
HAL Id: hal-00406635
https://hal.science/hal-00406635v4

Preprint submitted on 7 Dec 2009 (v4), last revised 15 Aug 2011 (v10)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Equilibria und weiteres Heiteres
Dov Gabbay, Karl Schlechta

To cite this version:

Dov Gabbay, Karl Schlechta. Equilibria und weiteres Heiteres. 2009. �hal-00406635v4�

https://hal.science/hal-00406635v4
https://hal.archives-ouvertes.fr

Equilibria und weiteres Heiteres

Dov M Gabbay ∗

King’s College, London †

and
Bar-Ilan University, Israel ‡

and
University of Luxembourg §

Karl Schlechta ¶

Laboratoire d’Informatique Fondamentale de Marseille ‖

December 7, 2009

Abstract

We investigate several technical questions.

Contents

1 Introduction 2

2 Equilibrium logic 2

2.1 Semantics and interpolation of many valued logics . 2

2.1.1 Generalization of model sets and (in)essential variables . 2

2.1.2 Implication . 2

2.1.3 Liberation of a variable (generalization of the Cartesian product) . 3

2.2 Some logical results for the base logic Here/There HT . 3

2.2.1 Basic definitions and results . 3

2.2.2 Interpolation . 5

2.3 The equilibrium logic EQ . 8

2.3.1 EQ has no interpolation of the form φ ⊢ α ∼| ψ . 8

2.3.2 EQ has no interpolation of the form φ ∼| α ⊢ ψ . 8

2.3.3 EQ has interpolation of the form φ ∼| α ∼| ψ . 8

2.3.4 Definability of minimal models . 9

3 Countably many disjoint sets 9

4 Operations on logical structures 10

4.1 Introduction . 10

4.1.1 Conditionals . 10

4.2 Theory revision . 11

4.2.1 “Meta-revision” . 11

4.3 Preferential systems . 11

4.3.1 Why does ∼| not modify itself? . 11

4.3.2 (Meta) Operations on logics . 12

4.3.3 Implementation . 12

4.3.4 Operations on linear and ranked structures . 12

4.3.5 Intuitionistic preferential logic . 12

∗Dov.Gabbay@kcl.ac.uk, www.dcs.kcl.ac.uk/staff/dg
†Department of Computer Science, King’s College London, Strand, London WC2R 2LS, UK
‡Department of Computer Science, Bar-Ilan University, 52900 Ramat-Gan, Israel
§Computer Science and Communications, Faculty of Sciences, 6, rue Coudenhove-Kalergi, L-1359 Luxembourg
¶ks@cmi.univ-mrs.fr, karl.schlechta@web.de, http://www.cmi.univ-mrs.fr/ ∼ ks
‖UMR 6166, CNRS and Université de Provence, Address: CMI, 39, rue Joliot-Curie, F-13453 Marseille Cedex 13, France

1

hei 2

4.4 Non-monotonic interpolation . 13

5 Independence and multiplication of abstract size 13

5.1 Definition of independence . 13

5.1.1 Discussion . 14

5.1.2 Independence and multiplication of abstract size . 14

5.2 Multiplication of size for subsets . 15

5.2.1 Properties . 15

5.2.2 Corresponding preferential relations . 16

5.3 Multiplication of size for subspaces . 16

5.3.1 Properties . 16

5.3.2 Corresponding preferential relations . 17

5.3.3 Language change . 19

5.3.4 Interpolation . 19

5.3.5 A relevance problem . 20

5.3.6 Small subspaces . 21

5.3.7 Distance relations . 21

5.3.8 Reactivity and language change . 21

5.4 Summary of properties . 21

6 General semantic interpolation 23

6.1 Introduction . 23

6.1.1 Generalization of model sets and (in)essential variables . 23

6.2 Many-valued propositional interpolation . 23

6.3 Many-valued propositional modal interpolation . 25

6.4 Many-valued first order interpolation . 25

References 25

1 Introduction

We present here various small results, which may one day be published in a bigger paper, and which we wish to make already
available to the community.

2 Equilibrium logic

2.1 Semantics and interpolation of many valued logics

We generalize the concepts and ideas of [GS09c].

2.1.1 Generalization of model sets and (in)essential variables

See GIN.

2.1.2 Implication

We now discuss implication. φ → ψ will, just as any formula, have a certain truth value in a model m. But we can also look only
at the maximal truth value (if there is an order on those values), i.e., we are only interested in those models where φ → ψ has
maximal value. In this case, the interpolation problem is the following:

Suppose φ→ ψ has everywhere maximal truth value v, i.e., fφ→ψ is the constant function v. Find a “simple” formula α, such that
φ → α and α → ψ both have everywhere maximal truth value. “Simple” means here: formulated in the common language of φ
and ψ. In the present and similar cases, there is an order on the set of truth values, and implication respects that order, in the
following sense:

φ→ ψ has maximal truth value inm iff the truth value of φ in m is smaller or equal to the truth value of ψ in m, i.e., fφ(m) ≤ fψ(m).

The semantic version of interpolation is now (the generalization to arbitrary f : M → V is straightforward):

Definition 2.1

hei 3

(1) Given fφ and fψ such that ∀m ∈M(fφ(m) ≤ fψ(m)), in short fφ ≤ fψ, find α such that ∀m ∈M(fφ(m) ≤ fα(m) ≤ fψ(m)), in
short fφ ≤ fα ≤ fψ, where α is “simple” relative to φ and ψ. I.e., α contains only variables common to φ and ψ, or, more robust:
R(α) ⊆ R(φ) ∩R(ψ).

(2) Given arbitrary f, g : M → V such that f ≤ g, find h : M → V such that f ≤ h ≤ g, where h is simple relative to f and g, i.e.,
R(h) ⊆ R(f) ∩R(g).

2.1.3 Liberation of a variable (generalization of the Cartesian product)

In classical logic, we started with a model set Σ (written as a set of sequences), and “liberated” the variables we were not allowed
to use, asdmitting now any value for the liberated variables, i.e., taking the Cartesian product for those variables. E.g, if our model
set contained just the model 〈p, q〉, and we liberated q, the model set was now {〈p, q〉, 〈p,¬q〉}. When we write the first model set
as a function f, the second as a function g, we have:

f(〈p, q〉) = 1, f(〈p,¬q〉) = f(〈¬p, q〉) = f(〈¬p,¬q〉) = 0

g(〈p, q〉) = g(〈p,¬q〉) = 1, g(〈¬p, q〉) = g(〈¬p,¬q〉) = 0

Written otherwise, and in a way we can generalize:

g(m) := sup{f(m′) : m and m′ differ at most on q}

Thus, we define for multi-valued logics:

Definition 2.2

Let f : M → V be any function, x ∈ V. We define

f(x) : ML → V by f(x)(m) := sup{f(m′) : m′ =(x) m}

where =(x) is equality with the possible exception of x.

If f = fφ for some φ, and there is some (usually not unique) φ′ such that fφ′ = fφ,(x), we also write by abuse of language φ(x) for
any such φ′.

THIS DEFINITION DOES NOT WORK

In the classical case, one had to be a model, i.e. max value was taken, as otherwise the product would have been empty. E.g., take
σ |= φ. Then all values for all variables x were max = 1. Here this is not the case, i.e. they can all have value 1 on x, the variable
to be neglected. But we want 2 as neglected value now. What we can do: we take the set X, take the projection on V − {x},
P rox(X) and consider the value of σ ↾ (V − {x}) in Prox(X). As the whole thing is multiplicative, it should work.

Fact 2.1

If φ does not contain the variable x, and validity is defined as ususal by induction on the components, then φ(x) = φ.

Proof

Validity of φ in a model does not depend on the value of x in that model. 2

Remark 2.2

This definition is well-behaved:

(1) x is inessential for f(x), as it should be. But we also had to make sure that we took the right one of such functions, not defined
through the inf, or so.

(2) This works also for things like a ∧ ¬a ∧ b - gives the empty set, or its analogue, i.e. the function which is 0 everywhere.

(3) Consider now classical ∨, for a disjunction of conjunctions. We have fφ∨ψ(m) = sup{fφ(m), fψ(m)}, and thus fφ∨ψ,(x) =
sup{fφ,(x), fψ,(x)}, so ∨ commutes with liberation.

(4) If, in an arbitrary logic with an order on the truth values, ∨ is semantically again the sup, we can do the same as for classical
logic, and work with the disjuncts separately, and put them together at the end.

2

2.2 Some logical results for the base logic Here/There HT

2.2.1 Basic definitions and results

There are 3 truth values, 0, 1, 2, so any model is a function from the set of propositional variables into {0, 1, 2}.

For a model σ, and a propositional variable x, set

σ(x) = 0 iff x holds neither here nor there

σ(x) = 1 iff x holds only there

σ(x) = 2 iff x holds here and there

hei 4

We introduce the operators ¬, ∨, ∧, →, ↔ by their semantic matrices.

Negation:

a ¬a
0 2
1 0
2 0

Implication a→ b :

b 0 1 2
a a→ b
0 2 2 2
1 0 2 2
2 0 1 2

Conjunction a ∧ b :

b 0 1 2
a a ∧ b
0 0 0 0
1 0 1 1
2 0 1 2

Disjunction a ∨ b :

b 0 1 2
a a ∨ b
0 0 1 2
1 1 1 2
2 2 2 2

We can add as derived operator

Equivalence a↔ b :

b 0 1 2
a a↔ b
0 2 0 0
1 0 2 1
2 0 1 2

The following results were checked with a small computer program:

Fact 2.3

(1)

The following formulas are definable with 1 variable a (values given for a). This means, that all formulas φ generated with a single
variable a have a semantic function fφ which is exactly the same as the semantic function of one of the 6 formulas below. Thus,
this set is semantically closed. (And, of course, the 6 formulas below all have different semantic functions.)

a 0 1 2
a 0 1 2
¬a 2 0 0
¬¬a 0 2 2
a→ a 2 2 2

¬(a → a) 0 0 0
¬¬a → a 2 1 2

(2) With 2 variables a, b are definable, using the operators ¬,→, ∧, ∨, 174 semantically different formulas. ∨ is not needed, i.e. with

or without ∨ we have the same set of definable formulas. We have, e.g., a∨ b ↔
((

b→ (¬¬a → a)
)

→
(

(¬a→ b)∧ (¬¬a→ a)
))

.

(3) With the operators ¬, ∧, ∨ only are 120 semantically different formulas definable. Thus, → cannot be expressed by the other
operators.

Fact 2.4

The following semantic equivalences hold:

(Note: all except (14) hold also for 4 and 6 truth values, so probably for arbitrarily many truth values, but this is not checked so
far.)

Triple negation can be simplified:

(1) ¬¬¬a ↔ ¬a

Disjunction and conjunction combine classically:

(2) ¬(a ∨ b) ↔ ¬a ∧ ¬b

(3) ¬(a ∧ b) ↔ ¬a ∨ ¬b

(4) a ∧ (b ∨ c) ↔ (a ∧ b) ∨ (a ∧ c)

(5) a ∨ (b ∧ c) ↔ (a ∨ b) ∧ (a ∨ c)

hei 5

Implication can be eliminated from combined negation and implication:

(6) ¬(a → b) ↔ ¬¬a ∧ ¬b

(7) (a → ¬b) ↔ (¬a ∨ ¬b)

(8) (¬a → b) ↔ (¬¬a ∨ b)

Implication can be put inside when combined with ∧ and ∨ :

(9) (a ∨ b→ c) ↔ ((a → c) ∧ (b→ c))

(10) (a ∧ b→ c) ↔ ((a→ c) ∨ (b→ c))

(11) (a→ b ∧ c) ↔ ((a→ b) ∧ (a → c))

(12) (a→ b ∨ c) ↔ ((a→ b) ∨ (a → c))

Nested implication can be flattened:

(13) (a→ (b→ c)) ↔ ((a ∧ b→ c) ∧ (a ∧ ¬c → ¬b))

(14) ((a→ b) → c) ↔ ((¬a → c) ∧ (b→ c) ∧ (a ∨ ¬b ∨ c))

(Thanks to D.Pearce for (14) and other help.)

2.2.2 Interpolation

Normal form

Fact 2.5

Every formula φ can be transformed into a semantically equivalent formula ψ of the following form:

(1) ψ has the form φ1 ∨ . . . ∨ φn

(2) every φi has the form φi,1 ∧ . . . ∧ φi,m

(3) every φi,m has one of the following forms:

p, or ¬p, or ¬¬p, or p→ q - where p and q are propositional variables.

Proof

The numbers refer to Fact 2.4 (page 4).

We first push ¬ downward, towards the interior:

• ¬(φ ∧ ψ) is transformed to ¬φ ∨ ¬ψ by (3).

• ¬(φ ∨ ψ) is transformed to ¬φ ∧ ¬ψ by (2).

• ¬(φ→ ψ) is transformed to ¬¬φ ∧ ¬ψ by (6).

We next eliminate any φ→ ψ where φ and ψ are not propositional variables:

• ¬φ→ ψ is transformed to ¬¬φ ∨ ψ by (8).

• φ ∧ φ′ → ψ is transformed to (φ→ ψ) ∨ (φ′ → ψ) by (10).

• φ ∨ φ′ → ψ is transformed to (φ→ ψ) ∧ (φ′ → ψ) by (9).

• (φ→ φ′) → ψ is transformed to (¬φ → ψ) ∧ (φ′ → ψ) ∧ (φ ∨ ¬φ′ ∨ ψ) by (14).

• φ→ ¬ψ is transformed to ¬φ ∨ ¬ψ by (7).

• φ→ ψ ∧ ψ′ is transformed to (φ→ ψ) ∧ (φ→ ψ′) by (11).

• φ→ ψ ∨ ψ′ is transformed to (φ→ ψ) ∨ (φ→ ψ′) by (12).

• φ→ (ψ → ψ′) is transformed to (φ ∧ ψ → ψ′) ∧ (φ ∧ ¬ψ′ → ¬ψ) by (13).

Finally, we push ∧ inside:

φ ∧ (ψ ∨ ψ′) is transformed to (φ ∧ ψ) ∨ (φ ∧ ψ′) by (4).

2

Liberating a variable We turn to liberating a propositional variable x.

Given φ, what is φ(x), i.e., do we find φ′ such that fφ(x)
:= f(φ(x)) = fφ′?

Fact 2.6

(1) If φ = φ′ ∨ φ′′, and φ′(x), φ
′′

(x) both exist, then so does φ(x), and φ(x) = φ′(x) ∨ φ
′′

(x).

(2) If φ = φ′ ∧ φ′′, φ′(x) exists, and φ′′ does not contain x, then φ(x) exists, and φ(x) = φ′(x) ∧ φ
′′.

hei 6

Table 1: Table Neglecting a variable
Neglecting a variable

φ neglected φ(x)

variable(s)
a→ b a TRUE
a→ b b TRUE

a ∧ (a→ b) a b
¬a ∧ (a→ b) a TRUE
¬¬a ∧ (a → b) a ¬¬b

(a→ b) ∧ b b TRUE
(a → b) ∧ ¬b b ¬a
(a→ b) ∧ ¬¬b b TRUE

(a→ b) ∧ (b→ c) a b→ c
(a→ b) ∧ (b→ c) b a→ c
(a→ b) ∧ (b→ c) c a→ b

(a→ b) ∧ (b→ c) ∧ (b→ d) b (a→ c) ∧ (a→ d)
(a→ b) ∧ (b→ c) ∧ b b (a → c) ∧ c

(a→ b) ∧ (b→ c) ∧ (c→ d) a, b a→ d
(c→ a) ∧ (a→ b) ∧ (b→ d) ∧ b ∧ ¬a a, b (c → d) ∧ d ∧ ¬c

(b→ a) ∧ (a→ c) ∧ (d→ a) ∧ (a→ e) a b ∨ d→ c ∧ e
(b ∨ d→ a) ∧ (a→ c ∧ e) a b ∨ d→ c ∧ e

Proof

(1) We have to show fφ(x)
= f(φ′

(x)
∨φ′′

(x)
).

By definition of validity of ∨, we have f(φ′

(x)
∨φ′′

(x)
)(m) = sup{fφ′

(x)
(m), fφ′′

(x)
(m)}. fφ(x)

(m) := sup{fφ(m′) : m′ =(x) m}, so

f(φ′

(x)
∨φ′′

(x)
)(m) = sup{sup{fφ′(m′) : m′ =(x) m}, sup{fφ′′(m′) : m′ =(x) m}} = sup{sup{fφ′(m′), fφ′′(m′)} : m′ =(x) m} = (again

by definition of validity of ∨) sup{fφ′∨φ′′(m′) : m′ =(x) m} = sup{fφ(m′) : m′ =(x) m} = f(φ(x))(m).

(2) We have to show fφ(x)
= f(φ′

(x)
∧φ′′

(x)
). By definition of validity of ∧, we have f(φ′

(x)
∧φ′′

(x)
)(m) = inf{fφ′

(x)
(m), fφ′′

(x)
(m)}. So

f(φ′

(x)
∧φ′′

(x)
)(m) = inf{sup{fφ′(m′) : m′ =(x) m}, sup{fφ′′(m′) : m′ =(x) m}} = (as φ′′ does not contain x) inf{sup{fφ′(m′) :

m′ =(x) m}, fφ′′(m)} = sup{inf{fφ′(m′), fφ′′(m)} : m′ =(x) m} = (again by definition of validity of ∧, and by the fact that φ′′

does not contain x) sup{fφ′∧φ′′(m′) : m′ =(x) m} = sup{fφ(m′) : m′ =(x) m} = f(φ(x))(m).

2

Thus, we can calculate disjunctions separately, and also conjunctions, as long as they have no variables in common. In classical
logic, we are finished, as we can break down conjunctions into parts which have no variables in common. The problem here are
formulas of the type a → b, as they may have variables in common with other conjuncts, and, as we saw in Fact 2.3 (page 4) (2)
and (3), they cannot be eliminated.

We have to consider situations like (a → b) ∧ (b→ c), a ∧ (a→ b), etc.

Table 2.2.2 (page 6) presents some results, calculated by computer. The left hand column gives the fomula φ, the center column
the neglected variable x, and the right hand column φ(x), or φ(x,y), when we neglected two variables.

We tested that these projections hold for 3, 4, 6 truth values. Probably they will hold for arbitrarily many truth values. (TRUE
is the maximal truth value.)

We turn to the general situation.

A variable a may occur in the following way:

(1) a

(2) ¬a

(3) ¬¬a

(4) a→ b

(5) b→ a

(6) and any finite combinations of the above

To do as many cases together as possible, it is useful to use Fact 2.4 (page 4) (9) and (11) backwards, to obtain general formulas.
We then see that the cases to examine are of the form:

φ = ((b1 ∨ . . . ∨ bn) → a) ∧ (a → (c1 ∧ . . . ∧ cm)) ∧ σa ∧ τa,

where n,m may be 0, and σ, τ are absence (∅, no a), 1a = a, ¬a, or ¬¬a.

First, we may simplify, as σa ∧ τa is equivalent to some σ′a, where σ′a may also be FALSE. Morever, and a→ a may be replaced
by TRUE, i.e. omitted.

hei 7

Conjecture

(1) If σ′a = FALSE, then φ(a) = FALSE.

Assume now that σ′a is consistent.

(2) If n = m = 0, then φ(a) = TRUE.

(3) If n = 0, and σ′a = a, then φ(a) = c1 ∧ . . . ∧ cm.

(4) If n = 0, and σ′a = ¬¬a, then φ(a) = ¬¬c1 ∧ . . . ∧ ¬¬cm.

(5) If n = 0, and σ′a = ¬a or σ′a = TRUE, then φ(a) = TRUE.

(7) If m = 0, and σ′a = a or σ′a = TRUE, then φ(a) = TRUE.

(8) If m = 0, and σ′a = ¬¬a, then φ(a) = TRUE.

(9) If m = 0, and σ′a = ¬a, then φ(a) = ¬¬b1 ∧ . . . ∧ ¬¬bn.

Suppose now in addition that n,m 6= 0.

(10) If σ′a = TRUE, then φ(a) = (b1 ∨ . . . ∨ bn) → (c1 ∧ . . . ∧ cm).

(11) If σ′a = a, then φ(a) = ((b1 ∨ . . . ∨ bn) → (c1 ∧ . . . ∧ cm)) ∧ (c1 ∧ . . . ∧ cm).

(12) If σ′a = ¬¬a, then φ(a) = ((b1 ∨ . . . ∨ bn) → (c1 ∧ . . . ∧ cm)) ∧ (¬¬c1 ∧ . . . ∧ ¬¬cm).

(13) If σ′a = ¬a, then φ(a) = ((b1 ∨ . . . ∨ bn) → (c1 ∧ . . . ∧ cm)) ∧ (¬c1 ∨ . . . ∨ ¬cm).

Remark 2.7

We cannot improve the value of φ→ ψ by taking a detour φ→ α1 → . . .→ αn → ψ because the destination determines the value:
in any column of →, there is only max and a constant value. And if we go further down than needed, we get only worse, going
from right to left deteriorates the values in the lines. 2

We can achieve this also as follows:

We close under the following rules:

(1) → under transitivity, i.e.

((b1 ∨ . . . ∨ bn) → a) ∧ (a→ (c1 ∧ . . . ∧ cm)) ⇒ ((b1 ∨ . . . ∨ bn) → (a→ (c1 ∧ . . . ∧ cm))

(2) σ′a and → as follows:

((b1 ∨ . . . ∨ bn) → a) ∧ (a→ (c1 ∧ . . . ∧ cm)), a ⇒ c1 ∧ . . . ∧ cm

((b1 ∨ . . . ∨ bn) → a) ∧ (a→ (c1 ∧ . . . ∧ cm)), ¬¬a ⇒ ¬¬c1 ∧ . . . ∧ ¬¬cm

((b1 ∨ . . . ∨ bn) → a) ∧ (a→ (c1 ∧ . . . ∧ cm)), ¬a ⇒ ¬b1 ∧ . . . ∧ ¬bn
and finally erase all formulas containing a.

For transitivity of the implication: look where the sup exists. if value(b) ≤ value(c), then the max is clear Otherwise, look at the
cases.

The other cases must be similar.

It seems that we can close first under the following operations, and then just forget the formulas, where the neglected variables are:

a ∧ (a→ b) ⇒ b

¬¬a ∧ (a → b) ⇒ ¬¬b

(a→ b) ∧ ¬b ⇒ ¬a

(a→ b) ∧ (b→ c) ⇒ a→ c

Once these formulas are added, just omit the formulas with the variable in question inside. This is the description of the generalized
product.

We do this for all variables first, so even if we treat a, and then b, and have erased a→ b without trace for a, the perhaps needed
trace for b is still there.

This allows us probably to use Fact 3.1 (semantic interpolation) of [GS09c], and transform it into syntactic interpolation. (The
result is known, we just give our proof.)

Let ψ be the new conjunction, resulting from the old formula φ.

We have to prove that above construction satisfies the sup-condition (SUP), i.e. that fψ = fφ,(x) = sup{fφ(m′) : m′ =(x) m}.

We also have to show that we can do this simultaneously for several variables, perhaps it suffices to show that the order in which
we do it does not matter.

hei 8

2.3 The equilibrium logic EQ

See [PV09] for the background.

Definition 2.3

(1) A model m is total iff no value of any variable in m is 1.

(2) m ≺ m′ iff there is a variable a such that m′(a) = 2, m(a) = 1.

(σ ≺ τ iff T is preserved, and H goes down. Thus, only changes from 2 to 1 are possible when σ ≺ τ.)

(3) m ∈ X is an equilibrium model of X iff m is total, and there is no m′ ≺ m, m′ ∈ X.

(4) η(X) will be the set of equilibrium models of X.

Remark 2.8

Consequently, we have a sort of “anti-smoothnes”: if a model is not minimal, then any model below it is NOT chosen.

Fact 2.9

It is not necessary to make it uniform, we can also just distinguish cases.

Definability of EQ models for a formula φ :

(1) φ has ¬a models, then φ ∧ ¬a defines this part.

(2) φ has ¬¬a models, but there is a model of value 1 for a, then φ ∧ ¬a defines this part.

(3) φ has no model with value 1 for a: then φ itself defines the EQ models of φ.

2.3.1 EQ has no interpolation of the form φ ⊢ α ∼| ψ

Example 2.1

Work with 3 variables, a, b, c.

Consider Σ := {〈0, 2, 2〉, 〈2, 1, 0〉, 〈2, 2, 0〉}.

By the above, and classical behaviour of “or” and “and”, Σ is definable by (¬a ∧ b ∧ c) ∨ (a ∧ ¬¬b ∧ ¬c).

Note that 〈2, 2, 0〉 is total, but 〈2, 1, 0〉 ≺ 〈2, 2, 0〉, thus µ(Σ) = {〈0, 2, 2〉}.

So Σ ∼| c = 2 (or Σ ∼| 2c). Let X ′ := {a, b}, X ′′ := {c}.

All possible interpolants Γ must not contain a or b as essential variables, and they must contain Σ. The smallest candidate Γ is
ΠX ′ × {0, 2}. But σ := 〈0, 0, 0〉 ∈ Γ, σ is total, and there cannot be any τ ≺ σ, so σ ∈ µ(Γ), so Γ 6∼| c = 2.

For completeness’ sake, we write all elements of Γ :

〈0, 0, 0〉 〈0, 0, 2〉

〈0, 1, 0〉 〈0, 1, 2〉

〈0, 2, 0〉 〈0, 2, 2〉

〈1, 0, 0〉 〈1, 0, 2〉

〈1, 1, 0〉 〈1, 1, 2〉

〈1, 2, 0〉 〈1, 2, 2〉

〈2, 0, 0〉 〈2, 0, 2〉

〈2, 1, 0〉 〈2, 1, 2〉

〈2, 2, 0〉 〈2, 2, 2〉

Recall that no sequence containing 1 is total, and when we go from 2 to 1, we have a smaller model. Thus, µ(Γ) = {〈0, 0, 0〉, 〈0, 0, 2〉}.

2.3.2 EQ has no interpolation of the form φ ∼| α ⊢ ψ

Example 2.2

Consider 2 variables, a, b, and Σ := {0, 2} × {0, 1, 2}

No σ containing 1 can be in µ(Σ), as a matter of fact, µ(Σ) = {〈0, 0〉, 〈2, 0〉}. Σ is defined by a∨¬a, µ(Σ) is defined by (a∨¬a)∧¬b.

So we have a ∨ ¬a ∼| b ∨ ¬b, even a ∨ ¬a ∼| ¬b.

The only possible interpolants are TRUE or FALSE. a ∨ ¬a 6∼| FALSE, and TRUE 6⊢ ¬b.

2.3.3 EQ has interpolation of the form φ ∼| α ∼| ψ

We give a rough argument for the semantic version, but we do not know whether the set in question is definable.

We consider φ ∼| ψ.

Let X ′ be the variables not in ψ, X ′′ the others.

Fact 2.10

hei 9

Let µ(Σ) 6= ∅. Let Π′ := ΠX ′.

µ(Π′ × µ(Σ) ↾ X ′′) ↾ X ′′ = µ(Σ) ↾ X ′′

Proof

Let σ ∈ µ(Σ). Consider τ s.t. σ ↾ X ′′ = τ ↾ X ′′, τ(x) = 0 elsewhere. As σ ∈ µ(Σ), τ ∈ µ(Π′ × µ(Σ) ↾ X ′′).

Conversely, let σ ∈ µ(Π′ × µ(Σ) ↾ X ′′), then σ ↾ X ′′ ∈ µ(Σ) ↾ X ′′

The reason for both is that we look at the coordinates independently.

2

Corollary 2.11

Π′ × µ(Σ) ↾ X ′′ is a semantical interpolant for φ ∼| ψ.

Is it definable? See below.

Proof

Suppose it is definable by α.

µ(Σ) ⊆ Π′ × µ(Σ) ↾ X ′′, so φ ∼| α.

By prerequisite, µ(Σ) ⊆M(ψ), and ψ contains no x′ ∈ X ′ as relevant variable, so M(ψ) can be written as Π′×Γ for some Γ ⊆ ΠX ′′.
µ(Π′ × µ(Σ) ↾ X ′′) ↾ X ′′ = µ(Σ) ↾ X ′′, so µ(Π′ × µ(Σ) ↾ X ′′) ⊆ ΠX ′ × (µ(Π′ × µ(Σ) ↾ X ′′) ↾ X ′′) = Π′ × (µ(Σ) ↾ X ′′) ⊆ Π′ × Γ =
M(ψ), as µ(Σ) ⊆ Π′ × Γ. Thus α ∼| ψ.

2.3.4 Definability of minimal models

Perhaps we can do like for base logic.

Consider
∨∧

again, and a conjunction.

If a is only in a→ b or b→ a : make a, b wrong (a = b = 0).

If a is alone: a = 2 (prerequisite, look at models where φ = 2)

If ¬a is alone: a = 0

If ¬¬a is alone: FALSE = a ∧ ¬a

If (a→ b) ∧ a : a = b = 2

If (a→ b) ∧ ¬a : a = b = 0

If (a→ b) ∧ a¬¬ : FALSE

If (a→ b) ∧ b : a = 0, b = 2

If (a→ b) ∧ ¬b : a = b = 0

If (a→ b) ∧ ¬¬b : FALSE

Perhaps this solves the thing.

Remark 2.12

By Fact 2.9 (page 8), EQ-models of φ are definable with a formula (in the finite case). The technique to go from EQ models to the
interpolant is the same as for the HT logic. So the interpolant is definable, too. 2

3 Countably many disjoint sets

We show here that - independent of the cardinality of the language - one can define only countably many inconsistent formulas.

The question is due to D.Makinson (personal communication).

Example 3.1

There is a countably infinite set of formulas s.t. the defined model sets are pairwise disjoint.

Let pi : i ∈ ω be propositional variables.

Consider φi :=
∧

{¬pj : j < i} ∧ pi for i ∈ ω.

Obviously, M(φi) 6= ∅ for all i.

Let i < i′, we show M(φi) ∩M(φi′) = ∅. M(φi′) |= ¬pi, M(φi) |= pi.

hei 10

2

Fact 3.1

Any set X of consistent formulas with pairwise disjoint model sets is at most countable.

Proof

Let such X be given.

(1) We may assume that X consists of conjunctions of propositional variables or their negations.

Proof: Re-write all φ ∈ X as disjunctions of conjunctions φj . At least one of the conjunctions φj is consistent. Replace φ by one
such φj . Consistency is preserved, as is pairwise disjointness.

(2) Let X be such a set of formulas. Let Xi ⊆ X be the set of formulas in X with length i, i.e. a consistent conjunction of i many
propositional variables or their negations, i > 0.

As the model sets for X are pairwise disjoint, the model sets for all φ ∈ Xi have to be disjoint.

(3) It suffices now to show that each Xi is at most countable, we even show that each Xi is finite.

Proof by induction:

Consider i = 1. Let φ, φ′ ∈ X1. Let φ be p or ¬p. If φ′ is not ¬φ, then φ and φ′ have a common model. So one must be p, the other
¬p. But these are all possibilities, so card(X1) is finite.

Let the result be shown for k < i.

Consider now Xi. Take arbitrary φ ∈ Xi. Wlog, φ = p1 ∧ . . . ∧ pi. Take arbitrary φ′ 6= φ. As M(φ) ∩M(φ′) = ∅, φ′ must be a
conjunction containing one of ¬pk, 1 ≤ k ≤ i. Consider now Xi,k := {φ′ ∈ Xi : φ′ contains ¬pk}. Thus Xi = {φ}∪

⋃

{Xi,k : 1 ≤ k ≤
i}. Note that all ψ, ψ′ ∈ Xi,k agree on ¬pk, so the situation in Xi,k is isomorphic to Xi−1. So, by induction hypothesis, card(Xi,k) is
finite, as all φ′ ∈ Xi,k have to be mutually inconsistent. Thus, card(Xi) is finite. (Note that we did not use the fact that elements
from different Xi,k, Xi,k′ also have to be mutually inconsistent, our rough proof suffices.)

2

Note that the proof depends very little on logic. We needed normal forms, and used 2 truth values. Obviously, we can easily
generalize to finitely many truth values.

4 Operations on logical structures

4.1 Introduction

In many cases, one wants more than a static structure:

(1) dynamic theory revision a la Pearl etc.

(2) revising a preferential logic

(3) changing the language in interpolation

(4) intuitionistic preferential logic: arrows are added

etc.

One can ask about such “meta-operations” for instance:

(1) are properties preserved, e.g. is the result of working on a ranked structure again a ranked struture?

(2) do we lose properties?

(3) do we win new properties?

(4) is it reasonable to require higher operators to follow the same laws as the basic operators, e.g. minimal change, and if so, e.g.
minimal change of what?

(5) what can be a structural semantics for such higher operators?

4.1.1 Conditionals

A > B may mean: A becomes true (in the world), or the agent learns/believes A then: B becomes true, or the agent believes B, or
the agent does B, or the agent brings B about, or so. Similarly, ternary conditionals (A,B) > C can have very different meanings,
and their formal properties may reflect this.

hei 11

4.2 Theory revision

4.2.1 “Meta-revision”

AGM left K (A below) constant, and this may have contributed to subsequent confusion.

One sees sometimes a conditional B > C expressing that after revising with B, C will hold.

But this hides the fact that it is in reality a 3-place conditional:

(A,B) > C: after revising A with B, C will hold, A ∗B |= C

A,B, etc. are formulas, i.e. partial information.

(A,B) > C is partial information about the revision strategy, it describes just a bit of the whole picture. In the LMS tradition,
see [LMS01], a revision strategy is just a distance between models. So (A,B) > C describes one part of the distance.

Thus, (A,B) > C is a partial revision strategy, or a set of distances which are compatibel with (A,B) > C, just as a formula is a
set of models.

But now, we have a perfect analogy:

We had A ∗B |= C for formulas A,B,C, and now we can revise partial strategies:

((A,B) > C, (A′, B′) > C′) >> (A′′, B′′) > C′′, i.e.

if we revise the partial strategy (A,B) > C with the partial strategy (A′, B′) > C′, then the new strategy gives (A′′, B′′) > C′′.
>> is the “meta-conditional”.

It all becomes transparent, and we can iterate the whole thing as often as we want.

In the distance language, we have a set of distances on models which all satisfy (A,B) > C, i.e. the B−models closest to the
A−models all satisfy C, and another set of distances which all satisfy (A′, B′) > C′, we revise the first with the second using a
“meta-distance” (a distance on the set of all distances between models of the base language), and get a new set of distances which
all satisfy (A′′, B′′) > C′′. If the first two sets are consistent, i.e. there is a distance which satisfies (A,B) > C and (A′, B′) > C′,
then the result is the intersection of the two distance sets. This corresponds, as usual, to the respect of 0 by a distance: d(x, y) = 0
iff x = y. Of course, we can consider here special distances like variants of the Hamming distance, working on a suitable set.

Of course, just as a formula may correspond to exactly 1 model, i.e. a complete consistent theory, we may also work with ∗ (i.e.
the full revision strategy) instead of with (A,B) > C. So we may have (∗, ∗′) >> ∗′′. Still, as shown in [LMS01], the distance will
usually not be fully determined, so we still work with sets of distance.

Note that we can also construct mixed systems, which allow to evaluate expressions like (A, (B,C) > D) > E, where factual
information/models are mixed with conditional structures - this might be needed e.g. for natural language. We can go as high as
we want, or even go down, evaluating “on the fly”.

One problem is TR (global distances). The CFC approach will not work, as we cannot consider the left hand side individually.
We have to express it via quantifiers (modal operators). We have to say x ∈ X is such that there is y ∈ Y s.t. for no x′ ∈ X,
y′ ∈ Y d(x′, y′) < d(x, y). We use global modality. Let X be defined by φ, Y by ψ, then 3ψ¬(3φ3ψ〈x′, y′, x, y〉) where 〈x′, y′, x, y〉
expresses that d(x′, y′) < d(x, y) (axiomatize suitably so it is a distance). Etc, should work?

The distance need not be defined everywhere, so it may return “unknown”.

Pearl et al. For Pearl et al. (see [DP94]), Boutilier (see [Bou94]), and Kern-Isberner (see [Ker99]), an epistemic state E is a
pair (B, C), where B is a set of beliefs (classical formulas), and C a (perhaps partial) revision strategy coded by a set of conditionals,
whose elements are classical formulas. In our terminology such an conditional will have the form (

∧

B, A) > C, where
∧

B is the
conjunction of factual beliefs, A,C are classical formulas, expressing: On the basis of B, if I were to learn A, then I would believe
C.

Pearl’s criticism of the AGM approach was that revising an epistemic state by some factual information A should not only modify
factual beliefs, i.e. B, but also the revision strategy C. Pearl et al. gave some conditions this modification of C should satisfy.

In our above notation, we then have E ∗ A = (B, C) ∗ A = (B′, C′) = E ′, where C determines the modification of B to C (by the
conditionals A > X), but not the modification of C to C′.

Boutilier, see [Bou94], and Kern-Isberner, see [Ker99], extended this idea to revising epistemic states not only by factual information,
but also by conditional information. (Kern-Isberner codes factual information X by the conditional TRUE > X, and thus avoids
a distinction between the two.)

So we have E ∗ C = (B, C) ∗ (X > Y) = (B′, C′) = E ′.

Revising by the factual conditional X > Y imposes restrictions also on the transformation of C to C′.

4.3 Preferential systems

4.3.1 Why does ∼| not modify itself?

We saw in Section 4.2 (page 11) how Pearl et al. introduced a revision operator ∗ whose application changes (the conditional part
of) ∗ itself.

The question is obvious: Is there a logical formalism ∼| which, applied to some formula φ, will not only produce a consequence ψ,
but also a new logic ∼| ′?

To the authors’ knowledge, this does not exist.

We may use Gabbay’s idea of reactivity to build such a logic: applying the logic changes it - this would give a formal motivation
to the enterprise, from the other side, so to say.

hei 12

In more detail: simple arrows obey the fundamental law of preferential structures. Adding higher arrows allows us to restrict from
above, and thus describe any set, in a static way, see [GS08b]. So we can describe M(φ). When we “activate” now M(φ), we use
higher arrows to modify the basic preferential relation.

4.3.2 (Meta) Operations on logics

It is natural to consider the operations of deduction and revision on logical systems.

Given some logical system ∼| , we might deduce a new logic ∼| ′ from it and some formula φ, i.e. φ ∼| (ψ, ∼| ′). E.g., ∼| ′ might be
weaker than ∼| (this corresponds to classical logic, which is weakening), or we might deduce a new, bolder logic, corresponding to
a more daring reasoning (this corresponds to non-monotonic logic, where we go beyond classical logic, win more conclusions, at the
price of less certainty).

Perhaps even more useful, we may see that our logic does not give the desired conclusions, and may want to revise it, by some
minimal change which obtains the desired result.

As in the case of theory revision, we can take as arguments the whole logic ∼| , or just one or some pairs (φ, ψ) with φ ∼| ψ. For
instance, we might want to revise ∼| with some new pair (φ, ψ), and see whether φ′ ∼| ′ψ′ holds in the new logic ∼| ′.

4.3.3 Implementation

Usually, working on the semantic side is easier. There are different ways to do it.

(1) We can work with canonical structures (if they exist) - this may generate different results when we consider different structures
as canonical. (This was a problem with [ALS98-1].)

(2) We can work with the set of all structures corresponding to the logic, e.g. all preferential structures generating the logic

(3) We can work with the algebraic semantics, i.e. usually with the smallest set of the filter, corresponding to µ(φ), the set of
minimal models of φ.

(4) The reactive idea was carried out in [GS08b], where we modified preferential structures by adding higher order arrows. There,
the view was static, but we can turn it dynamic to achieve revision and “meta-logic”.

Algebraic semantics As the algebraic semantics usually is the most robust notion, this is perhaps the easiest to work with.

For each φ, µ(φ) is defined. So a natural distance between ∼| and ∼| ′ is the set of φ where µ(φ) 6= µ′(φ), and for each such φ the
symmetrical set distance between µ(φ) and µ′(φ). This gives a distance based revision of ∼| to ∼| ′.

For a “meta-logic”, we can as usual consider a preference relation between logics (which are now simple objects, just as classical
models, given by their µ(φ) for all φ), and work with the algebraic representation results of the second author, see e.g. [Sch04].

Structural semantics It is natural to define a distance between two preferential structures by looking at the arrow sets, or
sets of pairs 〈m,m′〉, such that m ≺ m′. Again, some Hamming distance would be a first answer.

We treated one technique of modifying general (and smooth) preferential structures in [GS08b].

4.3.4 Operations on linear and ranked structures

Making a linear or ranked structure simply reactive will usually result in a mess, where the central properties of such structures
are destroyed.

It seems more reasonable to investigate operations which leave the structure more intact, and postpone questions about their
realization.

We may consider here operations which

(1) cut the linear or ranked structure in two parts, such that within in each part the structure stays as it was, and the two parts
are incomparable (they look a bit like a tree trunk, which was cut with a saw in 2 parts)

(2) do elementary exchange operations (permutations) in the case of linear orders.

(3) for ranked structures, we may have an operation α(x, y), which puts x on y’s level, β(x, y) which changes the levels of x and
y, etc.

4.3.5 Intuitionistic preferential logic

We are not sure about all arrows. Some arrows are definitely there, others definitely out, some come and go.

We have successively better information about arrows, and thus about size. Int. rules about size.

The following seems new: We do not only have 2(φ ∼| ψ), but also 2¬(φ ∼| ψ). This has to be treated, especially for ranked
structures.

hei 13

4.4 Non-monotonic interpolation

We investigated non-monotonic interpolation in [GS09c].

The main property needed can be summarized as follows:

Let X be a set, and X ′ ∪X ′′ = X be a disjoint cover of X. Consider Σ ⊆ ΠX. Suppose µ(Σ) ⊆ Σ′, where the variables defining Σ′

are all in X ′′. We now have to consider µ(ΠX ′ ×Σ′′), where Σ′′ = Σ ↾ X ′′, the restriction of Σ to X ′′. We want µ(ΠX ′ ×Σ′′) ⊆ Σ′,
this gives the desired interpolation.

Formally:

(µ ∗ 3) µ(Π′ × Σ′′) ↾ X ′′ ⊆ µ(Σ) ↾ X ′′.

The point here is that, logically, only the X ′′−part matters, as Σ′ is the full product on X ′ : Σ′ = ΠX ′ × (Σ′ ↾ X ′′). When we go
from µ(Σ) to µ(∆), where ∆ := ΠX ′ × Σ′′, ∆ is bigger than Σ in the X ′−part, and identical in the X ′′−part. So increasing Σ
outside X ′′ does not increase µ(Σ) inside X ′′.

The (set variant) of the Hamming order satisfies this property: If σ = σ′ ◦σ′′, τ = τ ′ ◦ τ ′′ (◦ is concatenation), then σ ≺ τ iff σ′ ≺ τ ′

and σ′′ ≺ τ ′′. Thus, if e.g. σ, τ ∈ Σ, σ′′ ≺ τ ′′, but τ ′ ≺ σ′, then τ may be minimal, but adding ρ′ ◦ σ′′ with ρ′ ≺ τ ′ will eliminate τ.

This behaviour motivates the following reflections:

(1) This condition (µ ∗ 3) points to a weakening of the Hamming condition:

Adding new “branches” in X ′ will not give new minimal elements in X ′′, but may destroy other minimal elements in X ′′.
This can be achieved by a sort of semi-rankedness: If ρ and σ are different only in the X ′−part, then τ ≺ ρ iff τ ≺ σ, but not
necessarily ρ ≺ τ iff σ ≺ τ.

(2) In more abstract terms:

When we separate support from attack (support: a branch σ′ in X ′ supports a continuation σ′′ in X ′′ iff σ ◦ σ′′ is minimal,
i.e. not attacked, attack: a branch τ in X ′ attacks a continuation σ′′ in X ′′ iff it prevents all σ ◦ σ′′ to be minimal), we see
that new branches will not support any new continuations, but may well attack continuations.

More radically, we can consider paths σ′′ as positive information, σ′ as potentialy negative information. Thus, Π′ gives
maximal negative information, and thus smallest set of accepted models.

The concept of size looks only at the result of support and attack, so it is necessarily somewhat coarse. Future research should
also investigate both concepts separately.

(3) We can interpret this as follows:

(1) X ′′ determines the base set.

(2) X ′ is the context. The context determines the choice (i.e. a subset of the base set).

(3) When we compare this to preferential structures, we see that also in preferential structures the bigger the set, the more
attacks are possible.

We broaden these considerations:

(1) Following a tradition begun by Kripke, one has added structure to the set of classical models, reachability, preference, etc.
Perhaps one should emphasize a more abstract approach, in the line of [Sch92], and elaborated in [Sch04], see in particular
the distinction between structural and algebraic semantics in the latter. So we should separate structure from logic in the
semantics, and treat what we called context above by a separate “machinery”. Thus, given a set X of models, we have some
abstract function f, which chooses the models where the consequences hold, f(X).

(2) Now, we can put into this “machinery” whatever we want, e.g. the abstract choice function of preferential structures.

(3) But we can also investigate non-static f, where f changes in function of what we already did - “reacting” to the past.

(4) We can also look at properties of f, like complexity, generation by some simple structure like a simple automaton, etc.

(5) So we advocate the separation of usual, classical semantics, from the additional properties, which are treated “outside”.

5 Independence and multiplication of abstract size

5.1 Definition of independence

hei 14

Diagram 5.1

Σ1

Σ2

Σ1 ◦ Σ2

f(Σ1)

f(Σ2)

f(Σ1 ◦ Σ2) = f(Σ1) ◦′ f(Σ2)

Note that ◦ and ◦
′ might be different

Independence

The right notion of independence seems to be:

We have composition ◦, and operation f. We can calculate f(Σ1 ◦Σ2) from f(Σ1) and f(Σ2), but also conversely, given f(Σ1 ◦Σ2)
we can calculate f(Σ1) and f(Σ2).

Definition 5.1

Let f : D → C be any function from domain D to co-domain C. Let ◦ be a “composition function” ◦ : D × D → D, likewise for
◦′ : C × C → C.

We say that 〈f, ◦, ◦′〉 are independent iff for any Σi ∈ D

(1) f(Σ1 ◦ Σ2) = f(Σ1) ◦
′ f(Σ2),

(2) we can recover f(Σi) from f(Σ1 ◦ Σ2), provided we know how Σ1 ◦ Σ2 splits into Σi.

5.1.1 Discussion

(1) Ranked structures satisfy it:

Let ◦ = ◦′ = ∪. Let f be the minimal model operator µ of preferential logic. Let X,Y ⊆ X ∪ Y have (at least) medium size.
Then µ(X ∪ Y) = µ(X) ∪ µ(Y), and µ(X) = µ(X ∪ Y) ∩X, µ(Y) = µ(X ∪ Y) ∩ Y.

(2) Consistent classical formulas and their interpretation satisfy it:

Let ◦ be conjunction in the composed language, ◦′ be model set intersection, f(φ) = M(φ). Let φ, ψ be classical formulas,
defined on disjoint language fragments L, L′ of some language L′′. Then f(φ∧ψ) = M(φ)∩M(ψ), and M(φ) is the projection
of M(φ) ∩M(ψ) onto the (models of) language L, likewise for M(ψ). This is due to the way validity is defined, using only
variables which occur in the formula.

As a consequence, monotonic logic has interpolation - see [GS09c].

(3) It does not hold for inconsistent classical formulas: We cannot recover M(a∧¬a) and M(b) from M(a∧¬a∧ b), as we do not
know where the inconsistency came from. The basic reason is trivial: One empty factor suffices to make the whole product
empty, and we do not know which factor was the culprit. See Section 5.3.5 (page 20) for the discussion of a remedy.

(4) Preferential logic satisfies it under certain conditions:

If µ(X × Y) = µ(X) × µ(Y) holds for model products and ∼| , then it holds by definition. An important consequence is that
such a logic has interpolation of the form ∼| ◦ ∼| , see Section 5.3.4 (page 19).

(5) Modular revision a la Parikh is based on a similar idea.

5.1.2 Independence and multiplication of abstract size

We are mainly interested in nonmonotonic logic. In this domain, independence seems to be strongly connected to multiplication of
abstract size, and much of the present paper treats this connection and its repercussions.

hei 15

We have at least two scenarios for multiplication, one is decribed in Diagram 5.2 (page 15), the second in Diagram 5.3 (page 16). In
the first scenario, we have nested sets, in the second, we have set products. In the first scenario, we consider subsets which behave
as the big set does, in the second scenario we consider subspaces, and decompose the behaviour of the big space into behaviour of
the subspaces. In both cases, this results naturally in multiplication of abstract sizes. When we look at the corresponding relation
properties, they are quite different (rankedness vs. some kind of modularity). But this is perhaps to be expected, as the two
scenarios are quite different.

We do not know whether there are still other, interesting scenarios to consider in our framework.

5.2 Multiplication of size for subsets

Here we have nested sets, X ⊆ Y ⊆ Z, X is a certain proportion of Y, and Y of Z, resulting in a multiplication of relative size or
proportions. This is a classical subject of nonmonotonic logic, see e.g. [GS09a], it is partly repeated here only to stress the common
points with the other scenario.

Diagram 5.2

X

Y

Z

Scenario 1

5.2.1 Properties

Diagram 5.2 (page 15) is to be read as follows: The whole set X is split in Y and X−Y, Y is split in Z and Y−Z. Y is a
small/medium/big part of X, Z is a small/medium/big part of Y. The question is: is Z a small/medium/big part of X?

Note that the relation of Z to Y is conceptually different from that of Y to Z, as we change the base set by going from Y to Z,
but not when going from Z to Y. Thus, in particular, when we read the diagram as expressing multiplication, commutativity is not
necessarily true.

We looked at this scenario already in [GS09a], but there from an additive point of view, using various basic properties like (iM),
(eMI), (eMF). Here, we use just multiplication - except sometimes for motivation.

We examine different rules:

If X = Y or Y = Z, there is nothing to show, so 1 is the neutral element of multiplication.

If Y ∈ I(X) or Z ∈ I(Y), then we should have Z ∈ I(X). (Use for motivation (iM) or (eMI) respectively.)

So it remains to look at the following cases, with the “natural” answers given already:

(1) Y ∈ F(X), Z ∈ F(Y) ⇒ Z ∈ F(X),

(2) Y ∈ M+(X), Z ∈ F(Y) ⇒ Z ∈ M+(X),

(3) Y ∈ F(X), Z ∈ M+(Y) ⇒ Z ∈ M+(X),

(4) Y ∈ M+(X), Z ∈ M+(Y) ⇒ Z ∈ M+(X).

But (1) is case (3) of (M+
ω) in [GS09a],

hei 16

(2) is case (2) of (M+
ω) there,

(3) is case (1) of (M+
ω) there, finally,

(4) is (M++) there.

So the first three correspond to various expressions of AND/OR/CM, and the last one to RatM.

But we can read them also the other way round, e.g.:

(1) corresponds to: α ∼| β, α ∧ β ∼| γ ⇒ α ∼| γ,

(2) corresponds to: α 6∼| ¬β, α ∧ β ∼| γ ⇒ α 6∼| ¬β ∨ ¬γ,

(3) corresponds to: α ∼| β, α ∧ β 6∼| ¬γ ⇒ α 6∼| ¬β ∨ ¬γ.

All these rules might be seen as too idealistic, so just as we did in [GS09a], we can consider milder versions: We might for instance
consider a rule which says that big ∗ . . . ∗ big, n times is not small, bign is not small. Consider for instance the case n = 2. So we
would conclude that Z is not small in X. In terms of logic, we then have: α ∼| β, α∧ β ∼| γ ⇒ α 6∼| (¬β ∨¬γ). We can obtain the
same logic property from 3 ∗ small 6= all.

Fact 5.1

Small+ small = small plus 1 ∗ big = big entails big ∗ big = big

Proof

1 ∗ big ∩ big ∗ 1 = big ∗ big 2

5.2.2 Corresponding preferential relations

It is well-known that rankedness corresponds to the rule (M++), see, e.g., [GS09a], and we will not discuss this here any further.

5.3 Multiplication of size for subspaces

5.3.1 Properties

Diagram 5.3

Σ1 Σ2

Γ1 Γ2

Scenario 2

In this scenario, Σi are sets of sequences. (Correponding, intuitively, to a set of models in language Li, Σi will be the set of
αi−models, and the subsets Γi are to be seen as the “best” models, where βi will hold. The languages are supposed to be disjoint
sublanguages of a common language L.)

hei 17

In this scenario, the Σi have symmetrical roles, so there is no intuitive reason for multiplication not to be commutative.

We can interpret the situation twofold:

First, we work separately in sublanguage L1 and L2, and, say, α1 and β1 are both defined in L1, and we look at α1 ∼| β1 in the
sublanguage L1, or, we consider both α1 and β1 in the common language L, and look at α1 ∼| β1 in L. These two ways are a priori
completely different. Speaking in preferential terms, it is not at all clear why the orderings on the submodels should have anything
to do with the orderings on the whole models. It seems a very desirable property, but we have to postulate it, which we do now:

(big ∗ 1 = big) Let Γ1 ⊆ Σ1, then Γ1 × Σ2 ∈ F(Σ1 × Σ2) iff Γ1 ∈ F(Σ1), (and the dual rule for Σ2 and Γ2).

This property preserves proportions, so it seems intuitively quite uncontested, whenever we admit coherence over products. (Recall
that there was nothing to show in the first scenario.)

When we re-consider above case: suppose α ∼| β in the sublanguage, so M(β) ∈ F(M(α)), so by (big ∗ 1 = big) read from right to
left, M(β) ∈ F(M(α)) in the big language L.

We obtain the dual rule for small (and likewise, medium size) sets:

(small ∗ 1 = small) Let Γ1 ⊆ Σ1, then Γ1 × Σ2 ∈ I(Σ1 × Σ2) iff Γ1 ∈ I(Σ1), (and the dual rule for Σ2 and Γ2),

establishing All as the neutral element for multiplication.

We look now at other, plausible rules:

(small ∗ x = small) Γ1 ∈ I(Σ1), Γ2 ⊆ Σ2 ⇒ Γ1 × Γ2 ∈ I(Σ1 × Σ2)

(big ∗ big = big) Γ1 ∈ F(Σ1), Γ2 ∈ F(Σ2) ⇒ Γ1 × Γ2 ∈ F(Σ1 × Σ2)

(big ∗medium = medium) Γ1 ∈ F(Σ1), Γ2 ∈ M (Σ2) ⇒ Γ1 × Γ2 ∈ M (Σ1 × Σ2)

(medium ∗medium = medium) Γ1 ∈ M+(Σ1), Γ2 ∈ M+(Σ2) ⇒ Γ1 × Γ2 ∈ M+(Σ1 × Σ2)

When we accept all, we can invert (big ∗ big), as a big product must be composed of big components. Likewise, at least one
component of a small product has to be small.

We see that these properties give a lot of modularity. We can calculate the consequences of α and α′ separately - provided α, α′ use
disjoint alphabets - and put the results together afterwards. Such properties are particularly interesting for classification purposes,
where subclasses are defined with disjoint alphabets.

We quote from [GS09c] the following pairwise equivalent conditions for a principal filter generated by µ :

Definition 5.2

(S ∗ 1) ∆ ⊆ Σ′ × Σ′′ is big iff there is Γ = Γ′ × Γ′′ ⊆ ∆ s.t. Γ′ ⊆ Σ′ and Γ′′ ⊆ Σ′′ are big

(µ ∗ 1) µ(Σ′ × Σ′′) = µ(Σ′) × µ(Σ′′)

(S ∗ 2) Γ ⊆ Σ is big ⇒ Γ ↾ X ′ ⊆ Σ ↾ X ′ is big - where Σ is not necessarily a product.

(µ ∗ 2) µ(Σ) ⊆ Γ ⇒ µ(Σ ↾ X ′) ⊆ Γ ↾ X ′

5.3.2 Corresponding preferential relations

Definition 5.3

Call a relation ≺ a GH (= general Hamming) relation iff the following two conditions hold:

(GH1) σ � τ ∧ σ′ � τ ′ ∧ (σ ≺ τ ∨ σ′ ≺ τ ′) ⇒ σσ′ ≺ ττ ′

(where σ � τ iff σ ≺ τ or σ = τ)

(GH2) σσ′ ≺ ττ ′ ⇒ σ ≺ τ ∨ σ′ ≺ τ ′

(GH2) means that some compensation is possible.

We use (GH) for (GH1) + (GH2).

Example 5.1

The following are example of GH relations:

Define on all components Xi a relation ≺i .

(1) The set variant Hamming relation:

Then the relation ≺ defined on Π{Xi : i ∈ I} by σ ≺ τ iff there is at least one i s.t. σi ≺i τi and for all other j 6= i σj �j τj .

(2) The counting variant Hamming relation:

Then the relation ≺ defined on Π{Xi : i ∈ I} by σ ≺ τ iff the number of i such that σi ≺i τi is bigger than the number of i such
that τi ≺i σi.

(3) The weighed counting Hamming relation:

Like the counting relation, but we give different (numerical) importance to different i. E.g., σ1 ≺ τ1 may count 1, σ2 ≺ τ2 may
count 2, etc.

2

Proposition 5.2

Let σ ≺ τ ⇔ τ 6∈ µ({σ, τ}) and ≺ be smooth. Then µ satisfies (µ ∗ 1) iff ≺ is a GH relation.

hei 18

Proof

(1) (µ ∗ 1) entails the GH relation conditions

(GH1): Suppose σ ≺ τ and σ′ � τ ′. Then µ({σ, τ}) = {σ}, and µ({σ′, τ ′}) = {σ′} (either σ′ ≺ τ ′ or σ′ = τ ′, so in both cases
µ({σ′, τ ′}) = {σ′}). As τ 6∈ µ({σ, τ}), ττ ′ 6∈ µ({σ, τ}×{σ′, τ ′}) =(µ∗1) µ({σ, τ})×µ({σ′, τ ′}) = {σ}×{σ′} = {σσ′}, so by smoothness
σσ′ ≺ ττ ′.

(GH2): Let X := {σ, τ}, Y := {σ′, τ ′}, so X ×Y = {σσ′, στ ′, τσ′, ττ ′}. Suppose σσ′ ≺ ττ ′, so ττ ′ 6∈ µ(X ×Y) =(µ∗1) µ(X)×µ(Y).
If σ 6≺ τ, then τ ∈ µ(X), likewise if σ′ 6≺ τ ′, then τ ′ ∈ µ(Y), so ττ ′ ∈ µ(X × Y), contradiction.

(2) The GH relation conditions generate (µ ∗ 1).

µ(X × Y) ⊆ µ(X) × µ(Y) : Let τ ∈ X, τ ′ ∈ Y, ττ ′ 6∈ µ(X) × µ(Y), then τ 6∈ µ(X) or τ ′ 6∈ µ(Y). Suppose τ 6∈ µ(X), let σ ∈ X,
σ ≺ τ, so by condition (GH1) στ ′ ≺ ττ ′, so ττ ′ 6∈ µ(X × Y).

µ(X) × µ(Y) ⊆ µ(X × Y) : Let τ ∈ X, τ ′ ∈ Y, ττ ′ 6∈ µ(X × Y), so there is σσ′ ≺ ττ ′, σ ∈ X, σ′ ∈ Y, so by (GH2) either σ ≺ τ or
σ′ ≺ τ ′, so τ 6∈ µ(X) or τ ′ 6∈ µ(Y), so ττ ′ 6∈ µ(X) × µ(Y).

2

Fact 5.3

Let Γ ⊆ Σ, Γ′ ⊆ Σ′, Γ × Γ′ ⊆ Σ × Σ′ be small, let (GH2) hold, then Γ ⊆ Σ is small or Γ′ ⊆ Σ′ is small.

Proof

Suppose Γ ⊆ Σ is not small, so there is γ ∈ Γ and no σ ∈ Σ with σ ≺ γ. Fix this γ. Consider {γ}×Γ′. As Γ×Γ′ ⊆ Σ×Σ′ is small,
there is for each γγ′, γ′ ∈ Γ′ some σσ′ ∈ Σ × Σ′, σσ′ ≺ γγ′. By (GH2) σ ≺ γ or σ′ ≺ γ′, but σ ≺ γ was excluded, so for all γ′ ∈ Γ′

there is σ′ ∈ Σ′ with σ′ ≺ γ′, so Γ′ ⊆ Σ′ is small. 2

Fact 5.4

Let Γ ⊆ Σ be small, Γ′ ⊆ Σ′, let (GH1) hold, then Γ × Γ′ ⊆ Σ × Σ′ is small.

Proof

Let γ ∈ Γ, so there is σ ∈ Σ and σ ≺ γ. By (GH1), for any γ′ ∈ Γ′ σγ′ ≺ γγ′, so no γγ′ ∈ Γ × Γ′ is minimal. 2

Proposition 5.5

Γ × Γ′ ⊆ Σ × Σ′ is small iff at least one of Γ ⊆ Σ, Γ′ ⊆ Σ′ is small entails (GH1) and (GH2).

Proof

(GH1): Let στ, σ′ � τ ′, we have to show σσ′ ≺ ττ ′. σ ≺ τ ⇒ {τ} ⊆ {σ, τ} is small ⇒ {τ} × {σ′, τ ′} ⊆ {σ, τ} × {σ′, τ ′} is small,
so some element has to be smaller than ττ ′, by smoothness, there has to be a minimal element smaller than ττ ′, so σσ′ ≺ ττ ′ or
στ ′ ≺ ττ ′. Case 1: σ′ = τ ′. Then σσ′ ≺ ττ ′. Case 2: σ′ ≺ τ ′. Then {σ, τ} × {τ ′} is small, so στ ′ is not minimal. Thus, again by
smoothness, σσ′ ≺ ττ ′.

(GH2): Let σσ′ ≺ ττ ′, we have to show σ ≺ τ or σ′ ≺ τ. Suppose σ 6≺ τ, σ′ 6≺ τ ′, then {τ} ⊆ {σ, τ} is not small, {τ ′} ⊆ {σ′, τ ′} is
not small, so {ττ ′} ⊆ {στ} × {σ′τ ′} is not small, so σσ′ 6≺ ττ ′, contradiction.

2

Definition 5.4

For a relation ≺ on Σ × Σ we define:

(pr(≺)) σσ′ ≺ ττ ′ ⇒ σ ≺ τ and σ′ ≺ τ ′

Fact 5.6

Connect (pr(≺)) to (µ ∗ 1) and (µ ∗ 2), perhaps just quote from SIN?

Proof

Note

Note that already (µ ∗ 1) results in a strong independence result in the second scenario: Let σρ′ ≺ τρ′, then σρ′′ ≺ τρ′′ for all ρ′′.
Thus, whether {ρ′′} is small, or medium size (i.e. ρ′′ ∈ µ(Σ′)), the behaviour of Σ × {ρ′′} is the same. This we do not have in the
first scenario, as small sets may behave very differently from medium size sets. (But, still, their internal structure is the same, only
the minimal elements change.) When (µ ∗ 2) holds, then if σσ′ ≺ ττ ′ and σ 6= τ, then σ ≺ τ, i.e. we need not have σ′ = τ ′.

hei 19

5.3.3 Language change

Independence of language fragments gives us the following perspectives:

(1) it makes independent and parallel treatment of fragments possible, and offers thus efficient treatment in applications (de-
scriptive logics etc.).

(2) it results in new rules similar to the classical ones like AND, OR, Cumulativity, etc. We can thus obtain postulates about
reasonable behaviour, but also classification by those rules.

(3) it sheds light on notions like “ceteris paribus”, which we saw in the context of obligations, see [GS08g].

(4) it clarifies notions like “normal with respect to φ, but not ψ”

(5) it helps to understand e.g. inheritance diagrams where arrows make other information accessible, and we need an underlying
mechanism to combine bits of information.

5.3.4 Interpolation

Proposition 5.7

(µ ∗ 1) entails interpolation of the form φ ∼| α ∼| ψ.

Proof

Let the product be defined on J ∪ J ′ ∪ J ′′ (i.e., J ∪ J ′ ∪ J ′′ is the set of propositional variables in the intended application). See
Diagram 5.4 (page 19).

We abuse notation and write φ ∼| Σ if µ(φ) ⊆ Σ. As usual, µ(φ) abbreviates µ(M(φ)).

For clarity, even if it clutters up notation, we will be precise about where µ is formed. Thus, we write µJ∪J′∪J′′(X) when we take
the minimal elements in the full product, µJ(X) when we consider only the product on J, etc.

Let φ ∼| ψ, i.e., µJ∪J′∪J′′(φ) ⊆M(ψ), φ be defined on J ′ ∪ J ′′, ψ on J ∪ J ′.

As µJ∪J′∪J′′(φ) ⊆ XJ × (µJ∪J′∪J′′(φ) ↾ J ′) ×XJ′′ , φ ∼| XJ × (µJ∪J′∪J′′(φ) ↾ J ′) ×XJ′′ .

We show µJ∪J′∪J′′(XJ × (µJ∪J′∪J′′(φ) ↾ J ′) ×XJ′′) ⊆M(ψ).

(1) As M(φ) = XJ ×M(φ) ↾ (J ′ ∪ J ′′), µJ∪J′∪J′′(φ) = µJ(XJ) × µJ′∪J′′(M(φ) ↾ (J ′ ∪ J ′′)) by (µ ∗ 1).

(2) By (µ ∗ 1) again, µJ∪J′∪J′′(XJ × µJ∪J′∪J′′(φ) ↾ J ′ ×XJ′′) ⊆ µJ(XJ) × µJ′((µJ∪J′∪J′′(φ) ↾ J ′)) × µJ′′ (XJ′′).

So it suffices to show µJ (XJ) × µJ′(µJ∪J′∪J′′(φ) ↾ J ′) × µJ′′ (XJ′′) |= ψ.

Proof: Let σ = σJσJ′σJ′′ ∈ µJ (XJ) × µJ′(µJ∪J′∪J′′(φ) ↾ J ′) × µJ′′ (XJ′′), so σJ ∈ µJ(XJ).

By definition and µJ′(µJ∪J′∪J′′(φ) ↾ J ′) ⊆ µJ∪J′∪J′′(φ) ↾ J ′, there is σ′ = σ′

Jσ
′

J′σ′

J′′ ∈ µJ∪J′∪J′′(φ) s.t. σ′

J′ = σJ′ , i.e. σ′ =
σ′

JσJ′σ′

J′′ . As σ′ ∈ µJ∪J′∪J′′(φ), σ′ |= ψ.

By (1) and σJ ∈ µJ (XJ) also σJσJ′σ′

J′′ ∈ µJ∪J′∪J′′(φ), so also σJσJ′σ′

J′′ |= ψ.

But ψ does not depend on J ′′, so also σ = σJσJ′σJ′′ |= ψ.

2

hei 20

Diagram 5.4

φ

ψ

µ(φ)

J J′ J”

Non-monotonic interpolation

Remarks for the converse: from interpolation to (µ ∗ 1)

Example 5.2

We show here in (1) and (2) that half of the condition (µ ∗ 1) is not sufficient for interpolation, and in (3) that interpolation may
hold, even if (µ ∗ 1) fails. When looking closer, the latter is not surprising: µ of sub-products may be defined in a funny way, which
has nothing to do with the way µ on the big product is defined.

Consider the language based on p, q, r.

For (1) and (2) define the order ≺ on sequences of length 3 by ¬p¬q¬r ≺ p¬q¬r, leave all other 3-sequences incomparabel.

Let φ = ¬q ∧ ¬r, ψ = ¬p ∧ ¬q, so µ(φ) = ¬p ∧ ¬q ∧ ¬r, and φ ∼| ψ. Suppose there is α, φ ∼| α ∼| ψ, α written with q only, so α
is equivalent to FALSE, TRUE, q, or ¬q. φ 6∼| FALSE, φ 6∼| q. TRUE 6∼| ψ, ¬q 6∼| ψ. Thus, there is no such α, and ∼| has no
interpolation. We show in (1) and (2) that we can make both directions of (µ ∗ 1) true separately, so they do not suffice to obtain
interpolation.

(1) We make µ(X × Y) ⊆ µ(X) × µ(Y) true, but not the converse.

Do not order any sequences of length 2 or 1, i.e. µ is there always identity. Thus, µ(X×Y) ⊆ X×Y = µ(X)×µ(Y) holds trivially.

For (2) and (3), consider the following ordering < between sequences: σ < τ iff there is ¬x is σ, x in τ, but for no y y in σ, ¬y in
τ. E.g., ¬p < p, ¬pq < pq, ¬p¬q < pq, but ¬pq 6< p¬q.

(2) We make µ(X × Y) ⊇ µ(X) × µ(Y) true, but not the converse.

We order all sequences of length 1 or 2 by < .

Suppose σ ∈ X × Y − µ(X × Y). Case 1: X × Y consists of sequences of length 2. Then, by definition, σ 6∈ µ(X) × µ(Y). Case 2:
X×Y consists of sequences of length 3. Then σ = p¬q¬r, and there is τ = ¬p¬q¬r ∈ X×Y. So {p,¬p} ⊆ X or {p¬q,¬p¬q} ⊆ X,
but in both cases σ ↾ X 6∈ µ(X).

Finally, note that µ(TRUE) 6⊆ {¬p¬q¬r}, so full (µ ∗ 1) does not hold.

(3) We make interpolation hold, but µ(X) × µ(Y) 6⊆ µ(X × Y) :

We order all sequences of length 3 by < . Shorter sequences are made incomparabel, so for shorter sequences µ(X) = X.

Obviously, in general µ(X) × µ(Y) 6⊆ µ(X × Y).

But the proof of Proposition 5.7 (page 19) goes through as above, only directly, without the use of factorizing and taking µ of the
factors.

2

5.3.5 A relevance problem

Consider the formula φ := a ∧ ¬a ∧ b. Then M(φ) = ∅. But we cannot recover where the problem came from, and this results in
the EFQ rule. We now discuss one, purely algebraic, approach to remedy.

hei 21

Consider 3 valued models, with a new value b for both, in addition to t and f. Above formula would then have the model m(a) = b,
m(b) = t. So there is a model, EFQ fails, and we can recover the culprit.

To have the usual behaviour of ∧ as intersection, it might be good to change the definition so that m(x) = b is always a model.
Then M(b) = {m(b) = t,m′(b) = b}, M(¬b) = {m(b) = f,m′(b) = b}, and M(b ∧ ¬b) = {m′(b) = b}.

It is not yet clear which version to choose, and we have no syntactic characterization.

5.3.6 Small subspaces

When considering small subsets in nonmonotonic logic, we neglect small subsets of models. What is the analogue when considering
small subspaces, i.e. when J = J ′ ∪ J ′′, with J ′′ small in J in nonmonotonic logic?

It is perhaps easiest to consider the relation based approach first. So we have an order on ΠJ ′ and one on ΠJ ′′, J ′′ is small, and
we want to know how to construct a corresponding order on ΠJ. Two solutions come to mind:

• a less radical one: we make a lexicographic ordering, where the one on ΠJ ′ has precedence over the one on ΠJ ′′,

• a more radical one: we totally forget about the ordering of ΠJ ′′, i.e. we do as if the ordering on ΠJ ′′ were the empty set, i.e.
σ′σ′′ ≺ τ ′τ ′′ iff σ′ ≺ τ ′ and σ′′ = τ ′′.

We call this condition forget(J ′′).

The more radical one is probably more interesting. Suppose φ′ is written in language J ′, φ′′ in language J ′′, we then have

φ′ ∧ φ′′ ∼| ψ′ ∧ ψ′′ iff φ′ ∼| ψ′ and φ′′ ⊢ ψ′′.

5.3.7 Distance relations

The corresponding properties will be:

For GH distances:

(1) d(σ, τ) ≤ d(α, β) and d(σ′, τ ′) ≤ d(α′, β′) and d(σ, τ) < d(α, β) or d(σ′, τ ′) < d(α′, β′) ⇒ d(σσ′, ττ ′) < d(αα′, ββ′)

(2) d(σσ′, ττ ′) < d(αα′, ββ′) ⇒ d(σ, τ) < d(α, β) or d(σ′, τ ′) < d(α′, β′)

and for small sets J ′ :

d(σσ′, ττ ′) < d(αα′, ββ′) ⇔ d(σ, τ) < d(α, β).

5.3.8 Reactivity and language change

E.g., for small J ′ : big J erases the J ′−relation.

5.4 Summary of properties

Note that A × B ⊆ X × Y big ⇒ A ⊆ X big etc. is intuitively better justified than the other direction, as the proportion might
increase in the latter, decrease in the former. Cf. [GS09a], the Size Table, increasing proportions.

h
e
i

2
2

T
a
b
le

2
:

M
u
ltip

lica
tio

n
law

s

.

Multiplication Scenario 1, Y ∗X in Diagram 5.2 (page 15) Scenario 2
law Addition law Logical property Relation property Logical property Relation property Interpolation

α, β in L1, α
′, β′ in L2

L = L1 ∪ L2 (disjoint)
x ∗ 1 = x trivial α ∼| L1β ⇔ α ∼| Lβ
1 ∗ x = x trivial
x ∗ s = s (iM) α ∼| ¬β ⇒ α ∼| ¬β ∨ γ - α ∼| L1β ⇔ α ∼| Lβ
s ∗ x = s (eMI) α ∧ β ∼| ¬γ ⇒ α¬β ∨ ¬γ -
b ∗ b = b (< ω ∗ s), (M+

ω) (3) α ∼| β, α ∧ β ∼| γ ⇒ α ∼| γ - (Filter) α ∼| L1β, α
′ ∼| L2β

′ ⇔ (GH) ∼| ◦ ∼|
α ∧ α′ ∼| Lβ ∧ β′

b ∗m = m (< ω ∗ s), (M+
ω) (2) α 6∼| ¬β, α ∧ β ∼| γ ⇒ - (Filter) α 6∼| L1¬β, α

′ ∼| L2β
′ ⇒

α 6∼| ¬β ∨ ¬γ α ∧ α′ 6∼| L¬β ∨ β′

m ∗ b = m (< ω ∗ s), (M+
ω) (1) α ∼| β, α ∧ β 6∼| ¬γ ⇒ - (Filter)

α 6∼| ¬β ∨ ¬γ
m ∗m = m (M++) Rational Monotony ranked α 6∼| L1¬β, α

′ ∼| L2¬β
′ ⇒

α ∧ α′ 6∼| L¬β ∨ ¬β′

pr(b) = b α ∼| β ⇒ α ↾ L1 ∼| β ↾ L1 pr(≺)
pr(b) = b + ⊢ ◦ ∼|
m ∗m = m
J ′ small analogue: System P α ∧ α′ ∼| β ∧ β′ ⇔ α ∧ β, α′ ⊢ β′ forget(J ′)

hei 23

6 General semantic interpolation

6.1 Introduction

We assume that → respects the order ≤ on truth values.

6.1.1 Generalization of model sets and (in)essential variables

See Table 3 (page 24) for notation and definitions.

Example 6.1

This example shows that 2 different formulas φ and φ′ may define the same fφ = fφ′ , but neglecting a certain variable should give
different results.

Define two new unary operators K(x) := 1 (constant), M(x) := min{1, x}. Consider 3 truth values.

a b φ = K(a) ∧ b φ′ = K(a) ∧M(b)
0 0 0 0
0 1 1 1
0 2 1 1
1 0 0 0
1 1 1 1
1 2 1 1
2 0 0 0
2 1 1 1
2 2 1 1

So they define the same model function f : ML → V al. But when we forget about a, the first should just be b, but the second
should be M(b).

2

6.2 Many-valued propositional interpolation

The situation:

We prefer to think of models as sequences, whose elements are truth-values so we change notation slightly. Let L be the set of
propositional variables of a given language L. Let (V,≤) be a finite, totally ordered set (of values). Let Γ ⊆ ML.

Let L = J ∪ J ′ ∪ J ′′ be a disjoint union. If f : ML → V is insensitive to J ∪ J ′′, we can define for σJ′ : J ′ → V f(σJ′) as any f(σ′)
such that σ′ ↾ J ′ = σJ′ .

Definition 6.1

Call Γ rich iff for all σ, σ′ ∈ Γ, J ⊆ L (σ ↾ J) ∪ (σ′ ↾ (L− J)) ∈ Γ.

(I.e., we may cut and paste models.)

Fact 6.1

Let Γ be rich, f, g : Γ → V, f(σ) ≤ g(σ) for all σ ∈ Γ.

Then f+(σJ′) ≤ g−(σJ′) for all σJ′ ∈ Γ ↾ J ′, and any h : Γ ↾ J ′ → V which is insensitive to J ∪ J ′′ is an interpolant iff

f+(σJ′) ≤ h(σJ′) ≤ g−(σJ′) for all σJ′ ∈ Γ ↾ J ′.

Proof

Let L = J ∪ J ′ ∪ J ′′ be a pairwise disjoint union. Let f be insensitive to J, g be insensitive to J ′′.

h : Γ → V will have to be insensitive to J ∪ J ′′, so we will have to define h on Γ ↾ J ′.

Let σJ′ : Γ ↾ J ′ → V. Choose σJ′′ such that f+(σJ′) = f(σJσJ′σJ′′) for any σJ . Recall that f is insensitive to J. Likewise, choose
σJ such that g−(σJ′) = g(σJσJ′σJ′′) for any σJ′′ .

We have f+(σJ′) ≤ g−(σJ′).

h
e
i

2
4

T
a
b
le

3
:

N
o
ta

tio
n

a
n
d

D
efi

n
itio

n
s

.

Notation and definitions
2-valued {0, 1} many-valued (V,≤)

propositional language L propositional variables s, . . .
L′ ⊆ L model S S : L→ {0, 1} S : L→ V

ML set of all L−models
S ↾ L′ like S, but restricted to L′

S ∼L′ S′ S ∼L′ S′ iff ∀s ∈ L′.S(s) = S′(s)
model set of formula φ M(φ) ⊆ ML, fφ : ML → {0, 1} fφ : ML → V

general model set M ⊆ ML, f : ML → {0, 1} f : ML → V
f insensitive to L′ ∀S, S′ ∈ ML.(S ∼L−L′ S′ ⇒ f(S) = f(S′))

f+(S ↾ L′), f−(S ↾ L′) f+(S ↾ L′) = max{f(S′) : S′ ∈ ML, S ∼L′ S′}
f−(S ↾ L′) = min{f(S′) : S′ ∈ ML, S ∼L′ S′}

f ≤ g ∀S ∈ ML.f(S) ≤ g(S)
propositional language L propositional variables s, . . .

modal (Kripke) structure S = 〈US , RS , IS〉 IS : US × L→ {0, 1} IS : US × L→ V
L′ ⊆ L US : points, RS rel., IS interpret.

ML set of all L−structures
with desired RS-properties

S ↾ L′ like S, but IS restricted to L′

S ∼L′ S′ S ∼L′ S′ iff US = US′ and RS = RS′ and
∀s ∈ L′∀u ∈ US .IS(u, s) = IS′(u, s)

(iff S ↾ L′ = S′ ↾ L′)
for all S : model set of formula φ MS(φ) ⊆ US , fS,φ : US → {0, 1} fS,φ : US → V

for all S : general model set MS ⊆ US , fS : US → {0, 1} fS : US → V
fS insensitive to L′ ∀S, S′ ∈ ML(S ∼L−L′ S′ ⇒ ∀u ∈ US = Us′ .fS(u) = fS′(u))

f+
S (S ↾ L′), f−

S (S ↾ L′) f+
S (S ↾ L′) = max{fS′(u) : S′ ∈ ML, S ∼L′ S′}
f−

S (S ↾ L′) = min{fS′(u) : S′ ∈ ML, S ∼L′ S′}
fS ≤ gS ∀u ∈ US.fS(u) ≤ gS(u)

first order language L = L1 ∪ L2, . . . predicates p(.), q(., .)
L1 unary pred., structure S = 〈US , IS〉 IS(p(.)) ⊆ US , IS : US × L1 → V,
L2 binary, . . . ML set of all L−structures IS(q(., .)) ⊆ US × US IS : (US × US) × L2 → V

L′ ⊆ L S ↾ L′ like S, but IS restricted to L′

S ∼L′ S′ S ∼L′ S′ iff US = US′ and ∀s ∈ L′∀〈u〉 ∈ UnS .IS(〈u〉, s) = IS′(〈u〉, s)
(iff S ↾ L′ = S′ ↾ L′)

for all S : model set of formula φ MS(φ(x1, ., xn)) ⊆ UnS
with n free variables fS,φ : UnS → {0, 1} fS,φ : UnS → V

for all S : gen. model set, n var. fS : UnS → {0, 1} fS : UnS → V
f insensitive to L′ ∀S, S′ ∈ ML(S ∼L−L′ S′ ⇒ ∀ui ∈ US = US′ .fS(u1, ., un) = fS′(u1, ., un))

f+
S (S ↾ L′), f−

S (S ↾ L′) f+
S (S ↾ L′) = max{fS′(〈u〉) : S′ ∈ ML, S ∼L′ S′}
f−

S (S ↾ L′) = min{fS′(〈u〉) : S′ ∈ ML, S ∼L′ S′}
fS ≤ gS ∀〈u1, ., un〉 ∈ UnS .fS(u1, ., un) ≤ gS(u1, ., un)

for all cases semantic equivalence of φ, ψ fφ = fψ (or for all S fS,φ = fS,ψ)
definability of f ∃φ : fφ = f (or for all S fS,φ = fS)

Γ ↾ L′ (for Γ ⊆ ML) Γ ↾ L′ := {S ↾ L′ : S ∈ Γ}
(ir)relevant s ∈ L is irrelevant for f iff f is insensitive to s,

I(f) := {s ∈ L : s is irrelevant for f}, R(f) := L− I(f)
I(φ) := I(fφ), R(φ) := R(fφ)

hei 25

Proof: Fix σJ′ . Choose σJ′′ such that f(σJσJ′σJ′′) is maximal for σJ′ and any σJ . Let τJ′′ be one such σJ′′ . Choose σJ such that
g(σJσJ′σJ′′) is minimal for σJ′ and any σJ′′ . Let τJ be one such σJ . Consider τJσJ′τJ′′ ∈ Γ (recall that Γ is rich). By definition,
f+(σJ′) := f(τJσJ′τJ′′) and g−(σJ′) := g(τJσJ′τJ′′), but by prerequisite f(τJσJ′τJ′′) ≤ g(τJσJ′τJ′′), so f+(σJ′) ≤ g−(σJ′).

Thus, any h such that h is insensitive to J ∪ J ′′ and

(Int) f+(σJ′) ≤ h(σJ′) ≤ g−(σJ′)

is an interpolant for f and g.

But (Int) is also a necessary condition.

Proof:

Suppose h is an interpolant and h(σJ′) < f+(σJ′). Let τJ′′ be as above, i.e., f(σJσJ′τJ′′) = f+(σJ′) for any σJ . Then h(σJσJ′τJ′′) =
h(σJ′) < f+(σJ′) = f(σJσJ′τJ′′), so h is not an interpolant.

The proof that h(σJ′) has to be ≤ g−(σJ′) is analogous.

We summarize:

f and g have an interpolant h, and h is an interpolant for f and g iff h is insensitive to J ∪ J ′′ and f+(σJ′) ≤ h(σJ′) ≤ g−(σJ′).

2

6.3 Many-valued propositional modal interpolation

Fix S ∈ ML. By prerequisite, fS ≤ gS. Set f := fS , g := gS . Find an interpolant h, f ≤ h ≤ g as above in the propositional case,
set hS := h. Then {hS : S ∈ ML} is an interpolant for all fS, gS .

6.4 Many-valued first order interpolation

Analogous to the modal logic case:

Fix S. Let fS ≤ gS be defined for 〈u1, . . . , un〉 ∈ UnS . Set f := fS, g := gS. Find an interpolant h, f ≤ h ≤ g as above in the
propositional case, set hS := h. Then {hS : S ∈ ML} is an interpolant for all fS, gS .

References

[ALS98-1] L.Audibert, C.Lhoussaine, K.Schlechta: “Distance based revision of preferential logics”, Belief Revision Workshop of
KR98, Trento, Italy, 1998 (electronic proceedings), and Logic Journal of the Interest Group in Pure and Applied Logics,
Vol. 7, No. 4, pp. 429-446, 1999

[Bou94] C.Boutilier, “Unifying default reasoning and belief revision in a modal framework”, Artificial Intelligence, 68 : 33−85, 1994

[DP94] A.Darwiche, J.Pearl, “On the Logic of Iterated Belief Revision”, in: “Proceedings of the fifth Conference on Theoretical
Aspects of Reasoning about Knowledge”, R.Fagin ed., pp. 5-23, Morgan Kaufman, Pacific Grove, CA, 1994

[GS08b] D.Gabbay, K.Schlechta, “Reactive preferential structures and nonmonotonic consequence”, hal-00311940, arXiv
0808.3075, Review of Symbolic Logic, Vol. 2, No. 2, pp. 414-450,

[GS08g] D.Gabbay, K.Schlechta, “A semantics for obligations”, submitted, hal-00339393, arXiv 0811.2754

[GS09a] D.Gabbay, K.Schlechta, “Size and logic”, arXiv 0903.1367, Review of Symbolic Logic, Vol. 2, No. 2, pp. 396-413

[GS09c] D.Gabbay, K.Schlechta, “Semantic interpolation”, submitted, preliminary version: arXiv.org 0906.4082

[Ker99] G.Kern-Isberner, “Postulates for conditional belief revision”, Proceedings IJCAI 99, T.Dean ed., Morgan Kaufmann,
pp.186-191, 1999

[LMS01] D.Lehmann, M.Magidor, K.Schlechta: “Distance Semantics for Belief Revision”, Journal of Symbolic Logic, Vol.66, No.
1, March 2001, p. 295-317

[PV09] D.Pearce, A.Valverde, “Interpolation in equilibrium logic and answer set programming”, submitted

[Sch04] K.Schlechta: “Coherent Systems”, Elsevier, Amsterdam, 2004

[Sch92] K.Schlechta: “Some results on classical preferential models”, Journal of Logic and Computation, Oxford, Vol.2, No.6
(1992), p. 675-686

