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3 CNRS, UMR 5589, F-31062 Toulouse, France

Received: date / Revised version: date

Abstract In this paper we present a review of the ex-
isting data on interferential mirror birefringence. We also
report new measurements of two sets of mirrors that
confirm that mirror phase retardation per reflection de-
creases when mirror reflectivity increases. We finally de-
veloped a computational code to calculate the expected
phase retardation per reflection as a function of the to-
tal number of layers constituting the mirror. Different
cases have been studied and we have compared compu-
tational results with the trend of the experimental data.
Our study indicates that the origin of the mirror intrin-
sic birefringence can be ascribed to the reflecting layers
close to the substrate.

1 Introduction

In the last decades, high reflectivity interferential mir-
rors have been widely used in optical cavities to mea-
sure small light polarization variations induced by the
propagation in a weakly anisotropic medium such as in
parity violation experiments [1,2] or in vacuum magnetic
birefringence experiments [3,4,5]. Mirrors themselves are
birefringent and this is manifestly a problem for such a
kind of applications because they induce a phase retar-
dation [6] which superimposes to the signal to be mea-
sured. This birefringence is due to off-normal incidence
and/or to intrinsic birefringence of the mirror coatings.
In the case of Fabry-Perot cavities the incidence on the
mirrors is normal. In this paper we focus on this type of
device, thus on birefringence due to the mirror coatings.

Interferential mirrors are composed of a stack of slabs
deposited on a substrate. One slab corresponds to a low-
index layer and a high-index layer with an optical thick-
ness λ/4 for each layer, where λ is the light wavelength
for which the mirror reflectivity is optimized. While non
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birefringent stratified media are discussed in textbooks
[17], and films with a non trivial dielectric tensor have
been treated in literature (see e.g. [18]), as far as we
know, the origin of the mirror birefringence is unknown,
and a detailed study of the problem does not exist. In
ref. [19] computational results are given in the hypoth-
esis that the birefringence is due to only one layer, in
particular the uppermost. The author notices that the
phase retardation effect diminishes as he moves the only
phase retardation layer down the stack. In ref. [15] mea-
surements of the mirror phase retardation as a function
of time and of laser power in the Fabry-Perot cavity have
been performed. The authors suggest that mirror bire-
fringence may be photoinduced, at least partly.

In this paper we present a review of the existing data
on interferential mirror phase retardation. We show that
the data indicate that the phase retardation per reflec-
tion decreases when the mirror reflectivity becomes bet-
ter and better i.e. when the total number of layers in-
creases. We also report new measurements of two sets
of mirrors that confirm this trend. We finally developed
a computational code to calculate the expected phase
retardation per reflection as a function of the total num-
ber of layers. Different cases have been studied going
from a fixed birefringence for each layer to a random
birefringence for each layer. We finally compare compu-
tational results with the trend of the experimental data.
Our study indicates that the origin of the mirror intrin-
sic birefringence can be ascribed to the reflecting layers
close to the substrate.

2 Experimental study

Birefringence of interferential mirrors have been mea-
sured and reported by several authors [7,8,9,10,11,12,
13,14,15]. The phase retardation per reflection ranges
between a few 10−7 rad to 10−3 for values of (1 − R)
going from a few 10−5 to 10−2, where R is the mirror
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reflectivity. All the measurements have been conducted
using an optical cavity except one [9], where the ellip-
ticity acquired after a single reflection was directly mea-
sured. Optical cavities are usually absolutely necessary
to accumulate the effect and thus to allow to measure
very small phase retardations. Whereas a multipass cav-
ity has been used in refs. [7,8], a Fabry-Perot cavity is
used in refs. [10,11,12,13,14]. In the following section,
the published data are presented in details, in chrono-
logical order. These studies were always motivated by
measurements of small phase retardation such as parity
violation experiments [1,2] or vacuum magnetic birefrin-
gence experiment [3].

2.1 Review of published data

The first study of intrinsic phase retardation of interfer-
ential mirrors dates from 1982 [7]. Measurements have
been conducted using a multipass cavity made of two
spherical mirrors between which the light beam bounces
many times forwards and backwards under quasinormal
incidence. Intrinsic phase retardation is therefore super-
imposed to the off-normal incidence phase retardation
but this has also been evaluated by the authors. The
light beam does not hit the same point of the mirror
after a round trip. Thus the measurement of phase re-
tardation per reflection gives a value averaged on the
mirror surface. The mirrors have been manufactured by
Spectra-Physics, Inc. (Mountain View, CA, USA), and
their reflectivity R is 0.998 at λ =540nm. Intrinsic phase
retardation typically varies between 2 and 4×10−4 rad
per reflection. Among the 19 mirrors analyzed, two ex-
ceptions with phase retardation less than 10−6 rad per
reflection have been found. The authors called this a
“happy accident”.

A few years later a new study was again performed
using a multipass cavity [8]. A set of 5mirrors manufac-
tured by MTO, Palaiseau, France, has been analyzed.
The authors did not give explicitly the reflectivity of the
mirrors, but they have reported that at λ = 514.5nm
and after about 250 reflections the light intensity is re-
duced to 1/e. We can deduce that (1−R) = 0.004. From
their measurements, intrinsic phase retardation varies
between 3.0 × 10−5 and 2.2 × 10−4 rad per reflection.

The next study was performed in 1993 [9] using mul-
tipass cavities. Only one mirror has been analyzed but
this time the phase retardation has been measured di-
rectly after only one reflection. The mirror had a reflec-
tivity of 0.9983 at 633nm. It was coated by the Labora-
tory of Laser Energetics of the University of Rochester.
The authors were able to measure the intrinsic phase
retardation and the phase retardation axis direction of
the mirror in different points of the surface. They could
therefore draw a map of the intrinsic phase retardation
showing a clear rotational pattern. The intrinsic phase
retardation per reflection ranged between 3 to 6.2 ×10−4

rad, while the axis direction ranged between 9 and -13
degrees. To test that the origin of such an anisotropy was
not due to the substrate, the authors have measured the
phase retardation when the light was reflected on the
backsurface of the mirror. They obtained a result com-
patible with zero within the experimental error.

In 1995 the first measurement using a Fabry-Perot
cavity was reported [10]. In this type of interferometer
the incidence on the mirrors is strictly normal, and off-
normal phase retardation vanishes. The mirror reflectiv-
ity can be inferred by the cavity finesse F = 6600 given
by the authors at λ = 633nm: R = 1−π/F = 0.999524.
The reported values of phase retardation per reflection
are 1.0 × 10−6 and 4.4 × 10−6 rad. Besides, their study
allows to conclude that the birefringence is not due to
the mirror mounts.

In 1996, a new intrinsic phase retardation of a mirror
is reported [11]. The Fabry-Perot cavity finesse was 300
at λ = 633nm, and we can therefore infer that R =
0.9895. The measured phase retardation per reflection is
1.2 × 10−3 rad.

For the next value reported in ref. [12], a Fabry-Perot
was again used. The mirrors have been manufactured by
Research Electro-Optics Inc., Boulder, Colorado, USA.
The Fabry-Perot cavity finesse was 125600 at λ = 540
nm, and the inferred reflectivity is R = 0.999975. The
value of the phase retardation per reflection is given for
only one mirror and corresponds to 3 × 10−6 rad.

In 1997 two works have been published in the same
journal issue [13,14] concerning mirror intrinsic phase
retardation. In ref. [13] two mirrors constituting a Fabry-
Perot cavity have been characterized. The average value
of the reported reflectivity was R = 0.9988 at λ = 633
nm. The measured phase retardation per reflection was
4.2×10−4 rad and 1.04×10−3 rad. In ref. [14], the reflec-
tivity was R = 0.999969 at λ = 1064nm and they have
been manufactured by Research Electro-Optics Inc., Boul-
der, Colorado, USA. The measured value for three mir-
rors over four was between 3.7 and 12 × 10−7 rad, while
the last mirror was a “happy accident” with a phase
retardation per reflection smaller than 10−7 rad.

Finally in 2000, a new measurement is reported [15].
Measurements have been done on a Fabry-Perot cav-
ity, looking at frequency shift of the resonance line of
the cavity due to mirror phase retardation. The Fabry-
Perot cavity finesse was about 40 000 at λ = 633 nm,
corresponding to R = 0.999923, and the phase retar-
dation per reflection 1.8 × 10−6 rad. The authors have
also showed that the measured phase retardation could
be changed by several percents by appropriately inject-
ing more power in the cavity. Phase retardation relaxed
down to the average value several seconds after the per-
turbation.

In table 1 we summarize the existing data on mir-
ror intrinsic phase retardation per reflection. We give
the reference number, the value of the reflectivity R, the
measured value of the phase retardation per reflection
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δM, the number of characterized mirrors Nmirrors , and
finally the light wavelength λ for which the mirror re-
flectivity was optimized. We give the minimum and the
maximum value for δM when several mirrors have been
analyzed in the same reference. In the case of ref. [9],
where a single mirror has been studied but in several
points of its surface, we give the dispersion of the re-
ported values.

Table 1 Review of published data.

ref. R δM (rad) Nmirrors λ (nm)

[7] 0.998 (2 − 4) × 10−4 17 540
< 10−6 2 540

[8] 0.996 (3 − 22) × 10−5 5 514
[9] 0.9983 (3 − 6.2) × 10−4 1 633
[10] 0.999524 (1 − 4.4) × 10−6 2 633
[11] 0.9895 1.2 × 10−3 1 633
[12] 0.999975 3 × 10−6 1 540
[13] 0.9988 (4.2 − 10.4) × 10−4 2 633
[14] 0.999969 (7.4 − 24) × 10−7 3 1064

< 10−7 1 1064
[15] 0.999923 1.8 × 10−6 1 633

2.2 Our new measurements

In this paragraph we report new measurements of two
different sets of mirror performed in the framework of
the BMV experiment [22] which goal is to measure vac-
uum magnetic birefringence. As in the previous attempts
to measure such a weak quantity [3,4,5], mirror intrinsic
phase retardation is a source of noise limiting the sen-
sitivity of the apparatus. Moreover, since signal detec-
tion in the BMV experiment corresponds to a homodyne
technique, the ellipticity Γ induced on the linearly polar-
ized laser beam by the Fabry-Perot cavity overall phase
retardation is used as a D.C. carrier. To reach a shot
noise limited sensitivity, one needs Γ to be as small as
possible [22], implying that the phase retardation axis
of the two mirrors constituting the cavity have to be
aligned.

To measure the mirror intrinsic phase retardation,
our experimental method is based on the ones described
in details in ref. [10,14]. More details on our experimen-
tal setup can be found in ref. [22]. Briefly, 30 mW of a
linearly polarized Nd:YAG (λ = 1064 nm) laser beam is
injected into a Fabry-Perot cavity. This laser is locked to
the cavity resonance frequency using the Pound-Drever-
Hall method [23]. The beam transmitted by the cavity
is then analyzed by a polarizer crossed at maximum ex-
tinction and collected by a low noise photodiode with
a noise equivalent power of 0.25 pW/

√
Hz. Polarizer ex-

tinction is (4 ± 2) × 10−7 which is always much lower
than the ellipticity we measure.
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Fig. 1 Principle of the experiment: a linearly polarized laser
beam is injected into a Fabry-Perot cavity (mirrors M1 and
M2). The polarization is then analyzed outside of the cavity.

As shown on Fig. 1, both mirrors are schematized as
two ideal waveplates with phase retardation δ1 and δ2.
Thus the phase retardation per reflection of each mirror
we want to measure corresponds to 2δ1 and 2δ2. For the
sake of simplicity the angle indicating the direction of
the phase retardation axis of the first mirror is taken as
zero. The angle between the phase retardation axis of the
two mirrors is θWP. For δ1, δ2 ≪ 1, combination of both
waveplates gives a single waveplate of phase retardation
[14]:

δEQ =

√

((δ1 − δ2)
2

+ 4δ1δ2 cos2 θWP, (1)

and with a fast axis at an angle with respect to the x
axis given by:

cos 2θEQ =
δ1

δ2

+ cos 2θWP
√

(

δ1

δ2

− 1
)2

+ 4 δ1

δ2

cos2θWP

. (2)

The Fabry-Perot cavity corresponds to a waveplate with
a phase retardation δ related to δEQ as follows :

δ =
2F

π
δEQ, (3)

where F is the cavity finesse. Finally, the intensity trans-
mitted by the analyzer over the incident intensity is
equal to the square of the ellipticity ψ induced by the
cavity mirrors. This ellipticity is given by [14]:

ψ2 =
δ2

4
sin2(2(θP − θEQ)), (4)

with θP the angle indicating the direction of the light po-
larization with respect to the x axis. Thus, by measuring
the intensity transmitted by the analyzer as a function of
θWP and for different value of θP, we are able to calculate
the phase retardation of both mirrors.

Two different sets of mirrors have been tested. The
first one is constituted by two one inch diameter spher-
ical mirrors, 6m radius of curvature, BK7 substrate,
manufactured by Laseroptik GmbH, Garbsen (Germany).
The reflectivity at λ = 1064nm is 0.999396 correspond-
ing to a cavity finesse of 5200 and the transmission of the
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Fig. 2 Experimental values of the square of the ellipticity
ψ as a function of the angle between the phase retardation
axis of the cavity mirrors (see table 2). Data are fitted us-
ing Eq. (4). Upper curve: the mirrors reflectivity is 0.999396.
Lower curve: the mirrors reflectivity is 0.999972.

cavity is about 20 %. The second set of mirrors is con-
stituted by three one inch diameter spherical mirrors,
8m radius of curvature, BK7 substrate, manufactured
by Layertec GmbH, Mellingen (Germany). The reflec-
tivity at λ = 1064nm is 0.999972 corresponding to a
cavity finesse of about 110000. According to the manu-
facturer, mirror losses are lower than 100 ppm and the
overall measured transmission of the cavity is about 3 %.

The square of the ellipticity ψ induced by the cavity
as a function of the angle between the phase retardation
axis of the two mirrors is plotted in Fig. 2. Experimen-
tal values are fitted using Eq. (4). The deduced mirror
intrinsic phase retardation per reflection is presented in
Table 2 for each mirror.

Table 2 Mirror intrinsic phase retardation.

R δM (rad) No. λ (nm)

0.999396 (5.8 ± 0.4) × 10−4 1 1064
(3.4 ± 0.4) × 10−4 2

0.999972 (9.8 ± 0.4) × 10−6 1 1064
(2.6 ± 0.4) × 10−6 2
(1 ± 0.4) × 10−6 3
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Fig. 3 Summary of all the published data and the data ob-
tained in this work with mirror intrinsic phase retardation
δM versus (1−R). The symbols represent the wavelength for
which the mirror reflectivity was optimized (◦ : 540 nm, ⋄ :
633 nm, △ : 1064 nm, • : our work). Errors bars correspond to
the minimum and the maximum value when several mirrors
have been analyzed. Arrows represent mirrors for which the
phase retardation was smaller than the apparatus sensitivity.
The trend of the whole points shows that the intrinsic phase
retardation decreases by 3 orders of magnitude as (1 − R)
decreases by almost 3 orders of magnitude.

2.3 Summary

All the published data together with the data obtained
in this work are plotted as a function of (1−R) on Fig. 3.
When only one mirror has been tested, the correspond-
ing point has no error bars. When different mirrors have
been measured the data point have error bars. These er-
ror bars do not represent the measurement error for one
mirror (typically 10%) but the dispersion of the mea-
sured value for the whole set of mirrors. Arrows repre-
sent mirrors for which the phase retardation was smaller
than the apparatus sensitivity (see table 1 and 2). Dots
represent the new measurements reported in this work
at λ = 1064 nm.

Published data plotted on Fig. 3 clearly show that
the higher the reflectivity i.e. the lower the value of (1−
R), the lower the phase retardation per reflection. More
precisely, the intrinsic phase retardation decreases by 3
orders of magnitude as (1 − R) decreases by almost 3
orders of magnitude. Our new measurements perfectly
confirm this trend.

3 Computational study

The understanding of the origin of the experimental data
trend is crucial if one wants to control the manufac-
ture to obtain birefringence free interferential mirrors.
We have therefore developed a computer code that can
simulate the behavior of an interferential mirror made by
an arbitrary number of layers each one with its own ar-
bitrary phase retardation and arbitrary retardation axis.
Our goal was to find a configuration of layers, as simple
as possible, that could reproduce the experimental trend
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Fig. 4 Interferential mirror. It consists of an “odd stack” of
slabs deposited on a substrate.

and give a first indication to experimentalists to test in
further studies.

3.1 Interferential mirrors

Interferential mirrors are made by a stack of slabs of an
optical thickness of λ/2 as shown on Fig. 4, where λ is
the light wavelength for which the mirror reflectivity is
optimized. Each slab is composed by a low-index layer
nL and a high-index layer nH. Each layer has an optical
thickness of λ/4. Typically, nL is around 1.5 and nH is
higher than 2.0. The substrate is usually fused silica or
Zerodur, and a λ/2 coating of Si02 protects the reflecting
surface of the mirror. Obviously, construction details are
not shared publicly by manufacturers (see e.g. the para-
graph on mirror manufacture in ref. [16]).

In the case of what is called an “odd stack” i.e. N
slabs of a high-index layer and a low-index layer plus one
high-index layer (2N + 1 layers), the mirror reflectivity
R can be written as [17]:

R =







1 −
(

nH

ns

)2 (

nH

nL

)2N

1 +
(

nH

ns

)2 (

nH

nL

)2N







2

(5)

where ns is the index of refraction of the substrate. Typ-
ically to obtain a reflectivity R ≃ 0.999999 one needs
about 20 pairs of quarter-wavelength layers of materials
such as SiO2 and either TiO2 or TaO5, while 10 pairs
are sufficient to obtain R ≃ 0.999.

3.2 Methods

The model multilayer we used for our calculations con-
sists of a stack of slabs placed between two semi-infinite
media of refractive indices ne (the external medium) and
ns (the substrate). The coordinate system used to refer-
ence the multilayer axes is shown in Fig. 4.

Each birefringent layer is uniaxial. For the jth layer
extending from z = zj to z = zj+1 we denote by θj+1

the angle between the principal axis of the birefringent
medium and the reference frame and by dj = zj+1 − zj

its thickness (see Fig. 5).

x

y

θj+1

n
j+1

1

n
j+1

2

dj

1

Fig. 5 Angle between the principal axis of the birefringent
medium and the reference frame.

In the reference frame, the dielectric tensor of this
layer is then given by

ǫj+1 = R−1(θj+1)

(

ǫj+1
1 0

0 ǫj+1
2

)

R(θj+1) (6)

where R(θ) is the standard rotation matrix :

R(θ) =

(

cos θ sin θ
− sin θ cos θ

)

. (7)

For a low-index layer, we have






nj+1
1 =

√

ǫj+1
1 /ǫ0 = nL + δnL

nj+1
2 =

√

ǫj+1
2 /ǫ0 = nL

(8)

and for a high-index layer






nj+1
1 =

√

ǫj+1
1 /ǫ0 = nH + δnH

nj+1
2 =

√

ǫj+1
2 /ǫ0 = nH

(9)

where ǫ0 is the vacuum permeability and nL, nH stand
for refractive indices of similar but no-birefringent layers
with an optical thickness of λ/4, so that nj+1

1,2 dj = λ/4.
Let us now consider a transverse electric polarized

plane monochromatic wave normally incident upon this
model mirror. The solution of the Maxwell’s equations
for the electric field can be expressed as a superposition
of the forward and backward propagating waves along
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each reference direction x and y. In the external medium,
we have

Ex = A +
e,x exp{i(ke,xz − ωt)}

+ A−

e,x exp{i(−ke,xz − ωt)} (10)

for the x component and

Ey = A +
e,y exp{i(ke,yz − ωt)}

+ A−

e,y exp{i(−ke,yz − ωt)} (11)

for the y component, where ω = 2π/λ and

ke,x = ke,y =
ω

c
ne (12)

with c the light velocity in vacuum. In the same way, the
electric field in the substrate is written as

Ex = A +
s,x exp{i(ks,x(z − z2N+1) − ωt)}

+ A−

s,x exp{i(−ks,x(z − z2N+1) − ωt)} (13)

for the x component and

Ey = A +
s,y exp{i(ks,y(z − z2N+1) − ωt)}

+ A−

s,y exp{i(−ks,y(z − z2N+1) − ωt)} (14)

for the y component, where

ks,x = ks,y =
ω

c
ns. (15)

Using the characteristic matrix method [17], we have








A+
e,x

A−

e,x

A+
e,y

A−

e,y









= M









A+
s,x

A−

s,x

A+
s,y

A−

s,y









(16)

whereM is a 4×4 matrix called the characteristic matrix
of the multilayer. This matrix can be calculated step
by step by solving numerically a 4 × 4 linear system
of equations corresponding to the appropriate boundary
conditions that must be fulfilled by the electric field at
the interface between two adjacent layers. Noting that
A−

s,x = A−

s,y = 0 and taking A+
e,x = 1 and A+

e,y = 0, we
get

A−

e,x =
M21

(

M11 − M13M31

M33

) − M23M31

M33

(

M11 − M13M31

M33

)(17)

A−

e,y =
M41

(

M11 − M13M31

M33

) − M43M31

M33

(

M11 − M13M31

M33

) .(18)

The induced ellipticity per reflection ψM is then given
by

tanψM =
|A−

e,y|
|A−

e,x|
. (19)

Since measured phase retardations presented in the
previous section are small, we only consider small bire-
fringence. To fully reproduce the experimental technique
we calculate ψM as a function of the angle between the
polarization and the birefringent axis of the simulated
mirror. We checked that it behaves as a standard wave
plate from which we can extract the intrinsic phase re-
tardation δM.

10
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10
-4

10
-3

10
-2

d
M

2 4 6 8

10
-4

2 4 6 8

10
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2 4 6 8

10
-2

1-R

Fig. 6 Two different numerical calculations for the induced
phase retardation per reflection as a function of (1 − R).
Solid curve : birefringence only for the first layer just after
the substrate. Dots with error bars : calculation with random
birefringence per each layer. Crosses : measurements plotted
in Fig. 3.

3.3 Results

Using the code based on the methods detailed in the
previous section, we have simulated several simple con-
figurations. In the trivial case in which every layer gives
the same contribution to the total effect, the straight-
forward result was that phase retardation per reflection
increases with the number of layers i.e. with the mirror
reflectivity. Random phase retardation and axis orienta-
tion per layer has also been tested varying the range of
variation of these two parameters. No result similar to
the experimental trend has been obtained. The configu-
rations which can reproduce this trend are the ones in
which the birefringent layers are only the ones close to
the substrate.

Figure 6 presents two different numerical calculations
for the induced phase retardation per reflection as a func-
tion of (1 −R) where R is the multilayer reflectivity we
got from our simulations. Crosses represent the measure-
ments plotted in Fig. 3. To match these experimental
data, we have chosen the parameters of our simulations
such that numerical results reproduce the experimental
data for the highest (1 − R) available value. Dots with
error bars correspond to the result of random calcula-
tions with δnL(H) (resp. θj) randomly distributed inside
the interval [0, 0.001] (resp. [−π, π]) for each layer. The
error bar for each point corresponds to the dispersion ob-
tained with 10 tries. This result does not reproduce the
experimental data. On the other hand, the solid curve
has been obtained by including birefringence only for the
layer lying directly on the substrate. The parameters we
used are: δnH = 0.13 for the (2N + 1)th layer (zero for
the others). This result reproduces quite well the trend
of the experimental data i.e. the intrinsic phase retar-
dation decreases by 3 orders of magnitude as (1 − R)
decreases by 3 orders of magnitude.
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4 Conclusion

Existing experimental data on interferential mirrors in-
trinsic phase retardation, together with the two new
measurements reported in this work, clearly indicate that
some physical effect decreases the birefringence per re-
flection when the mirror reflectivity R increases i.e. when
one increases the number of layers used to realize the
interferential mirror. Our numerical calculations show
that it can be explained with a simple model in which
only the layers close to the substrate are birefringent. We
could not find any other reasonable configuration giving
a trend similar to the experimental one.

Our study cannot unveil the physical origin but it
seems to indicate in which part of the mirror the problem
resides: the reflecting layers close to the substrate. We
believe that it is a crucial piece of information for mir-
ror manufacturers in order to realize birefringence free
mirrors or at least to control and minimize the effect.

Finally, although experimental data have been ob-
tained by using different mirrors that in principle have
not been realized using exactly the same manufacture
protocol, we obtain a clear decreasing of the phase re-
tardation per refection as R increases. But to fully un-
derstand the origin of interferential mirror phase retar-
dation, we believe that next step should be to study a
series of mirrors, all made with the same industrial pro-
cess, but with different values of reflectivity R.

5 Acknowledgements

This work has been performed in the framework of the
BMV project. We thank all the members of the BMV
collaboration, and in particular G. Bailly, T. Crouzil, J.
Mauchain, J. Mougenot, G. Trénec. We acknowledge the
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