two
expressions (4) are identical. This shows that given a stress state
and a double couple focal mechanism, a single SSSC value, τs,
exists regardless of the nodal plane acting as the fault. This value
can be determined by a simple consideration of the stress tensor,
T , and the two unit vectors that describe the focal mechanism, n1

and n2 (Fig. 4), as eq. (4) shows. Reciprocally, the determination of
the slip component of the shear stress (τs, the SSSC value) does not
require any choice between the two nodal planes.

This property is exploited in the subsequent mechanical analysis.
Note that it is valid in terms of the SSSC value, but not in terms of
SSSC vectors. Note also that only one of the two nodal planes is the
actual fault. Its slip vector is perpendicular to the other nodal plane,
but the shear stress that would theoretically act on this other nodal
plane has no reason to be perpendicular to the fault plane: it may be
oblique. This alternative shear stress geometry (Fig. 3) is crucial in
the inversion of double couple mechanisms, and justifies the use of
the SSSC value.

4 M E C H A N I C A L S I G N I F I C A N C E
O F T H E S S S C

The expression of the SSSC value, τs, given in eqs (3) can be written
in a different manner, as a function of the modulus of the shear stress,
τ , and the slip-shear angle, α (Fig. 1). For both τ and α different
values may be determined depending on the nodal plane considered,
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Inversion of earthquake focal mechanisms 591

Figure 5. Tresca (a) and Mohr–Coulomb (b) criteria for failure, in Mohr’s
diagrams with normal stress (σ ) as abscissas and shear stress (τ ) as ordinates.
The friction angle is ϕ.

although the SSSC value is unique regardless of this choice. This
dependence is shown by the presence of the index i (1 or 2, the
number of the nodal plane) on the right-hand side of the following
expression:

τs = τi cos αi . (5)

This expression highlights the significance of the SSSC value as
the product of two terms: a stress and the cosine of an angle. The
latter factor, cos α, decreases from 1 to −1 as the slip-shear angle
increases from 0◦ to 180◦ (Fig. 2). The largest value, 1, corresponds
to the ideal case of a fault moving in the direction and sense of the
shear stress. A zero value indicates a slip perpendicular to the shear
stress. The lowest value, −1, corresponds to a fault moving in the
direction opposite to the shear stress. As a result, this factor, cos α,
should be made algebraically as large as possible in the inversion
process: the value 1 means that the focal mechanism solution per-
fectly fulfils the Wallace–Bott requirement, whereas the value −1
reveals total inconsistency.

The other factor, τ , has often been ignored in stress inversion
methods, although it plays an important role because slip is generally
unlikely to occur for very low shear stress (see the discussion in
Angelier 1990). This magnitude of shear stress is by essence positive
and ranges between 0 and a maximum value, τmax. A zero value
implies that no slip occurs on the fault because the stress vector, σ,
must be null or perpendicular to the fault plane. The largest possible
shear stress modulus, τmax, depends on the stress tensor and equals
half the differential stress, σ1−σ3 (Fig. 5).

The occurrence of slip depends on the relationship between the
normal and tangential components of stress through a friction coeffi-
cient, as formulated in the Mohr–Coulomb law. Interesting attempts
have been made to account for these aspects (Reches 1987). In the
inverse approach, it is, however, difficult to quantify the friction co-
efficient in a rigorous way, because it may vary widely within the
data set depending on fault properties, and is generally unknown
anyway. Introducing the explicit Mohr–Coulomb criterion in the in-
version process is not difficult, but imposes numerical resolution
of the problem. This limitation exists because inequalities are in-
volved, which precludes the simple analytical solutions proposed in
the present paper. Because of its crucial role in the occurrence of
slip as a function of stress, the shear stress magnitude should be
considered in some way, rather than being neglected.

The mechanical meaning of the SSSC can be illustrated with
simple situations. For instance, with a uniaxial compressive stress
(e.g. σ3 = σ2, hence � = 0), the failure planes optimally tangent
cones at a 45◦ angle about the stress axis σ1, and the projection of σ1

on these planes is the ideal slip vector. With a pure biaxial stress (e.g.
σ1 + σ3 = 0 while σ2 = 0, hence � = 0.5), the two optimal failure
planes contain the σ2 axis and make angles of 45◦ with the other
axes, the ideal slip vector being the projection of σ1 on these planes.
In such particular cases, both τ and τs are maximum (τmax). Having

the SSSC as large as possible is thus reasonable to reconstruct a
stress state that accounts for the observed slips. One observes that
this approach is underlain by the Tresca criterion (Fig. 5a), not by
the Mohr–Coulomb criterion (Fig. 5b). The Tresca criterion may
account poorly, in a theoretical way, for the activation of pre-existing
discontinuities with various orientations. The SSSC is used as an
approximation of the Mohr–Coulomb criterion.

This approximation is, however, justified in practice, for three
main reasons. First, in the most common cases, the points of the
Mohr diagram that correspond to fault activation are located near
the top of the Mohr circle, that is, at relatively high levels of shear
stress; in such situations, the difference is small. For an angle ϕ

of 30◦ corresponding to a friction coefficient of about 0.6 (a com-
mon value), the difference between the two criteria represents only
13 per cent of the maximum shear stress (Fig. 5). The second prac-
tical reason is drastic considering the data available in actual situa-
tions. Not only would the adoption of the Mohr–Coulomb criterion
require the choice between nodal planes (because the equivalence
between the two planes, as demonstrated in Section 3, would disap-
pear), it would also become compulsory to give values to unknown
or very poorly constrained parameters. Typical parameters, in this
respect, are friction coefficients or fluid pressures. The third reason
lies in the major role played by the orientation parameters in the
inversion. Numerical simulations reveal that with data sets showing
a large variety of nodal plane attitudes, and aiming to obtain SSSC
values as large as possible, the geometrical constraints related to
α values are very strong compared with those related to τ values.
This is not the case for data sets with little variety in nodal plane
orientation.

Thus, using the SSSC criterion should be regarded as a reason-
able approximation and a compromise between the adoption of a
rigorous Mohr–Coulomb criterion (which is extremely difficult in
practice because of unknown parameters), and the consideration of
the sole angle α (meaning that fault activation does not depend on
shear stress). Concerning fault slip data, how the friction is con-
sidered in stress inversion is a crucial problem. This problem has
been addressed while comparing inversion methods that represent
end-members views in that respect (Angelier 1991): two 4-D search
inversion methods, in which friction is by definition ignored, and the
so-called direct inversion method, in which it plays a large, albeit
qualitative, role.

5 M A X I M I Z I N G T H E S S S C T O F I N D
T H E B E S T - F I T T I N G S T R E S S T E N S O R

As a consequence of the variations in the two factors on the right-
hand side of eq. (5), a set of shear data that is well accounted for
by stress is expected to display statistically high algebraic values of
the SSSC. This is because both τ and cos α increase as the misfit
decreases. It is thus proposed, in this paper, to search for the largest
possible value of τs within a set of K mechanisms. In other words, one
aims to find the stress tensor that corresponds to the largest average
SSSC value. The extreme possible values of the SSSC are −τmax and
τmax (as noted in Section 4, τmax is the largest possible shear stress
with the stress tensor). These bounds, respectively, correspond to
the best fit and the largest misfit with the stress state considered.
They are obtained for particular planes, which are parallel to the
intermediate stress axis,σ2, and make angles of 45◦ with the extreme
stress axes, σ1 and σ3. This attitude implies a value of τmax for the
shear stress, τ . Depending on the sense of shear, this also implies
values of τmax or −τmax for τs, respectively indicating a perfect fit
and total inconsistency with respect to the SSSC criterion.
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The search for the maximum value of τs must be done for all the
mechanisms of the data set simultaneously. It is performed through
an analytical determination of the extrema of the sum of SSSC
values, hereafter called S. To find the largest sum, this determi-
nation is followed by the selection of the algebraically largest ex-
tremum among the few solutions. Because the misfit criterion only
depends on the SSSC values, this strategy is especially appropri-
ate for analysing sets of double couple focal mechanisms of earth-
quakes, as it does not require any choice between the nodal planes.
According to this principle, the simplest function S to consider is

S =
k=K∑
k=1

τsk, (6)

where K is the number of data points. According to this defini-
tion, S is the sum of SSSC values and may range from −K τmax to
K τmax. Consequently, the maximization of S is not carried out in the
least-squares sense. To fulfil such a requirement, one may adopt the
function S′:

S′ =
k=K∑
k=1

(τmax − τsk)2, (7)

where (τmax − τsk)2 ranges from 0 (the best possible fit) to 4τ 2
max (the

largest possible misfit). As a result, S′ may range from 0 to 4K τ 2
max.

Using this criterion, one aims to minimize S′ (instead of maximizing
S ), and the inversion is performed in a least-squares sense.

In practice, attempts at using the definition (7) to solve the inverse
problem were less successful than those based on the definition (6),
because they give too much weight to the anomalous values. This is
a serious concern because many natural data sets show low levels of
homogeneity; they often include erroneous or inaccurate individual
determinations, as well as mechanisms that reflect different states
of stress. By definition, a solution obtained with a least-squares ap-
proach shows more sensitivity to large misfits than one based on
a lower degree function. This explains why the inversion based on
eq. (7) may lack stability when the proportion of large misfits ex-
ceeds the reasonable levels predicted by a Gaussian-like distribution.
The most robust inversion procedure was obtained based on the use
of eq. (6), and hence was adopted.

6 A P R I O R I A N D A P O S T E R I O R I
P A R A M E T E R S

The distinction between a priori and a posteriori parameters is cru-
cial in inverse problems. It has been shown in Section 3, based on
eqs (3) and (4), that the use of the SSSC value is appropriate because
no a priori choice between nodal planes is required in the inversion.
This does not contradict the a posteriori choice between the nodal
planes to determine a ‘preferred’ fault slip. In Section 12 of this
paper, the inversion and a review of an actual data set show that the
a posteriori SSSC components, τ and α, may differ markedly for
the two nodal planes of a single focal mechanism. This difference
occurs because the a posteriori calculated shear stress vectors are
often oblique to the intersection of the nodal planes (Fig. 6). This
observation may seem surprising, remembering that a unique value
of the SSSC was assumed prior to the inversion.

The paradox is apparent, not real. The SSSC value is unique for
the a priori definition of the mechanism, which is assumed to fit
the stress tensor perfectly: that is, the slip on the fault should be
parallel to the shear stress (Fig. 6a). This condition implies iden-
tity between τ and τ s. In contrast, residual misfits exist in the a
posteriori configuration, so that the slip and shear stress directions

Figure 6. A priori (a) and a posteriori (b) configurations in the inverse
problem. Nodal planes shown with thin lines parallel to potential slip vectors
(mutually exclusive, see Fig. 3). Shear senses as couples of small arrows.
Normal to the fault planes as open arrows, shear stresses as black arrows.
The shear stress is parallel to slip according to the a priori model (a), but may
be oblique in the a posteriori configuration as a consequence, of residual
misfits (b).

may differ (Fig. 6b). Note also that in the general case eq. (1) is
not verified, so that the perfect situation shown in Fig. 6(a) cannot
concern the two nodal planes at the same time (Fig. 3).

Concerning the inversion of geological fault slip data, which are
also subject to residual misfits, the above considerations concerning
a priori and a posteriori parameters are valid, but there is no duality
of the a posteriori parameters. For a double couple focal mechanism
for an earthquake, this duality results from two factors. The first
factor is the residual misfit that commonly exists for each focal
mechanism after the best-fitting solution has been found for the
whole data set. The second factor lies in the intrinsic ambiguity of
focal mechanisms (Fig. 3). Both of these factors concur to produce
an a posteriori situation with different slip-shear angles α and shear
stress magnitudes τ (Fig. 6b). This aspect is illustrated numerically
in Section 12.

The choice between nodal planes may follow the new SSSC-
based inversion as a final step, but is not indispensable. Geological
or geophysical reasons may support the choice of a nodal plane, such
as a fault attitude revealed by geological mapping or an alignment of
aftershocks revealed by seismological records. If such information
is not available, the selection of a nodal plane can be made according
to consideration of the slip-shear angle and the shear stress, the two
factors distinguished in eq. (5). This choice is made a posteriori,
and thus does not influence the result of the inversion accomplished
before. In this respect, the approach proposed in this paper differs
drastically from those involving an a priori choice, which affects the
inversion. It also differs from the approach involving simultaneous
inversion and nodal plane selection. In this case, not only does the
choice affect the result, but also a bias is introduced in the algorithm:
the process retains the nodal plane that best fits the stress tensor that
is being searched for, and thus selects ‘good’ and ‘bad’ data in a
somewhat circular way.

Two mutually exclusive a posteriori situations are displayed for
each mechanism (Fig. 3). Thus, for a data set of N mechanisms,
there are 2N possible sets of a posteriori parameters. Because of
the misfits, the situations involve different shear stresses and dif-
ferent shear-slip angles (Fig. 6b). In practice, however, the differ-
ence between the a posteriori parameters obtained for the two nodal
planes of a focal mechanism often falls in the range of uncertain-
ties. This occurs, for instance, if the intersection between the nodal
planes contains (or is close to) a principal stress axis, because the
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expression on the left-hand side of eq. (1) is zero (or small). In nature,
focal mechanisms with nodal planes that contain (or are close to) the
intermediate stress axis, σ2, are not exceptional because conjugate
(or nearly conjugate) faulting often occurs. The difference between
a posteriori parameters is also small if two principal stresses are
equal (or nearly equal) so that � equals (or approaches) 0 or 1, the
expression on the left-hand side of eq. (1) being zero (or small).
Such situations of revolution stress ellipsoid are less common than
conjugate fault patterns. In other cases, differences between a pos-
teriori parameters may occur, especially for mechanisms with nodal
planes at contrasting angles with principal stress axes.

It has been shown that in the inversion to determine the average
stress tensor, the adoption of a criterion based on the SSSC value,
as in eqs (6) and (7), does not require identification of the nodal
plane acting as a fault. The new inversion method enables one to
simply ignore the choice between the nodal planes. This observation
is of little interest for geologists, who observe the fault surface and
the striations indicating the slip vector. However, for seismologists
analysing double couple focal mechanisms of earthquakes, it is es-
sential because of the ambiguity between the nodal planes (Fig. 3).
This provided one of the main reasons to develop the new method.

7 T H E E X P R E S S I O N O F T H E
R E D U C E D S T R E S S T E N S O R

The SSSC value depends on both the geometry of each datum and
the common stress tensor. The stress tensor normally contains six
independent variables. However, the direction and the sense of shear
stress on any plane do not depend on two of these variables: a pres-
sure (which does not influence the shear stress) and a scale factor
(which simply modifies the magnitudes of all stress components in
the same proportion). In other words, with T being the average stress
tensor solution of the inverse problem, any tensor kT + lI is also a
solution of the problem, because it induces the same directions and
sense of shear stress on any plane. Note that k is a positive (non-
zero) scale factor, lI an isotropic stress (l is a pressure, positive or
negative, and I is the unit matrix).

In essence, the earthquake data indicate that a fault slip has oc-
curred. The most reliable information is the direction and sense of
slip (a unique definition for faults, an alternative for focal mech-
anisms). Based on this information, the values of k and l cannot
be determined. To go further and determine these two unknowns,
additional information is needed, such as rupture and friction pa-
rameters, fluid pressure status and depth of overburden (Angelier
1989). Without this information, one considers a reduced stress ten-
sor, with four unknowns instead of six. Three unknowns control the
orientation of the principal stress axes, the third one is a function of
the ratio between principal stress differences, �, defined in eq. (2).
These four unknowns carry important information concerning the
type and orientation of the state of stress (Fig. 7).

In this paper, the stress tensor, T , is chosen under a general form
with rigorous separation between the components related to the ori-
entations of the three principal axes and those related to the principal
stress magnitudes, σ1, σ2 and σ3 (σ1 ≥ σ2 ≥ σ3, pressure positive):


T11 T21 T31

T12 T22 T32

T13 T23 T33




=




x1 x2 x3

y1 y2 y3

z1 z2 z3


 ·




σ1 0 0

0 σ2 0

0 0 σ3


 ·




x1 y1 z1

x2 y2 z2

x3 y3 z3


. (8)

Figure 7. Reference frame (x-, y- and z-axes) and stress axes. (a) The system
of principal stress axes are called a1, a2 and a3, rather than σ1, σ2 and σ3,
because of switches related to ψ values. (b) Characterization of first axis,
a1, with two angles, a trend (θ ) and a plunge (ζ ). (c) Characterization of
second and third axes, a2 and a3, using a pitch (ξ ) in the plane perpendicular
to the first axis. (d) Relationship between the unknown ψ and the principal
stresses.

On the right-hand side of eq. (8), the rotation matrix and the
corresponding inverse matrix contain nine direction cosines, xi , yi

and zi (i = 1, . . . , 3). These variables describe the orientations
of the principal stress axes in the reference frame. The reference
frame is constituted by the x-axis in the east direction, the y-axis
in the north direction and the z-axis upward (Figs 7a–c ). Because
the nine direction cosines describe three perpendicular unit vectors,
six relationships exist, which means that only three independent
unknowns describe the orientations of principal stress axes. They
will be made explicit later. The remaining three unknowns describe
the three principal stress values. They are contained in the expression
of the stress tensor in the system of the principal stress axes, which
is isolated as the central term on the right-hand side of eq. (8).

This central term contains the principal stress values, σ1, σ2 and
σ3, which correspond to independent unknowns. Because neither
an additional pressure nor a positive scale factor can affect the di-
rection and sense of the shear stress on any plane, two unknowns
cannot be determined with the sole directions and senses of shear
stresses. As a result, the central term on the right-hand side of eq. (8)
can be simplified as a function of a single variable. One possibility
consists of adopting 1, β and −1 − β as the three principal stress
values, which shows that the trace is zero and that the absolute stress
magnitudes cannot be found. Another possibility consists of adopt-
ing the following expression that also contains a single unknown,
ψ (Angelier 1990):
σ1 0 0

0 σ2 0
0 0 σ3


 =


cos ψ 0 0

0 cos
(
ψ + 2

3 π
)

0
0 0 cos

(
ψ + 4

3 π
)

.

(9)
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594 J. Angelier

This expression also implies that the trace is zero and that the
stress scale is unknown, but an additional property is the constant
sum of the squares of the principal stress values (this would not the
case with 1, β and −1 − β). Because of both this second invariant
property and the geometrical significance of the angle ψ (Fig. 7d)
which results in more elegant chains of equations, the expression (9)
was adopted. Introducing this particular form in the general expres-
sion (8), one obtains a reduced stress tensor, with four independent
unknowns instead of six. These four unknowns include three vari-
ables related to stress orientation and a single variable, ψ , related
to magnitudes. Knowing that Ti j and Tji are identical, one obtains
the six different components of the stress tensor in the reference
coordinate frame:

T11 = x2
1 cos ψ + x2

2 cos

(
ψ + 2π

3

)
+ x2

3 cos

(
ψ + 4π

3

)

T22 = y2
1 cos ψ + y2

2 cos

(
ψ + 2π

3

)
+ y2

3 cos

(
ψ + 4π

3

)

T33 = z2
1 cos ψ + z2

2 cos

(
ψ + 2π

3

)
+ z2

3 cos

(
ψ + 4π

3

)

T12 = x1 y1 cos ψ + x2 y2 cos

(
ψ + 2π

3

)
+ x3 y3 cos

(
ψ + 4π

3

)

T23 = y1z1 cos ψ + y2z2 cos

(
ψ + 2π

3

)
+ y3z3 cos

(
ψ + 4π

3

)

T31 = z1x1 cos ψ + z2x2 cos

(
ψ + 2π

3

)
+ z3x3 cos

(
ψ + 4

4π

3

)
.

(10)

Because it is aimed at solving the problem analytically, it is indis-
pensable to express these components of the stress tensor as explicit
functions of the four independent variables contained in this tensor.
This is done in the following equations. First, the six eqs (10) can
be written as functions of cos ψ and sin ψ :

T11 = 1

2

(
2x2

1 − x2
2 − x2

3

)
cos ψ +

√
3

2

(
x2

3 − x2
2

)
sin ψ

T22 = 1

2

(
2y2

1 − y2
2 − y2

3

)
cos ψ +

√
3

2

(
y2

3 − y2
2

)
sin ψ

T33 = 1

2

(
2z2

1 − z2
2 − z2

3

)
cos ψ +

√
3

2

(
z2

3 − z2
2

)
sin ψ

T12 = 1

2
(2x1 y1 − x2 y2 − x3 y3) cos ψ +

√
3

2
(x3 y3 − x2 y2) sin ψ

T23 = 1

2
(2y1z1 − y2z2 − y3z3) cos ψ +

√
3

2
(y3z3 − y2z2) sin ψ

T31 = 1

2
(2z1x1 − z2x2 − z3x3) cos ψ +

√
3

2
(z3x3 − z2x2) sin ψ.

(11)

The coordinates xi , yi and zi (i = 1, . . . , 3) are functions of three
independent variables, chosen as three angles, θ , ζ and ξ defined in
a quasi-Eulerian way (Fig. 7). Note that the principal stresses have
been labelled in a definite algebraic order (σ1 ≥ σ2 ≥ σ3). However,
according to eq. (9), this order may change depending on ψ , which
conflicts with the definition; in other words, switches may occur
between principal stress axes (Fig. 7d). For this reason, the principal
axes shown in Fig. 7(a) are labelled a1, a2 and a3, instead of σ1,
σ2 and σ3. Otherwise, using expression (9) would induce mistakes
because maintaining σ1 ≥ σ2 ≥ σ3 would impose a restriction on ψ .

The first axis, a1, is characterized by two angles (Fig. 7b): its trend, θ ,
and its angle, ζ , with the z-axis (up). In the reference frame (Fig. 7a),
the direction cosines for this axis are

x1 = sin θ sin ζ

y1 = cos θ sin ζ

z1 = cos ζ.

(12)

An angle ξ allows characterization of the second axis, a2. This
angle is a pitch in the plane perpendicular to a1, counted clockwise
from the left-hand side (Fig. 7c). One thus obtains

x2 = cos θ cos ξ − sin θ cos ζ sin ξ

y2 = −sin θ cos ξ − cos θ cos ζ sin ξ

z2 = sin ζ sin ξ.

(13)

Removing a right angle to the pitch, one obtains the direction cosines
for the third axis, a3:

x3 = cos θ sin ξ + sin θ cos ζ cos ξ

y3 = −sin θ sin ξ + cos θ cos ζ cos ξ

z3 = −sin ζ cos ξ.

(14)

Substituting into eq. (11) the expressions of the direction cosines
from eqs (12)–(14), one obtains the components of the stress tensor
as functions of four independent unknowns, the angles θ , ζ , ξ and
ψ . The diagonal components, Tii , of the stress tensor are:

T11 = 3

2

(
sin2 θ sin2 ζ − 1

3

)
cos ψ

−
√

3

2
[(sin2 θ sin2 ζ + cos 2θ ) cos 2ξ

− sin 2θ cos ζ sin 2ξ ] sin ψ

T22 = 3

2

(
cos2 θ sin2 ζ − 1

3

)
cos ψ

−
√

3

2
[(cos2 θ sin2 ζ − cos 2θ ) cos 2ξ

+ sin 2θ cos ζ sin 2ξ ] sin ψ

T33 = 3

2

(
cos2 ζ − 1

3

)
cos ψ +

√
3

2
sin2 ζ cos 2ξ sin ψ, (15)

while the other components, Ti j = Tji , are given by

T12 = 3

4
sin 2θ sin2 ζ cos ψ

+
√

3

4
[sin 2θ (2 − sin2 ζ ) cos 2ξ + 2 cos 2θ cos ζ sin 2ξ ] sin ψ

T23 = 3

4
cos θ sin 2ζ cos ψ

−
√

3

4
[cos θ sin 2ζ cos 2ξ − 2 sin θ sin ζ sin 2ξ ] sin ψ

T31 = 3

4
sin θ sin 2ζ cos ψ

−
√

3

4
[sin θ sin 2ζ cos 2ξ + 2 cos θ sin ζ sin 2ξ ] sin ψ.

(16)
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Figure 8. The basic datum. The block diagram illustrates the fault slip
geometry (in this case, a reverse left-lateral fault). The three angles are
d, dip direction of fault (azimuth); p, fault dip angle; i, pitch of slip. By
convention the pitch is counted clockwise from the right-hand side of the
fault. A pitch between 0◦ and 90◦ indicates normal left-lateral slip, a pitch
between 90◦ and 180◦ indicates normal right-lateral slip, a pitch between
180◦ and 270◦ indicates reverse right-lateral slip, and a pitch between 270◦
and 360◦ indicates reverse left-lateral slip. Pitches of 0◦ 90◦ 180◦ and 270◦
indicate pure left-lateral, normal, right-lateral and reverse slips, respect-
ively.

8 T H E E X P R E S S I O N
O F T H E S S S C V A L U E

In the reference frame already defined (Fig. 7), nx , ny and nz define
the unit vector, n, normal to the fault or nodal plane. Considering
the original data, these direction cosines are calculated as functions
of two angles, the dip direction of the plane, d, and the fault dip,
p (Fig. 8):

nx = sin d sin p

ny = cos d sin p

nz = cos p.

(17)

With the stress tensor T , the stress vector acting on this plane, σ, is
obtained as the product Tn. The coordinates of σ, σx , σy , and σz ,
are thus given by


σx

σy

σz


 =




T11 T21 T31

T12 T22 T32

T13 T23 T33


 ·




nx

ny

nz


 . (18)

In the same reference frame, sx , sy and sz define the unit slip vector,
s, perpendicular to n (Fig. 1). These direction cosines are functions
of the original data. They depend on two angles, d and p, used
in eq. (17) to define n, and also on the pitch of the slip vector, i
(Fig. 8):

sx = cos d cos i − sin d cos p sin i

sy = − sin d cos i − cos d cos p sin i

sz = sin p sin i.

(19)

As defined in an earlier section, the SSSC vector, τ s, is the or-
thogonal projection of τ orσ on the unit vector s (Fig. 1). The SSSC
value, τs, is obtained as the scalar product σ · s:

τs = sxσx + syσy + szσz . (20)

Combining eqs (18) and (20), one obtains τs as a function of the
stress tensor components:

τs = nx sx T11 + nysy T22 + nx sx T33 + (nx sy + nysx )T12

+ (nysz + nzsy)T23 + (nzsx + nx sz)T31. (21)

The next step consists of substituting into eq. (21) the expressions
of the stress tensor as functions of the four independent unknowns θ ,
ζ , ξ and ψ , given in eqs (15) and (16). One first obtains the following
expression, where the three angles ζ , ξ and ψ are explicit:

τs =
(

3

4
cos ψ −

√
3

4
cos 2ξ sin ψ

)

×
[

1

2
(w − e) (1 − cos 2ζ ) + t sin 2ζ

]
+

√
3

2
w cos 2ξ sin ψ

+
√

3

2
sin 2ξ sin ψ (v cos ζ + u sin ζ ) + 1

2
e cos ψ. (22)

The four terms t, u, v and w of eq. (22) are functions of the
remaining angle, θ :

t = b cos θ + c sin θ

u = b sin θ − c cos θ

v = a cos 2θ − d sin 2θ

w = a sin 2θ + d cos 2θ.

(23)

The four parameters, a, b, c and d contained in eqs (23), as well as
the parameter e used in eq. (22), depend on the direction cosines of n
and s. These six direction cosines have been calculated as functions
of the three angular parameters of the kth fault or the nodal plane, dk ,
pk and ik (Fig. 8), according to eqs (17) and (19). The parameters,
a, b, c and d (note that d is a calculated parameter, whereas dk is an
observed angle) have simple expressions:

a = nx sy + nysx

b = nysz + nzsy

c = nzsx + nx sz

d = nysy + nx sx

e = 3nzsz .

(24)

9 S U M M A T I O N O F T H E S S S C V A L U E S

The inverse method consists of finding the four variables θ , ζ , ξ and
ψ of the reduced stress tensor so that the sum of the values of the
shear stress slip components is made maximum for the data set con-
sidered. From expression (22) of τs, the sum S defined in eq. (6) is

S =
(

3

4
cos ψ −

√
3

4
cos 2ξ sin ψ

) [
1

2
(W − E) (1 − cos 2ζ )

+ T sin 2ζ

]
+

√
3

2
W cos 2ξ sin ψ

+
√

3

2
sin 2ξ sin ψ(V cos ζ + U sin ζ ) + 1

2
E cos ψ, (25)

with T, U, V, W defined as simple functions of θ :

T = B cos θ + C sin θ

U = B sin θ − C cos θ

V = A cos 2θ − D sin 2θ

W = A sin 2θ + D cos 2θ.

(26)

The variables T, U, V and W refer to functions of sums of data,
whereas the variables t, u, v and w used in eqs (23) refer to cor-
responding functions of a single datum. Likewise, the parameters
A, B, C, D, used in eq. (26), as well as E used in eq. (25), are the
sums, for the set of K data, of the individual terms a, b, c, d and e
of eqs (24):
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A =
k=K∑
k=1

(nxksyk + nyksxk)

B =
k=K∑
k=1

(nykszk + nzksyk)

C =
k=K∑
k=1

(nzksxk + nxkszk) (27)

D =
k=K∑
k=1

(nyksyk + nxksxk)

E = 3
k=K∑
k=1

nzkszk .

The sum that we aim to maximize is now explicitly written as a
function of four independent variables, the unknowns θ , ζ , ξ and ψ ,
in eqs (25) and (26). The data are expressed through five parameters,
A, B, C, D and E, calculated using eqs (27). Considering the original
data, whether the direction cosines that define the unit vectors nk

and sk (k = 1, . . . , K ) are obtained with eqs (17) and (19) or from
other angular definitions, is a technical matter.

Note that the functions actually used in the inversion are slightly
more complex than those shown in the equations starting from (6).
The function, S, must be normalized according to the value of τmax.
In other words, one aims to maximize S/τmax, rather than S. This is
indispensable because τmax is not a constant, but is a function of the
angle ψ (Fig. 7d). As a result, a maximization process based on a
simple consideration of S would favour particular values of ψ giving
large values of τmax. To avoid this bias, the version of S adopted in
the derivations was

S = 1

τmax

k=K∑
k=1

τsk . (28)

This modification provides an elegant way to combine the in-
variant properties of the stress tensor, defined in eqs (8) and (9) and
discussed in Section 7, with the requirement for a constant maximum
shear stress. The problem arose because a non-zero stress tensor can-
not simultaneously have a zero trace (σ1 + σ2 + σ3), a constant func-
tion σ 2

1 + σ 2
2 + σ 2

3 and a constant maximum shear stress (σ1 − σ3)/2.
A similar problem was discussed in this journal, while presenting
the direct inversion method (Angelier 1990). In the present case,
it could be solved analytically at the cost of some transformations
related to the variable ψ .

1 0 S E A R C H F O R T H E
S M A L L E S T M I S F I T

With the method adopted herein, the smallest average misfit corre-
sponds to the largest average value of the SSSC, that is, the max-
imum value of S. One consequently tries to find the values of the
four independent variables θ , ζ , ξ and ψ of the stress tensor, which
result in the largest sum S defined in eq. (28). This search is done
with the numerical values of parameters A, B, C, D and E listed in
eqs (27). These five values depend on the geometrical characteris-
tics of the K couples of perpendicular unit vectors, nk and sk , of the
data set. The only way to ensure fast resolution consists of solving
a system of equations that sets to zero the four partial derivatives
of S with respect to θ , ζ , ξ and ψ . One then determines the largest
value among the few extrema of S. The partial derivatives of S are
obtained from eqs (25) and (26):

∂S

∂ψ
=

(
−3

4
sin ψ −

√
3

4
cos 2ξ cos ψ

) [
1

2
(W − E) (1 − cos 2ζ )

+ T sin 2ζ

]
+

√
3

2
W cos 2ξ cos ψ

+
√

3

2
sin 2ξ cos ψ (V cos ζ + U sin ζ ) − 1

2
E cos ψ

∂S

∂ξ
=

√
3

2
sin 2ξ sin ψ

[
1

2
(W − E) (1 − cos 2ζ ) + T sin 2ζ

]

−
√

3W sin 2ξ sin ψ +
√

3 cos 2ξ sin ψ (V cos ζ + U sin ζ )

∂S

∂ζ
=

(
3

4
cos ψ −

√
3

4
cos 2ξ sin ψ

)
[(W − E) sin 2ζ

+ 2T cos 2ζ ] +
√

3

2
sin 2ξ sin ψ (U cos ζ − V sin ζ )

∂S

∂θ
=

(
3

4
cos ψ −

√
3

4
cos 2ξ sin ψ

)
[V (1 − cos 2ζ )

− U sin 2ζ ] +
√

3V cos 2ξ sin ψ

+
√

3

2
sin 2ξ sin ψ (T sin ζ − 2W cos ζ ) . (29)

To find the extrema of the function S defined in eq. (6), it suffices to
solve the system of four equations cancelling the partial derivatives
of S given in eqs (29) with respect to the four unknowns θ , ζ , ξ and
ψ , as indicated below:

∂S

∂ψ
= 0,

∂S

∂ξ
= 0,

∂S

∂ζ
= 0,

∂S

∂θ
= 0. (30)

This system of four equations could be solved by analytical
means. A similar problem with different variables, equations and pa-
rameters was described in this journal (Angelier 1990). The present
resolution follows the same guidelines but the equations are longer
to write and difficult to present in an elegant way. It is possible to
extract from the system of eqs (25) and (26) one equation with a
single unknown. This equation is solved numerically and the solu-
tions are introduced in the other equations, allowing determination
of the three remaining variables.
Because several solutions are found, corresponding to minimum and
maximum values of S, it is necessary to compare these solutions in
order to find the maximum of S. A numerical comparison allows a
quick identification of the largest value of S, and thus indicates the
set of four variables θ , ζ , ξ and ψ that defines the reduced stress
tensor solution of the inverse problem.

The inverse problem is solved with only four eqs (30). The inter-
vention of the data is restricted to five parameters, listed in eqs (27).
These simple sums are calculated once, prior to the inversion. Thus,
the analytical resolution of the inverse problem proposed herein re-
quires a constant—and negligible—computer runtime, regardless
of the number of data. The only time difference between process-
ing sets of 10 or 100 000 focal mechanisms of earthquakes is that
needed to calculate the sums of eqs (27). As there is no need to store
the data in memory, the space required by the program is small. For
these reasons, the capacity of the inversion is unlimited in terms of
the data set size.

In summary, the inversion process yields the reduced stress ten-
sor that best accounts for the data set, based on the search for the
largest possible sum of the SSSC values, as defined in eq. (28). The
search for the best fit is performed through consideration of both
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the orientation (including sense) of slip and the amplitude of the
shear stress, the two factors made explicit in eq. (5). Thus, one
obtains the smallest slip-shear angles and the largest possible shear
stresses that can simultaneously exist for all the data taken together.

1 1 M A I N E S T I M A T O R S O F T H E
S S S C - B A S E D I N V E R S I O N

The slip-shear angle, α, is a well-known criterion in stress tensor
determinations (Fig. 2). Having a shear stress, τ , as large as possi-
ble also makes sense, because the larger the shear stress, the higher
the probability for slip to occur. This, however, is an approxima-
tion. A rigorous way to deal with stress magnitudes would require
a Mohr–Coulomb-type criterion, and hence explicit consideration
of the friction coefficient, the effective normal stress and the co-
hesion. This would involve a discontinuous function, because the
probability for slip to occur reaches 1 for a certain value and cannot
increase further (Fig. 5). Why this criterion was not used herein has
been discussed in Section 4. Had it been adopted, arbitrary choices
would have been necessary to define the friction coefficient, the
cohesion and the fluid pressure (which affects the normal stress).
These values should not even be considered uniform within a given
data set, because they depend on factors that have no reason to be
identical for all earthquakes, such as the shape of the fault surface,
the fluid condition and the mechanical and permeability properties
of fault gouges and host rocks. Such parameters (Angelier 1989)
are generally unknown or poorly evaluated.

Applying a method controlled by so loosely constrained param-
eters is not desirable. It is certainly better to adopt as a first ap-

Figure 9. Definition of the three a posteriori estimators of the stress inversion, ω (omega), τ ∗ (tau) and α (ang), with examples of misfits for typical values of
the latter two estimators. Unit slip vector as s (open arrow). Black arrows indicate the normalized shear stress vector, τ/τmax, and the normalized SSSC vector,
τ s/τmax. The two subsidiary estimators are tau, the normalized shear stress magnitude, τ ∗ = τ /τmax, from 0 to 100 per cent (ordinates), and ang, the shear-slip
angle, α, from 0◦ to 180◦ (abscissas). The main estimator of the SSSC-based inversion is ω, from −100 to 100 per cent (negative if α is larger than 90◦ and
positive otherwise). Note that the best possible fit would be found in the upper-left corner (α = 0◦ and τ = τmax, so that ω = 100 per cent), whereas the largest
misfit would occur in the upper-right corner (α = 180◦ and τ = τmax, so that ω = −100 per cent).

proximation a simple search for relatively large shear stress than to
introduce arbitrary parameters. The approach adopted herein is also
better than just taking the shear-slip angle into account, which would
imply that the shear stress magnitude does not influence the occur-
rence of slip. The dual criterion underlying the use of the SSSC,
presented in eq. (5) and Figs 1 and 2, is not the ultimate solution but
is a reasonable compromise. Also, the SSSC-based inverse problem
could be solved by analytical means, which would not have been
possible with the discontinuous mathematical formulation of the
Mohr–Coulomb criterion.

After the inversion, three main estimators enable one to evaluate
the mechanical consistency of the data set, in terms of both the
individual and the average misfit levels obtained with the best-fitting
stress tensor (Fig. 9). Because the maximum shear stress amplitude,
τmax, depends on the stress tensor, the appropriate estimator for the
SSSC value is not τs, but the ratio τs/τmax. This normalized SSSC
value, called ω, varies from −1 to 1, and increases algebraically as
the misfit decreases (Fig. 9), consistent with the definition (28) of S.
This fit estimator, omega (ω for a datum, ωm as the average value),
directly reflects the criterion used in the inversion. It is given as a
percentage and thus ranges from −110 per cent (largest misfit) to
110 per cent (perfect fit).

For a more detailed analysis of the results of the inversion, one
considers the two variables, τ and α, contained in the SSSC value
(Figs 1 and 2). For the shear stress, τ , the appropriate estimator
is the ratio τ /τmax. This normalized shear stress is called τ ∗ and
increases from 0 to 1 as the misfit decreases (Fig. 9). The first sub-
sidiary estimator, tau (τ ∗ for a datum, τ ∗

m as the average value), thus
indicates the normalized shear stress level, as a percentage ranging
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from 0 per cent (no shear stress) to 110 per cent (maximum shear
stress). Concerning the shear-slip angle, α, it varies from 0◦ to 180◦,
indicating increasing misfit. The second subsidiary estimator, ang
(α for a datum, αm as the average value), thus describes the shear-
slip angle in degrees, from 0◦ (perfect fit) to 180◦ (largest misfit).
The significance of these three estimators is illustrated in Fig. 9.

Because the method presented in this paper involves a very short
runtime, there is no difficulty in including the stress inversion as
a core in a variety of algorithms to refine or split the data set ac-
cording to diverse rules. How the inversion can be included in an
iterative process to split heterogeneous data sets into mechanically
homogeneous subsets is beyond the scope of this study. An auto-
matic separation process has already been used with other types of
inversion (Angelier 1984), and can use the SSSC-based inversion
as well. Even within single-phase data sets, data with large misfits
are often present. Provided that valid reasons exist to reject these
data, one can rule them out through an iterative process that involves
series of SSSC-based inversions with increasing demand for good
fits. The refining process allows one to obtain for a given initial
data set a large number of stress states. The number of retained data
decreases as the minimum acceptable fit level increases (ωacc, the
smallest acceptable value of ω).

The major interest of the refining process is twofold. First, it
allows comparison with individual data uncertainties, in order to
determine the level of data rejection that is most compatible with
the data accuracy (large data uncertainties permit low ωacc, whereas
high data accuracy requires large ωacc). Secondly, it enables one to
evaluate the stability of the solutions of the stress inversion: the so-
lution is stable if the stress state does not vary, or varies little, as
ωacc increases. Unstable solutions generally reveal mechanical het-
erogeneity of the data set. To evaluate the validity of the results, two
parameters are essential: the number of rejected data and the largest
acceptable misfit. They are more important than average misfits and
standard deviations, which vary depending on the fit level requested
and can be made small by choosing a severe fitting demand result-
ing in many rejected data (an artificial method of improving the
inversion). Some specific parameters control the refining process.
The choice of the smallest acceptable fit level for each step, ωacc,
depends on the accuracy and dispersion of the focal mechanisms
(an auxiliary parameter is the variation of the fit level between two
successive steps). The main estimator is the number of data rejected,
NR, as compared with the total number of data. The auxiliary estima-
tor is the smallest individual fit within the retained data subset, ωmin.

1 2 A P P L I C A T I O N W I T H
A C T U A L D A T A

In this section, the application of the method to a set of focal
mechanisms of earthquakes is discussed based on a typical exam-
ple. Because the adoption of a large data set would preclude com-
plete presentation of the inversion results, a limited number of data
(116 mechanisms, i.e. 212 nodal planes) was retained. The data,
the results and the individual misfits are displayed in Tables 1–3 ,
respectively. Consequently, the reader can carry out the inversion of
the same data set with any other method, and compare the results.

A devastating earthquake occurred on 1999 September 20, in
west-central Taiwan, killing more than 2400 inhabitants. This earth-
quake took place in the front zone of the fold-and-thrust belt of Tai-
wan (Fig. 10), and produced a nearly 110 km long surface rupture,
most of it along a well-known west-verging thrust, the Chelungpu
Fault. The energy magnitude of this Chichi earthquake was 7.6.

Table 1. Data set analysed in this paper. Focal mechanisms of 106 earth-
quakes of the Chichi sequence, 1999 September 20th to 2000 September
16th, determined by Kao & Chen (2000). For each focal mechanism, two
nodal planes are given with arbitrary indices 1 and 2 following the earth-
quake index number (column 1). First format indicated by strike, dip and
pitch, with letters indicating north (N), east (E), south (S) or west (W) and
sense (s) of relative motion (S left-lateral, N normal, D right-lateral, I re-
verse). Second format based on the three angles of Fig. 7, d as fault dip
direction, p as fault dip and i as pitch (conventions in the caption of Fig. 7).

Ref. Strike Dip Pitch s d p i

168-1 147 35E 58S I 57 35 302
168-2 4 61W 70S I 274 61 250
169-1 23 32E 86N I 113 32 266
169-2 18 58W 87N I 288 58 273
170-1 123 49N 6E S 33 49 354
170-2 29 85W 42S D 299 85 222
171-1 155 38E 62S I 65 38 298
171-2 9 57W 70S I 279 57 250
172-1 159 63E 15S S 69 63 345
172-2 62 77N 28W D 332 77 208
173-1 167 24E 61S N 77 24 119
173-2 18 69W 77S N 288 69 77
174-1 66 48N 20E D 336 48 160
174-2 142 75W 43S S 232 75 43
175-1 173 52E 5N S 83 52 5
175-2 86 86S 39W D 176 86 141
176-1 10 37E 63S I 100 37 297
176-2 43 58W 71S I 313 58 251
177-1 104 17S 10W D 194 17 170
177-2 4 87E 73N N 94 87 73
178-1 154 41E 61S I 64 41 299
178-2 10 55W 68S I 280 55 248
179-1 155 54E 3S S 65 54 357
179-2 63 88N 37W D 333 88 217
180-1 98 53S 14W D 188 53 166
180-2 179 79E 37N S 89 79 37
181-1 25 30W 36N S 295 30 324
181-2 83 73S 65E I 173 73 245
182-1 83 13S 6E D 173 13 186
182-2 179 89W 77N I 269 89 283
183-1 175 45E 15N S 85 45 15
183-2 96 79S 47W N 186 79 133
184-1 159 44E 14N S 69 44 14
184-2 79 80S 47W N 169 80 133
185-1 124 49S 44W D 214 49 136
185-2 2 58E 50N N 92 58 50
186-1 164 42E 33N S 74 42 33
186-2 100 69S 54W N 190 69 126
187-1 23 61E 5N S 113 61 5
187-2 115 86S 30W D 205 86 150
188-1 23 37W 52N I 293 37 308
188-2 67 62S 66E I 157 62 246
189-1 113 37S 25W D 203 37 155
189-2 3 75E 55N N 93 75 55
190-1 169 60E 1N S 79 60 1
190-2 80 89S 31W D 170 89 149
191-1 156 44E 24S S 66 44 336
191-2 48 74N 49W I 318 74 229
192-1 177 44E 7S S 87 44 353
192-2 82 85N 47W I 352 85 227
193-1 81 76S 12W D 171 76 168
193-2 168 78E 14N S 78 78 14
194-1 165 76E 10S S 75 76 350
194-2 73 80N 15W D 343 80 195
195-1 101 22S 46E I 191 22 226
195-2 55 74N 74E I 325 74 286
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Table 1. (Continued.)

Ref. Strike Dip Pitch s d p i

196-1 93 71N 13W D 3 71 193
196-2 7 78E 19S S 97 78 341
198-1 167 36E 40S S 77 36 320
198-2 43 68W 61S I 313 68 241
199-1 131 53N 28E S 41 53 332
199-2 23 68W 41S D 293 68 221
200-1 162 62E 26N S 72 62 26
200-2 85 67S 31W D 175 67 149
201-1 89 36S 73E I 179 36 253
201-2 68 56N 77E I 338 56 283
202-1 8 62E 15N S 98 62 15
202-2 105 77S 29W D 195 77 151
203-1 8 25E 61N I 98 25 241
203-2 157 68W 77N I 247 68 283
204-1 3 24E 78N I 93 24 258
204-2 170 67W 84N I 260 67 276
205-1 170 56E 5N S 80 56 5
205-2 83 86S 35W D 173 86 145
206-1 164 53E 29S S 74 53 331
206-2 56 67N 41W D 326 67 221
207-1 102 37S 50E I 192 37 230
207-2 56 63N 64E I 326 63 296
209-1 103 31N 25W S 13 31 25
209-2 35 77E 62S N 125 77 118
210-1 173 22E 68S I 83 22 292
210-2 17 70W 82S I 287 70 262
211-1 2 44E 80S I 92 44 280
211-2 16 47W 81S I 286 47 261
212-1 49 44S 54E I 139 44 234
212-2 4 56W 60N I 274 56 300
213-1 116 70N 5W D 26 70 185
213-2 28 85E 20S S 118 85 340
215-1 143 58E 18N S 53 58 18
215-2 63 75S 34W D 153 75 146
216-1 71 73S 12W D 161 73 168
216-2 157 79E 17N S 67 79 17
217-1 44 42W 44S D 314 42 224
217-2 170 62E 57S I 80 62 303
218-1 38 57W 21S D 308 57 201
218-2 140 73E 34S S 50 73 326
219-1 155 70E 13S S 65 70 347
219-2 60 78N 21W D 330 78 201
220-1 76 20N 31E D 346 20 149
220-2 137 80W 72S N 227 80 72
221-1 13 44E 64S I 103 44 296
221-2 47 51N 68W I 317 51 248
222-1 52 44N 22W D 322 44 202
222-2 158 75E 48S I 68 75 312
223-1 130 38S 31W D 220 38 149
223-2 15 72E 56N N 105 72 56
224-1 0 56E 12S S 90 56 348
224-2 83 80N 35W D 353 80 215
225-1 82 27S 41E D 172 27 221
225-2 30 73W 69N I 300 73 291
226-1 35 31W 48S I 305 31 228
226-2 169 67E 68S I 79 67 292
227-1 153 65E 17S S 63 65 343
227-2 56 75N 26W D 326 75 206
228-1 171 41W 55N I 261 41 305
228-2 34 57E 64N I 124 57 244
229-1 62 75S 6W D 152 75 174
229-2 150 84E 15N S 60 84 15
230-1 84 62N 21W D 354 62 201
230-2 4 72E 29S S 94 72 331

Table 1. (Continued.)

Ref. Strike Dip Pitch s d p i

231-1 142 60W 2S S 232 60 2
231-2 53 88N 31E D 323 88 149
232-1 178 50W 40N S 268 50 320
232-2 60 61S 48E I 150 61 228
233-1 153 62E 16S S 63 62 344
233-2 55 76N 30W D 325 76 210
234-1 65 45N 12W D 335 45 192
234-2 164 82E 45S S 74 82 315
235-1 144 53E 8S S 54 53 352
235-2 49 84N 38W D 319 84 218
236-1 7 46W 59S I 277 46 239
236-2 146 52E 61S I 56 52 299
237-1 87 71N 10W D 357 71 190
237-2 0 81E 19S S 90 81 341
238-1 119 45S 19W D 209 45 161
238-2 15 77E 46N N 105 77 46
239-1 99 41N 15E D 9 41 165
239-2 178 80W 49S N 268 80 49
241-1 115 36S 60W N 205 36 120
241-2 151 59E 69N N 61 59 69
242-1 166 70E 16N S 76 70 16
242-2 82 75S 21W D 172 75 159
243-1 83 18N 5W D 353 18 185
243-2 178 88E 72S I 88 88 288
245-1 48 52N 27W D 318 52 207
245-2 155 69E 41S S 65 69 319
248-1 73 28N 23E D 343 28 157
248-2 142 79W 64S N 232 79 64
251-1 7 51E 22S S 97 51 338
251-2 83 73N 42W D 353 73 222
252-1 13 41W 81S I 283 41 261
252-2 1 50E 82S I 91 50 278
253-1 34 40E 55N I 124 40 235
253-2 172 58W 64N I 262 58 296
254-1 14 35W 67N I 284 35 293
254-2 41 58E 75N I 131 58 255
255-1 22 30W 79N I 292 30 281
255-2 35 61E 84N I 125 61 264
258-1 24 33W 66N I 294 33 294
258-2 52 60S 76E I 142 60 256
259-1 14 32W 60N I 284 32 300
259-2 48 63S 73E I 138 63 253
260-1 28 36W 71N I 298 36 289
260-2 51 56S 77E I 141 56 257
262-1 3 43W 31S D 273 43 211
262-2 117 69N 51E I 27 69 309
264-1 71 64N 27W D 341 64 207
264-2 174 66E 28S S 84 66 332
265-1 66 44N 43W D 336 44 223
265-2 10 62E 54S I 100 62 306
266-1 68 46S 57E I 158 46 237
266-2 25 53W 60N I 295 53 300
269-1 74 60N 26W D 344 60 206
269-2 178 68E 32S S 88 68 328
271-1 35 54E 5N S 125 54 5
271-2 128 86S 37W D 218 86 143
273-1 120 34N 1W S 30 34 1
273-2 31 89E 57S N 121 89 123
274-1 146 37E 23S S 56 37 337
274-2 37 76W 56S I 307 76 236
276-1 35 41E 89N I 125 41 269
276-2 34 49W 89N I 304 49 271
277-1 170 40W 50N I 260 40 310
277-2 38 61E 62N I 128 61 242
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Table 1. (Continued.)

Ref. Strike Dip Pitch s d p i

278-1 135 46E 31S S 45 46 329
278-2 22 68W 49S I 292 68 229
279-1 27 38W 70S I 297 38 250
279-2 2 55E 74S I 92 55 286
281-1 167 34W 48N I 257 34 312
281-2 34 65E 66N I 124 65 246
283-1 101 19N 40E D 11 19 140
283-2 153 78W 75S N 243 78 75
284-1 138 53E 42S S 48 53 318
284-2 20 58W 46S I 290 58 226
287-1 84 9S 10E S 174 9 10
287-2 4 88W 82N N 274 88 98
288-1 55 20N 56W I 325 20 236
288-2 19 74E 78S I 109 74 282
289-1 83 32N 14E D 353 32 166
289-2 161 83W 58S N 251 83 58
290-1 109 21N 56E N 19 21 124
290-2 145 73W 77S N 235 73 77
291-1 66 54N 33W D 336 54 213
291-2 177 64E 40S S 87 64 320
292-1 16 55E 16N S 106 55 16
292-2 115 77S 36W D 205 77 144
293-1 64 37S 76E I 154 37 256
293-2 47 54N 79E I 317 54 281
294-1 81 37N 29W D 351 37 209
294-2 15 73E 56S I 105 73 304
296-1 134 28N 89W N 44 28 89
296-2 133 62S 89W N 223 62 91

Seismological records and GPS measurements clearly documented
reverse co-seismic slip, up to about 11 m in amplitude (Ma et al.
1999). Earthquake source studies of the main shock showed that
reverse slip occurred in a NW direction, on a fault plane dipping
25◦ eastward down to at least 15 km depth (Kao & Chen 2000).

This co-seismic behaviour is typical of the tectonic framework of
Taiwan, which is characterized by a collision between the Philippine
Sea plate and the Eurasian plate, resulting from the northern Luzon
arc indenting into the Eurasian continental margin, a process that

Table 2. Results of SSSC-based inversions: stress tensors and average misfits obtained. Data
displayed in Table 1 and Fig. 11. Exp., number of experiment, as referred to in the text. The control
parameter ωacc indicates the smallest acceptable value of an individual estimator ω, in per cent.
The stress tensor obtained is characterized by the trends and plunges of the three principal stress
axes, σ1, σ2 and σ3, in degrees, and by �, the ratio of the principal stress differences defined in
eq. (2). NR, number of nodal planes rejected. N, number of nodal planes accepted. Average value
of the main estimator, omega, as ωm, in per cent. Smallest individual value found for this estimator
as ωmin. Average value of the subsidiary estimator tau as τ ∗

m, in per cent. Average value of the
subsidiary estimator ang as αm, in degrees.

Exp. ωacc σ1 σ2 σ3 � NR N ωm ωmin τ ∗
m αm

1 −100 300 8 38 46 203 43 0.33 0 212 54 −57 70 34
2 0 299 8 36 41 201 48 0.29 12 200 59 1 72 30
3 10 298 6 33 41 201 48 0.31 20 192 61 12 73 29
4 20 295 5 29 38 198 52 0.32 38 174 65 23 76 25
5 30 296 5 30 37 199 53 0.29 46 166 68 32 78 24
6 40 294 4 27 36 199 54 0.27 66 146 72 43 81 22
7 50 294 5 27 33 197 57 0.27 74 138 74 51 82 21
8 60 294 5 28 38 198 51 0.31 98 114 77 60 84 19
9 70 300 10 47 57 204 31 0.48 140 72 84 71 89 15

10 80 299 10 41 51 202 37 0.51 164 48 89 81 92 13
11 90 302 16 58 56 203 28 0.53 184 28 93 91 95 9

began about 5 Mya (Fig. 10a). Prior to the Chichi earthquake, the
suture zone of eastern Taiwan, where NW–SE convergence occurs
continuously, was considered as the plate boundary. Ironically, the
good geological and geophysical knowledge revealing tectonic ac-
tivity of this eastern suture zone, as well as the geodetic surveys
indicating relatively little deformation in western Taiwan during the
pre-Chichi period of quiescence, seemed to support this point of
view. The Chichi earthquake suddenly drew attention on the impor-
tance of present-day thrust displacement across the western front
of the mountain belt. The convergence rate in western Taiwan had
been underestimated because it occurred through a succession of
large earthquakes such as the Chichi earthquake, separated by long
periods of quiescence. Simple estimates based on the amplitude of
displacement during large earthquakes and the average time period
of the seismic cycle in fact suggest that the convergence rates across
this belt front zone and across the eastern suture zone are approx-
imately similar in amplitude. At each of these two boundaries, the
average convergence rate is about 3 cm yr−1. As a result, a litho-
spheric model including a two-plate boundary was proposed for
Taiwan (Angelier et al. 2001).

The large amount of high-quality data recorded by the Broadband
Array in Taiwan for Seismology (BATS) allowed accurate determi-
nation of the source parameters of the Chichi earthquake sequence
through waveform inversion. To process their data, Kao & Chen
(2000) used an inversion algorithm adapted from Kao et al. (1998)
and Kao & Jian (1999). They extracted the source parameters,
including the centroid moment tensor and the focal depth. Further-
more, waveform inversion studies enabled Kao & Chen (2000) to
distinguish five subevents in the main shock sequence. The initial
subevent was relatively small and the size of the first four subevents
increased as the rupture propagated from south to north (Fig. 10b).
This main shock sequence was followed by numerous aftershocks
invading the Taiwan island between approximate latitudes of 23◦N
and 24.5◦N (Fig. 11). All of these focal mechanisms of the Chichi
earthquake sequence were used to invert for the regional stress field
associated with the Chi-Chi earthquake sequence (Kao & Angelier
2001a,b). The resulting focal mechanisms are adopted as data in this
section and the next two sections, in order to illustrate the application
of the new inversion method. For further regional information about
earthquakes in Taiwan, the reader is referred to the papers mentioned
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Table 3. Individual a posteriori misfit values for the SSSC-based inver-
sions. Reference numbers of data as in Table 1 and Figs 11 and 12. Columns
labelled 2, 4, 6 and 8 indicate the values of the individual estimator omega
(ω). These columns refer to experiments 2, 4, 6 and 8 of Table 2, with ωacc

chosen as 0, 20, 40 and 60, respectively. (ωacc, smallest acceptable value of
individual estimator ω). The last two columns indicate the two subsidiary
estimators, tau and ang, for the experiment number 8: τ ∗, normalized shear
stress, in per cent; αm, slip-shear angle, in degrees.

Ref. 2 4 6 8 τ ∗ α

168-1 49 54 55 55∗ 70 39
168-2 48 54 55 55∗ 74 42
169-1 81 82 84 82 88 21
169-2 81 82 84 82 83 6
170-1 28 33 32∗ 34∗ 35 14
170-2 29 34 33∗ 35∗ 37 18
171-1 61 67 68 68 83 35
171-2 61 67 68 68 79 31
172-1 95 94 94 95 97 12
172-2 95 94 94 95 95 5
173-1 −63∗ −64∗ −64∗ −64∗ 73 152
173-2 −62∗ −64∗ −63∗ −64∗ 66 165
174-1 42 45 45 46∗ 86 58
174-2 42 45 45 46∗ 59 39
175-1 78 71 67 70 100 46
175-2 78 71 67 70 72 15
176-1 94 94 95 94 94 3
176-2 94 94 94 94 98 16
177-1 20 11∗ 9∗ 11∗ 35 72
177-2 20 11∗ 9∗ 11∗ 52 78
178-1 63 69 71 70 85 34
178-2 63 69 71 70 81 30
179-1 87 85 83 85 94 25
179-2 86 84 82 84 87 14
180-1 47 36 34∗ 35∗ 37 18
180-2 49 37 35∗ 36∗ 71 59
181-1 19 17∗ 22∗ 17∗ 73 77
181-2 19 16∗ 22∗ 17∗ 68 76
182-1 24 17∗ 17∗ 18∗ 44 66
182-2 23 17∗ 16∗ 17∗ 60 74
183-1 61 52 48 51∗ 99 59
183-2 60 51 47 50∗ 52 18
184-1 71 65 62 65 92 45
184-2 71 65 61 65 76 32
185-1 3 −9∗ −14∗ −10∗ 11 165
185-2 3 −9∗ −14∗ −11∗ 93 97
186-1 45 36 32∗ 35∗ 94 68
186-2 45 36 31∗ 35∗ 40 29
187-1 22 12∗ 7∗ 9∗ 68 82
187-2 23 13∗ 9∗ 11∗ 29 68
188-1 49 48 53 48∗ 83 54
188-2 48 47 53 47∗ 70 47
189-1 18 6∗ 2∗ 5∗ 19 75
189-2 18 6∗ 2∗ 5∗ 69 86
190-1 87 81 79 81 99 35
190-2 87 80 78 80 81 8
191-1 87 88 87 89 89 5
191-2 87 88 86 88 89 6
192-1 84 78 74 77 99 39
192-2 83 77 74 76 81 19
193-1 79 71 71 71 71 1
193-2 79 72 72 72 86 34
194-1 92 88 89 88 90 11
194-2 92 88 89 88 91 14
195-1 42 37 33∗ 35∗ 36 11
195-2 42 37 33∗ 35∗ 94 68
196-1 64 57 56 55∗ 60 24

Table 3. (Continued.)

Ref. 2 4 6 8 τ ∗ α

196-2 64 57 57 56∗ 56 10
198-1 89 89 88 90 90 3
198-2 89 89 88 89 91 9
199-1 46 53 53 55∗ 55 7
199-2 46 53 53 54∗ 72 40
200-1 64 56 54 56∗ 98 55
200-2 64 56 54 56∗ 62 26
201-1 43 40 39∗ 38∗ 47 34
201-2 42 39 38∗ 37∗ 92 66
202-1 46 35 31∗ 33∗ 82 66
202-2 47 36 31∗ 34∗ 35 17
203-1 30 34 38∗ 35∗ 81 64
203-2 32 35 39∗ 36∗ 67 57
204-1 44 46 49 48∗ 79 53
204-2 44 47 49 48∗ 69 47
205-1 82 75 72 74 100 42
205-2 82 75 72 74 76 12
206-1 98 98 98 99 99 4
206-2 98 99 98 99 99 0
207-1 37 32 29∗ 30∗ 31 15
207-2 36 31 28∗ 29∗ 100 73
209-1 −4∗ −4∗ −7∗ −3∗ 10 108
209-2 −5∗ −5∗ −8∗ −4∗ 31 98
210-1 62 62 62 62 72 30
210-2 62 62 62 62 64 13
211-1 80 85 88 86 98 29
211-2 80 85 88 86 86 5
212-1 75 75 79 76 78 14
212-2 75 75 79 76 77 13
213-1 0∗ −8∗ −9∗ −10∗ 29 111
213-2 −1∗ −8∗ −9∗ −11∗ 11 169
215-1 61 59 58 60 80 41
215-2 61 59 58 60 73 34
216-1 76 72 73 73 74 10
216-2 76 72 73 73 89 35
217-1 84 89 90 89 91 10
217-2 85 89 91 90 97 23
218-1 65 73 73 74 96 40
218-2 66 73 73 74 76 11
219-1 91 91 91 92 93 10
219-2 90 91 91 92 94 12
220-1 28 29 27∗ 29∗ 33 27
220-2 28 30 27∗ 30∗ 56 58
221-1 94 95 96 95 95 1
221-2 94 95 96 94 98 16
222-1 77 81 82 82 91 26
222-2 77 81 82 82 92 27
223-1 −5∗ −16∗ −21∗ −18∗ 21 149
223-2 −4∗ −15∗ −21∗ −17∗ 52 109
224-1 87 81 79 80 96 33
224-2 87 81 79 80 80 5
225-1 58 51 49 50∗ 52 14
225-2 57 50 48 49∗ 68 44
226-1 67 74 75 74 75 11
226-2 68 74 76 75 95 38
227-1 90 91 92 92 93 8
227-2 90 91 92 92 94 11
228-1 58 64 70 65 68 15
228-2 59 65 71 66 69 18
229-1 71 70 73 72 72 7
229-2 70 70 72 72 83 31
230-1 77 73 73 72 73 12
230-2 77 72 73 71 72 7
231-1 37 43 48 45∗ 47 17
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Table 3. (Continued.)

Ref. 2 4 6 8 τ ∗ α

231-2 36 41 47 44∗ 77 56
232-1 65 65 71 66 76 30
232-2 64 64 70 65 69 19
233-1 90 91 91 92 93 9
233-2 90 91 91 92 93 7
234-1 73 75 76 75 83 26
234-2 73 74 75 74 86 30
235-1 74 76 75 77 80 15
235-2 73 75 74 76 77 6
236-1 56 64 65 65 81 37
236-2 56 65 66 65 82 37
237-1 74 67 68 67 72 23
237-2 74 67 68 67 67 0
238-1 13 0∗ −4∗ −1∗ 7 101
238-2 14 2∗ −3∗ 0∗ 41 90
239-1 22 18∗ 19∗ 18∗ 21 33
239-2 22 18∗ 19∗ 17∗ 61 73
241-1 1 −8∗ −10∗ −8∗ 18 117
241-2 3 −7∗ −9∗ −7∗ 91 94
242-1 77 69 68 69 94 42
242-2 77 69 68 69 70 9
243-1 21 23 25∗ 23∗ 27 30
243-2 22 24 26∗ 24∗ 64 68
245-1 84 89 89 89 98 24
245-2 84 89 89 89 94 17
248-1 33 35 34∗ 35∗ 47 42
248-2 33 35 33∗ 35∗ 62 56
251-1 86 81 79 79 95 33
251-2 86 80 78 79 80 10
252-1 75 81 85 82 82 5
252-2 75 81 85 82 98 33
253-1 66 69 73 70 86 36
253-2 66 69 74 70 72 11
254-1 62 65 71 66 77 32
254-2 62 66 71 66 67 9
255-1 58 62 67 62 72 31
255-2 57 61 66 61 62 8
258-1 55 56 62 56∗ 78 44
258-2 54 56 61 56∗ 67 33
259-1 52 55 61 56∗ 73 41
259-2 52 54 60 55∗ 63 29
260-1 62 62 67 63 83 41
260-2 62 63 68 63 70 26
262-1 21 29 27∗ 30∗ 78 68
262-2 21 30 28∗ 30∗ 30 8
264-1 95 92 93 92 93 8
264-2 94 92 92 92 92 6
265-1 81 81 83 80 81 6
265-2 80 80 82 80 80 0
266-1 70 66 69 66 68 15
266-2 69 65 68 65 90 44
269-1 90 87 87 87 88 8
269-2 89 87 87 86 86 3
271-1 −7∗ −14∗ −19∗ −17∗ 74 103
271-2 −7∗ −14∗ −19∗ −16∗ 45 111
273-1 23 24 22∗ 26∗ 26 7
273-2 22 23 21∗ 24∗ 26 21
274-1 68 70 69 71 71 3
274-2 69 71 69 71 71 2
276-1 86 86 88 86 86 0
276-2 86 86 88 85 95 26
277-1 55 61 67 62 66 20
277-2 55 60 67 62 62 7
278-1 51 57 57 58∗ 60 13

Table 3. (Continued.)

Ref. 2 4 6 8 τ ∗ α

278-2 52 57 57 58∗ 71 34
279-1 79 85 88 85 85 0
279-2 80 85 88 86 95 26
281-1 45 51 58 53∗ 59 26
281-2 45 52 58 53∗ 54 7
283-1 16 16∗ 14∗ 15∗ 20 40
283-2 16 16∗ 14∗ 15∗ 71 78
284-1 56 64 64 65 69 21
284-2 58 65 65 66 84 38
287-1 −22∗ −16∗ −14∗ −16∗ 40 113
287-2 −22∗ −16∗ −15∗ −16∗ 50 109
288-1 36 40 44 40∗ 46 30
288-2 35 39 43 39∗ 41 18
289-1 36 36 36∗ 36∗ 40 27
289-2 37 38 38∗ 38∗ 76 60
290-1 13 12∗ 9∗ 11∗ 20 55
290-2 14 13∗ 11∗ 13∗ 61 78
291-1 92 92 92 91 92 5
291-2 92 92 92 91 91 2
292-1 25 15∗ 9∗ 12∗ 84 82
292-2 26 15∗ 10∗ 13∗ 24 57
293-1 71 67 68 66 70 19
293-2 70 66 67 65 99 49
294-1 51 51 53 50∗ 50 7
294-2 51 51 53 50∗ 50 4
296-1 6 1∗ −3∗ 0∗ 47 90
296-2 6 0∗ −3∗ 0∗ 34 91

above in this section: Kao et al. (1998), Kao & Jian (1999), Ma et al.
(1999), Kao & Chen (2000), Angelier et al. (2001), Kao & Angelier
(2001a,b). These papers contain references to other seismotectonic
studies of Taiwan.

Within a complete set of 115 focal mechanisms that belong to sev-
eral seismogenic units identified by Kao & Chen (2000), nine mech-
anisms were removed because of their particular location in the foot-
wall block, west of the main rupture fault. The remaining 106 mech-
anisms belong to the hangingwall block and the surrounding regions
to the north and the south. The earthquakes of this Chichi sequence
occurred from 1999 September 20th to 2000 September 16th. All
foci were located in the crust, most of them at shallow depths. All
local magnitudes are greater than 4; they are greater than 5 for 29
shocks and greater than 6 for 14 shocks.

The focal mechanisms are listed in Table 1 and located in Fig. 11
with the same reference index numbers. All angles have been
rounded to the nearest degree. For each focal mechanism, both the
nodal planes are described in Table 1, with arbitrary indices 1 and
2. Two formats are displayed for the reader’s convenience (Table 1).
The first format is that used to describe fault slip data in previous
papers (e.g. Angelier 1990). This format includes three angles, the
fault strike (0◦–180◦), the fault dip (0◦–90◦) and the pitch (0◦–90◦);
to avoid ambiguities concerning the dip direction and the pitch ori-
entation, a letter follows the dip angle and the pitch angle (N for
north, E for east, S for south, W for east). Another letter indicates
the sense of relative motion (S for left-lateral, N for normal, D for
right-lateral, I for reverse). The second format is based on the three
angles described in Fig. 8 and used in eqs (17) and (19), follow-
ing the convention adopted by Angelier et al. (1982). These angles
are the fault dip direction (azimuth, 0◦–360◦), the fault dip (0◦–90◦)
and the pitch (0◦–360◦). No letter is needed, because the dip
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Inversion of earthquake focal mechanisms 603

Figure 10. Plate tectonics and geological environment of the Chichi earthquake. (a) Plate tectonic framework, with the Philippine Sea Plate in dark grey and
triangles on the upthrust side along subduction boundaries. An open arrow indicates the direction of plate convergence. (b) Main geological units and main
shock focal mechanisms of the Chichi earthquake. Stereoplots of the focal mechanism as equal-area projections of the lower hemisphere, with tension and
pressure dihedra, respectively, as black and white. Five subevents are shown on the map, as determined by Kao & Chen (2000), with numbers 1–5 indicating
the order of succession, and the stereoplot size increasing with magnitude. See also Kao & Angelier (2001a) for details. Rupture trace of the 1999 Chichi
earthquake is shown as a thick black line. (c) Average focal mechanism of the main shock taken as a whole.

direction is unambiguous and the pitch describes both the orien-
tation and the sense of relative motion.

Among the 212 nodal planes of the data set (Table 1), one-half
shows pitches of potential slip vectors smaller than 45◦, indicating
that the largest component of motion is strike-slip. For the other half
of the data set, the dip-slip component of motion prevails (pitches
greater than 45◦); about 80 per cent of these nodal planes indicate
reverse slip and the remaining ones indicate normal slip. The oblique
slip geometry is common, as Figs 11 and 12 show.

The simplest experiment, referred to as 1 in Table 2, consists of
a single stress tensor determination using the whole data set. No
data rejection process is involved (ωacc = −100 per cent). After this
single-step inversion, a stress tensor indicating a N60◦W-trending
compression is obtained. The attitudes of the three principal stress
axes, σ1, σ2 and σ3, and the ratio between principal stress differ-
ences, �, are given in Table 2. The average a posteriori omega
estimator, ωm, reaches 54 per cent, an acceptable value considering
not only the uncertainties but also the dispersion and heterogeneity
of the data (Fig. 12). Its smallest individual value, ωmin, is −57 per
cent. The minus sign reveals inconsistency in terms of slip sense (as
illustrated on the right-hand side of Fig. 9). Low positive values oc-
cur, indicating large misfits, such as for earthquake 185 (2 per cent,
see Table 3, column 2). For these reasons, this first determination
cannot be considered satisfactory.

It is important to take into particular consideration the largest
misfits, that is, the data that cannot be accounted for by a single
regional stress tensor within reasonable misfit bounds. It is necessary
to examine whether these data are significant or not. This can be done
through consideration of technical parameters of the individual focal
mechanism determinations, magnitude and location of earthquakes,
and so on. The data can be selected with objective criteria, and
weighted according to a quality factor. The quality factor of the kth
datum being pk , the sum function S described in eq. (28), modified
from eq. (6), thus becomes

S = 1

τmax

k=K∑
k=1

pkτsk . (31)

With the focal mechanisms of Fig. 11, carrying out the inversion
with non-weighted and weighted data did not result in significant
differences. This showed that the variations in magnitude and techni-
cal accuracy did not influence the inversion in a significant manner.
The selection of the data according to a preliminary delineation of
seismogenic units resulted in more homogeneous data subsets, as
discussed by Kao & Angelier (2001a,b).

Because of the methodological aim of this paper, it seemed prefer-
able to adopt a relatively large data set, including a significant pro-
portion of inconsistent data and non-negligible sources of disper-
sion. This choice enables one to better discuss and highlight the
robustness of the method. The inconsistent data mainly result from
dispersion and atypical mechanisms, and hence were withdrawn
through a refining process. Many data sets are more homogeneous
and can be analysed on a single-step basis, with none of the data
being thrown out. Using the refining process is not compulsory.
However, one should keep in mind that in the single-step inversion
the result can be vitiated if too many data conflict with the mechan-
ically homogeneous subset.

1 3 A P P L I C AT I O N O F D A T A
S E L E C T I O N P R O C E S S

As mentioned in Section 11, the inversion can be included in an
iterative process that aims to separate the data set into mechanically
homogeneous subsets, or at refining this set through the elimina-
tion of the most inconsistent data. The latter technique is adopted
hereafter. Rejecting data modifies the data set, and hence requires
a new inversion to re-determine the stress. Because the new stress
tensor differs from the previous one, a rejected datum may become
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604 J. Angelier

Figure 11. Data set analysed in this paper. Focal mechanisms of 106 earthquakes of the Chichi sequence determined by Kao & Chen (2000). Double couple
mechanisms shown as stereoplots (equal area projection of the lower hemisphere) of tension and pressure dihedra (black and white, respectively). Same reference
numbers as in Table 1. The size of the stereoplots and open dots (indicating epicentres) increases with magnitude (in the range 4–7 for earthquakes with focal
mechanisms). The rupture trace of the 1999 Chichi earthquake is shown as a thick black line. A double open arrow indicates the direction of compression as
indicated by the SSSC-based inversion (see Table 2 for details). The simple black arrow indicates the direction of plate convergence.
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Inversion of earthquake focal mechanisms 605

Figure 12. Classification of data based on individual a posteriori misfits. Same data as in Fig. 11 and Table 1. Stress tensor results are given in Table 2
(experiment 7). (a), retained focal mechanisms with ω estimators larger than 80 per cent (black and white stereoplots) or from 50 to 80 per cent (grey and white
stereoplots). (b), rejected focal mechanisms with ω estimators negative (grey and white stereoplots) or from zero to 50 per cent (black and white stereoplots).
Details are given in the text.

acceptable in the next step, and a retained datum may become in-
compatible with the new solution. Consequently, the refining process
requires caution and must be carried out in a gradual way.

The minimum fit, ωacc, started from −100 per cent and increased
linearly. Each step involved two stress inversions. The data were
progressively selected until none of the retained data displayed an
individual estimator ω larger than ωacc. A rejected datum could be
reincorporated in a later step of the process. To control the variation
of the minimum acceptable individual fit, a very small increment
could be adopted because the single-step runtime is negligible. In
the case of experiments 2–11 of Table 2, this increment was 0.1 per
cent, so that about 3000 stress inversions were performed at stage 11.
Larger increments reduced the number of stress tensors to a few tens
or hundreds, and did not modify the final result.

The first experiment involving data rejection, called 2 in Table 2,
aimed at finding the best-fitting data set without any inconsistent
sense of slip. Accordingly, ωacc was set to zero. Eight nodal planes
from four focal mechanisms were eliminated. Note that for each
experiment asterisks following the individual omega values have
been added in Table 3 to pinpoint the rejected data. Not surprisingly,
this refining process resulted in a better a posteriori average main
estimator, ωm, than the inversion of the total data set (59 per cent
instead of 54 per cent, see Table 2). The stress tensor of experiment
2 does not differ markedly from that of experiment 1 (done without
data rejection): the changes in both the principal axis attitudes and
the stress difference ratio are minor (Table 2).

The values of the average subsidiary estimators, τ ∗
m, andαm, 72 per

cent and 30◦, respectively, for experiment 2, deserve consideration.
Whereas the first one is acceptable, the average shear-slip angle
is too large to be considered satisfactory in light of the angular
accuracy of the focal mechanisms of earthquakes. Experiments 2–
11 of Table 2 have been extracted for ten equally spaced values of
ωacc, from 0 to 90 per cent. Because of the increasing severity in the
fitting demand, the number of rejected data increased from 12 to 184.
Accordingly, the average main estimator, ωm, increased from 59 to
93 per cent. The average subsidiary estimators increased from 72 to
95 per cent (τ ∗

m) and decreased from 30◦ to 9◦ (αm). The last value of
αm, 9◦, is smaller than the average angular uncertainty of the focal
mechanisms. This denotes exaggerated severity for high values of
ωacc. It is thus necessary to define within the gradual refining process
the experiment, and hence the value of ωacc, that best fits the actual
constraints of the data set.

Considering the uncertainties, the data dispersion and the me-
chanical heterogeneity, a 60 per cent level for ωacc represents a good
minimum fit; 114 of the 212 data were thus retained (experiment 8,
Table 2). The resulting average estimators, ωm, τ ∗

m and αm, were 77,
84 per cent and 19◦, reasonable values in light of data uncertain-
ties and dispersion. These estimators can even be regarded as very
good, taking into additional account the fan-shaped pattern of stress
trajectories, which resulted in further dispersion inside the broad
area where the aftershocks occurred. This particular source of re-
gional stress variation, which was documented by a seismotectonic
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606 J. Angelier

analysis of the Chichi earthquake sequence, is beyond the scope
of the present paper (Kao & Angelier 2001b). This suggests that
even the experiments with ωacc levels lower than 60 per cent provide
reliable results in terms of the regional stress pattern (Table 2).

This inference is supported by the similarity of the stress tensor re-
sults listed in Table 2. Even when the demand for a good fit becomes
exaggeratedly loose (experiments 2–4) or severe (experiments 9, 10
and 11), the solution does not vary markedly. The variation in the
calculated trend of compression (N58◦W to N66◦W) is only 8◦ for
all the experiments of Table 2. That similar tensors are obtained for a
wide range of ωacc values (−100 per cent to +90 per cent) shows that
the solution is stable. Had the data set contained two or more subsets
corresponding to independent states of stress, this would not have
been the case. There is a reliable, albeit non-unique, relationship be-
tween the stability of the solution and the mechanical homogeneity
of the data set. Thus, in addition to the basic single-step inversion
(Table 2, row 1), the refining process (Table 2, rows 2–11) enables
one to evaluate the robustness of the stress tensor determination.

1 4 I N D I V I D U A L R E S U L T S
O F T H E I N V E R S I O N

In the previous section, the conclusions were mainly based on con-
sideration of the average estimators, although the refining process
was by definition controlled by an individual parameter, the smallest
acceptable fit level (ωacc). The individual estimators enable one to
evaluate how far the stress tensor solution accounts for each focal
mechanism of the earthquake. The a posteriori values of ω are listed
in Table 3 for experiments 2, 4, 6 and 8 (respectively, corresponding
to 0, 20, 40 and 60 per cent for ωacc), and for experiment 8 the values
of τ ∗ and α have been added.

The differences in the two individual estimators ω of a focal mech-
anism remained small (Table 3); these minor discrepancies mainly
arose because the three angles describing each nodal plane had been
rounded to the nearest integer value in degrees, slightly altering the
perpendicular relationships of Fig. 4. Compared with the uncertain-
ties, this difference is negligible so that the two numerical values of
ω obtained for each mechanism should be regarded as identical. In
contrast, different values of τ ∗ and α may be obtained, highlighting
the properties of double couple mechanisms of earthquakes illus-
trated in Figs 3 and 6.

Different individual behaviours emerge from the comparison be-
tween successive experiments, in terms of the main estimator, ω

(this would be a fortiori the case for the subsidiary estimators).
On one hand, many mechanisms displayed similar misfits during
the succession of experiments, whatever the value of ωacc (from 0 to
60 per cent, see Table 3). This was the case for the permanently well-
fitting mechanisms like 172 (ω remaining above 90 per cent), or the
permanently inconsistent ones like 173 (ω remaining below −60 per
cent). This was also the case for many mechanisms displaying nearly
constant intermediate fitting levels throughout the sequence of ex-
periments, like 168 (48–55 per cent) or 181 (16–22 per cent). On
the other hand, many mechanisms showed significant variations in
fitting levels. Asωacc increases, the mechanism may display fit degra-
dation, like 189 (from 18 to 5 per cent) or improvement, like 236
(from 56 to 65 per cent). The minor changes (2 per cent or less)
being left aside, the variation of ω may be monotonic (most cases)
or not (like 175, with degradation followed by improvement, or 188,
the opposite case).

The individual values of normalized shear stress (τ ∗) and slip-
shear angle (α) given in Table 3 for experiment 8 reveal high levels

of variability. Not only do these estimators vary widely depending
on the focal mechanism considered, but also large contrasts may
exist between the two nodal planes of a given mechanism, like 174
for τ ∗ (86 and 59 per cent) or 183 for α (59◦ and 18◦). In these
cases, these contrasts are not independent. For mechanism 175, the
nodal plane 1 better fits the stress than 2 in terms of normalized
shear stress (100 per cent versus 72 per cent), but not in terms of
slip-shear angle (46◦ versus 15◦). This is not surprising considering
that for a given SSSC value an increase in α requires an increase
in τ ∗ (Fig. 9). The two nodal planes may show identical or similar
values for both τ ∗ and α: this is the case for well-fitting mechanisms
like 191 (89 per cent and 5◦–6◦, respectively) and inconsistent ones
like 287 (40–50 per cent and 113–109◦, respectively).

It is important to observe that the a posteriori choices between
nodal planes, based on consideration of the normalized shear stress
on one hand and the slip-shear angle on the other hand, lead to
different conclusions. Some mechanisms, like 274, show excellent
slip-shear angles (2◦–3◦) but relatively low shear stress (71 per cent);
other ones, like 236, reveal high normalized shear stress (81–82 per
cent) but poor slip-shear angles (37◦). This contrast brings confirma-
tion that the SSSC dual-criterion represents a compromise between
the two aims as mentioned in Section 4, that is, obtaining the small-
est possible slip-shear angles and reaching a relatively high level of
shear stress at the same time. To go further with the investigation
of the slip-shear relationships, and hence decide which subcriterion
must be given priority, it would be necessary to consider friction.

Finally, it is appropriate to examine the geometry of the focal
mechanisms as a function of the misfit levels indicated by the inver-
sions. The data set is subdivided into two main subsets according to
the a posteriori value of the estimator ω (Fig. 12). The first subset is
composed of the 69 focal mechanisms (138 nodal planes) that fit the
stress tensor for the 50 per cent ω level. Most of these mechanisms
are reverse and strike-slip in type (top and bottom row groups of
Fig. 12a, respectively). Oblique slip is common, showing in almost
all cases a reverse component of slip (central rows of Fig. 12a). This
reverse component is easily detectable as the centre of the stereo-
plot falls in a non-blank, tension domain. Few mechanisms, like 200,
however, display a normal component. For strike-slip mechanisms,
both the right- and left-lateral nodal planes shows large variations
in strike (e.g. mechanisms 219 and 194). Among the pure reverse
mechanisms, large differences in the trends of nodal planes occur
(e.g. mechanisms 293 and 204). The variations in pitch for the strike-
slip mechanisms and in strike for the reverse ones account for the
largest component of the individual estimator dispersion. In more
detail, two fitting levels have been distinguished, with estimators ω

higher than 80 per cent (black and white stereoplots in Fig. 12a) and
from 50 to 80 per cent (grey and white stereoplots). The latter class
displays larger variation in terms of strikes and dips of nodal planes,
and pitches of inferred slip vectors.

The second subset is composed of 37 mechanisms (74 nodal
planes) that could not fit the minimum requirement for the 50 per
cent ω level. Within this subset, 27 mechanisms revealed positive
estimators ω (ranging from 0 to 50 per cent, black and white stere-
oplots in Fig. 12b), indicating compatibility with the stress tensor
restricted to the slip sense. The 10 remaining mechanisms (negative
values of ω, grey and white stereoplots) are incompatible even in
terms of slip sense.

From the geometrical point of view, many mechanisms in the
non-fitting subset of Fig. 12(b) resemble those of the first subset;
they simply show larger angular dispersion. The reverse-type mech-
anisms display a large variation in trends; some couples of nodal
planes even strike at nearly right angles, like 203 and 201. The
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Inversion of earthquake focal mechanisms 607

oblique-slip mechanisms display a large variety of strike, dip and
pitch angles. Some strike-slip sense-consistent mechanisms, like
170 and 292, reveal a nearly opposite distribution of pressure and
tension dihedra, which reveals a variation of almost 90◦ in the strikes
of the nodal planes. The sense-inconsistent character of the strike
slip-mechanisms shown in grey in Fig. 12(b), like 271, is clearly
expressed because their tension dihedra contain the trend in com-
pression indicated by the inversion (see Table 2).

Other types of mechanisms appear in the non-fitting subset,
whereas they were not found in the first subset. The presence of
mechanisms with a nearly vertical dip-slip nodal plane and a nearly
horizontal strike-slip one becomes common (e.g. the last three mech-
anisms, 177, 243 and 182, in Fig. 12b). Such a configuration was
absent in the well-fitting subset, although some mechanisms were
close to it (e.g. mechanisms 225 and 274 in Fig. 12a). The normal
type, absent in the best-fitting subset of Fig. 12(a), is present in the
subset of Fig. 12(b), even among the sense-consistent mechanisms
like 290 (the intersection of nodal planes striking nearly parallel
to the trend of compression). Among the sense-inconsistent mech-
anisms, normal-type mechanisms are also common, with a larger
trend in dispersion (compare mechanisms 173 and 296 in Fig. 12b).

Choosing the boundary between the fitting and non-fitting sub-
sets, as in Fig. 12(a), is subject to debate, because no significant gap
occurs in the range of ω values. A rigorous choice can be made as
a function of both the technical uncertainties in focal mechanism
determinations and the natural sources of dispersion that are more
difficult to evaluate. Large stress variations are known to occur in the
crust. For instance, a significant clockwise change in the trend of the
compression from south to north has been reconstructed in the area
of Fig. 11 (Kao & Angelier 2001a,b). This change, not to mention
other variations in stress axes and ratio �, results in a dispersion
that is larger than the technical uncertainty.

The large dispersion is not surprising if one considers the pertur-
bations of the regional stress field. This is especially important after
a large earthquake such as the Chichi earthquake, because all the
dislocations associated with the highly heterogeneous faulting of
the whole aftershock sequence result in a major perturbation of the
regional stress field. It is well known, for instance, that the perturba-
tion field can be larger than the original stress field, especially near
the dislocation edges; the aftershock sequence may also be deeply
influenced by the weakness structure in and around the main fault
plane. For this reason, it is interesting to note that even in a highly
perturbed stress environment it was possible to reconstruct a re-
gional average stress state accounting for most of the data, as shown
by the experiments listed in Table 2. That the estimators remain
within acceptable bounds, given the accuracy and dispersion of the
data, suffices to demonstrate that the stress tensor obtained with the
drastic assumption of homogeneous stress is significant regionally.
Note that the inversion is carried out in terms of axis orientations
and � ratio, so that absolute stress magnitudes are left free in terms
of the two remaining unknowns, k and l (see Section 7). Further-
more, the stress tensor obtained accounts for the mechanisms of the
main shock (see Kao & Angelier 2001b, for details).

These observations, albeit empirical, bring confirmation that re-
gardless of the technique adopted the inversion of focal mecha-
nisms to reconstruct an average stress tensor has the capacity to
overcome the difficulties related to stress perturbations and crustal
heterogeneity. It should be borne in mind, however, that because
of the dispersion it is preferable to carry out the inversion in one
of the following ways. With big data sets covering a large area,
the large number of data points compensates the dispersion and
the average stress tensor obtained has a regional value; its signifi-

cance can be evaluated through a review of the misfit distribution.
With data sets in a narrow window (such sets often being small),
the dispersion commonly decreases and the stress tensor obtained
has a local value, with rather tightly clustered misfits (see exam-
ples for the Chichi sequence in Kao & Angelier 2001a,b). Drawing
conclusions from the inversion of small data sets covering large
crustal volumes requires more caution, because the stress pertur-
bations discussed above may drastically influence the result and
can hardly be detected by considering the distribution of the mis-
fits, which is not statistically significant with low numbers of data
points.

In the case presented in this paper, the N–S variation in the trend
of the compression, as well as the other sources of dispersion, re-
mained of second order compared with the major seismotectonic
regime, a WNW–ESE-trending compression related to plate colli-
sion (Fig. 11). The separation into subsets based on the location
of earthquake epicentres or the delineation of seismogenic units
allowed determination of stress subregimes in the second approxi-
mation (Kao & Angelier 2001a), but did not invalidate the determi-
nation of a major regional stress regime made in the first approx-
imation. In these respects, the choice of the discriminating value,
such as 50 per cent for ω in Fig. 12, is related to the scale and ap-
proximation levels of the analysis and cannot be uniquely defined.
More important is the stability of the stress tensor determined with
different levels of acceptable misfit: the comparative analysis re-
vealed high stability (Table 2), which supports the determination of
a single stress tensor in the first approximation.

1 5 C O M PA R I S O N W I T H
O T H E R M E T H O D S

To compare the results with those obtained from other inversion
methods, a difficulty arises because the new technique does not re-
quire the choice between the nodal planes, whereas the previous ones
did. However, it is possible to choose the results of the a posteriori
separation discussed in the previous section, and thus to compare
stress inversions carried out with identical data sets of N nodal planes
(that is, one nodal plane selected for each focal mechanism). This has
been done using the inversion method described previously in this
journal (Angelier 1990). The results are almost identical in terms
of the resulting stress tensors. The difference cannot be regarded as
significant, and results from two main factors. First, the inversion
criteria differ: the function maximized with the new technique is
the SSSC, or shear stress slip component, τs (Fig. 1), whereas in the
previous direct inversion method the function minimized was the
magnitude of the vector difference s−τ (Angelier 1990). Secondly,
as discussed in Section 5, the best results with the new technique
were obtained when using the sum defined in eq. (28), adapted from
eq. (6), which does not fulfil the least-squares criterion. In contrast,
a typical least-squares minimization was involved in the direct in-
version method. This difference implies that the influence of each
datum is not the same in both analyses, depending on the misfit
amplitude.

The results obtained with the new technique were also compared
with those issued from the P and T dihedra method, or ‘right dihedra
method’ (Angelier & Mechler 1977). This comparison could not go
very far, because the right dihedra method is based on consider-
ation of the mechanical compatibility between the double couple
focal mechanisms and does not involve determination of a stress
tensor and related estimators. Furthermore, with the right dihedra
approach the requirements for mechanical compatibility between
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all focal mechanisms are not fully exploited, so that the results are
confidence domains, not optimal orientations (see the explanation
in Angelier & Mechler 1977). On the other hand, a major point of
interest in the right dihedra method, in addition to its geometrical
simplicity, is the absence of any choice between nodal planes, so that
the comparison with the new method is straightforward. Not surpris-
ingly, the principal stress axes obtained in this paper fall within the
confidence domains obtained with this earlier method.

1 6 N U M B E R O F DATA R E Q U I R E D
I N T H E I N V E R S I O N

A crucial aspect in the inversion of fault slip data or earthquake focal
mechanisms is the number of data required in the inversion. In the-
ory, four independent focal mechanisms are sufficient to determine
the four unknowns of a reduced stress tensor, as discussed in Sec-
tion 7. In practice, large data sets are required to reliably determine
the regional stress, because of the data uncertainties and dispersion.
It is impossible, however, to give rigid bounds to the number of data
required in the inversion, because it depends strongly on these two
factors. Little difficulty comes from the angular uncertainties in fo-
cal mechanisms, because they are easily estimated based on techni-
cal considerations (the number and distribution of the stations used,
nature of wave data, misfits, etc.). Determining the dispersion factor
is more complex, because it results from the difference between the
assumption of a unique reduced stress tensor accounting for the data,
and the real situation that may involve complex stress variations in
time and space within the studied data set. Consequently, the disper-
sion factor increases with the rock volume considered, because the
larger the volume the higher the sources of stress variation. How-
ever, the amount of dispersion may differ significantly depending
on the regional structural geology. In the case of the fold and thrust
belt of Taiwan (a highly deformed and inhomogeneous structure),
this dispersion is much larger than the technical uncertainties of fo-
cal mechanism determinations. This dispersion explains why a high
percentage of the data must be discarded to reach good fitting levels
in such a complex crustal domain. When one studies smaller geo-
logical units, the dispersion diminishes and the process commonly
ends up discarding a small percentage of data. In contrast to techni-
cal uncertainties, the dispersion factor is difficult to quantify prior
to the inversion; its best determination certainly comes from the a
posteriori reviews.

It is concluded that the number of data required to obtain reli-
able stress inversion is variable, as a function of these two factors.
As discussed in Sections 13 and 14, the uncertainties in the deter-
mination of the focal mechanisms of Fig. 11 were limited because
of the earthquake magnitudes and the quality of the seismological
network. However, the dispersion was large because of the size and
structural complexity of the area studied. The angular uncertainty
of the focal mechanism determinations averaged 10 (Kao & Chen
2000), and the angular dispersion of the data set, which depends
on the heterogeneous response of the volume of crust affected by
these earthquakes, cannot be less than 12◦. This leads one to favour,
for this data set, the solution obtained for a 40 per cent value of
ωacc, because it gives 22◦ for αm (Table 2). A separation into subsets
defined according to the preliminary delineation of seismically ho-
mogeneous domains has been presented elsewhere (Kao & Angelier
2001a); it provided reliable determinations with a small number of
data points (e.g. 10). Large sets are, however, preferable, because of
their potential to allow determination of internal levels of mechan-
ical consistency on an acceptable statistical basis.

1 7 C O N C L U S I O N

The new method presented in this paper enables one to determine
the stress state that best accounts for a set of double couple focal
mechanisms of earthquakes. No choice between the nodal planes
is needed prior to, or made during, the inversion. This method is
based on consideration of the SSSC criterion. Because the inver-
sion is carried out by analytical means, the runtime is negligible
regardless of the size of the data set. This permits inclusion of the
inversion in a variety of processes for separating or refining the data.
It is difficult to evaluate the real data dispersion, which depends on
complex geological factors and is as important as, or larger than, the
angular uncertainties in the determination focal mechanisms. It is
pointed out herein that the most efficient way to determine whether
the stress inversion is significant or not consists of comparing se-
ries of refining experiments conducted with increasing demands for
good fits. When they can be obtained, the stability of the stress ten-
sor determinations throughout such successive experiments and the
consistency in the distribution of individual misfits provide a good
indication of a robust solution.
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