
HAL Id: hal-00406635
https://hal.science/hal-00406635v8

Preprint submitted on 13 Jun 2011 (v8), last revised 15 Aug 2011 (v10)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Equilibria und weiteres Heiteres
Dov Gabbay, Karl Schlechta

To cite this version:

Dov Gabbay, Karl Schlechta. Equilibria und weiteres Heiteres. 2009. �hal-00406635v8�

https://hal.science/hal-00406635v8
https://hal.archives-ouvertes.fr


Equilibria und weiteres Heiteres

Dov M. Gabbay ∗

King’s College, London †

and

Bar-Ilan University, Israel ‡

and

University of Luxembourg §

Karl Schlechta ¶

Laboratoire d’Informatique Fondamentale de Marseille ‖

June 13, 2011

Abstract

We investigate several technical and conceptual questions.
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1 Introduction

We present here various small results, which may one day be published in a bigger paper, and which we wish
to make already available to the community.

2 Countably many disjoint sets

We show here that - independent of the cardinality of the language - one can define only countably many
inconsistent formulas.

The question is due to D. Makinson (personal communication).

We show here that, independent of the cardinality of the language, one can define only countably many incon-
sistent formulas.

The problem is due to D. Makinson (personal communication).

Example 2.1

There is a countably infinite set of formulas s.t. the defined model sets are pairwise disjoint.

Let pi : i ∈ ω be propositional variables.

Consider φi :=
∧
{¬pj : j < i} ∧ pi for i ∈ ω.

Obviously, M(φi) 6= ∅ for all i.

Let i < i′; we show M(φi) ∩M(φi′) = ∅. M(φi′) |= ¬pi, M(φi) |= pi.

2

Fact 2.1

Any set X of consistent formulas with pairwise disjoint model sets is at most countable

Proof

Let such X be given.

(1) We may assume that X consists of conjunctions of propositional variables or their negations.

Proof: Rewrite all φ ∈ X as disjunctions of conjunctions φj . At least one of the conjunctions φj is consistent.
Replace φ by one such φj . Consistency is preserved, as is pairwise disjointness.

(2) Let X be such a set of formulas. Let Xi ⊆ X be the set of formulas in X with length i, i.e., a consistent
conjunction of i many propositional variables or their negations, i > 0.

As the model sets for X are pairwise disjoint, the model sets for all φ ∈ Xi have to be disjoint.

(3) It suffices now to show that each Xi is at most countable; we even show that each Xi is finite.

Proof by induction:

Consider i = 1. Let φ, φ′ ∈ X1. Let φ be p or ¬p. If φ′ is not ¬φ, then φ and φ′ have a common model. So one
must be p, the other ¬p. But these are all possibilities, so card(X1) is finite.

Let the result be shown for k < i.

Consider now Xi. Take arbitrary φ ∈ Xi. Without loss of generality, let φ = p1 ∧ . . . ∧ pi. Take arbitrary
φ′ 6= φ. As M(φ) ∩M(φ′) = ∅, φ′ must be a conjunction containing one of ¬pk, 1 ≤ k ≤ i. Consider now
Xi,k := {φ′ ∈ Xi : φ

′ contains ¬pk}. Thus Xi = {φ} ∪
⋃
{Xi,k : 1 ≤ k ≤ i}. Note that all ψ, ψ′ ∈ Xi,k agree

on ¬pk, so the situation in Xi,k is isomorphic to Xi−1. So, by induction hypothesis, card(Xi,k) is finite, as all
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φ′ ∈ Xi,k have to be mutually inconsistent. Thus, card(Xi) is finite. (Note that we did not use the fact that
elements from different Xi,k, Xi,k′ also have to be mutually inconsistent; our rough proof suffices.)

2

Note that the proof depends very little on logic. We needed normal forms, and used two truth values. Obviously,
we can easily generalize to finitely many truth values.

3 Independence as ternary relation

3.1 Situation and definitions

Independence as an abstract ternary relation for probability and other situations has been examined by Pearl
et al., see, e.g., [Pea88]. We interpret independence here differently, but in a related way.

Definition 3.1

We consider function sets Σ etc. over a fixed, arbitrary domain I, into some fixed codomain K.

For pairwise disjoint subsets X,Y, Z of I, we define

〈X | Y | Z〉 iff for all f, g ∈ Σ such that f ↾ Y = g ↾ Y (f ↾ Y the restriction of f to elements of Y, etc.), there
is h ∈ Σ such that h ↾ X = f ↾ X, h ↾ Y = f ↾ Y = g ↾ Y, h ↾ Z = g ↾ Z. Y may be empty, then the condition
f ↾ Y = g ↾ Y is void.

Thus, the definition is relative to Σ.

〈X | Y | Z〉 means thus, that we can piece functions together, or that we have a sort of decomposition of Σ into
a product. This is an independence property, we can put parts together independently.

Notation 3.1

In more complicated cases, we will often write ABC for 〈A | B | C〉, and ¬ABC or −ABC if 〈A | B | C〉 does
not hold. Moreover, we will often just write f(A) for f ↾ A, etc.

For 〈A ∪ A′ | B | C〉, we will then write (AA′)BC, etc.

If only singletons are involved, we will sometimes write abc instead of ABC, etc.

When we speak about fragments of functions, we will often write just A : σ for σ ↾ A, B : σ = τ for σ ↾ B = τ ↾ B,

etc.

We use the following notations for functions:

Definition 3.2

The constant functions 0c and 1c :

0c(i) = 0 for all i ∈ I

1c(i) = 1 for all i ∈ I

Moreover, when we define a function σ : I → {0, 1} argument by argument, we abbreviate σ(a) = 0 by a = 0,
etc.

Sometimes, we also give (a fragment of) a function just by the sequence of the values, so instead of writing
a = 0, b = 1, c = 1, we just write 011 - context will disambiguate.

E.g., Pearl discusses the following rules for the ternary relation:
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Definition 3.3

(a) Symmetry: 〈X | Y | Z〉 ↔ 〈Z | Y | X〉

(b) Decomposition: 〈X | Y | Z ∪W 〉 → 〈X | Y | Z〉

(c) Weak Union: 〈X | Y | Z ∪W 〉 → 〈X | Y ∪W | Z〉

(d) Contraction: 〈X | Y | Z〉 and 〈X | Y ∪ Z |W 〉 → 〈X | Y | Z ∪W 〉

(e) Intersection: 〈X | Y ∪W | Z〉 and 〈X | Y ∪ Z |W 〉 → 〈X | Y | Z ∪W 〉

(∅) Empty outside: 〈X | Y | Z〉 if X = ∅ or Z = ∅.

We show now that above Rules (a)− (d) hold in our context, but (e) does not hold.

Fact 3.1

In our interpretation,

(1) rule (e) does not hold,

(2) all 〈X | Y | ∅〉 (and thus also all 〈∅ | Y | Z〉) hold.

(3) rules (a)− (d) hold, even when one or both of the outside elements of the triples is the empty set.

Proof

(1) (e) does not hold:

Consider I := {x, y, z, w} and U := {1111, 0100}. Then x(yw)z and x(yz)w, as for all σ ↾ yw there is just one
τ this σ can be. The same holds for x(yz)w. But for y = 1, there are two different paths through y = 1, which
cannot be combined.

(2) This is a trivial consequence of the fact that {f : f : ∅ → U} = {∅}.

(3) Rules (a), (b), (c) are trivial, by definition, also for X,Z = ∅. In (c), if W = ∅, there is nothing to show.

Rule (d): The cases for X,W,Z = ∅ are trivial. Assume σ, τ such that σ ↾ Y = τ ↾ Y, we want to combine
σ ↾ X with τ ↾ Z ∪ W. By 〈X | Y | Z〉, there is ρ such that ρ ↾ X = σ ↾ X, ρ ↾ Y = σ ↾ Y = τ ↾ Y,

α ↾ X = ρ ↾ Z = τ ↾ Z. Thus ρ and τ satisfy the prerequisite of 〈X | Y ∪ Z | W 〉, and there is α such that
α ↾ X = ρ ↾ X = σ ↾ X, α ↾ X = ρ ↾ Y = σ ↾ Y = τ ↾ Y, α ↾W = τ ↾W.

2

Next, we give an example which shows that increasing the center set can change validity of the tripel in any
way.

Example 3.1

Consider I := {x, a, b, c, d, z}.

Let Σ := {111111, 011110, 011101, 111100, 110111, 010000}.

Then ¬x(abcd)z, x(abc)z, ¬x(ab)z.

For ¬x(abcd)z, fix abcd = 1111, then 111111, 011110 ∈ Σ, but, e.g., 011111 6∈ Σ.

For x(abc)z, the following combinations of abc exist: 111, 101, 100. The result is trivial for 101 and 100. For
111, all combinations for x and z with 0 and 1 exist.

For ¬x(ab)z, fix ab = 10, then 110111, 010000 ∈ Σ, but there is, e.g., no 110xy0 6∈ Σ.

2
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Validity of ABC,ACD,ADE,AEB ⇒ ABE

A B C D E

σ σ = τ τ ABE?
(1) ρ1 σ σ = τ τ ABC

(2) ρ2 σ τ τ ACD

(3) ρ3 σ τ τ ADE

(4) ρ4 σ σ = τ τ AEB

3.2 New rules

Above rules (a) − (d) are not the only ones to hold, and we introduce now more complicated ones, and show
that they hold in our situation. Of the possibly infinitary rules, only (Loop1) is given in full generality, (Loop2)
and (Struc) are only given to iluustrate that even the infinitary rule (Loop1) is not all there is.

For warming up, we consider the following short version of (Loop1):

Example 3.2

ABC,ACD,ADE,AEB ⇒ ABE.

We show that this rule holds in all Σ.

Suppose A : σ, B : σ = τ, C : τ, so by ABC, there is ρ1 such that

A : ρ1 = σ, B : ρ1 = σ = τ, C : ρ1 = τ. So by ACD, there is ρ2 such that

A : ρ2 = σ, C : ρ2 = ρ1 = τ, D : ρ2 = τ. So by ADE, there is ρ3 such that

A : ρ3 = σ, D : ρ3 = ρ2 = τ, E : ρ3 = τ. So by AEB, there is ρ4 such that

A : ρ4 = σ, E : ρ4 = ρ3 = τ, B : ρ4 = τ = σ.

So ABE.

We abbreviate this reasoning by:

(1) ABC : A : σ, B : σ = τ, C : τ

(2) ACD : (1) + τ

(3) ADE : (2) + τ

(4) AEB : (3) + τ

So ABE.

It is helpful to draw a little diagram as in the following Table 3.1 (page 5).

.

We introduce now some new rules.

Definition 3.4

• (Bin1)

XY Z,XY ′Z, Y (XZ)Y ′ ⇒ X(Y Y ′)Z

• (Bin2)

XY Z,XZY ′, Y (XZ)Y ′ ⇒ X(Y Y ′)Z

• (Loop1)

ABC, ACD1, AD1D2, . . . , ADi−1Di, ADiDi+1, ADi+1Di+2, . . . , ADn−1Dn, ADnG, AGB ⇒ ABG

so we turn AGB around to ABG.

When we have to be more precise, we will denote this condition (Loop1n) to fix the length.
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• (Loop2)

ABC,ACD,DAE,DEF, FDG,FGH,HFB ⇒ HBF :

• (Struc)

ABC,ACD,AEF,AFG,DAG,AHI,AIJ,GAJ,BAJ ⇒ ABJ

The complicated structure of these rules suggests already that the ternary relations are not the right level of
abstraction to speak about construction of functions from fragments. This is made formal by our main result
below, which shows that there is no finite characterization by such relations. In other words, the main things
happen behind the screen.

Fact 3.2

The new rules are valid in our situation.

Proof

• (Bin1)

(1) XYZ : X : σ, Y : σ = τ, Z : τ

(2) XY ′Z : X : σ, Y ′ : σ = τ, Z : τ

(3) Y (XZ)Y ′ : (1) + (2)

So X(Y Y ′)Z.

• (Bin2)

Let X : σ, Y : σ = τ, Y ′ : σ = τ, Z : τ

(1) XYZ : X : σ, Y : σ = τ, Z : τ

(2) XZY ′ : (1) + τ

(3) Y (XZ)Y ′ : (1) + (2)

So X(Y Y ′)Z.

• (Loop1)

(1) ABC : A : σ, B : σ = τ, C : τ

(2) ACD1 : (1) + τ

(3) AD1D2 : (2) + τ

. . . .

(i + 1) ADi−1Di : (i) + τ

(i + 2) ADiDi+1 : (i+ 1) + τ

(i + 3) ADi+1Di+2 : (i + 2) + τ

. . . .

(n+ 1) ADn−1Dn : (n) + τ

(n+ 2) ADnG: (n+ 1) + τ

(n+ 3) AGB: (n+ 2) + τ = σ

So ABG.

• (Loop2)

Let

(1) ABC : A : σ, B : σ = τ, C : τ

(2) ACD : 1 + τ
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(3) DAE : 2 + σ

(4) DEF : 3 + σ

(5) FDG : 4 + τ

(6) FGH : 5 + τ

(7) HFB : 6 + σ

So HBF by B : σ = τ.

• (Struc)

(1) ABC : A : σ, B : σ = τ, C : τ

(2) ACD : (1) + τ

(3) AEF : A : σ, E : σ = τ, F : τ

(4) AFG : (3) + τ

(5) DAG : (2) + (4)

(6) AHI : A : σ, H : σ = τ, I : τ

(7) AIJ : (6) + τ

(8) GAJ : (5) + (7)

(9) BAJ : (1) + (8)

So ABJ.

Note that we use here B : σ = τ, E : σ = τ, H : σ = τ, whereas the other tripels are used for other functions.

2

Next we show that the full (Loop1) cannot be derived from the basic rules (a) − (d) and (Bin1), and shorter
versions of (Loop1). (This is also a consequence of the sequel, but we want to point it out right away.)

Fact 3.3

Let n ≥ 1, then (Loop1n) does not follow from the rules (a) − (d), (∅), (Bin1), and the shorter versions of
(Loop1)

Proof

Consider the following set of tripels L ∪ L′ over I := {a, b, c, g, d1, . . . , dn} :

L := {abc, acd1, ad1d2, . . . , adidi+1, . . . , adng, agb},

L′ := {∅AB : A ∩B = ∅, A ∪B ⊆ I},

and close this set under symmetry (rule (a)). Call the resulting set A.

Note that, on the outside, we have ∅ or singletons, inside singletons or ∅. If the inside is ∅, one of the outside
sets must also be ∅.

When we look at L, and define a relation < by x < y iff axy ∈ L, we see that the only <-loop is b < c < d1 <

. . . < dn < g < b.

We show first that A is closed under rules (a)− (d) (see Definition 3.3 (page 4)).

(a) is trivial.

(b) If W = ∅ or Z = ∅, this is trivial, if W = Z, this is trivial, too.

(c) If Z ∪W = ∅, this is trivial, if Z ∪W is a singleton, so Z = ∅ or W = ∅ or Z = W. Z = ∅ or W = ∅ are
trivial, otherwise Z =W contradicts disjointness.

(d) Z = ∅ is trivial, so is W = ∅, otherwise Z =W contradicts disjointness.
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(Bin1) X = ∅ or Z = ∅ are trivial, otherwise X = Z is excluded by disjointness. So we are in L′ for Y (XZ)Y ′.

So Y = ∅ or Y ′ = ∅ and it is trivial.

Obviously, (Loop1n) does not hold.

We show now that all (Loop1k), 0 ≤ k < n hold.

We do the case k = 0 first.

Consider ABC,ACG,AGB ⇒ ABG.

If A = ∅ or G = ∅, the condition holds.

So assume A,G 6= ∅. Thus, by above remark, C 6= ∅, and then B 6= ∅. Thus, the prerequisites have to be in
L. Moreover, A has to be a, which is the only element occuring repeatedly on the outside. Consider now a
relation <′ defined by U <′ V iff AUV is among the prerequisites. We then have B <′ C <′ G <′ B, but this
contradicts the fact that the only existing loop goes through all elements. So the prerequisites cannot be all in
L, a contradiction.

Consider the case 0 < k < n.

This has the form ABC,ACD1, AD1D2, . . . , ADkG,AGB ⇒ ABG.

Again, the cases A = ∅ or G = ∅ are obvious, assume A,G 6= ∅. Then Dk 6= ∅, so descending all Di 6= ∅, and
C 6= ∅ and B 6= ∅. Thus, all prerequisites are in L. Defining again a relation <′ as above, we see again that the
resulting <′-loop is too short, and we have again a contradiction.

2

3.3 There is no finite characterization

We turn to our main result.

3.3.1 Discussion

Consider the following simple, short, loop for illustration:

ABC,ACD,ADE,AEF,AFG,AGB ⇒ ABG - so we can turn AGB around to ABG.

Of course, this construction may be arbitrarily long.

The idea is now to make ABG false, and, to make it coherent, to make one of the interior conditions false, too,
say ADE. We describe this situation fully, i.e. enumerate all conditions which hold in such a situation. If we
make now ADE true again, we know this is not valid, so any (finite) characterization must say “NO” to this.
But as it is finite, it cannot describe all the interior tripels of the type ADE in a sufficiently long loop, so we
just change one of them which it does not “see” to FALSE, and it must give the same answer NO, so this fails.

Basically, we cannot describe parts of the loop, as the <||>-language is not rich enough to express it, we see
only the final outcome.

The problem is to fully describe the situation.

3.3.2 Composition of layers

A very helpful fact is the following:

Definition 3.5

Let Σj be function sets over I into some set K, j ∈ J.

Let Σ := { f : I → KJ : f(i) = {〈fj(i), j〉 : j ∈ J, fj ∈ Σj} }.

So any f ∈ Σ has the form f(i) = 〈f1(i), f2(i), . . . , fn(i)〉, fm ∈ Σm (we may assume J to be finite).
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Thus, given f ∈ Σ, fm ∈ Σm is defined.

Fact 3.4

For the above Σ 〈A | B | C〉 holds iff it holds for all Σj .

Thus, we can destroy the 〈A | B | C〉 independently, and collect the results.

Proof

The proof is trivial, and a direct consequence of the fact that f = f ′ iff for all components fj = f ′

j.

Suppose for some Σk, k ∈ J, ¬〈A | B | C〉.

So for this k there are fk, f
′

k ∈ Σk such that fk(B) = f ′

k(B), but there is no f ′′

k ∈ Σk such that f ′′

k (A) = fk(A),
f ′′

k (B) = fk(B) = f ′

k(B), f ′′

k (C) = f ′

k(C) (or conversely). Consider now some h ∈ Σ such that hk = fk, and h
′

is like h, but h′k = f ′

k, so also h′ ∈ Σ. Then h(B) = h′(B), but there is no h′′ ∈ Σ such that h′′(A) = h(A),
h′′(B) = h(B) = h′(B), h′′(C) = h′(C).

Conversely, suppose 〈A | B | C〉 for all Σj . Let h, h
′ ∈ Σ such that h(B) = h′(B), so for all j ∈ J hj(B) = h′j(B),

where hj ∈ Σj , h
′

j ∈ Σj , so there are h′′j ∈ Σj with h′′j (A) = hj(A), h
′′

j (B) = hj(B) = h′j(B), h′′j (C) = h′j(C) for
all j ∈ J. Thus, h′′ composed of the h′′j is in Σ, and h′′(A) = h(A), h′′(B) = h(B) = h′(B), h′′(C) = h′(C).

2

3.3.3 Systematic construction

Recall the general form of (Loop1) for singletons:

abc, acd1, ad1d2, . . . , adi−1di, adidi+1, adi+1di+2, . . . , adn−1dn, adng, agb ⇒ abg

so we turn agb around to abg.

We will fully describe a model of above tripels, with the exception of abg and adidi+1 which will be made to
fail, and all other 〈X | Y | Z〉 which are not in above list of tripels to preserve, will fail, too (except for X = ∅
or Z = ∅).

We use the following fact:

Fact 3.5

Let X ⊆ I, card(X) > 1, ΣX := { σ : I → {0, 1} : card{x ∈ X : σ(x) = 0} is even }

Then ¬ABC iff A ∩X 6= ∅, C ∩X 6= ∅, X ⊆ A ∪B ∪ C.

Proof

“⇐”:

Suppose A ∩X 6= ∅, C ∩X 6= ∅, X ⊆ A ∪B ∪ C.

Take σ such that card{x ∈ X : σ(x) = 0} is odd, then σ 6∈ ΣX . As X 6⊆ A ∪ B, there is τ ∈ ΣX such that
σ ↾ A∪B = τ ↾ A∪B. As X 6⊆ B ∪C, there is ρ ∈ ΣX such that ρ ↾ B ∪C = σ ↾ B ∪C. Thus, τ ↾ B = ρ ↾ B. If
there were α ∈ ΣX such that α ↾ A∪B = τ ↾ A∪B and α ↾ B∪C = ρ ↾ B∪C, then α ↾ A∪B∪C = σ ↾ A∪B∪C,
contradiction

“⇒”:

Suppose A ∩X = ∅ or C ∩X = ∅, or X 6⊆ A ∪B ∪ C. We show ABC.

Case 1: C ∩X = ∅. Let σ, τ ∈ ΣX such that σ ↾ B = τ ↾ B. As C ∩X = ∅, we can continue σ ↾ A∪B as we like.

Case 2, A ∩X = ∅, analogous.

Case 3: X 6⊆ A ∪B ∪ C. But then there is no restriction in A ∪B ∪ C.
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2

We will have to make abg false, but agb true. On the other hand, we will make abd1 false, but ad1b need not
be preserved.

This leads to the following definition, which helps to put order into the cases.

Definition 3.6

Suppose we have to destroy axy. Then

dmin(axy) := min{d({a, x, y}, {a, u, v}) : auv has to be preserved } - d the counting Hamming distance.

Thus, dmin(abg) = 0 (as agb has to be preserved), dmin(abd1) = 1 (because abc has to be preserved, but not
ad1b).

We introduce the following order defined from the loop prerequisites to be preserved.

Definition 3.7

Order the elements by following the string of sequences to be preserved as follows:

di+1 ≺ di+2 ≺ . . . ≺ dn−1 ≺ dn ≺ g ≺ b ≺ c ≺ d1 ≺ d2 ≺ . . . ≺ di−1 ≺ di

Note that the interruption at adidi+1 is crucial here - otherwise, there would be a cycle.

As usual, � will stand for ≺ or = .

3.3.4 The cases to consider

The elements to consider are: a, b, c, g, d1, . . . , dn.

The tripels to preserve are:

P := {abc, acd1, ad1d2, . . . , adi−1di, (BUT NOT adidi+1), adi+1di+2, . . . , adn−1dn, adng, agb}

The 〈X | Y | Z〉 to destroy are (except when X = ∅ or Z = ∅) :

(1) all 〈X || Z〉

(2) all 〈X | Y | Z〉 such that X ∪ Y ∪ Z has > 3 elements

(3) all tripels which do not have a on the outside, e.g. bgc

(4) and the following tripels:

(the (0) will be explained below - for the moment, just ignore it)

abg (0), abd1, . . . , abdn

acb (0), acg, acd2, . . . , acdn

agc, agd1, . . . , agdn (0)

ad1b, ad1c (0), ad1g, ad1d3, . . . , ad1dn

ad2b, ad2c, ad2g, ad2d1 (0), ad2d4, . . . , ad2dn

. . . .

adib, adic, adig, adid1, adid2, . . . , ALSO adidi+1, . . . , adidn

. . . .

adn−1b, adn−1c, adn−1g, adn−1d1, . . . , adn−1dn−2 (0)

adnb, adnc, adnd1, . . . , adndn−1 (0)
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3.3.5 Solution of the cases

We show how to destroy all tripels mentioned above, while preserving all tripels in P.

(1) all 〈X | Y | Z〉 where X ∪ Y ∪ Z has > 3 elements:

See Fact 3.5 (page 9) with the X there with 4 elements, for all such X,Y, Z separately, so all tripels in P
are preserved.

(2) all 〈X | Y | Z〉 with 1 element: -

(3) all 〈X || Z〉 :

This can be done by considering Σj := {0c, 1c}. Then, say for a, c, we have to examine the fragments 00
and 11, but there is no 10 or 01. For 〈a | b | c〉 this is no problem, as we have only the two 000, 111, which
do not agree on b.

(4) all 〈X | Y | Z〉 with 2 elements: eliminated by 〈X || Z〉

(5) all 〈X | Y | Z〉 with 3 elements:

(5.1) a is not on the outside

(5.1.1) a is in the middle, we need ¬xay : Consider Σ with 2 functions, 0c, and the second defined by
a = 0, and all u = 1 for u 6= a. Obviously, ¬xay. Recall that all tripels to be preserved have a on
the outside, and some other element x in the middle. Then the two functions are different on x.

(5.1.2) a is not in xyz, we need ¬xyz : Consider Σ with 2 functions, 0c, and the second defined by
a = y = 0, all u = 1 for u 6= a, u 6= y. As a is neither x nor z, ¬xyz. If some uvw has a on the
outside, say u = a, then both functions are 000 or 0vw on this tripel, so uvw holds.

(5.2) a is on the outside, we destroy ayz :

(5.2.1) Case dmin(ayz) > 0:
Take as Σ the set of all functions with values in {0, 1}, but eliminate those with a = y = z = 0.
Then ¬ayz (we have 100, 001, 101, but not 000), but for all auv with d({a, y, z}, {a, u, v}) > 0
auv has all possible combinations, as all combinations for ay and az exist.

(5.2.2) Case dmin(ayz) = 0.
The elements with dmin = 0 are:
abg, acb, agdn, ad1c, ad2d1, . . . , adidi−1, NOT adi+1di, adi+2di+1, . . . , adndn−1 they were
marked with (0) above.
Σ will again have 2 functions, the first is always 0c.
The second function: Always set a = 1.
We see that the tripels with dmin = 0 to be destroyed have the form ayz, where z is the
immediate ≺-predecessor of y in above order - see Definition 3.7 (page 10). Conversely, those to
be preserved (in P ) have the form azy, where again z is the immediate ≺-predecessor of y.
We set z′ = 1 for all z′ � z, and y′ = 0 for all y′ � y. Recall that z ≺ y, so we have the picture
di+1 = 1, . . . , z = 1, y = 0, . . . , di = 0.
Then ¬ayz, as we have the fragments 000, 101. But azy, as we have the fragments 000, 110.
Moreover, considering the successors of the sequence, we give the values 11, or 10, or 00. This
results in the function fragments for auv as 111, or 110, or 100. But the resulting fragment sets
(together with 0c) are then: {000, 111}, {000, 110}, {000, 100}. They all make auv true. Thus,
all tripels in P are preserved.
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