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Introduction

Le présent texte a été élaboré au départ comme une revue de l'article [START_REF] Riedel | Marko¤ equation and nilpotent matrices[END_REF] de Norbert Riedel, intitulé "Marko¤ equation and nilpotent matrices" et déposé dans le serveur arXiv de Los Alamos. Ce travail de revue et les échanges qui ont eu lieu à cette occasion ont permis à Riedel de perfectionner son propre texte. Mais il a également permis à l'auteur du présent article de généraliser tous les calculs élaborés pour [START_REF] Riedel | Marko¤ equation and nilpotent matrices[END_REF] et d'en comprendre la signi…cation profonde. C'est ce que l'on veut exposer dans la suite. L'intérêt premier de la prépublication [START_REF] Riedel | Marko¤ equation and nilpotent matrices[END_REF] est qu'elle annonce donner une démontration de la conjecture étudiée depuis presque un siècle, et essentielle pour assurer la présentation donnée dans [START_REF] Frobenius | Über die Marko¤schen Zahlen[END_REF] ou [START_REF] Cassels | An introduction to Diophantine Approximation[END_REF] de la théorie de Marko¤ relative aux solutions en nombres entiers strictement positifs de l'équation

m 2 + m 2 1 + m 2 2 = 3mm 1 m 2 : (1.1)
Cette conjecture consiste à énoncer que pour tout triplet solution (m; m 1 ; m 2 ) de cette équation tel que m 1 m; m 2 m; la valeur m détermine de façon unique la paire fm 1 ; m 2 g, où encore si l'on impose m 1 m 2 que le couple (m 1 ; m 2 ) est unique. Dans le travaux originaux de Marko¤ [START_REF] Marko¤ | Sur les formes quadratiques indé…nies[END_REF], cette question n'est pas posée, car le recours aux fractions continues donne directement tous les résultats recherchés. C'est dans la présentation de ces travaux remaniée par Frobenius [START_REF] Frobenius | Über die Marko¤schen Zahlen[END_REF] en 1913, et qui met en avant les formes quadratiques, que cette conjecture apparait. Ayant jusqu'à aujourd'hui résisté à toute démonstration alors que les résultats d'origine de Marko¤ laissent préssentir qu'elle est vraie, cette conjecture crée un sentiment d'insatisfaction à la lecture de tous les exposés modernes de cette théorie ; ils sont en fait basés sur la présentation de Frobenius (voir par exemple [START_REF] Cassels | An introduction to Diophantine Approximation[END_REF] p. 33 ou [START_REF] Cusick | The Marko¤ and Lagrange spectra[END_REF] p. 11). L'enjeu est donc de savoir si l'arbre des solutions de l'équation 1.1 est bien un "arbre binaire" comme l'indique Guy dans son ouvrage sur les problème non résolus en Théorie des Nombres [START_REF] Guy | Unsolved problems in number theory[END_REF]. Selon [START_REF] Waldschmidt | Open diophantine problems[END_REF] le problème restait ouvert en 2004. Depuis 1913, di¤érentes démonstrations fausses ou incomplètes ont été données de la conjecture, mais aucune à ce jour n'éteint la question. Il est d'ailleurs possible que faire précéder les exposés modernes de la théorie par une démonstration de la conjecture n'en améliore pas l'élégance si l'on compare aux travaux originaux de Marko¤. Cependant l'agacement face à une conjecture simplement énoncée, mais qui résiste, reste une puissante motivation, de même et surtout que la compréhension profonde des mécanismes qu'elle recouvre. Des approches heuristiques ont été développées (voir [START_REF] Zagier | On the number of Marko¤ numbers below a given bound[END_REF]), des résultats très partiels ont été démontrés (voir [START_REF] Baragar | On the unicity conjecture for Marko¤ numbers[END_REF], [START_REF] Button | Marko¤ numbers, principal ideals and continued fractions expansions[END_REF], [START_REF] Lang | A simple proof of the Marko¤ conjecture for prime powers[END_REF], [START_REF] Zhang | An elementary proof of Marko¤ conjecture for prime powers[END_REF], [START_REF] Zhang | Congruence and uniqueness of certain Marko¤ numbers[END_REF], [START_REF] Srinivasan | A really simple proof of the Marko¤ conjecture for prime powers[END_REF]), et même des signi…cations géométriques profondes ont été données à cette conjecture (voir [START_REF] Schmutz | Systoles of arithmetic surfaces and the Marko¤ spectrum[END_REF], [START_REF] Rudakov | Markov numbers and exceptionnal bundles on P 2 , english translation in[END_REF]). Cependant pour le moment aucun moyen convainquant n'a été trouvé pour l'établir. C'est d'ailleurs pourquoi l'auteur du présent document a dans ses propres travaux ( [START_REF] Perrine | La théorie de Marko¤ et ses développements[END_REF] ou [START_REF] Perrine | Recherches autour de la théorie de Marko¤[END_REF]) contourné l'obstacle qu'elle constitue en préférant considérer dans l'esprit de [START_REF] Marko¤ | Sur les formes quadratiques indé…nies[END_REF] l'ensemble de toutes les solutions de l'équation 1.1, pas seulement un sous ensemble d'entre elles. Ceci a conduit à introduire naturellement une structure géométrique sur tout l'ensemble de ces solutions, considéré en tant qu'orbite pour l'action naturelle du groupe produit libre T 3 = Z=2Z ? Z=2Z ? Z=2Z. Norbert Riedel s'est attaqué quant à lui à la conjecture en déplaçant le problème dans des ensembles de matrices 3 3. Son approche est innovante, comme on va le voir ci-après, mais elle mérite pas mal d'éclaircissements. Hélas on con…rme sans pouvoir la corriger l'erreur redhibitoire que contient cette prépublication [START_REF] Riedel | Marko¤ equation and nilpotent matrices[END_REF] (v4).

Le plan du présent article est le suivant : Ce sont ces trois transformations qui permettent de faire agir naturellement le groupe T 3 = Z=2Z ? Z=2Z ? Z=2Z sur l'ensemble de solutions de l'équation 2. f ig:1 : Un arbre complet de triplets, la T 3 -orbite.

On observe que si (a; b; c) est une solution, tout triplet obtenu à partir de ce dernier par permutation de a, b, c est une autre solution …gurant dans ce dernier arbre. Plusieurs auteurs utilisent cette remarques pour réduire l'ensemble des triplets qu'ils considèrent. Par exemple la méthode donnée dans [START_REF] Cassels | An introduction to Diophantine Approximation[END_REF] (p. [START_REF] Wolf | The Heisenberg-Weyl ring in quantum mechanics, Group theory and its applications[END_REF][START_REF] Zagier | On the number of Marko¤ numbers below a given bound[END_REF] évite des redondances en ne considérant que les triplets où a = max(a; b; c): Cassels y divise en plus par deux le nombre des triplets qu'il considére en ne raisonnant que sur la partie de son arbre située sous (15; 3; 6). Dans [START_REF] Cohn | Marko¤ forms and Primitive Words[END_REF], Cohn fusionne d'une certaine façon les deux opérations précédentes en ne considèrant que les triplets véri…ant a b c. Au contraire, Zhang donne dans [START_REF] Zhang | An elementary proof of Marko¤ conjecture for prime powers[END_REF] une autre façon de constuire un arbre de solutions en ne considérant que les triplets qui véri…ent a b c. Il passe de (a; b; c) à (a; b; ab c) et (b; c; bc a), mais il permute éventuellement en plus les termes de ces deux derniers triplets pour les remettre en ordre croissant si nécessaire. L'arbre de Zhang ([29] §1.7. …gure 2) parait par sa dé…nition bien adapté à l'étude de la conjecture de Marko¤ qui en l'occurrence se traduit par le fait que c détermine de façon unique le triplet de Zhang (a; b; c).

L'énoncé du théorème de Riedel qui résoudrait la conjecture est donné à la page 2 de son article ( [START_REF] Riedel | Marko¤ equation and nilpotent matrices[END_REF] v4). Cet énoncé semble a¢ cher que c'est sur l'arbre de Zhang [START_REF] Zhang | An elementary proof of Marko¤ conjecture for prime powers[END_REF] que travaille l'auteur. Toutefois, il dit un peu plus loin sur la même page : " It is also common to represent the three numbers as a components of a triple, arranged in increasing order from the left to the right, for instance. This arrangement is unsuitable for the present purpose. While still referring to this arrangement as a Marko¤ triple, and the largest number as the dominant member we will supplement this notion by the following...". De sorte qu'au début de l'article [START_REF] Riedel | Marko¤ equation and nilpotent matrices[END_REF] il n'est pas bien facile de comprendre de quel arbre de solutions parle son auteur. En fait la construction de Riedel est précisée dans la suite de [START_REF] Riedel | Marko¤ equation and nilpotent matrices[END_REF]. Elle consiste à travailler sur les triplets de Marko¤ qu'il appelle une MT-matrice (où MT signi…e bien sûr Marko¤ Theory). On peut observer, pour bien comprendre la di¤érence entre les di¤érents arbres, les premiers triplets de Marko¤ non triviaux et déduits par permutation les uns des autres que sont (15; 6; 3), (15; 3; 6), (6; 15; 3), (3; 15; 6), (6; 3; 15), (3; 6; 15). Dans mes travaux [START_REF] Perrine | La théorie de Marko¤ et ses développements[END_REF] j'ai considéré les six dans ce qui est appelé l'arbre complet ou la T 3 -orbite des solutions de l'équation 2.1. La condition de Cassels caractérise les deux premiers, celle de Ainsi utilisant les deux transformations entre triplets que l'on vient de préciser, on fabrique l'arbre des triplets de Zhang dont les plus bas niveaux s'organisent comme suit (comparer à [START_REF] Zhang | An elementary proof of Marko¤ conjecture for prime powers[END_REF] 

L' arbre de Riedel

Riedel n'explicite pas complètement dans son article comment il organise en arbre ses triplets, mais il ne fait aucun doute qu'une telle possibilité existe car on peut les identi…er dans l'arbre complet (ou T 3 -orbite telle que dé…nie dans [START_REF] Perrine | La théorie de Marko¤ et ses développements[END_REF]) de toutes les solutions de l'équation de Marko¤, et considérer le sous-arbre correspondant. Il passe directement aux aspects matriciels dans l'anneau M 3 (Z) des matrices 3 3 à coe¢ cients entiers positifs ou négatifs. Et c'est à partir de là qu'il construit un arbre de MT-matrices. Comme chaque MT-matrice est de façon unique associée à un triplet de Riedel, ceci donne inversement la structure d'arbre qu'il considère sur ses triplets et que l'on va expliciter dans la suite. La méthode consiste à utiliser, avec x et y dans Z, les deux matrices

P (x) = 0 @ 0 1 0 1 x 0 0 0 1 1 A ; Q(y) = 0 @ 1 0 0 0 y 1 0 1 0 1 A :
Avec la notation classique pour la transposition des matrices, on véri…e facilement que l'on a: (2.9)

Or le triplet (b; c; bc a) est le second triplet de Zhang déductible de (a; b; c). Et on donc peut également traduire chacune des égalités précentes 2.6, 2.7, 2.8, 2.9, par une arête de l'arbre de Riedel:

f ig: 5 : Il ne reste qu'à comprendre ce qui se passe à la racine de l'arbre de Riedel, ce que l'on visualise sur la …gure suivante: En combinant toutes les …gures 3 à 7 précédentes, on obtient l'ensemble de l'arbre des triplets de Riedel. On vient donc de décrire complètement sa construction en précisant de façon explicite ce qui est évoqué dans [START_REF] Riedel | Marko¤ equation and nilpotent matrices[END_REF]. Sur cet arbre on voit aisément que la conjecture de Marko¤ se traduit, lorsque l'on a max(a; b; c) = c, par le fait que tout nombre c détermine au plus un unique triplet, si c = 3 ou c = 6, ou deux triplets (a; b; c) dans les autres cas pour c. La moitié des triplets de l'arbre de Riedel véri…ant max(a; b; c) = a n'est pas concernée par la conjecture de Marko¤, de sorte qu'on ne voit pas à ce stade pourquoi l'arbre des triplets de Riedel serait mieux adapté à son étude. Remarquons en complément que l'on peut facilement étendre encore la construction précédente à tous les triplets de la T 3 -orbite des solutions de l'équation 2.1. De sorte qu'il est maintenant possible de développer l'analogue des calculs donnés en dimension 2 dans [START_REF] Perrine | L'interprétation matricielle de la théorie de Marko¤ classique[END_REF] (ou ce qui est le même texte dans [START_REF] Perrine | La théorie de Marko¤ et ses développements[END_REF] (chapitre 6)), mais cette fois en dimension 3. C'est ce que fait Riedel, sans que soient jusque là bien claires les raisons qui le poussent à ignorer ce qui se passe sous le triplet (3; 6; 3) de la T 3 -orbite qui prolonge l'arbre que l'on vient de décrire. Sous le triplet (3; 3; 3), on peut en e¤et prolonger la …gure précédente comme suit : f ig:8 : Un autre arbre complet de triplets : le MT-arbre.

(
(
Il est possible de véri…er que l'on retouve ainsi tous les triplets de la T 3 -orbite des solutions de l'équation 2.1, mais on voit en comparant la …gure 8 à la …gure 1 que ces triplets sont disposés en un arbre complètement di¤érent. On dit qu'il s'agit du MT-arbre des triplets de solutions de l'équation 2.1. En d'autres termes, on a construit par ce qui précède une bijection de l'ensemble des noeuds de la T 3orbite sur lui même considéré ici en tant qu'ensemble des noeuds du MT-arbre. Ceci s'est fait en utilisant plutôt que les involutions X, Y , Z, les quatre matrices P (a), P (b), Q(a), Q(b), et leurs inverses. De façon équivalente, on peut dire que Riedel a trouvé une autre façon de faire agir proprement le groupe T 3 sur le même ensemble de noeuds. De plus, par cette bijection les triplets de Riedel sont tous disposés sur les deux branches issues de (3; 3; 3) du côté de (3; 3; 6) et (6; 3; 3). Cette nouvelle construction est su¢ samment étonnante pour ne pas douter qu'elle recouvre des propriétés algébriques intéressantes. On peut ajouter que la branche nouvelle introduite dans la …gure 8 comparée à la …gure 7 ne contient que des triplets (a; b; c) qui ne sont pas de Bref les ré ‡exions sur l'organisation de l'arbre des triplets à considérer peuvent être encore développées.

Con…rmation complète de la proposition 1.2 de Riedel

Toutes les matrices 3 3 dé…nies par Riedel sont inversibles, puisque l'on a:

M (a; b; c) 1 = 0 @ 1 a ac b 0 1 c 0 0 1 1 A ; P (x) 1 = 0 @ x 1 0 1 0 0 0 0 1 1 A ; Q(y) 1 = 0 @ 1 0 0 0 0 1 0 1 y 1 A :
Mieux, elles sont dans SL(3; Z), groupe des matrices 3 3 à coe¢ cients entiers et de déterminant égal à 1. Avec les compléments que l'on vient d'expliciter sur l'arbre des triplets de Riedel, il est maintenant évident qu'une partie de sa proposition suivante est assurée : Proposition 2.1. (Proposition 1.2 de [START_REF] Riedel | Marko¤ equation and nilpotent matrices[END_REF]) Pour deux MT-matrices quelconques M (a 1 ; b 1 ; c 1 ) et M (a 2 ; b 2 ; c 2 ) on peut trouver une matrice N dans SL(3; Z) telle que l'on ait :

t N M (a 2 ; b 2 ; c 2 )N = M (a 1 ; b 1 ; c 1 ):

(2.10)

Dans ces conditions, on a également la relation suivante :

t N 0 @ c 2 a 2 c 2 b 2 a 2 1 A = 0 @ c 1 a 1 c 1 b 1 a 1 1 A : (2.11)
Pour la démonstration, il su¢ t de suivre un chemin de (a 2 ; b 2 ; c 2 ) à (3; 3; 3) puis à (a 1 ; b 1 ; c 1 ), et de composer les matrices P et Q données pas à pas par les ‡èches de l'arbre selon les relations associées 2.2 à 2.9. Le produit de ces matrices, ou de leurs inverses si l'on prend une ‡èche en sens inverse, donne N . Cette matrice est bien dans SL(3; Z). Par le même procédé, on peut également véri…er la seconde relation 2.11 que mentionne Riedel. Il su¢ t pour l'établir de considérer par exemple l'égalité 2. (2.12)

On fait de même avec toutes les relations 2.2 à 2.9. Ainsi 2.3 est traitée avec N = Q(c), (a 2 ; b 2 ; c 2 ) = (a; b; c) et (a 1 ; b 1 ; c 1 ) = (ac b; a; c). L'égalité 2.11 se véri…e à nouveau dans ces conditions, sous la forme:

0 @ 1 0 0 0 c 1 0 1 0 1 A 0 @ c ac b a 1 A = 0 @ c (ac b)c a ac b 1 A : (2.13)
Toutes les autres relations s'en déduisent en permutant les coe¢ cients a et c dans les deux dernières égalités, puis a et b dans les quatre égalités ainsi obtenues. Il su¢ t alors de suivre le même chemin de (a 2 ; b 2 ; c 2 ) à (3; 3; 3) puis à (a 1 ; b 1 ; c 1 ) que dans la démonstration précédente de la première partie de la proposition 1.2, et de composer les matrices P et Q données pas à pas par les ‡èches de l'arbre selon les relations associées 2.2 à 2.9. Le produit de ces matrices, ou selon le sens des ‡èches de l'arbre de leurs inverses, donne la même matrice N avec la possibilité de s'assurer par produit que l'on a aussi 2.11. Ainsi véri…e-t-on de façon complète la proposition 1.2 de [START_REF] Riedel | Marko¤ equation and nilpotent matrices[END_REF], dont les deux égalités 2.10 et 2.11 avec la même matrice N sont donc bien simultanément vraies. Il est à noter que jusque là on n'a pas utilisé les conditions dé…nissant les MT-matrices. D'ailleurs la dernière remarque faite par Riedel à la …n du paragraphe 2) page 4 de son article [START_REF] Riedel | Marko¤ equation and nilpotent matrices[END_REF] montre qu'il a bien vu que sa proposition 2.1 est en réalité valable pour tous les triplets de l'arbre complet de Marko¤ (le MT-arbre de toutes les solutions de l'équation 2.1).

L' explication centrale

Riedel donne une explication un peu étrange ( [START_REF] Riedel | Marko¤ equation and nilpotent matrices[END_REF] Remarks 3) pp. 4-5) du lien avec les travaux classiques sur la théorie de Marko¤, en évoquant la présentation qu'en fait Cohn [START_REF] Cohn | Marko¤ forms and Primitive Words[END_REF]. Cette théorie dit essentiellement que dans SL(2; Z) le groupe F 2 engendré par les deux matrices

A 0 = 2 1 1 1 ; B 0 = 1 1 1 2 ;
est libre à deux générateurs, et elle donne des précisions sur les autres couples de générateurs de ce groupe en les liant aux solutions de l'équation 2.1. Ce groupe est d'ailleurs le sous-groupe normal dérivé de SL(2; Z). L'article [START_REF] Perrine | L'interprétation matricielle de la théorie de Marko¤ classique[END_REF] cité par Riedel est une longue variation sur ce dernier sujet. Dans l'esprit de [START_REF] Cohn | Marko¤ forms and Primitive Words[END_REF], Riedel introduit une notion de triplet admissible de matrices. Il la dé…nit par les règles de récurrence suivantes :

(A 0 ; A 0 B 0 ; B 0 ) triplet admissible, Si (A; AB; B) triplet admissible, alors (A; A 2 B; AB) et (AB; AB 2 ; B) admissibles.
Tout triplet admissible (A; AB; B) donne une solution de l'équation de Marko¤ 2.1 sous la forme (tr(A); tr(AB); tr(B)), en utilisant simplement la trace des matrices. Et on retrouve bien à partir de là toutes les solutions de l'équation de départ et une organisation en arbre. Ceci résulte par exemple de la proposition 4.3 de [START_REF] Perrine | La théorie de Marko¤ et ses développements[END_REF] p.174, où l'on en a déduit une application surjective dont l'image est l'ensemble de tous les triplets admissibles (à un facteur 3 près).

Mais l'observation essentielle que fait alors Riedel est que toute matrice d'un triplet admissible peut être écrite comme combinaison linéaire des matrices A 0 , A 0 B 0 , B 0 , avec des coe¢ cients entiers. Ce résultat s'établit aisément par récurrence. Il est évidement vrai pour le triplet admissible (A 0 ; A 0 B 0 ; B 0 ). Et si l'on suppose qu'il est vrai pour le triplet admissible (A; AB; B) il su¢ t de le véri…er pour les deux matrices A 2 B et AB 2 . Véri…ons le pour la première, la méthode est la même pour la seconde. La matrice A est unimodulaire et racine de son polynôme caractéristique A 2 tr(A)A + 1 = 0;

de sorte que l'on a A 2 B = tr(A)AB B:

On conclut avec le fait que tr(A) est un entier, et que AB et B sont par hypothèse de récurrence combinaisons linéaires des matrices A 0 , A 0 B 0 , B 0 , avec des coe¢cients entiers. Il en est de même de A 2 B, en utilisant le polynôme caractéristique de B :

AB 2 = tr(B)AB A:
Remarquons maintenant que si l'on cherche une combinaison avec des coe¢ cients entiers , , , reliant les matrices A 0 , A 0 B 0 , B 0 , on a à résoudre un système qui ne laisse s'exprimer que la possibilité = = = 0. On fait donc apparaitre un Z-module libre de rang trois engendré par la base des matrices (A 0 , A 0 B 0 , B 0 ), contenant toutes les matrices apparaissant dans un triplet admissible. La décomposition sur cette base, avec une matrice de passage dans M 3 (Z), s'écrit pour tout triplet admissible: A partir de (A 0 ; A 0 B 0 ; B 0 ) et des deux triplets admissibles qui s'en déduisent, on est conduit à considérer les deux matrices de SL(3; Z):

(A; AB; B) = (A 0 ; A 0 B 0 ; B 0 ) 0 @ u 11 u
(A 0 ) = 0 @ 1 0 0 0 3 1 0 1 0 1 A ; (B 0 ) = 0 @ 0 1 0 1 3 0 0 0 1 1 A ;
ainsi que le groupe des matrices N qu'elles engendrent. Pour compléter [START_REF] Riedel | Marko¤ equation and nilpotent matrices[END_REF] il faut développer l'analyse de la représentation : F 2 ! SL(3; Z) qui en résulte et caractériser son image, etc. Sur ces bases, la transposition des travaux de [START_REF] Perrine | L'interprétation matricielle de la théorie de Marko¤ classique[END_REF] ou [START_REF] Perrine | La théorie de Marko¤ et ses développements[END_REF] (chapitre 6 § 6.1) est envisageable, non plus en utilisant des automorphismes intérieurs de GL(2; Z) de forme

V 2 GL(2; Z) ! N 1 V N 2 GL(2; Z);
mais en utilisant plutôt ce que Riedel nomme "automorphs" et que l'on appellera ici des congruences (Voir [START_REF] Mneimné | Réduction des endomorphismes[END_REF] page 3) :

W 2 GL(3; Z) ! t N W N 2 GL(3; Z):

Compléments à l' approche de Riedel

L'apparition de telles congruences dans la relation 2.10, vue ci-dessus, peut être interprétée en disant que les MT-matrices sont dans une même orbite pour l'action par les congruences de SL(3; Z). S'introduit par là toute une nouvelle approche géométrique que l'on peut approfondir, en se demandant quel est le stabilisateur associé, etc. Ceci sera évoqué dans la suite de notre texte. La présente section est plutôt consacrée à quelques digressions par rapport à [START_REF] Riedel | Marko¤ equation and nilpotent matrices[END_REF]. Il s'agit de montrer comment ces congruences sont aussi liées à une action de changement de base sur des formes quadratiques. De telles congruences sont en e¤et classiques dans la théorie de ces formes. On examine également le contexte des matrices M (a; b; c) et les perspectives qu'il ouvre. On montre en…n comment en prolongeant un peu l'approche de Riedel se met en place un lien avec les quaternions.

Lien avec les formes quadratiques

Associée à une matrice M (a; b; c), il existe naturellement une forme correspondant à un cône, et on l'a déjà mentionnée dans [START_REF] Perrine | La théorie de Marko¤ et ses développements[END_REF] (p. 138) :

M (a;b;c) (x; y; z) = x y z 0 @ 1 a b 0 1 c 0 0 1 1 A 0 @ x y z 1 A = x 2 + y 2 + z 2 + axy + cyz + bzx:
On a indiqué dans [START_REF] Perrine | Recherches autour de la théorie de Marko¤[END_REF] ( § 3.2.4 p. 55 et § 5 p.63-64) comment cette forme avait une certaine importance du point de vue de la géométrie algébrique, et certainement pour la classi…cation de certains faisceaux vectoriels exceptionnels sur le plan projectif [START_REF] Rudakov | Markov numbers and exceptionnal bundles on P 2 , english translation in[END_REF]. Cette dernière question est le cadre de la conjecture de A. N. Tyurin qui a¢ rme qu'un tel faisceau exceptionnel serait déterminé de façon unique par son rang. Dans l'article de A. N. Rudakov [START_REF] Rudakov | Markov numbers and exceptionnal bundles on P 2 , english translation in[END_REF], il est indiqué que cette conjecture est équivalente à la conjecture de Frobenius, objet du travail de N. Riedel examiné ici. En tout cas le glissement des automorphismes intérieurs aux congruences est essentiel dans l'article [START_REF] Riedel | Marko¤ equation and nilpotent matrices[END_REF]. Et l'on peut dire que cette piste n'est pas nouvelle puisqu'elle est explicitement l'objet d'un article de Cohn [START_REF] Cohn | Ternary forms as invariants of Marko¤ forms and other SL 2 (Z)bundles[END_REF] qui donne une bibliographie complémentaire de cette interprétation géométrique.

Notons ici que ce qui serait aussi naturel dans l'approche de Riedel serait de considérer dans une base (A; AB; B) la forme quadratique Or elle se simpli…e lorsque l'on a det A = det B = 1, comme dans le cas étudié de la théorie de Marko¤. Et on retrouve alors simplement une forme , comme dé…nie précèdemment, avec :

(A;AB;B) (x; y; z) = x 2 + y 2 + z 2 + tr(B)xy + tr(A)yz + tr(AB 1 )zx = x y z 0 @ 1 tr(B) tr(AB 1 ) 0 1 tr(A) 0 0 1 1 A 0 @ x y z 1 A = M ( 
tr(B);tr(AB 1 );tr(A)) (x; y; z):

Lien avec le groupe de Heisenberg

Ce qui vient d'être décrit permet aussi le lien avec le groupe de Heisenberg discret, que les physiciens nomment plutôt groupe de Weyl, ou encore groupe de Heisenberg-Weyl (voir [START_REF] Wolf | The Heisenberg-Weyl ring in quantum mechanics, Group theory and its applications[END_REF] ou [START_REF] Howe | On the role of the Heisenberg group in harmonic analysis[END_REF] p. 825): avec pour crochet de Lie le simple commutateur des matrices :

H 1 (Z) =
[ 0 @ 0 p z 0 0 q 0 0 0 1 A ; 0 @ 0 p 0 z 0 0 0 q 0 0 0 0 1 A ] = 0 @ 0 0 pq 0 pq 0 0 0 0 0 0 0 1 A :
Cette algèbre dé…nit inversement H 1 (R) comme groupe de Lie local matriciel dont l'opération est la multiplication des matrices et dont tous les éléments s'écrivent tous comme une exponentielle, ici avec un calcul évident utilisant le développement de Taylor de l'exponentielle, sous la forme :

g = exp(pP + qQ zI) = 0 @ 1 p z + pq 2 0 1 q 0 0 1 1 A :
On retrouve l'algèbre de Lie h 1 associée en calculant les vecteurs tangents en à une courbe de ce groupe passant par l'unité, avec en ce point la possibilité de noter

@g @p = P = U 1; @g @q = Q = V 1; @g @z = I = W 1:
Et par une véri…cation directe, on a :

exp(pP ) exp(qQ) exp( zI) = 0 @ 1 p 0 0 1 0 0 0 1 1 A 0 @ 1 0 0 0 1 q 0 0 1 1 A 0 @ 1 0 z 0 1 0 0 0 1 1 A = 0 @ 1 p z + pq 0 1 q 0 0 1 1 A :
On véri…e en passant que cette expression est di¤érente de celle de exp(pP + qQ zI). La di¤érence entre les deux expressions s'explique par le classique théorème de Campbell-Baker-Hausdor¤ (voir [START_REF] Ch | La conjecture de Kashiwara-Vergne[END_REF] pour l'actualité de cette formule). Maintenant les élements

U = exp(P ) = 0 @ 1 1 0 0 1 0 0 0 1 1 A ; V = exp(Q) = 0 @ 1 0 0 0 1 1 0 0 1 1 A ; W = exp( I) = 0 @ 1 0 1 0 1 0 0 0 1 1 A ;
engendrent le sous groupe H 1 (Z) de GL 3 (Z), qui est dé…ni avec ces trois générateurs par les relations

U V U 1 V 1 = V U 1 V 1 U = U 1 V 1 U V = V 1 U V U 1 = W:
On observe, en calculant le produit de deux matrices du groupe H 1 (Z), que ce dernier est représentable plus simplement par l'ensemble Z 3 des triplets d'entiers muni de l'opération non commutative Les remarques que l'on vient de faire laissent imaginer l'importance qu'il y a à approfondir encore ce que l'on vient d'esquisser. Elles donnent également à comprendre comment se contruit grâce au groupe de Lie H 1 (R) l'ubiquité de la théorie de Marko¤ dans di¤érents contextes où se manifeste un oscillateur harmonique (voir [START_REF] Howe | On the role of the Heisenberg group in harmonic analysis[END_REF]). En fait elle apparait dans toute situation de couplage de deux tels oscillateurs.

(a; b; c)(a 0 ; b 0 ; c 0 ) = (a + a 0 ; b + b 0 + ac 0 ; c + c 0 ):

Lien avec les quaternions

Avec le groupe F 2 il est très naturel d'introduire, plutôt que le Z-module engendré par (A 0 , A 0 B 0 , B 0 ) comme le fait Riedel, le Z-module Z < F 2 > des combinaisons linéaires à coe¢ cients dans Z de forme

1 2 + A 0 + B 0 + A 0 B 0 = p q r s ; (2.14) où 1 2 = 1 0 0 1 ; A 0 = 2 1 1 1 ; B 0 = 1 1 1 2 : (2.15)
Les expressions de A 0 et B 0 imposent que l'on ait p, q, r, s, dans Z. En substituant dans 2.14, on obtient quatre égalités:

+ 2 + + 3 = p;
(2.16)

+ + 4 = q;
(2.17)

+ + 2 = r;
(2.18)

+ + 2 + 3 = s: (2.19)
Si on cherche à les inverser dans Q, on trouve:

= q 2r + s + p q s 2 q r 2 ; (2.20) 
= r + p q s 2 ;

(2.21) = r q p q s 2 ;

(2.22) = q r 2 :

(2.23)

Mais comme on considère le Z-module Z < F 2 > des combinaisons linéaires à coe¢ cients dans Z, il est en fait nécessaire que p, q, r, s dans Z véri…ent les deux conditions: p s q r (mod 2):

(2.24)

Inversement lorsque ces congruences sont véri…ées, on peut trouver à partir de p, q, r, s dans Z les nombres , , , , dans Z. On est alors certain d'être dans le Z-module Z < F 2 >, par construction sous Z-module de M 2 (Z). Remarquons que les expressions que l'on vient de donner montrent que 1 2 + A 0 + B 0 + A 0 B 0 = 0 si et seulement si = = = = 0. En d'autres termes les quatre matrices 1 2 , A 0 , B 0 , A 0 B 0 , forment un système libre du Z-module Z < F 2 > qui est ainsi de rang 4. Ces quatres matrices sont d'ailleurs Q-indépendantes dans M 2 (Q).

On peut maintenant construire à partir des expressions précédentes une table de multiplication:

(A 0 ) 2 = 1 2 + 3A 0 A 0 B 0 = (A 0 B 0 ) A 0 (A 0 B 0 ) = B 0 + 3A 0 B 0 B 0 A 0 = 3:1 2 + 3A 0 + 3B 0 A 0 B 0 (B 0 ) 2 = 1 2 + 3B 0 B 0 (A 0 B 0 ) = 3:1 2 + A 0 + 6B 0 (A 0 B 0 )A 0 = 3:1 2 + 6A 0 + B 0 (A 0 B 0 )B 0 = A 0 + 3(A 0 B 0 ) (A 0 B 0 ) 2 = 1 2 + 6(A 0 B 0 )
Cette table montre que Z < F 2 > est aussi muni d'une structure d'anneau, un sous-anneau de M 2 (Q). Ceci permet, en utilisant le langage des quaternions [START_REF] Vigneras | Arithmétique des corps de quaternions[END_REF], d'observer que dans la Q-algèbre M 2 (Q) des matrices 2 2 à coe¢ cients rationnels considérée comme Q-algèbre de quaternions, le sous Z-module Z < F 2 > engendré par le sous groupe multiplicatif normal dérivé F 2 de SL(2; Z) est un ordre. Le fait que Z < F 2 > est strictement contenu dans l'ordre M 2 (Z) se voit aisément avec la condition

0 1 0 0 = 2 Z < F 2 > :
On peut en plus considérer dans Z < F 2 > la matrice :

1 0 0 1 = A 0 B 0 :
Celle-ci est de trace nulle et de déterminant 1, elle est donc inversible. Elle appartient à GL 2 (Z), mais n'est pas dans SL(2; Z) qui ne contient que des matrices de déterminant 1. Ainsi le groupe des unités Z < F 2 > , c'est à dire des éléments inversibles de Z < F 2 >, est-il plus gros que F 2 lui même, qui par construction est à la fois un sous-groupe de Z < F 2 > et de SL(2; Z). Dans M 2 (Q) s'introduisent alors classiquement diverses notions. Ainsi pour :

h = p q r s 2 M 2 (Q); on note h = s q r p ; t(h) = p + s = T r(h); n(h) = ps qr = det(h); < h 1 ; h 2 >= t(h 1 h 2 ):
Ces expressions induisent des notions analogues sur les sous structures de M 2 (Q), en particulier sur Z < F 2 >. Remarquons qu'avec la table précédente, on a

A 0 ( 1 2 + A 0 + B 0 + A 0 B 0 ) = + ( + 3 )A 0 + ( )B 0 + ( + 3 )A 0 B 0 ; B 0 ( 1 2 + A 0 + B 0 + A 0 B 0 ) = ( 3 3 )1 2 + (3 + )A 0 + ( + 3 + 3 + 6 )B 0 + ( )A 0 B 0 :
Ceci introduit une autre représentation de la théorie de Marko¤, cette fois dans SL(4; Z), mais qu'on ne considèrera plus dans la suite : 2/ Si N inversible véri…e t N M (a 2 ; b 2 ; c 2 )N = M (a 1 ; b 1 ; c 1 ), alors on a aussi t N H(a 2 ; b 2 ; c 2 )N = H(a 1 ; b 1 ; c 1 ).

%(A 0 ) = 0 B B @ 0 1 0 0 1 3 0 0 0 0 0 1 0 0 1 3 1 C C A ; %(B 0 ) = 0 B B @ 0 3 1 3 0 3 0 1 1 3 3 6 0 1 0 0 1 C C A : 2 
Les énoncés de cette proposition se véri…ent facilement en remplaçant H = H(a; b; c) par son expression

M 1 t M , où M = M (a; b; c), et en notant ici M i = M (a i ; b i ; c i ) : t HM H = M t M 1 M M 1 t M = M; t N H 2 N = t N M 1 2 t M 2 N = t N M 1t 2 N 1t N M 2 N = M 1 1 t M 1 = H 1 :
L'expression de H peut être calculée : Le polynome caractéristique de H est obtenu par l'intermédiaire de celui de S qui est plus facile à calculer : 

H(a; b; c) = M (a; b; c) 1 t M (a; b; c) = 0 @ 1 a ac b 0 1 c 0 0 1 1 A 0 @ 1 0 0 a 1 0 b c 1 1 A = 0 @ 1 (a 2 + b 2 abc) ac 2 bc
det( 1 S) = 3 + d 2 + d ; det( 1 H) = ( 1) 3 + d( 1) 2 + d( 1 
( t R) k M = ( 1) k M R k , et ceci permet d'écrire : t N M N = 1 X k;l=0 x k+l k!l! ( t R) k M R l = 1 X k;l=0 ( 1) k x k+l k!l! M R k+l = M exp( xR) exp(xR) = M:
Le lien avec la matrice H qui véri…e également l'équation 2.25 est ensuite donné par Riedel :

Proposition 2.4. (Proposition 2.3 (a) de [START_REF] Riedel | Marko¤ equation and nilpotent matrices[END_REF]) On a :

H = exp( R 2 ) = 1 R 2 + R 2 8 : (2.30) 
L'article [START_REF] Riedel | Marko¤ equation and nilpotent matrices[END_REF] ne contient pas de démonstration de cette égalité, mais on peut facilement en donner une. On utilise pour cela le polynôme caractéristique de R, que l'on vient de calculer et dont cette matrice est une racine. Sachant qu'ici d = 0, on trouve donc R 3 = 0. Ceci donne directement la seconde égalité de 2.30. On peut alors calculer le dernier terme de cette même égalité, car on dispose des expressions de H et R. Remarquons seulement que H est inversible et que l'on a

H 1 = 0 @ 1 a b a a 2 + 1 c ab b + ac c ab + a 2 c abc b 2 c 2 + 1 1 A :
Si l'on en soustrait H, on trouve une expression que Riedel ne cite pas:

H 1 H = 0 @ abc + a 2 + b 2 2a + bc ac 2 2b ac 2a + bc a 2 + c 2 2c ab 2b + ac 2c ab + a 2 c abc b 2 c 2 1 A = R:
En utilisant le polynôme caractéristique de H qui s'écrit (H 1) 3 = 0, ceci donne directement les expressions suivantes : 

H 1 = H 2 3H + 3; H 2 = 3H 2 8H + 6; R = H 2 4H + 3; R 2 = 4H 2 8H + 4; 1 R 2 + R 2 8 = 8 4H 2 + 16H
S 2 = H 2 2H + 1 = R + 4H 3 2(1 R 2 + R 2 8 ) + 1 = R 2 4 6 = 0; (2.32)
Le calcul complet donne d'ailleurs à partir de l'expression fournie ci-dessus pour S, et simpli…ée avec d = 0 parce qu'on travaille avec des solutions de l'équation 2.1 :

Proposition 2.5. (Proposition 2.3 (b) de [START_REF] Riedel | Marko¤ equation and nilpotent matrices[END_REF]) On a :

S 2 = 0 @ c 2 bc + ac 2 ac bc a 2 c 2 ab ac ab + ca 2 a 2 1 A = 0 @ c b a 1 A c ac b a : Remarquons qu'avec S = R 2 + R 2 8 et S 2 = R 2 4
, on obtient encore R = S 2 2S:

(2.33)

Riedel dit alors ([19] p. 7) que la suite de son article montrera que toutes les congruences laissant M invariante sont données par une exponetielle exp(sR), où s est un nombre rationnel. En d'autres termes, il a¢ che quel est le stabilisateur de M pour l'action du groupe SL(3; Z) dans GL(3; Z) par les congruences. Mais il a également énoncé dans la seconde partie de la proposition 2.1 de [START_REF] Riedel | Marko¤ equation and nilpotent matrices[END_REF] que si une matrice inversible quelconque N est telle t N M (a 2 ; b 2 ; c 2 )N = M (a 1 ; b 1 ; c 1 ), c'est à dire telle que 2.10 soit assurée, on a aussi N 1 H(a 2 ; b 2 ; c 2 )N = H(a 1 ; b 1 ; c 1 ):

(2.34)

Cette condition peut être traduite en disant que si les matrices M 1 et M 2 sont liées par une congruence dé…nie par N , les matrices associées

H 1 = (M 1 1 )( t M 1 ) et H 2 = (M 1 
2 )( t M 2 ) sont liées par un automorphisme intérieur également dé…ni par N . Or partant de ( t N )M 2 N = M 1 , et en déduisant par transposition et inversion

( t N )( t M 2 )N = t M 1 ; (N 1 )M 1 2 ( t N ) 1 = M 1 1 ; on conclut bien par produit que l'on a N 1 H 2 N = N 1 (M 1 2 )( t M 2 )N = (N 1 )M 1 2 ( t N ) 1 ( t N )( t M 2 )N = (M 1 1 )( t M 1 ) = H 1 :
En d'autres termes Riedel identi…e di¤érentes matrices d'une orbite pour l'action par congruences du groupe SL(3; Z) sur les matrices de GL(3; Z), ainsi que différentes matrices d'une orbite pour l'action par automorphismes intérieurs du groupe SL(3; Z) également sur les matrices de GL(3; Z). Il signi…e ainsi qu'il est possible de complètement décrire ces deux actions du groupe SL(3; Z) dans GL(3; Z), par les automorphismes intérieurs ou par les congruences, dans l'esprit de ce qui a été fait dans [START_REF] Perrine | L'interprétation matricielle de la théorie de Marko¤ classique[END_REF]. De plus il indique comment ces deux actions sont liées.

Introduction de matrices auxiliaires

Dans [START_REF] Riedel | Marko¤ equation and nilpotent matrices[END_REF] page 8, la matrice nilpotente S est dans un premier temps ramenée à une forme de Jordan plus simple 0 @ 0 0 0 1 0 0 0 1 0 

1 A = 0 @ ac ( a bc + ac 2 ) ac 2 ( b + ac) 0 ac 3 abc ( b + ac) 0 ac 2 a 2 c ( b + ac) 0 1 A ; ST = 0 @ c 3 + b 2 c 2abc 2 + a 2 c 3 abc 2 + a 2 c 3 0 ac 3 ac 3 a 3 c + ac 5 + a 3 c 3 + ab 2 c 3 a 2 bc 4 0 ac 2 ac 4 a 2 bc ab 2 c 2 + a 2 bc 3 0 1 A :
Il su¢ t d'utiliser le fait que (a; b; c) solution de l'équation 2.1 pour en conclure que ces deux dernières matrices sont égales. On peut aussi écrire ce résultat sous la forme en en fabriquant la matrice T avec les matrices colonnes ainsi obtenues. Il montre aussi que T se décompose en produit sous la forme T = ABCD avec

T 1 ST = 0 @ 0 0 0 1 0 0 0 1 0 1 A : (2.
A = 0 @ 0 c ( b + ac) a c 1 c 2 b 0 c a 1 A ; B = 0 @ ac 0 0 0 1 0 0 0 1 1 A ; C = 0 @ 1 0 0 0 1 0 1 0 1 1 A ; D = 0 @ 1 0 0 0 ac 0 0 0 ac(ac b) 1 A :
Le calcul e¤ectif du produit ABCD est facile et donne bien

ABCD = 0 @ c ca (a + bc ac 2 ) c 2 a (ac b) (ac b) c 3 a cba (b ac) a c 2 a ca 2 (ac b) 1 A = T: (2.36)
Ensuite, Riedel dé…nit trois autres matrices auxiliaires

F = 0 @ ac b 0 0 0 1 0 0 0 1 1 A ; K = 0 @ c 1 a a 0 c c 0 c(ac b) a 1 A ; L = 0 @ 1 0 0 0 ac b 0 0 0 1 1 A :
Le produit AF KL est faisable et donne directement une expression que l'on trouve au bas de la page 8 de l'article de Riedel [START_REF] Riedel | Marko¤ equation and nilpotent matrices[END_REF]:

AF KL = (b ac) 2 0 @ 1 0 0 0 1 0 0 0 1 1 A :
On trouve ainsi la décomposition de A 1 :

F KL = (b ac) 2 A 1 : (2.37)
Cette matrice a pour expression

F KL = 0 @ c ( b + ac) ( b + ac) 2 a ( b + ac) a 0 c c 0 a + c ( b + ac) 1 A :
Pour …nir Riedel introduit une matrice

V = 0 @ a a c 1 0 b + ac 0 c a 1 A :
Elle possède pour inverse

V 1 = 1 (b ac) 2 0 @ c(ac b) b(ac b) a(ac b) a a 2 a(ac b) c c ac a 1 A ;
et aussi on a le lien suivant entre V et M :

(b ac) 2 V A 1 = 0 @ a a c 1 0 b + ac 0 c a 1 A 0 @ c ( b + ac) ( b + ac) 2 a ( b + ac) a 0 c c 0 a + c ( b + ac) 1 A = (b ac) 2 0 @ 1 a b 0 1 c 0 0 1 1 A = (b ac) 2 M:
On a donc :

V = M A: (2.38)
Ce qui précède permet aussi de calculer le produit V BCD :

V BCD = V A 1 T = M T: (2.39)
Riedel nomme U cette matrice, et on peut l'expliciter :

U = M T = 0 @ c + a 2 c a 2 c ac 2 ( b + ac) b + 2ac 0 ac(b ac) 2 a ac 2 a 2 c( b + ac) 1 A : (2.40)
Toutes les matrices que l'on vient d'introduire seront utilisées dans la suite. Leur évocation parait un peu gratuite, et la compréhension serait meilleure si l'on pouvait les interpréter dans le modèle géométrique que l'on a esquissé ci-dessus. Mais ceci reste un travail à faire.

Résultats sur les orbites

Riedel concentre son attention sur le cadre qu'il a posé au début de son article, c'est à dire qu'il se limite dans la suite de son article à considèrer ( [START_REF] Riedel | Marko¤ equation and nilpotent matrices[END_REF] p. 9) deux triplets distincts dé…nissant une valeur dominante commune

m = a 1 c 1 b 1 = a 2 c 2 b 2; où a 1 , b 1 , c 1 , et a 2 , b 2 , c 2
, sont les composantes de l'unique triplet voisin de chacun d'eux plus proche de la racine de l'arbre, et dé…nissant chacun une MT-matrice. Il suppose, pour que tout aille bien, que l'on a m 6 = 3 et m 6 = 6, ces deux cas se traitant de façon directe par exemple en calculant tous les triplets associés possibles. On n'a aucune di¢ culté à voir que la conjecture est vraie dans ces deux cas. Hors ces cas particuliers, il utilise alors les matrices qu'il a construites cidessus en prenant bien garde de noter par les indices correspondants celles qui sont associées à l'un ou l'autre des triplets.

Calculs préparatoires

Norbert Riedel introduit e N = T (a 2 ; b 2 ; c 2 )T (a 1 ; b 1 ; c 1 ) 1 = T 2 T 1 1 ;

(3.1)

r = a 1 c 1 a 2 c 2 : (3.2)
Ceci donne pour le déterminant

det(r e N ) = r 3 det(T 2) det(T 1) = a 1 c 1 a 2 c 2 3 (b 2 a 2 c 2 ) 3 c 3 2 a 3 2 (b 1 a 1 c 1 ) 3 c 3 1 a 3 1 ! = 1: (3.3) 
Par la proposition 1.2 de [START_REF] Riedel | Marko¤ equation and nilpotent matrices[END_REF] on peut construire une matrice N 2 SL(3; Z) véri-…ant 2.10, c'est à dire telle que:

t N M (a 2 ; b 2 ; c 2 )N = M (a 1 ; b 1 ; c 1 ):

Par le second énoncé de la proposition 2.1 de [START_REF] Riedel | Marko¤ equation and nilpotent matrices[END_REF], on a aussi 2.34:

N 1 H(a 2 ; b 2 ; c 2 )N = H(a 1 ; b 1 ; c 1 ); c'est à dire avec H(a 1 ; b 1 ; c 1 ) = H 1 = 1 + S 1 ; H(a 2 ; b 2 ; c 2 ) = H 2 = 1 + S 2 ;
et en développant puis simpli…ant :

N 1 S 2 N = S 1 :
Maintenant Riedel ([19] p. 10) a¢ che que l'on a aussi

( e N ) 1 S 2 ( e N ) = S 1 : (3.4)
Or ceci résulte directement de 2.35 qui impose ici

T 1 1 S 1 T 1 = T 1 2 S 2 T 2 .
La comparaison des deux dernières égalités obtenues donne alors le fait que la matrice S 2 commute avec la matrice N ( f N )

1 car on a :

S 1 = N 1 S 2 N = ( e N ) 1 S 2 ( e N ):
Riedel en déduit que la matrice N ( f N )

1
est nécessairement décomposable sur la base des matrices 3 3 formée de l'unité 1, de S 2 et de S 2 2 . Ceci n'est pas immédiatement évident, même s'il s'agit d'appliquer un résultat assez classique d'algèbre linéaire. On peut ici le démontrer de façon directe en utilisant 2.35. Il su¢ t de se placer dans la base qui met S 2 sous la forme apparaissant dans cette dernière égalité. Ensuite, on résoud le système : 0 @ 0 0 0 1 0 0 0 1 0

1 A 0 @ 1 1 1 2 2 2 3 3 3 1 A = 0 @ 1 1 1 2 2 2 3 3 3 1 A 0 @ 0 0 0 1 0 0 0 1 0 1 A ; ceci donne 1 = 1 = 2 = 0; 1 = 2 = 3 ; 2 = 3 : On conclut en remarquant que 0 @ 1 0 0 2 1 0 3 2 1 1 A = 1 0 @ 1 0 0 0 1 0 0 0 1 1 A + 2 0 @ 0 0 0 1 0 0 0 1 0 1 A + 3 0 @ 0 0 0 1 0 0 0 1 0 1 A 2 :
Riedel en déduit que l'on peut écrire avec des nombres rationnels s et t :

N = r(1 + sS 2 + tS 2 2 ) e N :
Ceci est bien exact car N 2 SL(3; Z) est une matrice de déterminant 1, r est non nul, et que l'autre membre de cette égalité donne avec 3.3:

det(r(1 + sS 2 + tS 2 2 ) e N ) = det(r e N ) det(1 + sS 2 + tS 2 2 ) = det(r e N ) = 1:
En revenant alors à l'expression 3.1 de e N = T 2 T 1 1 , ainsi qu'à la formule de commutation 2.35, on obtient :

N = r(1 + sS 2 + tS 2 2 )T 2 T 1 1 = rT 2 ( 0 @ 1 0 0 0 1 0 0 0 1 1 A + s 0 @ 0 0 0 1 0 0 0 1 0 1 A + t 0 @ 0 0 0 1 0 0 0 1 0 1 A 2 )T 1 1 :
C'est à dire …nalement, et la précision que cette matrice est dans M 3 (Z) que donne Riedel est inutile puisqu'il s'agit par construction d'une matrice N de SL(3; Z) :

N = r(1 + sS 2 + tS 2 2 )T 2 T 1 1 = rT 2 0 @ 1 0 0 s 1 0 t s 1 1 A T 1 1 : (3.5) 
Pour ce qui est de son inverse, on a facilement

N 1 = r 1 T 1 0 @ 1 0 0 s 1 0 t + s 2 s 1 1 A T 1 2 :
On peut d'ailleurs donner une autre expression de cette matrice en reconsidérant ce qui précède, mais en y permutant le rôle des indices. Ceci donne, et il su¢ t pour le véri…er, de calculer N 1 N :

N 1 = r 1 (1 sS 1 + (s 2 t)S 2 1 )T 1 T 1 2 : (3.6)
En substituant maintenant dans 2.10 mise sous la forme

(M 2 N M 1 1 ) 1 = t N;
on obtient alors pour t N les deux expressions suivantes

r t (T 1 1 ) 0 @ 1 s t 0 1 s 0 0 1 1 A t T 2 = r 1 M 1 T 1 0 @ 1 0 0 s 1 0 t + s 2 s 1 1 A T 1 2 M 1 2 ; (3.7)
et avec 2.40, on en déduit que cette matrice s'écrit aussi [START_REF] Riedel | Marko¤ equation and nilpotent matrices[END_REF] t 

N = r 1 U 1 0 @ 1 0 0 s 1 0 t + s 2 s 1 1 A U 1 2 : (3.

Premier jeu de trois expressions

Les trois premiers calculs faits par Riedel dans [START_REF] Riedel | Marko¤ equation and nilpotent matrices[END_REF] permettent d'abord d'expliciter toutes les matrices qui sont des produits d'une puissance de S 2 par e N = T 2 T 1 1 .

Première expression :

Avec m = a 1 c 1 b 1 = a 2 c 2 b 2 , Riedel ne calcule pas rT 2 T 1 1
= r e N , mais rm 2 e N . Il le fait en utilisant les relations 2.36 et 2.37 véri…ées précédemment, et en notant F au lieu de F 1 et L au lieu de L 1 car ces matrices ne dépendent que de m :

rm 2 e N = rm 2 T 2 T 1 1 = rA 2 B 2 C 2 D 2 D 1 1 C 1 1 B 1 1 F 1 K 1 L 1 ;
et en utilisant les expressions déjà données pour ces matrices, et que l'on a rappellées précédemment, ainsi que 3.2 :

B 2 C 2 D 2 D 1 1 C 1 1 B 1 1 = 0 @ a 2 c 2 0 0 0 a 2 c 2 0 1 0 a 2 c 2 ( b 2 + a 2 c 2 ) 1 A 0 @ 1 a 1 c 1 0 0 0 1 a 1 c 1 0 1 a 3 1 c 3 1 +a 2 1 b 1 c 2 1 0 1 a 1 b 1 c 1 a 2 1 c 2 1 1 A = a 2 c 2 a 1 c 1 0 @ 1 0 0 0 1 0 1 a 2 c 2 0 ( b 2 + a 2 c 2 ) 1 A 0 @ 1 0 0 0 1 0 1 a 2 1 c 2 1 +a 1 b 1 c 1 0 1 b 1 a 1 c 1 1 A = 1 r 0 @ 1 0 0 0 1 0 1 a 2 c 2 0 m 1 A 0 @ 1 0 0 0 1 0 1 a 1 c 1 m 0 1 m 1 A = 1 r 0 @ 1 0 0 0 1 0 1 a 2 c 2 1 a 1 c 1 0 1 1 A : D'où: rm 2 e N = A 2 0 @ 1 0 0 0 1 0 1 a 2 c 2 1 a 1 c 1 0 1 1 A F 1 K 1 L 1 = 0 @ 0 c 2 m a 2 c 2 1 c 2 2 b 2 0 c 2 a 2 1 A 0 @ 1 0 0 0 1 0 1 a 2 c 2 1 a 1 c 1 0 1 1 A F 1 K 1 L 1 = 0 B B B @ c 2 1 a 1 c 1 + 1 a 2 c 2 a 2 + mc 2 c 2 b 2 1 a 1 c 1 + 1 a 2 c 2 + 1 c 2 2 b 2 a 2 1 a 1 c 1 + 1 a 2 c 2 c 2 a 2 1 C C C A 0 @ m 0 0 0 1 0 0 0 1 1 A K 1 L 1 = 0 B B B @ mc 2 1 a 2 c 2 1 a 1 c 1 mc 2 a 2 c 2 m 1 b 2 1 a 2 c 2 1 a 1 c 1 c 2 2 b 2 ma 2 1 a 2 c 2 1 a 1 c 1 c 2 a 2 1 C C C A K 1 L 1 ;
où ce dernier produit est calculable explicitement avec :

K 1 L 1 = 0 @ c 1 m a 1 a 1 0 c 1 c 1 0 a 1 + c 1 m 1 A :
En e¤ectuant ce dernier produit, en l'organisant selon les puissances de m, et en introduisant le trois matrices suivantes :

0 = 0 @ (a 1 a 2 + c 1 c 2 ) 0 (a 1 c 2 c 1 a 2 ) (a 1 c 2 c 1 a 2 )c 2 0 (a 1 c 2 c 1 a 2 )a 2 (a 1 c 2 c 1 a 2 ) 0 (a 1 a 2 + c 1 c 2 ) 1 A + m 0 @ a 1 c 2 0 0 0 0 0 0 0 c 1 a 2 1 A ; 1 = 1 a 2 c 2 1 a 1 c 1 0 @ c 1 c 2 mc 2 a 1 c 2 c 1 b 2 mb 2 a 1 b 2 c 1 a 2 ma 2 a 1 a 2 1 A = 1 a 2 c 2 1 a 1 c 1 0 @ c 2 b 2 a 2 1 A c 1 m a 1 ; 2 = 0 @ 0 0 0 0 1 0 0 0 0 1 A = t 2 ;
on véri…e e¤ectivement que l'on a la première relation donnée par Riedel ([19] p. 10) :

rm 2 e N = 0 + m 1 + m 2 2 : (3.9) 
On peut le montrer en considérant colonne par colonne les matrices apparaissant des deux côtés de cette égalité. Ainsi pour la première, ceci donne l'égalité facile à véri…er 0

B B B @ c 1 c 2 + a 1 ( a 2 + mc 2 ) + mc 1 c 2 1 a 1 c 1 + 1 a 2 c 2 b 2 c 1 a 1 c 2 2 + mc 1 b 2 1 a 1 c 1 + 1 a 2 c 2 + 1 a 1 c 2 a 2 c 1 + ma 2 c 1 1 a 1 c 1 + 1 a 2 c 2 1 C C C A = 0 B B B @ (a 1 a 2 + c 1 c 2 ) + ma 1 c 2 + mc 1 c 2 1 a 2 c 2 1 a 1 c 1 (a 1 c 2 c 1 a 2 )c 2 mb 2 c 1 1 a 2 c 2 1 a 1 c 1 (a 1 c 2 c 1 a 2 ) + ma 2 c 1 1 a 2 c 2 1 a 1 c 1 1 C C C A :
Pour la seconde colonne, on a de même l'égalité facile à véri…er :

0 B B B @ m 2 c 2 1 a 1 c 1 + 1 a 2 c 2 m 2 b 2 1 a 1 c 1 + 1 a 2 c 2 + 1 m 2 a 2 1 a 1 c 1 + 1 a 2 c 2 1 C C C A = 0 B B B @ m 2 c 2 1 a 2 c 2 1 a 1 c 1 m 2 b 2 1 a 2 c 2 1 a 1 c 1 + m 2 m 2 a 2 1 a 2 c 2 1 a 1 c 1 1 C C C A :
En…n pour la troisième colonne, on véri…e aussi facilement que l'on a :

0 B B B @ c 2 ( a 1 + mc 1 ) c 1 ( a 2 + mc 2 ) + ma 1 c 2 1 a 1 c 1 + 1 a 2 c 2 c 1 c 2 2 b 2 ( a 1 + mc 1 ) + ma 1 b 2 1 a 1 c 1 + 1 a 2 c 2 + 1 c 1 c 2 + a 2 ( a 1 + mc 1 ) + ma 1 a 2 1 a 1 c 1 + 1 a 2 c 2 1 C C C A = 0 B B B @ (a 1 c 2 c 1 a 2 ) + ma 1 c 2 1 a 2 c 2 1 a 1 c 1 (a 1 c 2 c 1 a 2 )a 2 ma 1 b 2 1 a 2 c 2 1 a 1 c 1 (a 1 a 2 + c 1 c 2 ) + mc 1 a 2 + ma 1 a 2 1 a 2 c 2 1 a 1 c 1 1 C C C A :

Deuxième expression :

De même, Riedel calcule maintenant rmS 2 e N . On le fait ici directement ici en appliquant 2.35 puis deux fois 2.36 et en…n 2.37 :

rmS 2 e N = rmS 2 T 2 T 1 1 = rmT 2 0 @ 0 0 0 1 0 0 0 1 0 1 A T 1 1 = rmA 2 B 2 C 2 D 2 0 @ 0 0 0 1 0 0 0 1 0 1 A T 1 1 = rmA 2 0 @ a 2 c 2 0 0 0 a 2 c 2 0 1 0 a 2 c 2 ( b 2 + a 2 c 2 ) 1 A 0 @ 0 0 0 0 1 0 1 A T 1 1 = rmA 2 0 @ 0 0 0 a 2 c 2 0 0 0 a 2 c 2 ( b 2 + a 2 c 2 ) 0 1 A T 1 1
Le calcul se poursuit facilement :

rmS 2 e N = ra 2 c 2 mA 2 0 @ 0 0 0 1 0 0 0 m 0 1 A T 1 1 = a 1 c 1 m 1 A 2 0 @ 0 0 0 1 0 0 0 m 0 1 A D 1 1 C 1 1 B 1 1 F 1 K L 1 = a 1 c 1 m 1 A 2 0 @ 0 0 0 m a 1 m a 1 c 1 m c 1 m c 1 0 m a 1 1 A L 1 = A 2 0 @ 0 0 0 c 1 1 a 1 a 1 0 c 1 1 A L 1 = 0 @ 0 c 2 m a 2 c 2 1 c 2 2 b 2 0 c 2 a 2 1 A 0 @ 0 0 0 c 1 1 a 1 a 1 0 c 1 1 A 0 @ 1 0 0 0 m 0 0 0 1 1 A :
En e¤ectuant ce dernier produit, on trouve la matrice 0

@ a 1 c 2 + c 1 ( a 2 + mc 2 ) m ( a 2 + mc 2 ) c 1 c 2 + a 1 ( a 2 + mc 2 ) a 1 b 2 c 1 c 2 2 mc 2 2 b 2 c 1 a 1 c 2 2 a 1 a 2 + c 1 c 2 mc 2 a 1 c 2 a 2 c 1 1 A :
Cette dernière se décompose en introduisant deux matrices ( [START_REF] Riedel | Marko¤ equation and nilpotent matrices[END_REF] p. 11)

0 = 0 @ a 1 c 2 c 1 a 2 0 c 1 c 2 a 1 a 2 a 1 a 2 c 2 c 1 c 2 2 0 a 2 c 2 c 1 a 1 c 2 2 a 1 a 2 + c 1 c 2 0 a 1 c 2 a 2 c 1 1 A ; 1 = 0 @ 0 a 2 0 a 1 c 2 2 c 1 0 c 2 0 1 A + c 2 0 @ c 1 m a 1 0 0 0 0 0 0 1 A = 0 @ c 1 c 2 mc 2 a 2 a 1 c 2 a 1 c 2 2 c 1 0 c 2 0 1 A ;
et en comparant à la matrice suivante à laquelle on constate facilement qu'elle est égale

0 + m 1 = 0 @ a 1 c 2 c 1 a 2 + mc 1 c 2 m(mc 2 a 2 ) c 1 c 2 a 1 a 2 + ma 1 c 2 a 1 a 2 c 2 c 1 c 2 2 + ma 1 mc 2 2 a 2 c 2 c 1 a 1 c 2 2 mc 1 a 1 a 2 + c 1 c 2 mc 2 a 1 c 2 a 2 c 1 1 A :
On obtient bien ainsi la seconde expression donnée par Riedel ([19] p. 11) :

rmS 2 e N = 0 + m 1 : (3.10)

Troisième expression :

Riedel donne une troisième expression qui est celle de rS 2 2 e N . Pour la démontrer, ce que Riedel ne fait pas, on peut procéder comme suit en démarrant avec 2.35 appliquée deux fois suivie de 2.36:

rS 2 2 e N = rS 2 2 T 2 T 1 1 = rT 2 0 @ 0 0 0 0 0 0 1 0 0 1 A T 1 1 = rA 2 B 2 C 2 D 2 0 @ 0 0 0 0 0 0 1 0 0 1 A T 1 1 = rA 2 0 @ a 2 c 2 0 0 0 a 2 c 2 0 1 0 a 2 c 2 m 1 A 0 @ 0 0 0 0 0 0 1 0 0 1 A T 1 1 = rA 2 0 @ 0 0 0 0 0 0 a 2 c 2 m 0 0 1 A T 1 1 = a 1 c 1 mA 2 0 @ 0 0 0 0 0 0 1 0 0 1 A T 1 1 :
Avec l'égalité 2.36, le calcul se poursuit :

rS 2 2 e N = a 1 c 1 m 0 @ c 2 0 0 b 2 0 0 a 2 0 0 1 A T 1 1 = a 1 c 1 m 1 0 @ c 2 0 0 b 2 0 0 a 2 0 0 1 A 0 @ 1 a 1 c 1 0 0 0 1 a 1 c 1 0 1 a 3 1 c 3 1 +a 2 1 b 1 c 2 1 0 1 a 1 b 1 c 1 a 2 1 c 2 1 1 A T 1 1 = a 1 c 1 m 1 0 @ 1 a 1 c 1 c 2 0 0 1 a 1 b 2 c 1 0 0 1 a 1 a 2 c 1 0 0 1 A F 1 K 1 L 1 = m 1 0 @ c 2 0 0 b 2 0 0 a 2 0 0 1 A 0 @ m 0 0 0 1 0 0 0 1 1 A K 1 L 1 = 0 @ c 2 0 0 b 2 0 0 a 2 0 0 1 A 0 @ c 1 m a 1 a 1 0 c 1 c 1 0 a 1 + c 1 m 1 A = 0 @ c 1 c 2 mc 2 a 1 c 2 b 2 c 1 mb 2 a 1 b 2 a 2 c 1 ma 2 a 1 a 2 1 A : En notant alors ([19] p. 11) t = 0 @ c 2 b 2 a 2 1 A c 1 m a 1 ;
on obtient la troisième expression de Riedel ([19] p. 11) :

rS 2 2 e N = t : (3.11)

Application du premier jeu de trois expressions

On dispose donc des trois composantes de l'équation 3.5. Remarquons que l'expression de 1 donnée avant 3.9 permet d'écrire aussi avec l'expression de t calculée juste avant 3.11 :

1 = 1 a 2 c 2 1 a 1 c 1 t : (3.12)
Si l'on combine maintenant les égalités 3.9 à 3.11 en les injectant dans 3.5 on en déduit une expression de N :

N = 1 m 2 ( 0 + m 1 + m 2 2 ) + s m ( 0 + m 1 ) + t t : (3.13)

Second jeu de trois expressions

Les trois calculs suivants de Riedel permettent d'expliciter d'autres matrices données par un produit où apparait une puissance de la forme de Jordan de S 2 . Dans ce qui précède, on a calculé les trois premiers termes apparaissant dans le premier membre de l'égalité 3.7. Maintenant on calcule les trois termes qui apparaissent dans le second membre de cette égalité.

Première expression :

Le passage de 3.5 à 3.8 se faisant par simple transposition de N à t N , on est conduit à considérer un nouvel ensemble de matrices déduites par transposition de celles que l'on a introduites avant. Mais curieusement, en introduisant un signe, Riedel fait le choix de poser [START_REF] Riedel | Marko¤ equation and nilpotent matrices[END_REF] (p. 13):

0 = t 0 ; 1 = t 1 ; 2 = t 2 : (3.14) 
L'analogue de l'égalité 3.9 qui s'écrit aussi

rm 2 e N = rm 2 T 2 T 1 1 = 0 + m 1 + m 2 2 ;
est maintenant ([19] p. 11) celle qui est donnée par le premier terme de 3.8

r 1 m 2 U 1 U 1 2 = 0 + m 1 + m 2 2 ; (3.15) 
Riedel ne fait qu'esquisser la démonstration de cette égalité, mais on peut la con…rmer par une véri…cation directe. Pour cela on utilise l'égalité 2.39 :

r 1 m 2 U 1 U 1 2 = r 1 m 2 V 1 B 1 C 1 D 1 D 1 2 C 1 2 B 1 2 V 1 2 = m 2 V 1 0 @ 1 0 0 0 1 0 1 a 1 c 1 1 a 2 c 2 0 1 1 A V 1 2 = V 1 0 @ 1 0 0 0 1 0 1 a 1 c 1 1 a 2 c 2 0 1 1 A 0 @ c 2 m b 2 m a 2 m a 2 a 2 2 a 2 m c 2 c 2 a 2 c 2 a 2 1 A ; et V 1 0 @ 1 0 0 0 1 0 1 a 1 c 1 1 a 2 c 2 0 1 1 A = 0 @ a 1 a 1 c 1 1 0 m 0 c 1 a 1 1 A 0 @ 1 0 0 0 1 0 1 a 1 c 1 1 a 2 c 2 0 1 1 A = 0 B B B @ a 1 + c 1 1 a 1 c 1 1 a 2 c 2 a 1 c 1 m 1 a 1 c 1 1 a 2 c 2 + 1 0 m a 1 1 a 1 c 1 1 a 2 c 2 c 1 a 1 1 C C C A :
Il reste donc seulement à e¤ectuer le produit 0

B B B @ a 1 + c 1 1 a 1 c 1 1 a 2 c 2 a 1 c 1 m 1 a 1 c 1 1 a 2 c 2 + 1 0 m a 1 1 a 1 c 1 1 a 2 c 2 c 1 a 1 1 C C C A 0 @ c 2 m b 2 m a 2 m a 2 a 2 2 a 2 m c 2 c 2 a 2 c 2 a 2 1 A ; et à montrer qu'il vaut 0 + m 1 + m 2 2 .
Or ceci est facile en e¤ectuant le dernier produit, en transposant et comparant comme on l'a fait avec les matrices colonne par colonne. On compare ainsi aux mêmes colonnes que celles issues de la matrice

0 m 1 + m 2 2 : 0 B B B @ a 1 a 2 c 1 c 2 + mc 2 a 1 + c 1 1 a 1 c 1 1 a 2 c 2 a 2 c 1 c 2 + a 1 a 2 2 mb 2 a 1 + c 1 1 a 1 c 1 1 a 2 c 2 a 2 c 1 a 1 ( c 2 + ma 2 ) + ma 2 a 1 + c 1 1 a 1 c 1 1 a 2 c 2 1 C C C A = 0 B B B @ a 1 a 2 c 1 c 2 + ma 1 c 2 mc 1 c 2 1 a 1 c 1 + 1 a 2 c 2 c 2 (a 1 c 2 a 2 c 1 ) + mb 2 c 1 1 a 1 c 1 + 1 a 2 c 2 a 1 c 2 a 2 c 1 ma 2 c 1 1 a 1 c 1 + 1 a 2 c 2 1 C C C A ; 0 B B B @ mc 2 + mc 2 m 1 a 1 c 1 1 a 2 c 2 + 1 ma 2 c 2 mb 2 m 1 a 1 c 1 1 a 2 c 2 + 1 ma 2 + ma 2 m 1 a 1 c 1 1 a 2 c 2 + 1 1 C C C A = 0 B B B @ m 2 c 2 1 a 1 c 1 + 1 a 2 c 2 m 2 + m 2 b 2 1 a 1 c 1 + 1 a 2 c 2 m 2 a 2 1 a 1 c 1 + 1 a 2 c 2 1 C C C A ; 0 B B B @ a 1 c 2 + a 2 c 1 + ma 1 c 2 1 a 1 c 1 1 a 2 c 2 a 1 a 2 c 2 a 2 2 c 1 ma 1 b 2 1 a 1 c 1 1 a 2 c 2 a 1 a 2 + c 1 ( c 2 + ma 2 ) + ma 1 a 2 1 a 1 c 1 1 a 2 c 2 1 C C C A = 0 B B B @ a 1 c 2 + a 2 c 1 ma 1 c 2 1 a 1 c 1 + 1 a 2 c 2 a 2 (a 1 c 2 a 2 c 1 ) + ma 1 b 2 1 a 1 c 1 + 1 a 2 c 2 a 1 a 2 c 1 c 2 + ma 2 c 1 ma 1 a 2 1 a 1 c 1 + 1 a 2 c 2 1 C C C A : Ceci donne t (r 1 m 2 U 1 U 1 2 ) = 0 m 1 + m 2 2 :
L'égalité 3.15 en résulte de façon évidente par le choix fait en 3.11 sur les relations entre les et les . Elle s'écrit aussi :

r 1 m 2 U 1 U 1 2 = t 0 m t 1 + m 2 t 2 ;
(3.16)

Seconde expression :

Bizarrement, les matrices ici introduites par Riedel pour conduire ce nouveau calcul ne sont pas non plus de simples transposées des matrices vues avant. La transposition joue un rôle, mais pas aussi direct que dans la liaison entre les matrices et considérées précédemment. Riedel pose ([19] p. 13)

1 = t 1 + + 0 @ 0 c 1 b 2 0 0 0 0 0 a 1 b 2 0 1 A ; 0 = t 0 m 0 @ 0 c 1 b 2 0 0 0 0 0 a 1 b 2 0 1 A : (3.17)
Ceci donne de façon plus explicite les expressions que l'on retrouve dans [START_REF] Riedel | Marko¤ equation and nilpotent matrices[END_REF] (p. 12) :

1 = 0 @ c 1 c 2 a 1 0 a 2 + mc 2 c 2 2 c 2 a 1 c 2 c 1 0 1 A + 0 @ c 1 c 2 b 2 c 1 a 2 c 1 mc 2 mb 2 ma 2 a 1 c 2 a 1 b 2 a 1 a 2 1 A + 0 @ 0 c 1 b 2 0 0 0 0 0 a 1 b 2 0 1 A = 0 @ 0 a 1 a 2 c 1 a 2 mb 2 + c 2 2 c 2 + ma 2 0 c 1 a 1 a 2 1 A = 0 @ 0 a 1 0 a 2 a 2 2 c 2 0 c 1 0 1 A + a 2 0 @ 0 0 c 1 0 0 m 0 0 a 1 1 A ; 0 = 0 @ a 1 c 2 a 2 c 1 a 1 a 2 c 2 c 1 c 2 2 a 1 a 2 + c 1 c 2 0 0 0 a 1 a 2 c 1 c 2 a 2 c 1 c 2 a 1 c 2 2 a 1 c 2 a 2 c 1 1 A m 0 @ 0 c 1 b 2 0 0 0 0 0 a 1 b 2 0 1 A = 0 @ (a 1 c 2 a 2 c 1 ) mb 2 c 1 + a 1 a 2 c 2 + c 1 c 2 2 (a 1 a 2 + c 1 c 2 ) 0 0 0 a 1 a 2 + c 1 c 2 ma 1 b 2 a 2 c 1 c 2 + a 1 c 2 2 (a 1 c 2 a 2 c 1 ) 1 A = 0 @ (a 1 c 2 a 2 c 1 ) a 2 (a 1 c 2 a 2 c 1 ) (a 1 a 2 + c 1 c 2 ) 0 0 0 a 1 a 2 + c 1 c 2 a 2 (a 1 a 2 + c 1 c 2 ) (a 1 c 2 a 2 c 1 ) 1 A
Riedel ([19] p. 12) calcule alors par analogie avec 3.10 :

r 1 mU 1 0 @ 0 0 0 1 0 0 0 1 0 1 A U 1 2 = r 1 mV 1 B 1 C 1 D 1 0 @ 0 0 0 1 0 0 0 1 0 1 A D 1 2 C 1 2 B 1 2 V 1 2 = r 1 mV 1 0 @ a 1 c 1 0 0 0 a 1 c 1 0 1 0 a 1 c 1 m 1 A 0 @ 0 0 0 1 0 0 0 1 0 1 A 0 @ 1 a 2 c 2 0 0 a c 2 0 1 ma 2 2 c 2 2 1 ma 2 c 2 1 A V 1 2 = mV 1 0 @ 0 0 0 1 0 0 0 m 0 1 A V 1 2 :
Ceci conduit à calculer

mV 1 0 @ 0 0 0 1 0 0 0 m 0 1 A V 1 2 = m 0 @ a 1 a 1 c 1 1 0 m 0 c 1 a 1 1 A 0 @ 0 0 0 1 0 0 0 m 0 1 A V 1 2 = m 0 @ a 1 mc 1 0 0 m 2 0 c 1 ma 1 0 1 A V 1 2 = m 1 0 @ a 1 mc 1 0 0 m 2 0 c 1 ma 1 0 1 A 0 @ c 2 m b 2 m a 2 m a 2 a 2 2 a 2 m c 2 c 2 a 2 c 2 a 2 1 A = 0 @ a 1 c 2 + a 2 c 1 a 1 b 2 a 2 2 c 1 a 1 a 2 + c 1 ( c 2 + ma 2 ) ma 2 ma 2 2 m ( c 2 + ma 2 ) a 1 a 2 + c 1 c 2 b 2 c 1 a 1 a 2 2 a 2 c 1 + a 1 ( c 2 + ma 2 ) 1 A = 0 @ a 1 c 2 + a 2 c 1 ma 1 + a 2 (a 1 c 2 a 2 c 1 ) a 1 a 2 c 1 c 2 + ma 2 c 1 ma 2 m ( mb 2 + c 2 2 ) m ( c 2 + ma 2 ) a 1 a 2 + c 1 c 2 mc 1 a 2 (a 1 a 2 + c 1 c 2 ) a 1 c 2 + a 2 c + ma 1 a 2 1 A = 0 + m 1 :
On a donc la seconde relation recherchée ( [START_REF] Riedel | Marko¤ equation and nilpotent matrices[END_REF] p. 12)

r 1 mU 1 0 @ 0 0 0 1 0 0 0 1 0 1 A U 1 2 = 0 + m 1 : (3.18)

Troisième expression :

La dernière égalité, analogue de la relation 3.11, et donnée par Riedel ([19] p. 12) est la suivante :

r 1 U 1 0 @ 0 0 0 0 0 0 1 0 0 1 A U 1 2 = = 0 @ c 1 c 2 b 2 c 1 a 2 c 1 mc 2 mb 2 ma 2 a 1 c 2 a 1 b 2 a 1 a 2 1 A : (3.19)
Le calcul peut se faire comme pour l'expression précédente :

r 1 U 1 0 @ 0 0 0 0 0 0 1 0 0 1 A U 1 2 = r 1 V 1 B 1 C 1 D 1 0 @ 0 0 0 0 0 0 1 0 0 1 A D 1 2 C 1 2 B 1 2 V 1 2 = r 1 V 1 0 @ a 1 c 1 0 0 0 a 1 c 1 0 1 0 a 1 c 1 m 1 A 0 @ 0 0 0 0 0 0 1 0 0 1 A 0 @ 1 a 2 c 2 0 0 0 1 a 2 c 2 0 1 ma 2 2 c 2 2 0 1 ma 2 c 2 1 A V 1 2 = V 1 0 @ 0 0 0 0 0 0 m 0 0 1 A V 1 2 :
On termine de la même façon :

V 1 0 @ 0 0 0 0 0 0 m 0 0 1 A V 1 2 = 0 @ a 1 a 1 c 1 1 0 m 0 c 1 a 1 1 A 0 @ 0 0 0 0 0 0 m 0 0 1 A V 1 2 = m 0 @ c 1 0 0 m 0 0 a 1 0 0 1 A V 1 2 = m 1 0 @ c 1 0 0 m 0 0 a 1 0 0 1 A 0 @ c 2 m b 2 m a 2 m a 2 a 2 2 a 2 m c 2 c 2 a 2 c 2 a 2 1 A = 0 @ c 1 c 2 b 2 c 1 a 2 c 1 mc 2 mb 2 ma 2 a 1 c 2 a 1 b 2 a 1 a 2 1 A = :
La dernière égalité de Riedel ([19] p. 12) est donc aussi assurée.

Application du second jeu de trois expressions

Remarquons qu'avec les expressions données ci-dessus, on a une égalité que mentionne aussi cet auteur à la page 13 de [START_REF] Riedel | Marko¤ equation and nilpotent matrices[END_REF], et qui se déduit des expressions vues précédemment 3.12 et 3.14 :

1 = t 1 = 1 a 2 c 2 1 a 1 c 1 t : (3.20)
Si l'on combine maintenant les égalités 3.16, 3.18, 3.17 en les injectant dans 3.8 on en déduit une expression de t N :

t N = 1 m 2 ( t 0 m t 1 + m 2t 2 ) s m ( t 0 m t 1 + m ) + ( t + s 2 ) : (3.21)
Si l'on compare avec l'équation 3.13 transposée, il vient avec 3.20 une contrainte entre t et s sur laquelle on va revenir dans la suite :

t = 1 2 (s 2 s) 1 m 1 a 2 c 2 1 a 1 c 1 : (3.22)
Mais puisque les coe¢ cients de ne sont pas nuls, ceci donne la contrainte entre s et t suivante :

t = 1 2 (s 2 s) + 1 m 1 a 1 c 1 1 a 2 c 2 : (3.23)
En comparant alors les équations 3.9, 3.16, et 3.20, il apparait que ce dernier nombre est donné par la seule di¤érences des seules premières expressions que l'on a calculées, l'une d'elles étant transposée :

r 1 (U 1 U 1 2 ) r t (T 2 T 1 1 ) = 2 1 m 1 a 1 c 1 1 a 2 c 2 : (3.24)

Structure des congruences

Ce que Riedel (p. 12) appelle isomorphisme, mais que l'on préfère appeler ici congruence (voir [START_REF] Mneimné | Réduction des endomorphismes[END_REF]), est la transformation de M (a 2 ; b 2 ; c 2 ) à M (a 1 ; b 1 ; c 1 ) donnée par une matrice N générale véri…ant l'égalité 2.10 issue de la proposition 1.2 de [START_REF] Riedel | Marko¤ equation and nilpotent matrices[END_REF]:

t N M (a 2 ; b 2 ; c 2 )N = M (a 1 ; b 1 ; c 1 ):
On peut dire que M (a 1 ; b 1 ; c 1 ) est dans l'orbite de M (a 2 ; b 2 ; c 2 ) pour l'action de la structure algébrique de matrices 3 3 dans laquelle se trouve N ; ou encore que M (a 1 ; b 1 ; c 1 ) est congrue à M (a 2 ; b 2 ; c 2 ) modulo N . Et ce que Riedel (p. 13) appelle à ce niveau automorphisme est une matrice N du stabilisateur de M (a 1 ; b 1 ; c 1 ), c'est à dire telle que

t N M (a 1 ; b 1 ; c 1 )N = M (a 1 ; b 1 ; c 1 ):
Riedel parvient à donner une expression pour les matrices de congruences qui constituent son arbre dans le cas très limité où les deux triplets (a 1 ; b 1 ; c 1 ) et (a 2 ; b 2 ; c 2 ) dé…nissent même valeur dominante m. Pour cela il introduit dans [START_REF] Riedel | Marko¤ equation and nilpotent matrices[END_REF] (p. 12), en étendant l'anneau Z à un corps plus vaste comme Q ou R (dans la suite Riedel se limite au corps Q), les matrices de forme suivante, où s dans ce corps :

N (s) = r exp( R 2 2 s) e N 1 m 1 : (3.25)
Il indique d'abord qu'une telle matrice s'écrit aussi

N (s) = r e N exp( R 1 2 s) 1 m 1 : (3.26)
Or ce point n'est assuré que pourvu que l'on ait

exp( R 2 2 s) e N = e N exp( R 1 2 s); ce qui découle simplement de R 2 e N = e N R 1 :
Et l'on remarque que cette dernière condition est bien véri…ée car elle est se déduit de 3.4, complétée par les deux égalités qui se déduisent des relations vues entre R, H, S, notamment 2.33 qui donne ici :

R 1 = S 2 1 2S 1 ; R 2 = S 2 2 2S 2 :

Le résultat essentiel

Le résultat essentiel établi alors par Riedel dans [START_REF] Riedel | Marko¤ equation and nilpotent matrices[END_REF] est le suivant :

Proposition 3.1. (Proposition 3.1 de [19]) On a équivalence, pour Q 2 SL(3; Q),
des deux propriétés suivantes:

t QM 2 Q = M 1 ; (3.27) 9s 2 Q tel que Q = N (s): (3.28)
Ajoutons que M 1 et M 2 étant donnés, Q véri…ant la condition 3.27 dé…nit s de façon unique.

Pour cela, Riedel rappelle que la condition 3.27 implique par ce qui précède la condition 2.34 :

Q 1 H 2 Q = H 1 : Et puisque l'on a S 2 = H 2 1; S 1 = H 1 1;
ceci revient à considérer la condition

Q 1 S 2 Q = S 1 :
Or on a vu par ce qui précède que l'on a aussi 3.4 :

e N 1 S 2 e N = S 1 :
On en déduit que Q e N 1 commute avec S 2 , et donc s'écrit comme établi ci-dessus avec s et t nombres rationnels uniquement dé…nis sous la forme (voir 3.5)

Q e N 1 = r(1 + sS 2 + tS 2
2 ); c'est à dire que l'on a bien comme l'annonce Riedel

Q = r(1 + sS 2 + tS 2 2 ) e N :
On suppose dans le cas étudié Q 2 SL(3; Q), c'est à dire de déterminant égal à 1: Si tel n'était pas la cas il faudrait remplacer la formule précédente par

Q = r(1 + sS 2 + tS 2 
2 ) e N . On a, dans le cas ici étudié, une égalité 3.7, qui se véri…e par les mêmes méthodes que ci-dessus, et s'écrit maintenant grâce à 2.40 :

t Q = r t (T 1 1 ) 0 @ 1 s t 0 1 s 0 0 1 1 A t T 2 = r 1 U 1 0 @ 1 0 0 s 1 0 t + s 2 s 1 1 A U 1 2 :
On est donc en position pour utiliser les six expressions 3.9 à 3.19 que l'on a laborieusement calculées précédemment. On doit adapter les trois premières en utilisant e N = T 2 T 1 1 et la condition 2.35, puis en les transposant. Les trois dernières sont seulement divisées par la puissance adéquate de m. Pour résumer, il s'agit d'injecter dans la dernière égalité les relations suivantes :

r t (T 1 1 ) 0 @ 1 0 0 0 1 0 0 0 1 1 A ( t T 2 ) = 1 m 2 ( t 0 ) + 1 m ( t 1 ) + ( t 2 ); r(T 1 1 ) 0 @ 0 1 0 0 0 1 0 0 0 1 A ( t T 2 ) = 1 m ( t 0 ) + ( t 1 ); r(T 1 1 ) 0 @ 0 0 1 0 0 0 0 0 0 1 A ( t T 2 ) = ; r 1 U 1 0 @ 1 0 0 0 1 0 0 0 1 1 A U 1 2 = 1 m 2 0 + 1 m 1 + 2 ; r 1 U 1 0 @ 0 0 0 1 0 0 0 1 0 1 A U 1 2 = 1 m 0 + 1 ; r 1 U 1 0 @ 0 0 0 0 0 0 1 0 0 1 A U 1 2 = : Ceci donne l'égalité 1 m 2 ( t 0 ) + 1 m ( t 1 ) + ( t 2 ) + s m ( t 0 ) + s( t 1 ) + t = 1 m 2 0 + 1 m 1 + 2 s m 0 s 1 + (s 2 t) :
On simpli…e alors en utilisant les expressions 3.14, 3.17, et le miracle se produit, miracle entrevu ci-dessus avec l'équation 3.22 :

1 m ( t 1 ) + s m ( t 0 ) + s( t 1 ) + t = 1 m 1 s m ( t 0 m 0 @ 0 c 1 b 2 0 0 0 0 0 a 1 b 2 0 1 A ) s( t 1 + + 0 @ 0 c 1 b 2 0 0 0 0 0 a 1 b 2 0 1 A ) + (s 2 t) = 1 m 1 + s m ( t 0 ) + s 0 @ 0 c 1 b 2 0 0 0 0 0 a 1 b 2 0 1 A +s( t 1 ) s s 0 @ 0 c 1 b 2 0 0 0 0 0 a 1 b 2 0 1 A + (s 2 t) = 1 m 1 + s m ( t 0 ) + s( t 1 ) s + (s 2 t) :
C'est à dire avec 3.20 :

( 2 m 1 a 2 c 2 1 a 1 c 1 + 2t s 2 + s) = 0:
On obtient ainsi, n'étant pas nulle, l'expression donnée par Riedel [START_REF] Riedel | Marko¤ equation and nilpotent matrices[END_REF] (p.13) qui est :

t = 1 2 (s 2 s) 1 m 1 a 2 c 2 1 a 1 c 1 (3.29)
Avec la partie t 0 = 1 2 (s 2 s) de t il vient grâce aux relations que l'on a établies avant entre les matrices R et S :

(1 + sS 2 + t 0 S 2 2 ) = 1 + sS 2 + s 2 s 2 S 2 2 = 1 s S 2 2 2S 2 2 + s 2 2 S 2 2 = 1 s R 2 2 + s 2 R 2 2 8 = exp( s R 2 2 )
Et si l'on compare avec la proposition 2.2 de [START_REF] Riedel | Marko¤ equation and nilpotent matrices[END_REF], que l'on a véri…ée ci-dessus, on a avec x = s 2 la relation de commutation suivante :

t (exp( s R 2 2 ))M 2 exp( s R 2 2 ) = M 2 :
La matrice exp( sR 2 =2) est dans le stabilisateur de M 2 et n'apporte donc rien sur le passage de M 2 à M 1 . Ce passage est assuré par le reste de l'expression trouvée pour t, c'est à dire par la contribution de t t 0 , qui donne une matrice s'écrivant avec 3.11 et 3.20

r(t t 0 )S 2 2 e N = r m 1 a 2 c 2 1 a 1 c 1 S 2 2 e N = 1 m 1 a 2 c 2 1 a 1 c 1 t = 1 m 1 :
C'est le terme qui …gure au second membre de

N (s) = r exp( s R 2 
2 ) e N 1 m 1 . On a donc en résumé trouvé s 2 Q tel que Q = N (s), et cette expression établit l'implication 3.27 =) 3.28 la proposition 3.1 de [START_REF] Riedel | Marko¤ equation and nilpotent matrices[END_REF].

Le raisonnement en sens inverse pour l'implication 3.28 =) 3.27 de la proposition 3.1 de [START_REF] Riedel | Marko¤ equation and nilpotent matrices[END_REF] est plus délicat, mais envisageable du fait des égalités matricielles obtenues précédemment (2.31, 2.32, 2.33, 2.27). On en déduit facilement les égalités

t (S 2 2 )M 2 = 1 4 t (R 2 2 )M 2 = 1 4 M 2 R 2 2 = M 2 S 2 2 ; t (S 2 )M 2 = 1 2 t (R 2 )M 2 + 1 8 t (R 2 2 )M 2 = 1 2 M 2 R 2 + 1 8 M 2 R 2 2 = M 2 S 2 2 M 2 S 2 :
On peut donc calculer

t QM 2 Q = t (r exp( s R 2 2 ) e N 1 m 1 )M 2 (r exp( s R 2 2 ) e N 1 m 1 ) = r 2 t e N t (1 + sS 2 + tS 2 2 )M 2 (1 + sS 2 + tS 2 2 ) e N = r 2 t e N (M 2 + s(M 2 S 2 2 M 2 S 2 ) + tM 2 S 2 2 )(1 + sS 2 + tS 2 2 ) e N = r 2 t e N (M 2 + s(M 2 S 2 2 M 2 S 2 ) + tM 2 S 2 2 + sM 2 S 2 s 2 M 2 S 2 2 + tM 2 S 2 2 ) e N = r 2 t e N M 2 (1 + (s s 2 + 2t)S 2 2 ) e N = r 2 t e N M 2 e N + r 2 (s s 2 + 2t) t e N M 2 S 2 2 e N = r 2 t e N M 2 e N r 2 2 m 1 a 2 c 2 1 a 1 c 1 t e N M 2 S 2 2 e N :
Il reste à s'assurer que cette expression donne M 1 . Or en remarquant que tout ce que l'on vient de dire pour Q 2 SL(3; Q) s'applique en particulier à la matrice Q = N 2 SL(3; Z), qui permet aussi le passage par congruence de M 2 à M 1 , et qui existe par la proposition 1, cette conclusion est évidente. En e¤et la dernière suite d'égalités déduites de t QM 2 Q donne une dernière expression qui est la même que celle qui se déduit par le même calcul de t N M 2 N . Or cette dernière matrice vaut M 1 . On a donc bien t QM 2 Q = M 1 , et la proposition 3.1 de [START_REF] Riedel | Marko¤ equation and nilpotent matrices[END_REF] est vraie. L'unicité de s associée à Q mentionnée dans cette proposition a été établie dans le courant de sa démonstration.

Généralisation à tous les triplets de l' arbre de Riedel

On va voir maintenant que les calculs de Riedel que l'on vient d'évoquer peuvent être considérablement généralisés et simpli…és.

Une formule valable pour l' ensemble des triplets

Dans le cas où les deux triplets (a 1 ; b 1 ; c 1 ) et (a 2 ; b 2 ; c 2 ) ne dé…nissent plus une même valeur dominante m, on peut ainsi transposer certain des résultats de [START_REF] Riedel | Marko¤ equation and nilpotent matrices[END_REF] en modi…ant d'abord quelques dé…nitions. En partant de t QM 2 Q = M 1 on peut encore déduire, avec

H 1 = 1 + S 1 = (M 1 1 )( t M 1 ) et l'analogue pour H 2 , que l'on a Q 1 S 2 Q = S 1 . On remarque également avec e N = T 2 T 1 1 ainsi que 2.35 appliquée à S 1 et S 2 que l'on a e N 1 S 2 e N = S 1 . A nouveau Q e N 1 commute avec S 2
, et s'écrit donc avec trois paramètres r, s, t, uniquement dé…nis sous la forme

Q e N 1 = r(1 + sS 2 + tS 2
2 ): Le déterminant de la matrice Q étant alors égal à celui de r e N , et valant par construction 1 si l'on se limite à l'hypothèse Q 2 SL(3; Q), on doit poser de faon générale :

r = a 1 c 1 a 2 c 2 (a 1 c 1 b 1 ) (a 2 c 2 b 2 ) : (3.30)
La matrice Q s'écrit alors sous la forme :

Q = r(1 + sS 2 + tS 2 2 ) e N = r exp( R 2 2 s) e N + r(t 1 2 (s 2 s))S 2 2 e N = r e N exp( R 1 2 s) + r(t 1 2 (s 2 s)) e N S 2 1 :
On peut maintenant calculer rS 2 2 e N , avec l'expression de S 2 qui a mené à 2.33 et 2.35. En fait c'est très facile et donne :

rS 2 2 e N = rS 2 2 T 2 T 1 1 = rT 2 0 @ 0 0 0 0 0 0 1 0 0 1 A T 1 1 = 0 @ c 2 b 2 a 2 1 A c 1 m 1 a 1 :
On note encore t cette matrice, avec une dé…nition qui généralise ici celle de Riedel ([19] p. 11) :

t = 0 @ c 2 c 1 c 2 m 1 c 2 a 1 b 2 c 1 b 2 m 1 b 2 a 1 a 2 c 1 a 2 m 1 a 2 a 1 1 A = rS 2 2 e N (3.31)
Et il reste seulement, en utilisant l'expression de Q que l'on vient de voir :

Q = r exp( R 2 2 s) e N + (t 1 2 (s 2 s)) t : (3.32)
On peut maintenant injecter l'expression de Q trouvée dans l'égalité t QM 2 Q = M 1 . Compte tenu que toutes les expressions des matrices intervenant sont connues, on cherche à en déduire une éventuelle contrainte sur les paramètres r, s, t. Or en développant le produit t QM 2 Q, et en utilisant 2.27, compte tenu du fait que

S 2 = 1 8 R 2 2 1 2 R 2 , on obtient l'égalité suivante : M 1 = t QM 2 Q = r 2 t e N (1 + s t S 2 + t t S 2 2 )M 2 (1 + sS 2 + tS 2 2 ) e N = r 2 t e N (1 + s( t R 2 2 + t R 2 2 8 ) + t t R 2 2 4 )M 2 (1 + s( R 2 2 + R 2 2 8 ) + t R 2 2 4 ) e N = r 2 ( t e N M 2 e N ) r 2 2 (t 1 2 (s 2 s))( t e N ( t R 2 M 2 R 2 ) e N ):
On en déduit avec l'expression de e N , en séparant par les indices les matrices :

r 2 ( t T 2 M 2 T 2 ) r 2 2 (t 1 2 (s 2 s))( t T 2 ( t R 2 M 2 R 2 )T 2 ) = ( t T 1 M 1 T 1 ): (3.33) 
Mais par la proposition 1.2 de [START_REF] Riedel | Marko¤ equation and nilpotent matrices[END_REF] qui a été redémontrée ci-dessus dans le cas général, on sait construire une matrice N 2 SL(3; Z) véri…ant l'équation 2.10, c'est à dire t N M 2 N = M 1 . On peut donc aussi lui appliquer le raisonnement que l'on vient de faire pour écrire avec deux paramètres s N , t N , dé…nis de façon unique :

N = r(1 + s N S 2 + t N S 2 
2 ) e N ;

(3.34) c'est à dire aussi :

N = r exp( R 2 2 s N ) e N + r(t N 1 2 (s 2 N s N )) t :
On trouve maintenant avec les deux paramètres s N et t N :

M 1 = t N M 2 N = r 2 ( t e N M 2 e N ) r 2 2 (t N 1 2 (s 2 N s N ))( t e N ( t R 2 M 2 R 2 ) e N ):
On déduit de cette dernière expression, en explicitant e N , l'égalité

r 2 ( t T 2 M 2 T 2 ) r 2 2 (t N 1 2 (s 2 N s N ))( t T 2 ( t R 2 M 2 R 2 )T 2 ) = ( t T 1 M 1 T 1 ): (3.35) Si l'on pose = (t N 1 2 (s 2 N s N )) (3.36)
nombre uniquement dé…ni à partir de N , il en résulte par di¤érence de 3.33 et 3.35 l'égalité matricielle :

r 2 2 ( (t 1 2 (s 2 s)))( t T 2 ( t R 2 M 2 R 2 )T 2 ) = 0:
Disposant d'expressions pour toutes les matrices qui interviennent dans cette égalité, on peut facilement con…rmer que 

t T 2 ( t R 2 M 2 R 2 )T 2 6 = 0. Ceci est d'ailleurs équivalent, puisque T 2 est inversible et que t R 2 M 2 + M 2 R 2 = 0, à véri…er que M 2 R 2 2 6 = 0. Or la condition M 2 R 2 2 = 0 donnerait avec M 2 2 SL(3; Z) la condition R 2 2 = 0, c'est à dire aussi R 2 + 2S 2 = 0.
Q = r exp( R 2 2 
s) e N + t :

Une formule encore plus générale

Dans le cas qu'il envisage, Riedel donne l'expression du nombre (voir [START_REF] Riedel | Marko¤ equation and nilpotent matrices[END_REF] page 13, ou ci-dessus dans le présent document 3.29) :

= 1 m 1 a 2 c 2 1 a 1 c 1 :
On veut maintenant donner l'expression de dans les cas plus généraux que l'on considère ici. Pour cela il su¢ t de procéder comme dans [START_REF] Riedel | Marko¤ equation and nilpotent matrices[END_REF] en considérant deux expressions adéquates de t N . D'abord l'égalité 3.5 donne ici, avec les deux paramètres s N et t N :

N 1 = r 1 e N 1 (1 s N S 2 + ( t N + s 2 N )S 2 
2 );

t N = r( t e N )(1 + s N t S 2 + t N t S 2 2 ): Ensuite avec t N M 2 N = M 1 on obtient t N = M 1 N 1 M 1
2 , et on retrouve 3.8 avec l'expression de N 1 que l'on vient de rappeler, c'est à dire la seconde expression nécessaire pour t N :

t N = r 1 M 1 e N 1 (1 s N S 2 + ( t N + s 2 N )S 2 2 )M 1 2 = r 1 (M 1 e N 1 M 1 2 )(1 + s N ( t S 2 ) + ( t N + s 2 N s N ) t S 2 2 ):
On peut comme avant calculer les deux expressions de t N , en explicitant les trois matrices qui les composent, puis les comparer. Mais on peut aussi éviter ce calcul très lourd en déduisant de la dernière expression

t N 1 = r(1 s N ( t S 2 ) + (t N + s N ) t S 2 2 )M 2 e N M 1 1 ;
et multipliant avec l'autre expression donnée pour t N . Ceci donne

1 = r( t e N )(1 + s N t S 2 + t N t S 2 2 )r(1 s N ( t S 2 ) + (t N + s N ) t S 2 2 )M 2 e N M 1 1 ; c'est à dire t e N 1 M 1 e N 1 M 1 2 = r 2 (1 + (2t N + s N s 2 N ) t S 2 
2 ); ou plus simplement, en multipliant à gauche par t e N et puisque l'on a vu ci-dessus que rS 2 2 e N = t , la condition

r 1 (U 1 U 1 2 ) = r( t T 1 1 t T 2 ) + 2(t N s 2 N s N 2 ) = r( t T 1 1 t T 2 ) + 2 : (3.38) Il su¢ t alors de calculer r 1 (U 1 U 1 2 ) r( t T 1 1 t T 2 ) pour obtenir le nombre(2t N + s N s 2 N ) = 2 .
On peut le faire par un calcul direct, en procédant comme dans [START_REF] Riedel | Marko¤ equation and nilpotent matrices[END_REF] avec passage par des produits de matrices intermédiaires (comparer aux calculs faits pour parvenir à 3.24). Par cette méthode, on a pour la première expression :

rm 1 m 2 (T 2 T 1 1 ) = a 1 c 1 a 2 c 2 A 2 B 2 C 2 D 2 D 1 1 C 1 1 B 1 1 F 1 K 1 L 1 ; a 1 c 1 a 2 c 2 B 2 C 2 D 2 D 1 1 C 1 1 B 1 1 = 0 @ 1 0 0 0 1 0 1 a 2 c 2 1 a 1 c 1 m 2 m 1 0 m 2 m 1 1 A ; A 2 = 0 @ 0 c 2 m 2 a 2 c 2 1 c 2 2 b 2 0 c 2 a 2 1 A ; F 1 K 1 L 1 = 0 @ c 1 m 1 m 2 1 a 1 m 1 a 1 0 c 1 c 1 0 a 1 + c 1 m 1 1 A :
En e¤ectuant le produit et en transposant, ceci donne la généralisation de 3.9

rm 1 m 2 ( t T 1 1 t T 2 ) = t 0 + m 1 a 2 c 2 m 2 a 1 c 1 + m 2 1 t 2 ;
(3.39) où il faut poser ici de façon très générale

0 = 0 @ (a 1 a 2 + c 1 c 2 m 2 m 1 ) + m 2 a 1 c 2 0 ( m 2 m 1 a 1 c 2 c 1 a 2 ) a 1 c 2 2 + b 2 c 1 m 2 m 1 + c 1 m 1 0 c 1 c 2 2 m 2 m 1 b 2 ( a 1 + c 1 m 1 ) + a 1 m 1 (a 1 c 2 a 2 c 1 m 2 m 1 ) 0 ( m 2 m 1 a 1 a 2 + c 1 c 2 ) + m 2 c 1 a 2 1 
A ;

(3.40)

2 = 0 @ 0 0 0 0 1 0 0 0 0 1 A : (3.41)
Pour la seconde expression :

r 1 m 1 m 2 (U 1 U 1 2 ) = a 2 c 2 a 1 c 1 m 2 2 V 1 B 1 C 1 D 1 D 1 2 C 1 2 B 1 2 V 1 2 ; a 2 c 2 a 1 c 1 B 1 C 1 D 1 D 1 2 C 1 2 B 1 2 = 0 @ 1 0 0 0 1 0 1 a 1 c 1 1 a 2 c 2 m 1 m 2 0 m 1 m 2 1 A ; m 2 2 V 1 2 = 0 @ c 2 m 2 b 2 m 2 a 2 m 2 a 2 a 2 2 a 2 m 2 c 2 c 2 a 2 c 2 a 2 1 A ; V 1 = 0 @ a 1 a 1 c 1 1 0 m 1 0 c 1 a 1 1 A :
En faisant le produit de ces trois matrices, on trouve pour r 1 m 1 m 2 (U 1 U 1

2 ) l'expression suivante:

t 0 (a 1 m 2 c 1 m 2 1 a 2 m 1 c 2 m 2 2 a 1 a 2 c 1 c 2 m 2 1 + a 1 a 2 c 1 c 2 m 2 2 ) m 2 m 1 a 2 a 1 c 1 c 2 + m 2 1 t 2 : (3.42)
Et par di¤érence de 3.42 et 3.39, en utilisant également 3.38 :

2 m 1 m 2 = r 1 m 1 m 2 (U 1 U 1 2 ) rm 1 m 2 ( t T 1 1 t T 2 ) = ( m 2 m 1 m 1 m 2 + 2 m 1 a 2 c 2 m 2 a 1 c 1 ) :
Sachant que n'est pas la matrice nulle, on en déduit l'expression qui généralise à tous les cas celle donnée par Riedel dans [START_REF] Riedel | Marko¤ equation and nilpotent matrices[END_REF] :

= 1 2 ( 1 m 2 1 1 m 2 2 ) + 1 a 1 c 1 m 1 1 a 2 c 2 m 2 : (3.43) 
Cette valeur étant injectée dans l'expression 3.32 de Q, et la dé…nition convenable donnée précédemment pour t étant utilisée, on obtient ainsi la formule à adopter de façon générale pour Q = N (s) : 

N (s) = r exp( R 2 2 s) e N + ( 1 2 ( 1 m 2 1 1 m 2 2 ) + 1 a 1 c 1 m 1 1 a 2 c 2 m 2 ) t : (3.44) Remarquons qu'avec Q = r exp( R 2 2 s) e N + t et N = r exp( R 2 2 s N ) e N + t , on est conduit à considérer le produit exp( R 2 2 (s s N ))N = r exp( R 2 2 s) e N + exp( R 2 2 (s s N )) t = r exp( R 2 2 s) e N + r exp( R 2 2 (s s N ))S 2 2 e N = r exp( R 2 2 s) e N + rS 2 2 N = r exp( R 2 2 
Q = exp( R 2 2 (s s N ))N: (3.45)
En particulier si deux matrices

Q 1 ; Q 2 2 SL(3; Q) véri…ent la condition 1/, il existe un paramètre s 1;2 = s 2 s 1 tel que l'on ait Q 2 = exp( R 2 2 (s 1;2 ))Q 1 . D'autre part, si M 1 = M 2 le stabilisateur de M 2 composé des matrices Q 2 SL(3; Q) telles que t QM 2 Q = M 2 , contient une in…nité de matrices de forme exp( R 2 2 s) au delà de la matrice identique N = 1 3 correspondant à s N = 0, et de N = H correspondant à s N = 1. Pour le cas M 1 = M 2 , on a a 1 = a 2 et c 1 = c 2 .
De sorte qu'il vient dans le calcul fait pour la proposition 6 la condition t = t 0 = 1 2 (s 2 s). Et puisque l'on a aussi r = 1 et e N = 1, grâce à 3.

1 et 3.2, il reste seulement avec R 1 = R 2 : Q = exp( R 2 2 
s):

Cette expression est di¤érente de celle fournie dans [START_REF] Riedel | Marko¤ equation and nilpotent matrices[END_REF] (p. 13 Remark (a)) sans que ceci ait la moindre importance puisque l'on a déjà vu ci-dessus ce que l'on pouvait dire de telles expressions. En fait on peut véri…er de façon directe que pour la matrice identique N = 1 3 on a s N = 0. Pour s = 1 on retrouve pour Q avec notre dernière égalité la matrice H dont on a donné l'expression en 2.30. Le fait que le stabilisateur de M 2 dans SL(3; Q) contienne une in…nité de matrices au delà de 1 3 et H en résulte de façon évidente.

Les formules les plus générales à considérer

Il est surprenant, arrivé à ce niveau de généralité qui dépasse de beaucoup celui de [START_REF] Riedel | Marko¤ equation and nilpotent matrices[END_REF], que l'on n'ait rien su encore dire sur le calcul des valeurs s et s N . En fait, à regarder de près les calculs que l'on vient de faire, on peut reconsidérer l'équation 3.39 que l'on transpose maintenant sous la forme :

r e N = rT 2 T 1 1 = 1 m 1 m 2 ( 0 + m 2 1 2 ) + 1 a 2 c 2 m 2 1 a 1 c 1 m 1 t :
Elle donne, en utilisant également 3.43 et en comparant à 3.44 pour s = 0 :

N (0) = r e N + t = 1 m 1 m 2 ( 0 + m 2 1 2 ) + 1 2 ( 1 m 2 1 1 m 2 
2

) t : (3.46)
Compte tenu des expressions données ci-dessus pour 0 et 2 à partir de 3.39, la matrice N (0

) 1 2 ( 1 m 2 1 1 m 2 
2

) t vaut :

1 m 1 m 2 0 @ (a 1 a 2 + c 1 c 2 m 2 m 1 ) + m 2 a 1 c 2 0 ( m 2 m 1 a 1 c 2 c 1 a 2 ) a 1 c 2 2 + b 2 c 1 m 2 m 1 + c 1 m 1 m 2 1 c 1 c 2 2 m 2 m 1 b 2 ( a 1 + c 1 m 1 ) + a 1 m 1 (a 1 c 2 a 2 c 1 m 2 m 1 ) 0 ( m 2 m 1 a 1 a 2 + c 1 c 2 ) + m 2 a 2 c 1 1 A
(3.47) Par construction, et ceci peut se véri…er par un calcul assez fastidieux, le déterminant de la matrice N (0) vaut 1, elle se trouve donc dans SL(3; R). Connaissant N (0), t , , r, on peut en déduire aussi l'expression de e N , puis celle de rS 2 e N = S 2 N (0) qui donne si m 1 = m 2 à un facteur près la matrice 0 + m 1 qui apparaissait dans l'équation 3.10. Remarquons en passant que l'introduction des deux matrices 0 et 1 semble ne rien apporter dans l'article [START_REF] Riedel | Marko¤ equation and nilpotent matrices[END_REF], de sorte que l'on se dit que l'auteur aurait pu poser plus simplement m 0 = S 2 0 et 1 = S 2 2 . Cependant à y regarder de près, Riedel fait son découpage particulier pour se mettre en situation ultérieure de pouvoir appliquer ses lemmes 3.2, 3.3 et surtout 3.10. On revient plus loin les expressions générales à retenir pour les matrices . Avant cela, en comparant les équations 3.44 et 3.46, on voit que l'on peut écrire :

Q = N (s) = exp( R 2 2 s)N (0) = (1 + sS 2 + s 2 s 2 S 2 
2 )N (0):

(3.48)
Cette égalité multipliée à gauche par S 2 permet le calcul e¤ectif du paramètre s correspondant à la matrice Q, en donnant avec 3.46 et 3.31: 

S 2 2 Q = S 2 2 N (0) = S 2 2 (N (0) 1 2 ( 1 m 2 1 1 m 2 2 )) = rS 2 2 e N = t ; S 2 (Q N (0)) = sS 2 2 N (0) = s t ; S 2 (Q (N (0) 1 2 ( 1 m 2 1 1 m 2 2 ) t )) = s 0 @ c 1 c 2 c 2 m 1 a 1 c 2 c 1 b 2 b 2 m 1 a 1 b 2 c 1 a 2 a 2 m
N (s) = N (0) exp( R 1 2 s) = N (0)(1 + sS 1 + s 2 s 2 S 2 
1 ):

On pourrait donc aussi calculer s à partir de N (0)S 2 1 . En résumé, on peut énoncer en améliorant notre dernière proposition, et ceci donne les deux formules les plus générales à considérer : Proposition 3.4. La matrice N (0) ayant été introduite avant, on a équivalence pour toute matrice Q 2 SL(3; Q) des deux conditions suivantes :

1/ On a t QM 2 Q = M 1 : 2/ Il existe un paramètre s uniquement dé…ni tel que l'on puisse écrire 3.48 :

Q = exp( R 2 2 
s)N (0); ou de façon équivalente

Q = N (0) exp( R 1 2 
s):

Compléments et formulaire général

La forme donnée à Q dans 3.48 peut s'écrire, avec les expressions vues en 3.46, et le fait que S 2 ( t ) = 0, sous la forme :

Q = N (s) = 1 m 1 m 2 ( 0 + m 2 1 2 ) + 1 2 ( 1 m 2 1 1 m 2 
2

) t + sS 2 h r e N i + s 2 s 2 t = 1 m 1 m 2 ( 0 + m 1 ( 1 a 2 c 2 m 2 a 1 c 1 m 1 ) t + m 2 1 2 ) + srS 2 e N + t t :
Ceci conduit à poser de façon générale pour retrouver 3.13 :

1 = ( 1 a 2 c 2 m 2 a 1 c 1 m 1 ) t ; (3.50) rm 1 S 2 e N = 0 + m 1 1 : (3.51) D'où, avec 3.46 S 2 N (0) = rS 2 e N = 1 m 1 ( 0 + m 1 1 ) = 1 m 1 m 2 S 2 ( 0 + m 2 1 2 ); (3.52)
ainsi que l'équivalent de l'égalité 3.13 :

N (s) = 1 m 1 m 2 ( 0 + m 1 1 + m 2 1 2 ) + s m 1 ( 0 + m 1 1 ) + t( t ): (3.53)
Le lien entre les valeurs s et t qui apparaissent dans cette dernière équation provient de la combinaison des expressions 3.37 et 3.43, et peut être comparé à 3.23 qu'elle redonne avec

m 1 = m 2 = m : t = 1 2 (s 2 s) + 1 2 ( 1 m 2 1 1 m 2 2 ) + 1 a 1 c 1 m 1 1 a 2 c 2 m 2 : (3.54) 
En particulier si s = 0, l'expression 3.53 redonne bien 3.46 grâce à 3.50. On peut compléter par :

m 1 t = rm 1 S 2 2 e N = S 2 ( 0 + m 1 1 ) = m 1 S 2 2 N (0) = m 1 S 2 2 N (s) = m 1 S 2 2 Q; (3.55) S 2 Q = S 2 N (s) = 1 m 1 m 2 S 2 ( 0 + m 2 1 2 ) + s t = S 2 N (0) + s t :
Cette dernière égalité s'écrit simplement :

S 2 N (s) = 1 m 1 ( 0 + m 1 1 ) + s t : (3.56)
On a vu au début du présent paragraphe que l'on avait Q e N 1 = r(1 + sS 2 + tS 2 2 ), ce qui donne en multipliant à gauche par S 2 et simpli…ant : c'est à dire aussi en comparant à l'égalité 3.56 obtenue avant, une autre forme de 3.52 :

S 2 N (s) e N 1 = (rS 2 ) + s(rS 2 
1 m 1 ( 0 + m 1 1 ) = rS 2 e N = S 2 N (0): (3.58) 0 c 2 0 1 A : (3.60)
On dispose donc pour le cas général de l'équivalent de toutes les expressions introduites par N. Riedel dans [START_REF] Riedel | Marko¤ equation and nilpotent matrices[END_REF]. Les matrices 0 , 2 ont été dé…nies de leur côté par les relations respectives 3.40, 3.41 :

0 = 0 @ (a 1 a 2 + c 1 c 2 m 2 m 1 ) + m 2 a 1 c 2 0 ( m 2 m 1 a 1 c 2 c 1 a 2 ) a 1 c 2 2 + b 2 c 1 m 2 m 1 + c 1 m 1 0 c 1 c 2 2 m 2 m 1 b 2 ( a 1 + c 1 m 1 ) + a 1 m 1 (a 1 c 2 a 2 c 1 m 2 m 1 ) 0 ( m 2 m 1 a 1 a 2 + c 1 c 2 ) + m 2 c 1 a 2 1 A ; 2 = 0 @ 0 0 0 0 1 0 0 0 0 1 A :
Ceci donne l'expression suivante :

1 m 1 m 2 ( 0 + m 2 1 2 ) = 0 B @ a 1 a 2 m 1 m 2 c 1 c 2 m 2 1 + a 1 c 2 m 1 0 a 1 c 2 m 2 1 + c 1 a 2 m 1 m 2 a 1 c 2 2 m 1 m 2 + b 2 c 1 m 2 1 + c 1 m 2 m 1 m 2 c 1 c 2 2 m 1 m 2 + b 2 a 1 m 2 1 b 2 c 1 m 1 + a 1 m 2 a 1 c 2 m 1 m 2 a 2 c 1 m 2 1 0 a 1 a 2 m 2 1 c 1 c 2 m 1 m 2 + c 1 a 2 m 1 1 C A (3.61)
La matrice 1 est liée à t par 3.50, et t est donnée par 3.31 :

t = 0 @ c 2 c 1 c 2 m 1 c 2 a 1 b 2 c 1 b 2 m 1 b 2 a 1 a 2 c 1 a 2 m 1 a 2 a 1 1 A = 0 @ c 2 b 2 a 2 1 A c 1 m 1 a 1 :
L'expression que ces matrices donnent pour N (s), telle que t N (s)M 2 N (s) = M 1 , découle de 3.53 et 3.54 :

N (s) = 1 m 1 m 2 ( 0 + m 2 1 2 ) + s m 1 ( 0 + m 1 1 ) + (s 2 s) 2 + 1 2 ( 1 m 2 1 1 m 2 2 ) t : 
(3.62) Elle donne la formule générale suivante :

m 1 m 2 N (s) = m 1 m 2 N (0) + sm 2 ( 0 + m 1 1 ) + (s 2 s) 2 m 1 m 2 ( t ); (3.63) où l'on a N (0) = 1 m 1 m 2 ( 0 + m 2 1 2 ) + 1 2 1 m 2 1 1 m 2 2 t : Connaissant les expressions de M 1 et M 2 , c'est à dire les nombres a 1 , b 1 , c 1 , m 1 , a 2 , b 2 , c 2 , m 2
, on peut en déduire l'expression de toutes les matrices apparaissant dans cette dernière expression, à savoir 0 , 1 , 0 , 1 , t . Ceci permet d'exprimer N (0) puis N (s) avec une formule à un paramètre s. Rappelons que la matrice N (0) s'écrit également, avec 3.46 et en explicitant r et , sous la forme

N (0) = a 1 c 1 m 1 a 2 c 2 m 2 T 2 T 1 1 + 1 2 ( 1 m 2 1 1 m 2 2 ) + 1 a 1 c 1 m 1 1 a 2 c 2 m 2 t :
De façon plus compacte grâce à 3.31, on a aussi :

N (0) = r(1 + S 2
2 )T 2 T 1 1 : Le lien entre N (s) et N (0), outre l'expression 3.62 que l'on vient de donner, s'écrit aussi sous forme de produit par l'égalité 3.48 :

N (s) = exp( R 2 2 s)N (0) = (1 + sS 2 + s 2 s 2 S 2 
2 )N (0):

Cette dernière redonne, avec la dernière expression donnée pour N (0), l'expression dont on est parti dans la présente section avec t = s 2 s 2 + :

N (s) = r(1 + sS 2 + ( s 2 s 2 + )S 2 2 )T 2 T 1 1 :
Et la cohérence entre ces dernières expressions de N (s) se véri…e alors directement à partir de la chaine des relations suivantes, découlant respectivement de 3.52, 3.55, et S 3 2 = 0 :

S 2 ( 0 + m 2 1 2 ) = m 2 ( 0 + m 1 1 ); S 2 ( 0 + m 1 1 ) = m 1 t ; S 2 t = 0:
Une situation plus confortable aurait ainsi été de considérer :

0 = N (0) = 1 m 1 m 2 ( 0 + m 2 1 2 ) + 1 2 ( 1 m 2 1 1 m 2 
2

) t ; 1 = 1 m 1 ( 0 + m 1 1
); 2 = t : Avec ces nouvelles matrices on a en e¤et :

S 2 0 = 1 ; S 2 1 = 2 ; S 2 2 = 0; N (s) = 0 + s 1 + 1 2 (s 2 s)) 2 = exp( R 2 2 s)N (0) = N (0) exp( R 1 2 s):
Cette dernière expression n'est autre que 3.62, ou a un facteur près 3.63. On peut de plus véri…er que l'on a aussi :

0 S 1 = 1 ; 1 S 1 = 2 ; 2 S 1 = 0:
Il su¢ t pour le voir de considérer les cas où s = 0, puis s = 1, en…n s = 2.

4. Sur la démonstration de la conjecture par Norbert Riedel ) Si q = 2 f2; 3g est un facteur premier de m, alors l'un au moins des deux nombres a 1 a 2 + c 1 c 2 et a 1 a 2 c 1 c 2 n'est pas divisible par q. Il en est de même de l'un des deux nombres

a 1 c 2 + c 1 a 2 et a 1 c 2 c 1 a 2 .
Supposons qu'au contraire q divise a 1 a 2 + c 1 c 2 et a 1 a 2 c 1 c 2 , il divise 2a 1 a 2 , et donc aussi a 1 a 2 , c'est à dire a 1 ou a 2 , et donc respectivement b 1 ou b 2 puisqu'il divise également m. Mais avec l'équation de Marko¤ 2.1 on aurait alors q = 3, c'est à dire une contradiction avec l'hypothèse du lemme. Celui-ci est donc établi, sachant que le même raisonnement vaut pour l'autre paire de nombres

a 1 c 2 + c 1 a 2 et a 1 c 2 c 1 a 2 .
Proposition 4.2. (Lemme 3.3 de [START_REF] Riedel | Marko¤ equation and nilpotent matrices[END_REF]) Si q = 2 f3g est un facteur premier de m, alors :

a/ q divise a 1 c 2 c 1 a 2 si et seulement s'il divise

a 1 a 2 + c 1 c 2 , b/ q divise a 1 a 2 c 1 c 2 si et seulement s'il divise a 1 c 2 + c 1 a 2 .
Supposons en e¤et que l'on ait avec p entier a 1 c 2 c 1 a 2 = pq. On peut alors écrire, avec q 6 = 3 diviseur de m, et donc pas de a 1 , ni de b 1 , ni de a 2 :

0 a 2 mb 1 a 2 (a 2 1 + c 2 1 ) a 1 (a 1 a 2 + c 1 c 2 ) c 1 pq a 1 (a 1 a 2 + c 1 c
2 ) (mod q): Ceci impose que q soit un diviseur de a 1 a 2 + c 1 c 2 et démontre une partie l'énoncé a/ de la dernière proposition. Supposons inversement qu'avec p entier, on ait a 1 a 2 + c 1 c 2 = pq. On peut alors écrire, avec q 6 = 3 diviseur de m, et donc pas de a 1 , ni de b 1 , ni de c 2 :

0 c 2 mb 1 c 2 (a 2 1 + c 2 1 ) a 1 (a 1 c 2 c 1 a 2 ) + c 1 pq a 1 (a 1 c 2 c 1 a
2 ) (mod q): Ceci impose que q soit un diviseur de a 1 c 2 c 1 a 2 et démontre complètement l'énoncé a/ de la proposition. L'énoncé b/ se véri…e de même avec p entier tel que a 1 a 2 c 1 c 2 = pq, puis a 1 c 2 + c 1 a 2 = pq. Proposition 4.3. (Lemme 3.4 de [START_REF] Riedel | Marko¤ equation and nilpotent matrices[END_REF]) Supposons que l'on ait m = nq l avec q = 2 f2; 3g facteur premier de m ne divisant pas n, alors ou bien q 2l divise a 1 c 2 c 1 a 2 , ou bien q 2l divise a 1 a 2 c 1 c 2 , mais on n'a pas simultanément ces deux propriétés.

Cet énoncé résulte d'une égalité qu'il convient d'abord de démontrer :

(a 1 c 2 c 1 a 2 )(a 1 a 2 c 1 c 2 ) = m 2 (b 1 b 2 ): (4.1)
Pour cela on développe

(a 1 c 2 c 1 a 2 )(a 1 a 2 c 1 c 2 ) = (a 2 1 + c 2 1 )a 2 c 2 (a 2 2 + c 2 2 )a 1 c 1 = mb 1 a 2 c 2 mb 2 a 1 c 1 = m(ma 2 c 2 ma 1 c 1 ) = m 2 (a 2 c 2 a 1 c 1 ) = m 2 (b 1 b 2 ):
Si b 1 b 2 = 0, l'un des deux termes a 1 c 2 c 1 a 2 ou a 1 a 2 c 1 c 2 est nul, et donc divisible par q 2l . Supposons que a 1 c 2 c 1 a 2 = 0, et considérons que q divise a 1 a 2 c 1 c 2 . Par une propriété précédente (le lemme 3.3 de [START_REF] Riedel | Marko¤ equation and nilpotent matrices[END_REF]), q divise aussi a 1 c 2 +c 1 a 2 , donc aussi 2a 1 c 2 , c'est à dire a 1 c 2 parce que q 6 = 2. De sorte que q divise a 1 ou c 2 , ce qui donne une contradiction car on a aussi q 6 = 3. Donc q, a fortiori q 2l , ne divise pas a 1 a 2 c 1 c 2 . Par une raisonnement équivalent, si a 1 a 2 c 1 c 2 = 0, q 2l ne divise pas a 1 a 2 c 1 c 2 . Ce cas est bien particulier, car il impose

a 1 c 1 = a 2 c 2 . Si a 1 c 2 = c 1 a 2 on en déduit a 1 = c 1 et a 2 = c 2 , donc (a 1 ; b 1 ; c 1 ) = (a 2 ; b 2 ; c 2 ). Si au contraire a 1 a 2 = c 1 c 2 on en déduit a 1 = c 2 et c 1 = a 2 , donc (a 1 ; b 1 ; c 1 ) = (c 2 ; b 2 ; a 2 ).
Si b 1 b 2 6 = 0, l'égalité 4.1 permet de conclure après avoir assuré que le cas où q divise à la fois a 1 c 2 c 1 a 2 et a 1 a 2 c 1 c 2 est impossible. Or par l'une des propriétés que l'on vient de voir (le lemme 3.3 de [START_REF] Riedel | Marko¤ equation and nilpotent matrices[END_REF]), si tel était le cas, q diviserait aussi a 1 c 2 + c 1 a 2 et a 1 a 2 + c 1 c 2 , donc avec une autre propriété vue (le lemme 3.2 de [START_REF] Riedel | Marko¤ equation and nilpotent matrices[END_REF]) on aurait une contradiction. Finalement q 2l qui divise m 2 divise soit a 1 c 2 c 1 a 2 , soit a 1 a 2 c 1 c 2 , mais pas les deux. La propriété est donc établie.

Si b 1 b 2 6 = 0, l'application répétée de la dernière proposition permet avec la décomposition de m en facteurs premiers m = 2 l1 3 l2 Y q l i i de répartir les nombres q i en deux ensembles, ceux divisant a 1 c 2 c 1 a 2 et ceux divisant a 1 a 2 c 1 c 2 . Ceci permet de véri…er, f et g n'ayant pas de facteur premier égal à 2 ou 3, et étant dé…nis de façon unique, une partie de la proposition suivante : Proposition 4.4. (Corollaire 3.5 amélioré de [START_REF] Riedel | Marko¤ equation and nilpotent matrices[END_REF]) On peut factoriser m de façon unique sous la forme m = 2 l 1 3 l 2 f g, où f et g sont deux entiers premiers entre eux et premiers à 6 tels que f 2 divise a 1 c 2 c 1 a 2 et g 2 divise a 1 a 2 c 1 c 2 . De plus f n'a aucun facteur commun avec a 1 a 2 c 1 c 2 , ni avec a 1 c 2 + c 1 a 2 , et g n'a aucun facteur premier commun avec a 1 c 2 c 1 a 2 , ni avec a 1 a 2 + c 1 c 2 . En…n on a 2 l 1 3 l 2 = 3 si m impair et 2 l 1 3 l 2 = 6 si m pair.

Deux cas manquent qui sont ceux où b 1 b 2 = 0. Le cas où (a 1 ; b 1 ; c 1 ) = (c 2 ; b 2 ; a 2 ) est essentiel pour la suite et justi…e la considération des MT-matrices. Si on y factorise m sous la forme m = 2 l 1 3 l 2 m, l'équation de Marko¤ impose que m divise a 2 1 + c 2 1 . Mais alors m n'a aucun facteur commun avec a 2 le plus grand commun diviseur de a 1 , m, c 1 vaut 3. . En retour, ceci montre que l'on a en réalité l 2 = 1 comme seul cas possible. Considérons ensuite le facteur 2 l 1 de m. Procédons comme avant pour montrer que l 1 > 1 est impossible. Dans le cas contraire m serait divisible par 4 et l'équation de Marko¤ 2.1 imposerait alors :

a 1 2 + c 1 2 0 (mod 4):
Or une telle congruence n'est possible que si a 1 0 (mod 2) et simultanément c 1 0 (mod 2). On tombe donc sur une contradiction avec le fait que le plus grand commun diviseur de a 1 , m, c 1 vaut 3. En retour ceci impose l 1 = 0 ou l 1 = 1, le premier cas correspondant à m impair, le second à m pair, et les triplets de plus bas niveau de l'arbre montrant que les deux cas restent possibles.

Notons pour terminer que la remarque qui suit le corollaire 3.5 à la page 15 de [START_REF] Riedel | Marko¤ equation and nilpotent matrices[END_REF] recouvre un cas qui a été traité dans ce qui précède. Avec fa 1 ; c 1 g = fa 2 ; c 2 g et donc b 1 b 2 = 0, la conclusion que l'on a trouvée peut être écrite sous la forme ff; gg = f1; mg comme dit par Riedel dans cette remarque. Dans les autres cas où b 1 b 2 6 = 0, la décomposition de m en facteurs premiers m = 2 l 1 3 l 2 Y q l i i a permis de répartir les nombres premiers q i pour construire les deux nombres f et g n'ayant pas de facteur premier égal à 2 ou 3. Imaginons que l'on ait g = 1, en revenant à l'égalité 4.1 en se souvenant que f 2 divise a 1 c 2 c 1 a 2 . Il reste

( a 1 c 2 c 1 a 2 3 2 f 2 )(a 1 a 2 c 1 c 2 ) = 2 2l 1 (b 1 b 2 ):
Ceci montre que (3f ) 2 , c'est à dire m 2 ou (m=2) 2 , divise (a 1 c 2 c 1 a 2 ). Or ce nombre est di¤érent de 0 parce que l'on a par hypothèse b 1 b 2 6 = 0. De là on conclut facilement que 3f est moindre que l'un au moins des nombres a 1 ; a 2 ; c 1 ; c 2 , c'est à dire aussi que m est moindre que l'un au moins des nombres 2a 1 ; 2a 2 ; 2c 1 ; 2c 2 . Si l'on a par exemple m = c 1 a 1 b 1 2a 1 on en déduit avec c 1 a 1 m, après avoir véri…é que m = 2a 1 est impossible hors deux cas faciles à expliciter correspondant à m = 6, que l'on a b 1 > (c 1 2)a 1 a 1 . Mais ceci est impossible sur les MTmatrices. Les autres possibilités peuvant se traiter de même, on établit ainsi que le cas g = 1 ne se produit jamais si m 6 = 6, comme supposé dans l'introduction du présent paragraphe. Le cas f = 1 se traite de même, ce qui permet d'énoncer pour deux triplets véri…ant les hypothèse du présent paragraphe, et notamment m = 2 f3; 6g : Proposition 4.5. (Lemme 3.6 amélioré de [START_REF] Riedel | Marko¤ equation and nilpotent matrices[END_REF]) Dans la factorisation unique de m = 2 l 1 3m = 2 l 1 3f g, donnée par la précédente proposition, avec f et g deux entiers premiers entre eux et premiers à 6 tels que f 2 divise a 1 c 2 c 1 a 2 et g 2 divise a 1 a 2 c 1 c 2 , on est certain de pouvoir trouver des facteurs premiers q i di¤érents de 2 et 3 dans f et dans g dès que l'on a b 1 6 = b 2 . Si au contraire b 1 = b 2 on a (f; g) = (1; m) dans le cas où (a 1 ; b 1 ; c 1 ) = (c 2 ; b 2 ; a 2 ), et (f; g) = (m; 1) dans le cas où (a 1 ; b 1 ; c 1 ) = (a 2 ; b 2 ; c 2 ).

Les résultats que l'on vient de donner sont un peu plus précis que ceux de [START_REF] Riedel | Marko¤ equation and nilpotent matrices[END_REF] comme on le voit par exemple sur l'énoncé de notre dernière proposition comparé au lemme 3.6 de N. Riedel. Ce dernier laisse entendre que ses nombres f ou g peuvent contenir des facteurs égaux à 2 ou 3. Tel n'est absolument pas le cas comme on vient de l'établir.

Nouvelles notations et conséquences

Riedel suppose désormais que deux triplets (a 1 ; b 1 ; c 1 ) et (a 2 ; b 2 ; c 2 ) di¤érents de solutions de l'équation de Marko¤, correspondant à des MT-matrices, dé…nissent deux autres solutions de l'équation de M (a 2 ; b 2 ; c 2 ) = M 2 et les trois autres MT-matrices de mêmes coe¢ cients dont M (a 2 ; b 2 ; c 2 ) = M (c 2 ; b 2 ; a 2 ) = M 2 ; ainsi que les huit MT-matrices suivantes : M (m; a 1 ; c 1 ); M (m; c 1 ; a 1 ); M (a 1 ; c 1 ; m); M (c 1 ; a 1 ; m); M (m; a 2 ; c 2 ); M (m; c 2 ; a 2 ); M (a 2 ; c 2 ; m); M (c 2 ; a 2 ; m):

Faisons ici l'hypothèse que l'on ait fa 1 ; c 1 g \ fa 2 ; c 2 g 6 = ?;

et par exemple a 1 = a 2 . Alors à partir de l'équation de Marko¤, on a c 1 = c 2 ou c 1 = ma 2 c 2 . Mais la première égalité donne (m; a 1 ; c 1 ) = (m; a 2 ; c 2 ), c'est à dire aussi (a 1 ; b 1 ; c 1 ) = (a 2 ; b 2 ; c 2 ), et donc une contradiction avec les hypothèses faites. Et la seconde égalité donne (m; a 1 ; c 1 ) = (m; a 2 ; ma 2 c 2 ), mais alors aussi l'inégalité c 1 > m > a 1 , et donc encore une contradiction avec le fait que m soit dominant. Les autres possibilités se traitant de même, on trouve à chaque fois une contradiction. Ceci montre inversement que l'hypothèse faite est impossible. On a donc en réalité fa 1 ; c 1 g \ fa 2 ; c 2 g = ?:

On 

Des involutions et leurs propriétés

Riedel adopte des notations particulières. Pour i 2 f1; 2g, il note

T i = T (a i ; b i ; c i ) = T (c i ; b i ; a i ); R i = R(c i ; b i ; a i ); S i = S(c i ; b i ; a i ):
Pour i; j 2 f 1; 2g il introduit, en liaison avec la proposition 3.1 de [START_REF] Riedel | Marko¤ equation and nilpotent matrices[END_REF], la notation N (i;j) (s) pour désigner toute matrice Q véri…ant t QM j Q = M i . Par dé…nition, on a donc t N (i;j) (s)M j N (i;j) (s) = M i :

Ainsi, pour t QM 2 Q = M 1 comme dans les propositions de la section précédente, on doit noter désormais non plus comme avant N (s) mais plutôt N (1;2) (s). Riedel introduit également, et on remarquera que cette matrice n'est pas dans SL(3; Z), puisque son déterminant vaut 1 et non 1 :

J = 0 @ 0 0 1 0 1 0 1 0 0 1 A = t J = J 1 ; J i = JN (i; i) (0):
Ceci permet de donner un certain nombre de résultats. Tout d'abord N (i; i) (s) et N (i; i) (s) sont calculables à partir des relations 3.25 et 3.20 pour donner : 

N (i;i) (s) = exp( R i 2 s)T i T 1 i ; N (i;i) (0) = 1 3 ; N (i; i) (s) = exp( R i 2 s)T i T 1 i = exp( R i 2 s)N (i; i) (0); (4.2) où t N (i; i) (0)M i N (i; i) (0) = M i . L'
J( t M i )J = M i , ceci donne t (JN (i; i) (0))( t M i )(JN (i; i) (0)) = M i ; et en transposant t (JN (i; i) (0))(M i )(JN (i; i) (0)) = ( t M i );
d'où par substitution :

t (JN (i; i) (0)) 2 (M i )(JN (i; i) (0)) 2 = M i :
Ceci impose par ce que l'on a vu précédemment l'existence d'un nombre s J tel que:

(JN (i; i) (0)) 2 = exp( R i 2 s J ):
En fait s J = 0, car on a :

Proposition 4.6. ([19] Remarks 1) p. 16), J i = JN (i; i) (0) est une involution, ce qui revient à dire que l'on a :

JT i T 1 i = T i T 1 i J:
Disposant des expressions de toutes les matrices qui interviennent dans cette égalité, on peut véri…er cette proposition par un calcul direct. Pour celà il su¢ t de partir de

T i = 0 @ c i a i c i (c i m a i ) a i c 2 i m m a i c i ( c 2 i ) a i c i m( b i ) a i a i c 2 i a 2 i c i m 1 A ; T i = 0 @ a i a i c i (a i m c i ) a 2 i c i m m a i c i ( a 2 i ) a i c i m( b i ) c i c i a 2 i a i c 2 i m 1 A ;
et de calculer les deux produits qui s'écrivent tous deux sous la forme suivante :

J i = JN (i; i) (0) = 1 (a i c i b i ) 2 0 @ a 2 i c 2 i 0 2a i c i + c 2 i m a i ( a 2 i + c 2 i ) (a i c i b i ) 2 c i (a 2 i c 2 i ) 2a i c i + a 2 i m 0 c 2 i a 2 i 1 A (4.3)
Une véri…cation directe à partir de cette expression montre alors que l'on a bien a¤aire à une involution. Ceci con…rme que s J = 0. On a aussi très facilement avec ce qui précède : 

N ( i;i) (0) = J i J = T i T 1 i = JJ i = N (i; i) (0) 1 ; (4.4) 
J i R i + R i J i = 0: (4.5)
Remarquons qu'avec les notations adoptées

JJ i = N ( i;i) (0) = T i T 1 i = N (i; i) (0) 1 . D'autre part, avec la proposition antérieure J i J = JT i T 1 i J = T i T 1
i . On en déduit la première égalité de la proposition précédente. Pour la seconde il su¢ t de comparer à 0 la somme des deux produits, où l'on rappelle que l'on a d'après 2.28 :

R i = 0 @ c 2 i 2a i mc i 2b i a i c i b i c i 2a i c 2 i a 2 i 2c i a i b i a i c i 2b i 2c i + a i m a 2 i 1 A :
Le calcul est très fastidieux mais a été complètement refait par l'auteur du présent article. Il permet e¤ectivement de conclure, en simpli…ant toutes les expressions qui apparaissent grâce à l'équation de Marko¤.

Une formule de Chasles

Riedel va plus loin avec les notations qu'il a introduites. Il énonce son lemme 3.7 disant que pour i; j 2 f 1; 2g et deux nombres rationnels quelconques s et t, on a les égalités suivantes :

exp( R i 2 (s + t)) = N (i;i) (s + t) = N (j;i) (s)N (i;j) (t)? N (i; i) (s + t) = N (j; i) (s)N (i;j) (t):
La première égalité a déjà été établie, en e¤et N (i;i) (s + t) n'est qu'une matrice du stabilisateur de M i , et l'exponentielle correspondante en est la forme connue. La demonstration des autres égalités est esquissée dans [START_REF] Riedel | Marko¤ equation and nilpotent matrices[END_REF] en partant du fait que l'on a pour tous i; j 2 f 1; 2g et tout nombre rationnel

N (i;j) (s) = exp( R j 2 s)N (i;j) (0) = N (i;j) (0) exp( R i 2 s):
Ceci n'est autre que notre expression 3.48 et sa variante par commutation de l'exponentielle. En nous inspirant alors des calculs de Riedel, on peut développer ici une approche à la fois plus directe et générale. Par dé…nition des matrices N (i;j) (s) et N (j;k) (t), on a :

t N (i;j) (s)M j N (i;j) (s) = M i ; t N (j;k) (t)M k N (j;k) (t) = M j:
De sorte qu'en substituant la seconde égalité dans la première, il vient :

t (N (j;k) (t)N (i;j) )M k (N (j;k) (t)N (i;j) (s)) = M i :
Ceci impose par ce qui précède l'existence d'un paramètre u tel que

N (j;k) (t)N (i;j) (s) = N (i;k) (u):
Toujours avec 3.48, ceci se traduit par

exp( R k 2 t)N (j;k) (0)N (i;j) (0) exp( R i 2 s) = N (i;j) (0) exp( R i 2 u); exp( R k 2 t)N (j;k) (0)N (i;j) (0) exp( R i 2 (s u)) = N (i;j) (0); exp( R k 2 t)N (j;k) (0) exp( R j 2 (s u))N (i;j) (0) = N (i;j) (0); exp( R k 2 (t + s u))N (j;k) (0)N (i;j) (0) = N (i;j) (0):
On est alors conduit à s'assurer que N (j;k) (0)N (i;j) (0) = N (i;j) (0), d'où il résultera simplement que l'on a u = s + t. On pourrait le faire brutalement à partir des expressions données ci-dessus pour la matrice N (0), mais outre que c'est compliqué, cela ne donne aucune compréhension de la situation. On va donc plutôt procéder ici comme le fait [START_REF] Riedel | Marko¤ equation and nilpotent matrices[END_REF] page 17, avec des notations évidentes issues de 3.46 :

N (j;k) (0)N (i;j) (0) = ( a j c j m j a k c k m k T k T 1 j + (j;k) 0 @ c k b k a k 1 A c j m j a j ) ( a i c i m i a j c j m j T j T 1 i + (i;j) 0 @ c j b j a j 1 A c i m i a i ) = ( a i c i m i a k c k m k T k T 1 i + (j;k) a i c i m i a j c j m j 0 @ c k b k a k 1 A c j m j a j T j T 1 i + (i;j) a j c j m j a k c k m k T k T 1 j 0 @ c j b j a j 1 A c i m i a i + (j;k) (i;j) 0 @ c k b k a k 1 A c j m j a j 0 @ c j b j a j 1 A c i m i a i :
On a d'abord, ce qui élimine le dernier terme de cette dernière somme:

c j m j a j 0 @ c j b j a j 1 A = c 2 j (a j c j b j )b j + a 2 j = 0:
Ensuite avec l'expression déjà vue des matrices T et en calculant leur inverse:

c j m j a j T j T 1 i = c j m j a j 0 @ c j a j c j (c j m j a j ) a j c 2 j m j m j a j c 3 j a j c j b j m j a j a j c 2 j a 2 j c j m j 1 A T 1 i = a j c j m j 1 0 0 T 1 i = a j c j m j 1 0 0 0 B @ m i c i m 2 i a i c i 1 a i c i a i m i m 2 i a i c i 1 c i m 2 i 0 1 a i m 2 i b i 2a i c i m 3 i c i a 2 i 1 a 2 i c 2 i m i a i m i +c 3 i +c i m 2 i m 3 i c 2 i a 2 i 1 C A = a j c j m j a i c i m i c i m i a i
Ceci donne le second terme de la somme :

(j;k) a i c i m i a j c j m j 0 @ c k b k a k 1 A c j m j a j T j T 1 i = (j;k) 0 @ c k b k a k 1 A c i m i a i :
Pour le troisième terme, on calcule d'abord:

T k T 1 j 0 @ c j b j a j 1 A = T k 0 B B @ m j c j m 2 j a j c j 1 a j c j a j m j m 2 j a j c j 1 c j m 2 j 0 1 a j m 2 j b j 2a j c j m 3 j c j a 2 j 1 a 2 j c 2 j m j a j m j +c 3 j +c j m 2 j m 3 j c 2 j a 2 j 1 C C A 0 @ c j b j a j 1 A = 1 m j c j a j T k 0 @ 0 0 1 1 A = m k c k a k m j c j a j 0 @ c k b k a k 1 A :
On en déduit :

(i;j) a j c j m j a k c k m k T k T 1 j 0 @ c j b j a j 1 A c i m i a i = (i;j) 0 @ c k b k a k 1 A c i m i a i :
Il reste pour l'expression globale :

N (j;k) (0)N (i;j) (0) = a i c i m i a k c k m k T k T 1 i + ( (j;k) + (i;j) ) 0 @ c k b k a k 1 A c i m i a i :
Mais facilement 

(j;k) + (i;j) = ( 1 m j c j a j 1 a k c k m k ) + ( 1 m i c i a i 1 a j c j m j ) + 1 2 ( 1 m 2 j 1 m 2 k ) + 1 2 ( 1 m 2 i 1 m 2 j ) = ( 1 m i c i a i 1 a k c k m k ) + 1 2 ( 1 m 2 i 1 m 2 k ) = (i;k) ; et donc N (j;k) (0)N (i;j) (0) = a i c i m i a k c k m k T k T 1 i + (i;k) 0 @ c k b k a k 1 A c i m i a i = N (j;k) (
N (j;k) (0)N (i;j) (0) = N (i;k) (0); exp( R j 2 s)N (i;j) (0) = N (i;j) (0) exp( R i 2 s) = N (i;j) (s); N (j;k) (t)N (i;j) (s) = N (i;k) (t + s): (4.6)
Cette proposition montre que les notations adoptées par Riedel pourraient être améliorées en permutant les indices i et j dans N (i;j) (s). La règle de combinaison de ces matrices serait ainsi plus simple, ramenant 4.6 à une simple relation de Chasles. Remarquons que la relation de Chasles 4.6 donne :

N (i;j) (s) 1 = N (j;i) ( s):

Applications

On déduit de la relation de Chasles 4.6, avec k = i :

N (j; i) (t)N (i;j) (s) = N (i; i) (t + s) = N (i; i) (0) exp( R i 2 (t + s)):
On a établi ci-dessus que N (i; i) (0) = JJ i . On peut écrire avec 4.2 l'expression de cette dernière matrice, et ceci permet d'énoncer :

Proposition 4.9. (Lemme 3.7 complété de [START_REF] Riedel | Marko¤ equation and nilpotent matrices[END_REF]) Pour i; j 2 f 1; 2g et deux nombres rationnels quelconques s et t, on a les égalités suivantes :

N (i;i) (s + t) = exp( R i 2 (s + t)) = N (j;i) (s)N (i;j) (t); (4.7) N (j; i) (t)N (i;j) (s) = N (i; i) (t + s) = JJ i exp( R i 2 (t + s)); (4.8) N (j;i) (s)N (i;j) (t)N (i; i) (s + t) = J i J: (4.9) 
Il su¢ t pour établir cette proposition d'appliquer la "relation de Chasles" (4.6) et de combiner avec l'égalité 4.4. On a aussi, dans le même esprit : Proposition 4.10. (Lemme 3.8 de [START_REF] Riedel | Marko¤ equation and nilpotent matrices[END_REF]) Pour i; j 2 f 1; 2g et un nombre rationnel quelconque s, on a les égalités suivantes : 1 (4.10)

N (j;i) (s) = N (i;j) ( s)
N ( i; j) (s) = JN (i;j) ( s)J: (4.11)
La première des deux égalités résulte de 4.6 avec t = s. Il su¢ t d'ajouter que N (i;i) (0) = 1 pour conclure à 4.10. Pour 4.11, on peut procéder comme le fait Riedel. On a donné en 3.47 l'expression de la matrice N (i;j) (0). On peut avec elle calculer m i m j JN (i;j) (0)J :

0 B @ c i c j + a j c i m j a i a j m i m j 0 a i c j a j c i m j m j a i m i + c i c 2 j b j m i m j ( a i + c i m i ) m 2 i c i m i a i c 2 j + b j c i m i m j a j c i a i c j m i m j 0 a i a j + a i c j m j c i c j m i m j 1 C A + m i m j 0 @ a j b j c j 1 A a i m i c i :
On peut également calculer m i m j N ( i; j) (0) en permutant a i et c i , respectivement a j et c j . Ceci donne : 0 @

(c i c j + a i a j m j m i ) + m j c i a j 0 ( m j m i c i a j a i c j ) c i a 2 j + b j a i m j m i + a i m i m 2 i a i a 2 j m j m i b j ( c i + a i m i ) + c i m i (c i a j c j a i m j m i ) 0 ( m j m i c i c j + a i a j ) + m j c j a i 1 A + m i m j 0 @ a j b j c j 1 A a i m i c i :
La comparaison des deux dernières matrices montre qu'elles sont égales. En multipliant alors par une exponentielle bien choisie, on obtient :

N ( i; j) (s) = exp( R j 2 s)N ( i; j) (0) = exp( R j 2 s)JN (i;j) (0)J = (1 s R j 2 + s 2 R 2 j 8 )JN (i;j) (0)J:
Mais on a par une véri…cation directe

JR j J = R j :
Il su¢ t en e¤et de revenir à l'expression 2.28 en notant R j sous la forme 0 @

a 2 + b 2 abc 2a + bc ac 2 2b ac bc 2a c 2 a 2 2c ab ac 2b 2c ab + a 2 c abc b 2 c 2 1 A ; le calcul de JR j J donne l'expression 0 @ c 2 + b 2 abc 2c + ab a 2 c 2b ac ab 2c a 2 c 2 2a bc ac 2b 2a bc + ac 2 abc b 2 a 2 1 A ;
et cette dernière se déduit de la précédente en permutant c et a, elle vaut donc aussi R j . On en déduit que l'on a aussi 4.11, ce qui termine la démonstration de la dernière proposition, avec

N ( i; j) (s) = (1 s R j 2 + s 2 R 2 j 8 )JN (i;j) (0)J = J(1 + s R j 2 + s 2 R 2 j 8 )N (i;j) (0)J = JN (i;j) ( s)J:
Remarquons qu'on peut en tirer d'autres conséquences que ne mentionne pas Riedel dans [START_REF] Riedel | Marko¤ equation and nilpotent matrices[END_REF]. Considérons en e¤et 4.6 écrite sous la forme

N (k;j) (t)N (i;k) ( s) = N (i;j) (t s); N (k; j) (s)N ( i;k) ( t) = N ( i; j) (s t):
Il est important de comparer N (k; j) (s) et N (k;j) (t), ce que l'on fait avec 4.8 :

N (k; j) (s) = JJ j exp( R j 2 s)(N (j;k) (0)) 1 = JJ j exp( R j 2 s)N (k;j) (0) = JJ j N (k;j) (s):
De même mais par un autre chemin (4.6 direct puis 4.4) :

N ( i;k) ( t) = N (i;k) ( t)N ( i;i) (0) = N (i;k) ( t)J i J;
ce qui s'énonce aussi en changeant les indices :

N (k; j) (s) = N ( k; j) (s)J k J:
En comparant les dernières expressions rencontrées

N ( k; j) (s)J k J = JJ j N (k;j) (s); et avec 4. 11 
JN (k;j) ( s)J = N ( k; j) (s) = JJ j N (k;j) (s)JJ k = JJ j N (k;j) (s)J k J;
d'où en simpli…ant la relation de commutation

J j N (k;j) (s) = N (k;j) ( s)J k : (4.12)

Un lemme technique auxiliaire

Riedel suppose que les deux nombres rationnels s + et s sont tels que

N (2; 1) (s + ) 2 SL(3; Z); N (1;2) (s ) 2 SL(3; Z):
Cette situation se présente e¤ectivement par la proposition 1 du présent texte, avec des matrices N (2; 1) = N (2; 1) (s + ) et N (1;2) = N (1;2) (s ) reliant les triplets correspondants sur l'arbre comme indiqué au début du présent article. Dans de telles conditions :

Proposition 4.11. (Lemme 3.9 de [START_REF] Riedel | Marko¤ equation and nilpotent matrices[END_REF]) On a :

N (1; 2) (s + ) 2 SL(3; Z); N (2;1) ( s ) 2 SL(3; Z); N (1; 1) (s + + s ) 2 SL(3; Z); N (2; 2) (s + s ) 2 SL(3; Z): (4.13) 
Pour la première appartenance, on combine 4.10 et 4.11, pour écrire ici

N (1; 2) (s + ) = JN ( 1;2) ( s + )J = JN (2; 1) (s + ) 1 J:
Le déterminant de J valant 1, et J ayant ses coe¢ cients dans Z, l'hypothèse N (2; 1) (s + ) 2 SL(3; Z) garantit que l'on a aussi N (1; 2) (s + ) 2 SL(3; Z). Le même procédé utilisant seulement le fait que SL(3; Z) est un groupe et

N (2;1) ( s ) = N (1;2) (s ) 1
garantit que cette matrice est aussi dans SL(3; Z). Utilisant alors 4.6, on a

N (1; 1) (s + + s ) = N (2; 1) (s + )N (1;2) (s ) 2 SL(3; Z); N (2; 2) (s + s ) = N (1; 2) (s + )N (2;1) ( s ) 2 SL(3; Z):
La proposition énoncée est donc établie .

Le coeur de la démonstration de Riedel

Considérant alors une hypothèse plus générale, Riedel donne dans [START_REF] Riedel | Marko¤ equation and nilpotent matrices[END_REF] son lemme 3.10, où il indique que si N (i;j) (s) 2 M 3 (Z) pour i; j 2 f 1; 2g et un nombre rationnel s = (p=q), avec p, q, entiers premiers entre eux, alors les seuls cas possibles sont les suivants :

1= Si ij = 1 ou ij = 4 alors q = 9m; 2= Si ij = 2 alors q = 9g;
3= Si ij = 2 alors q = 9f: 

Les
(s) = N (1;2) (s) 2 M 3 (Z) une matrice qui véri…e : t N (s)M 2 N (s) = M 1 :
On a vu avec 3.25 et 3.20 que l'on pouvait écrire :

N (s) = r exp( R 2 2 s) e N 1 m 1 a 2 c 2 1 a 1 c 1 t :
D'où avec 3.10 et 3.11 ainsi que l'hypothèse sur N (s), ou simplement avec 3.56 :

S 2 N (s) = rS 2 (1 + sS 2 + s 2 s 2 S 2 2 ) e N = rS 2 e N + srS 2 2 e N = 1 m ( 0 + m 1 ) + s t 2 M 3 (Z):
Dans le cas présent on trouve ainsi, avec N (s); 1 2 M 3 (Z) :

1 m 0 + s t 2 M 3 (Z): (4.14)
Rappelons ici que 0 s'écrit, d'après 3.59 où m 1 = m 2 = m, ou simplement l'expression 3.10 donnée avant, on a :

0 = 0 @ a 1 c 2 c 1 a 2 0 a 1 a 2 c 1 c 2 c 2 (a 1 a 2 + c 1 c 2 ) 0 c 2 (c 1 a 2 a 1 c 2 ) a 1 a 2 + c 1 c 2 0 a 1 c 2 c 1 a 2 1 A : (4.15)
Avec le corollaire 3.5 de [START_REF] Riedel | Marko¤ equation and nilpotent matrices[END_REF], que l'on a véri…é avant en en donnant une formulation plus précise, on sait que l'on peut factoriser m sous la forme m = 2 l 1 3f g, avec f et g sont deux entiers impairs premiers entre eux et premiers à 6 tels que

f 2 divise a 1 c 2 c 1 a 2 et g 2 divise a 1 a 2 c 1 c 2 .
De plus f n'a aucun facteur commun avec a 1 a 2 c 1 c 2 , et g n'a aucun facteur premier commun avec a 1 c 2 c 1 a 2 . Ceci permet d'écrire

1 m 0 = 1 2 l 1 3g 0 @ ((a 1 c 2 c 1 a 2 )f 1 ) 0 ((a 1 a 2 + c 1 c 2 )f 1 ) c 2 ((a 1 a 2 + c 1 c 2 )f 1 ) 0 c 2 ((a 1 c 2 c 1 a 2 )f 1 ) ((a 1 a 2 + c 1 c 2 )f 1 ) 0 ((a 1 c 2 c 1 a 2 )f 1 ) 1 A ;
où par construction de f on a ((a 1 c 2 c 1 a 2 )f 1 ) entier. On se demande d'ailleurs si ((a 1 a 2 + c 1 c 2 )f 1 ) entier, ce qui dans [START_REF] Riedel | Marko¤ equation and nilpotent matrices[END_REF] page 18 (bas de page) semble aller de soi par application du lemme 3.3.a de [START_REF] Riedel | Marko¤ equation and nilpotent matrices[END_REF], véri…é ci-dessus. Or pour cela il faut disposer d'un résultat un peu plus large que l'on énonce maintenant : Proposition 4.12. Si f et g nombres impairs premiers à 6 sont des diviseurs de m, alors :

a/ f divise a 1 c 2 c 1 a 2 si et seulement s'il divise a 1 a 2 + c 1 c 2 , b/ g divise a 1 a 2 c 1 c 2 si et seulement s'il divise a 1 c 2 + c 1 a 2 .
Supposons en e¤et que l'on ait avec h entier a 1 c 2 c 1 a 2 = f h. On peut alors écrire, avec f diviseur de m et et premier à 3, donc premier à de a 1 , premier à b 1 , et premier à a 2 :

0 a 2 mb 1 a 2 (a 2 1 + c 2 1 ) a 1 (a 1 a 2 + c 1 c 2 ) c 1 f h a 1 (a 1 a 2 + c 1 c 2 ) (mod f ):
Ceci impose que f soit un diviseur de a 1 a 2 + c 1 c 2 et démontre une partie de l'énoncé a/ de la dernière proposition. Supposons inversement qu'avec h entier, on ait a 1 a 2 + c 1 c 2 = f h. On peut alors écrire, avec f diviseur de m et et premier à 3, donc premier à de a 1 , premier à b 1 , et premier à c 2 :

0 c 2 mb 1 c 2 (a 2 1 + c 2 1 ) a 1 (a 1 c 2 c 1 a 2 ) + c 1 f h a 1 (a 1 c 2 c 1 a 2 ) (mod f ):
Ceci impose que f soit un diviseur de a 1 c 2 c 1 a 2 et démontre complètement l'énoncé a/ de la proposition. L'énoncé b/ se véri…e de même.

Appliquant la proposition 21 à la situation précédente, on a donc ((a 1 a 2 + c 1 c 2 )f 1 ) entier. On a dit aussi que g n'a aucun facteur premier commun avec a 1 c 2 c 1 a 2 , donc aussi avec l'entier ((a 1 c 2 c 1 a 2 )f 1 ). Supposons par ailleurs qu'un facteur premier p de g divise ((a 1 a 2 + c 1 c 2 )f 1 ), il diviserait aussi (a 1 a 2 + c 1 c 2 ), donc par la dernière proposition, il diviserait également a 1 c 2 c 1 a 2 . Mais ceci est contradictoire avec ce que l'on vient de voir sur g qui n'a donc aucun facteur premier avec l'entier ((a 1 a 2 + c 1 c 2 )f 1 ). On a donc pour le moment établi que l'on a, ceci dans le cas le plus général, et sans que g puisse être diminué :

1 m 0 2 1 2 l 1 3g M 3 (Z):
Il reste à comprendre ce qui peut être dit du facteur 2 l 1 3 de m qui reste au dénominateur. On voit d'abord que l'on a :

1 m 0 = 1 2 l 1 g 0 @ ((a 1 c 2 c 1 a 2 )(3f ) 1 ) 0 ((a 1 a 2 + c 1 c 2 )(3f ) 1 ) c 2 ((a 1 a 2 + c 1 c 2 )(3f ) 1 ) 0 c 2 ((a 1 c 2 c 1 a 2 )(3f ) 1 ) ((a 1 a 2 + c 1 c 2 )(3f ) 1 ) 0 ((a 1 c 2 c 1 a 2 )(3f ) 1 ) 1 A 2 3 2 l 1 g M 3 (Z):
Considérons alors le facteur 2 l 1 de m du dénominateur. On a vu précédemment que l'on a l 1 = 1 ou l 1 = 0, les triplets de plus bas niveau de l'arbre montrant d'ailleurs que les deux cas restent possibles. Le premier impose m pair et donc a 1 ; c 1 ; a 2 ; c 2 ; impairs, donc aussi 1 pairs. Finalement, on peut écrire, avec une matrice 3 3 dont tous les coe¢ cients sont entiers :

a 1 c 2 c 1 a 2 et a 1 a 2 + c 1 c 2 pairs, et encore puisque 3f impair, (a 1 c 2 c 1 a 2 )(3f ) 1 et (a 1 a 2 + c 1 c 2 )(3f )
1 m 0 = 1 g 0 @ ((a 1 c 2 c 1 a 2 )(2 l 1 3f ) 1 ) 0 ((a 1 a 2 + c 1 c 2 )(2 l 1 3f ) 1 ) c 2 ((a 1 a 2 + c 1 c 2 )(2 l 1 3f ) 1 ) 0 c 2 ((a 1 c 2 c 1 a 2 )(2 l 1 3f ) 1 ) ((a 1 a 2 + c 1 c 2 )(2 l 1 3f ) 1 ) 0 ((a 1 c 2 c 1 a 2 )(2 l 1 3f ) 1 ) 1 A 2 3 g M 3 (Z):
La même conclusion est bien entendu vraie pour le cas l 1 = 0. En concrétisant le fait que les termes a 1 ; c 1 ; a 2 ; c 2 ; sont multiples de 

= (a 1 =3); 1 = (c 1 =3); 2 = (a 2 =3); 2 = (c 2 =3) : g 3m 0 = 0 @ (( 1 2 1 2 )(2 l 1 f ) 1 ) 0 (( 1 2 + 1 2 )(2 l 1 f ) 1 ) c 2 (( 1 2 + 1 2 )(2 l 1 f ) 1 ) 0 c 2 (( 1 2 1 2 )(2 l 1 f ) 1 ) (( 1 2 + 1 2 )(2 l 1 f ) 1 ) 0 (( 1 2 1 2 )(2 l 1 f ) 1 ) 1 A 2 M 3 (Z):
Avec les notations introduites dans la dernière proposition, et avec l'expression vue ci-dessus pour t :

s t = 9s 0 @ 2 1 2 (m=3) 2 1 2 1 2 (m=3) 2 1 2 1 2 (m=3) 2 1 1 A 2 9sM 3 (Z):
En e¤et le plus grand commun diviseur des coe¢ cients de la matrice t est égal à 9. Ceci se voit facilement avec ce que l'on a rappelé sur le le plus grand commun diviseur des termes de tout triplet véri…ant l'équation de Marko¤ 2.1 qui vaut 3, ce qui introduit les entiers premiers entre eux 1 , 1 , 1 , 2 , 2 , 2 . Revenant maintenant à la relation 4.14, on voit alors avec notre dernière proposition, et en appliquant le thèorème de Bezout aux termes de t pour identi…er une combinaison linéaire à coe¢ cients entiers adéquate, que l'on peut écrire avec des entiers u; v :

3 g u + 9s = v; donc : 9sg = gv 3u 2 Z:
Ceci permet de poser s = n 9g , avec n = gv 3u entier. Supposons d'ailleurs que n et g aient un facteur premier commun p, nécessairement impair et di¤érent de 3 car divisant g, on aurait dans M 3 (Z)

(g=p)( 1 m 0 + s t ) = 1 p 0 @ ((a 1 c 2 c 1 a 2 )(2 l 1 3f ) 1 ) 0 ((a 1 a 2 + c 1 c 2 )(2 l 1 3f ) 1 ) c 2 ((a 1 a 2 + c 1 c 2 )(2 l 1 3f ) 1 ) 0 c 2 ((a 1 c 2 c 1 a 2 )(3f ) 1 ) ((a 1 a 2 + c 1 c 2 )(2 l 1 3f ) 1 ) 0 ((a 1 c 2 c 1 a 2 )(2 l 1 3f ) 1 ) 1 A +(n=p) 1 9 t ; 
et donc, puisque les coe¢ cients de 1 9 t sont entiers, nécessairement p diviseur (a 1 c 2 c 1 a 2 )(2 l 1 3f ) 1 , donc facteur commun de g et de (a 1 c 2 c 1 a 2 ). Or ceci est contradictoire avec la proposition 13 et la dé…nition adoptée pour g, et garantit donc que n et g n'ont aucun facteur commun. On a donc établi dans ce cas qui correspond à (i; j) = (1; 2), soit ij = 2 le résultat suivant : Proposition 4.14. (Lemme 3.10 révisé de [START_REF] Riedel | Marko¤ equation and nilpotent matrices[END_REF]

) Avec N (s) 2 M 3 (Z) véri…ant t N (s)M 2 N (s) = M 1 ; on a s 2 1 9g Z;
où g diviseur de m = 2 l 1 3f g, avec l 1 2 f0; 1g, f et g entiers impairs premiers entre eux et premiers à 6, et g tel que g 2 divise a 1 a 2 c 1 c 2 . De plus le nombre f 2 divise a 1 c 2 c 1 a 2 , le nombre g n'a aucun facteur commun avec (a 1 c 2 c 1 a 2 )(2 l 1 3f ) 1 qui est un entier, et g n'a aucun facteur premier commun avec (a 1 a 2 + c 1 c 2 )(2 l 1 3f ) 1 qui est un autre entier. En…n on peut écrire s = n 9g ;

avec n premier à g.

Il est un cas particulier qui rentre à la limite dans cette proposition, mais que l'on peut examiner de façon directe, c'est celui où (a 2 ; b 2 ; c 2 ) = (a 1 ; b 1 ; c 1 ) = (c 1 ; b 1 ; a 1 ). Avec 4.15 et en écrivant m = 2 l 1 3m, il donne seulement, avec a 1 et c 1 multiples de 3 :

1 m 0 = 3 2 l 1 m 0 @ ((a 1 =3) 2 (c 1 =3) 2 ) 0 2(a 1 =3)(c 1 =3) 2a 1 (a 1 =3)(c 1 =3) 0 a 1 ((c 1 =3) 2 (a 1 =3) 2 ) 2(a 1 =3)(c 1 =3) 0 ((a 1 =3) 2 (c 1 =3) 2 ) 1 A :
Deux cas sont à considérer l 1 = 1 ou l 1 = 0. Le premier donne m pair, et donc

a 1 et c 1 impairs, donc (a 1 =3) 2 (c 1 =3
) 2 pair permettant une simpli…cation par 2 l 1 . Le cas l 1 = 0 donne plus simplement la même conclusion. Tout autre facteur premier p de m, ne pourrait ni diviser a 1 c 1 , ni diviser a 2 1 c 2 1 par ce que l'on a dit sur les solutions de l'équation de Marko¤ 2.1. On retrouve donc la propriété précédente avec g = m et f = 1. Les conditions de divisibilité se véri…ent en utilisant le fait que la matrice 1 m 0 + s t est à coe¢ cients entiers. Sur le terme de la première ligne et première colonne de cette matrice, on a avec des entiers u 11 , (((

a 1 =3) 2 (c 1 =3) 2 )2 l 1 ), (c 2 =3), (c 1 =3) : 3(((a 1 =3) 2 (c 1 =3) 2 )2 l 1 ) + 9ms(c 2 =3)(c 1 =3) = mu 11 :
Mais ms 2 Q, et donc cette égalité n'impose nullement que u 11 soit multiple de 3. En écrivant les égalités équivalentes sur les autres termes de la matrice et en utilisant le thèoréme de Bezout pour construire une combinaison des coe¢ cients de t égale à 9, il reste facilement dans ce cas particulier

s 2 1 9m Z:
On véri…e donc bien que l'on peut écrire s = n 9 , avec n entier. Supposons que n et m aient un facteur premier commun p, nécessairement impair, di¤érent de 3 car divisant m, on aurait dans M 3 (Z)

(m=p)( 1 m 0 + s t ) = 1 p 0 @ ((a 2 1 c 2 1 )(2 l 1 3) 1 ) 0 ((2a 1 c 1 )(2 l 1 3) 1 ) a 1 ((2a 1 c 1 )(2 l 1 3) 1 ) 0 a 1 ((a 2 1 c 1 1 )(3) 1 ) ((2a 1 c 1 )(2 l 1 3) 1 ) 0 ((a 2 1 c 2 1 )(2 l 1 3) 1 ) 1 A + (n=p) 1 9 t ; t sont entiers comme (n=p), nécessairement p 6 = 3 facteur premier de (a 2 1 c 2 
1 ) et de a 1 c 1 , donc aussi de a 1 et c 1 . Or ceci est contradictoire avec ce que l'on a dit sur les solutions de l'équation de Marko¤ 2.1. Donc n et m sont premiers entre eux. On a donc établi dans ce cas qui correspond à (i; j) = (1; 1), soit ij = 1 : Proposition 4.15. (Lemme 3.10 révisé de [START_REF] Riedel | Marko¤ equation and nilpotent matrices[END_REF]) Avec N (s

) 2 M 3 (Z) véri…ant t N (s)M 1 N (s) = M 1 ; on a s 2 1 9m Z;
où m = 2 l 1 3m, avec l 1 2 f0; 1g. En…n on peut écrire

s = n 9m ;
avec n premier à m.

En permutant le rôle des indices i et j dans les deux dernières propositions les autres cas du lemme 3.10 de [START_REF] Riedel | Marko¤ equation and nilpotent matrices[END_REF] se véri…ent aisément. De sorte que ce lemme est complètement révisé à la remarque près, par rapport à l'énoncé de Riedel, qu'il reste à comprendre si n est ou non divisible par 3. Il y a là une imprécision dans [START_REF] Riedel | Marko¤ equation and nilpotent matrices[END_REF] qui part de s = p q , avec p et q premiers entre eux, pour en conclure à l'expression de q donnée par son lemme 3.10 (q = 9g, respectivement q = 9m, dans les cas de nos deux dernières propositions). Nos deux derniers énoncés ne prétendent pas que p = n soit premier à 3. Ils donnent une décomposition du dénominateur 9g = q en deux facteurs premiers entre eux 9 = 3 2 et g, dont seul le dernier est premier au numérateur n = p. S'il advient que n soit divisible par 3, en simpli…ant l'énoncé du lemme 3.10 par Riedel deviendrait faux.

Défaillance de l' argument décisif

L'idée que suggère la …n de l'article [START_REF] Riedel | Marko¤ equation and nilpotent matrices[END_REF] de Norbert Riedel est la possibilité d'exploiter le dernier lemme considéré. Partant d'un (a 1 ; b 1 ; c 1 ) correspondant à une valeur m, on en trouve un autre correspondant à m qui est (a 1 ; b 1 ; c 1 ) = (c 1 ; b 1 ; a 1 ), associé pour l'application de la propriété précédente à m. Le cas que l'on doit approfondir est celui où il existe un troisième triplet (a 2 ; b 2 ; c 2 ) di¤érent de (a 1 ; b 1 ; c 1 ) et de (a 1 ; b 1 ; c 1 ), correspondant à la même valeur m, associé quant à lui pour l'application du lemme 3.10 à un diviseur g de m. Il existe dans ce cas un quatrième triplet (a 2 ; b 2 ; c 2 ) correspondant à la même valeur m. Il s'agit pour démontrer la conjecture de Frobenius d'établir que cette situation est impossible. Pour y parvenir, l'idée de Riedel est d'utiliser les contraintes induites sur les di¤érents matrices N apparaissant dans ce cas pour en déduire une contradiction. Considèrons donc les deux matrices

N (1;2) (s ) 2 SL(3; Z) et N (2; 1) (s + ) 2 SL(3; Z) véri…ant respectivement t N (1;2) (s )M 2 N (1;2) (s ) = M 1 ; (4.16) t N (2; 1) (s + )M 1 N (2; 1) (s + ) = M 2 : (4.17) 
Par la proposition 1 (la proposition 1.2 de [START_REF] Riedel | Marko¤ equation and nilpotent matrices[END_REF]) de telles matrices existent, et on a rappelé comment les construire au début du présent article. On a aussi vu cidessus, autour de notre proposition 9, comment construire les nombres rationnels associés s et s + . En appliquant alors notre proposition 23 à 4.16 avec m = 2 l 1 3f g,

où f = f , g = g , g 2 divisant a 1 a 2 c 1 c 2 , et f 2 divisant a 1 c 2 c 1 a 2 ; on obtient : s 2 1 9g Z:
En appliquant encore notre proposition 22 à 4.17 avec m = 2

l 1 3f + g + , (g + ) 2 divisant a 2 a 1 c 2 c 1 = a 2 c 1 c 2 a 1 , et (f + ) 2 divisant a 2 c 1 c 2 a 1 = a 2 a 1 c 2 c 1 ;
on observe d'abord par les conditions sur les facteurs premiers communs que l'on a nécessairement f + = g et g + = f . Ceci donne :

s + 2 1 9f Z:
On note, en cohérence avec la proposition 23 (lemme 3.10 de [START_REF] Riedel | Marko¤ equation and nilpotent matrices[END_REF]) :

s + = n + 9f ; s = n 9g ; où n + ; n 2 Z; (4.18) 
où n + et f sans facteur commun, de même que n et g. Maintenant la combinaison des égalités 4.16 et 4.17 donne avec 4.6 :

t N (1;2) (s )N (2; 1) (s + )M 1 N (2; 1) (s + )N (1;2) (s ) = t N (1; 1) (s + + s )M 1 N (1; 1) (s + + s ) = M 1
En notant s 1 = s + + s comme dans le lemme 3.9 de [START_REF] Riedel | Marko¤ equation and nilpotent matrices[END_REF] et en observant que N (1; 1) (s 1 ) est dans SL(3; Z) on conclut avec notre propriété 23 que l'on a

s 1 = s + + s = n + g + n f 9m 2 1 9m Z:
De sorte que si l'on note ce nombre s 1 = (n 1 =9m), avec n 1 entier et n 1 et m = f g sans facteur commun, on a :

n 1 = n + g + n f: (4.19) 
Riedel fait alors intervenir dans sa démonstration ( [START_REF] Riedel | Marko¤ equation and nilpotent matrices[END_REF] bas de la page 19) la matrice N (2; 2) (s + s ). Résumons sur un schéma les relations que l'on peut considérer dans la situation étudiée :

N (1;2) (s ) M 1 M 2 N (1; 1) (s + + s ) = N (1; 1) (s 1 ) " % N (2; 1) (s + ) " N (2; 2) (s + s ) = N (2; 2) (s 2 ) M 1 M 2 N ( 1; 2) ( s ) f ig:9
Dans les calculs que l'on vient de faire, on a simplement appliqué la "relation de Chasles" (4.6) sur le triangle supérieur du diagramme :

N (2; 1) (s + )N (1;2) (s ) = N (1; 1) (s + + s ):
Maintenant intervient le triangle inférieur du diagramme, où on peut considérer grâce à 4.11 une nouvelle matrice de SL(3; Z)

N ( 1; 2) ( s ) = JN (1;2) (s )J:
On a encore une "relation de Chasles" (4.6) dé…nissant la matrice N (2; 2) (s + s ) de SL(3; Z) :

N ( 1; 2) ( s )N (2; 1) (s + ) = N (2; 2) (s + s ):
Comme dans le lemme 3.9 de Riedel, en posant cette fois s 2 = s + s , avec N (2; 2) (s 2 ) 2 SL(3; Z) on conclut avec notre propriété 23 que l'on a

s 2 = s + s = n + g n f 9m 2 1 9m Z:
De sorte que si l'on note ce nombre s 2 = (n 2 =9m), avec n 2 entier premier à m = f g, on a cette fois :

n 2 = n + g n f: (4.20) 
Les nombres n 2 et g sont premiers entre eux. On peut véri…er de même que n 1 et f sont premiers entre eux. L'égalité 4.20 permet d'écrire avec 4.18 et l'expression m = 2 l 1 3f g :

s + s 2 = s = n 9g = 2 l 1 n f 3m = 2 l 1 n + g n 2 3m = n + g n 2 9m ; (4.21) 
s 1 = 2 l 1 n 1 3m = n 1 9m ; s 2 = 2 l 1 n 2 3m = n 2 9m :
Considérons maintenant

m 2 N (1;2) (s ) = m 2 N (1;2) (s + s 2 ):
Combinant les expressions auxquelles on est parvenu pour préciser l'expression 3.5 grâce aux égalités 3.9, 3.10 et 3.11, ainsi que 3.29, on retrouve de façon générale :

N (s) = 1 m 2 ( 0 + m 1 + m 2 2 ) + s m ( 0 + m 1 ) + (s 2 s) 2 t 1 m ( 1 a 2 c 2 1 a 1 c 1 ) t :
Cette expression peut plus directement être obtenue avec 3.53 et 3.54, ou 3.63 L'appliquant à la matrice que l'on considère ici, elle donne :

m 2 N (1;2) (s ) = m 2 N (1;2) (s + s 2 ) = ( 0 + m 1 + m 2 2 ) + (s + s 2 )m( 0 + m 1 ) + ((s + s 2 ) 2 (s + s 2 )) 2 m 2 ( t ) m( 1 a 2 c 2 1 a 1 c 1 )( t ):
On trouve en réalité une expression di¤érente de celle que donne Riedel dans [START_REF] Riedel | Marko¤ equation and nilpotent matrices[END_REF] (p. 19), notamment parce qu'il oublie le dernier terme de l'expression que l'on vient de donner. Pour le voir il su¢ t d'utiliser 4.21 et de remplacer (s + s 2 ) par son expression (Riedel se limite au cas l 1 = 0 alors qu'on traite ici le cas général) :

m 2 N (1;2) (s ) = ( 0 + m 1 + m 2 2 ) + 2 l 1 3 ( 0 + m 1 )(n + g n 2 ) + 1 2 2 2l 1 9 (n + g n 2 ) 2 2 l 1 3 (n + g n 2 )m ( t ) m( 1 a 2 c 2 1 a 1 c 1 )( t ):
On ne peut donc conclure comme le fait Norbert Riedel, même en ayant recours aux quatre termes qu'il dé…nit ensuite A, B, C, D. Au demeurant son imprécision revient pour lui à supposer implicitement que

a 1 c 1 = a 2 c 2 , c'est à dire puisque m 1 = m 2 que b 1 = b 2 , et avec l'équation de Marko¤ a 2 1 + c 2 1 = a 2 2 + c 2 2 , donc facilement a 1 = a 2 et c 1 = c 2 , ou a 1 = c 2 et c 1 = a 2 .
En d'autres termes, sans même entrer dans le détail des développements donnés par Norbert Riedel à partir des termes A, B, C, D, on voit qu'il induit sa conclusion par une imprécision dans le calcul qu'il mène. Sa démonstration de la conjecture de Frobenius est donc défaillante à cet endroit précis (milieu de la page 19).

Evaluation des paramètres s et applications

L'idée que l'on cherche à mettre en oeuvre ici pour corriger le travail de Norbert Riedel consiste à mieux connaitre l'expression du paramètre s pour en déduire une réponse négative à la conjecture.

Perfectionnement d' un résultat arithmétique déjà vu

Pour tout triplet (a 1 ; b 1 ; c 1 ) de l'arbre de Riedel posons m 1 = a 1 c 1 b 1 . On peut en toute généralité examiner la factorisation m 1 = 2 l 1 3m 1 où m 1 premier à 6. Si On part de la racine de l'arbre de Riedel (a 0 ; b 0 ; c 0 ) = (3; 3; 3), on s'intéresse aux matrices N (s) = N (1;0) (s) qui l'envoient sur un autre triplet de l'arbre (a 1 ; b 1 ; c 1 ) = (a; b; c). Par dé…nition la matrice N (s) est dans SL(3; Z) et véri…e :

l 1 = 1, avec m 1 = a 1 c
t N (s)M 0 N (s) = M 1 :
Par ce que l'on a vu en 3.48, on peut écrire

N (s) = exp( R 0 2 s)N (0); où l'expression de N (0) 1 2 ( 1 m 2 1 1 36
) t a été donnée en 3.47 et se simpli…e ici en

1 2m 1 0 @ 5a 1 (c 1 6 m 1 ) 0 c 1 ( 6 m 1 a 1 ) 3a 1 + c 1 6 m 1 + 1 3 c 1 m 1 1 3 m 2 1 3c 1 + 6 m 1 (a 1 c 1 m 1 ) + 1 3 a 1 m 1 (a 1 c 1 6 m 1 ) 0 5c 1 ( 6 m 1 a 1 ) 1 A : (5.1)
On a dans le cas présent :

t = 0 @ 3c 1 3m 1 3a 1 3c 1 3m 1 3a 1 3c 1 3m 1 3a 1 1 A = 0 @ 3 3 3 1 A c 1 m 1 a 1 2 9M 3 (Z):
Avec 2.28, on a dans le cas présent :

R 0 = 0 @ 9 12 3 3 0 3 3 12 9 1 A ; S 0 = 0 @ 9 15 6 6 9 3 3 3 0 1 A ; exp( s R 0 2 ) = 0 @ 1 + 9 2 s + 9 2 s 2 6s + 9s 2 3 2 s + 9 2 s 2 3 2 s 9 2 s 2 1 9s 2 3 2 s 9 2 s 2 3 2 s + 9 2 s 2 6s + 9s 2 1 9 2 s + 9 2 s 2 1 A : (5.2) 
Ceci permet de donner, en e¤ectuant le produit des matrices précédentes, une expression de la matrice N (s) = exp( sR 0 =2)N (0). D'où aussi la matrice S 0 N (s). Avec S 2 0 N (0) = t et S 0 t = 0 la matrice S 0 N (s) s'écrit en e¤et facilement sous la forme suivante permettant d'utiliser 5.1

S 0 N (s) = S 0 N (0) + sS 2 0 N (0) = S 0 (N (0) 1 2 ( 1 m 2 1 1 m 2 0 ) t ) + s t = 1 2m 1 0 @ (6a 1 + 5c 1 m 1 ) 5m 2 1 (5a 1 m 1 6c 1 ) ( 3) (2a 1 + c 1 m 1 ) 3m 2 1 ( 3) (a 1 m 1 2c 1 ) (6a 1 + c 1 m 1 ) m 2 1 (a 1 m 1 6c 1 ) 1 A +s 0 @ 3c 1 3m 1 3a 1 3c 1 3m 1 3a 1 3c 1 3m 1 3a 1 1 A ;
où l'on voit apparaitre en cohérence avec 3.58

S 0 N (0) = 1 m 1 ( 0 + m 1 1 ) = 1 2m 1 0 @ (6a 1 + 5c 1 m 1 ) 5m 2 1 (5a 1 m 1 6c 1 ) ( 6a 1 3c 1 m 1 ) 3m 2 1 ( 3a 1 m 1 + 6c 1 ) (6a 1 + c 1 m 1 ) m 2 1 (a 1 m 1 6c 1 ) 1 
A :

On peut alors regarder comment se traduit dans le contexte présent le lemme 3.10 de Riedel. La condition N (s) 2 SL(3; Z) impose S 0 N (s) 2 M 3 (Z). Celleci impose d'abord s rationnel. Et même en fabriquant une combinaison linéaire adéquate des coe¢ cients des matrices 1 m 1 ( 0 + m 1 1 ) et t , issue du théorème de Bezout appliqué aux termes de la matrice t (dont le plus grand commun diviseur vaut 9), on trouve des entiers u et v tels que

u 2m 1 + 9s = v; donc 18m 1 s 2 Z:
Mieux encore, en regardant la seconde colonne des matrices précédentes, on trouve une matrice à coe¢ cients dans Z qui s'écrit :

1 2m 1 0 @ 5m 2 1 3m 2 1 m 2 1 1 A + s 0 @ 3m 1 3m 1 3m 1 1 A = 0 @ 5 2 m 1 + 3m 1 s 3 2 m 1 3m 1 s 1 2 m 1 + 3m 1 s 1 A ;
Si m 1 pair ceci impose 3m 1 s 2 Z, et si m 1 impair ceci impose 6m 1 s 2 Z. On est donc assuré dans les deux cas que l'on peut écrire avec un entier 2 Z :

s = 6m 1 :
Cette écriture est di¤érente de celle donnée dans notre proposition 23 (le lemme 3.10 révisé de [START_REF] Riedel | Marko¤ equation and nilpotent matrices[END_REF]). Il faut donc en savoir plus sur la façon dont se construisent ces valeurs s. Allons plus loin en posant s = p q , où p et q entiers premiers entre eux, il vient avec l'expression de S 0 N (s) précédente :

0 B B @ q(6a 1 +5c 1 m 1 )+6pm 1 c 1 2m 1 q 5qm 1 +6pm 2 1 2q q(5a 1 m 1 6c 1 )+6pm 1 a 1 2m 1 q q( 6a 1 3c 1 m 1 ) 6pm 1 c 1 2m 1 q 3qm 1 6pm 2 1 2q q( 3a 1 m 1 +6c 1 ) 6pm 1 a 1 2m 1 q q(6a 1 +c 1 m 1 )+6pm 1 c 1 2m 1 q qm 1 +6pm 2 1 2q q(a 1 m 1 6c 1 )+6pm 1 a 1 2m 1 q 1 C C A 2 M 3 (Z):
Il est facile de s'assurer que cette condition d'appartenance se réduit seulement à trois conditions, où u, v, w, entiers :

q (6a 1 + 5c 1 m 1 ) + 6pm 1 c 1 = 2m 1 qu; 5qm 1 + 6pm 2 1 = 2qv; q (5a 1 m 1 6c 1 ) + 6pm 1 a 1 = 2m 1 qw:
La première égalité montre que m 1 = 2 l 1 3m 1 divise 6qa 1 , la dernière montre que m 1 divise 6qc 1 . Ceci impose, puisque a 1 , m 1 et c 1 , ont un plus grand commun diviseur égal à 3, et que m 1 nombre premier à 6, que m 1 divise q. Or on a vu précédemment que l'on pouvait aussi écrire

s = 2m 1 = 2 1+l 1 3m 1 = p q
, où m 1 divise q et q premier à p;

on a donc q = 2 k 1 3 k 2 m 1 avec k 1 2 f0; 1; 2g inférieur à 1 + l 1 et k 2 2 f0; 1g.
On peut incorporer ces expressions dans les précédentes égalités et simpli…er

2 1 l 1 a 1 + 5c 1 m 1 2 l 1 + 2 1+l 1 k 1 3 1 k 2 c 1 p = 2 1+l 1 m 1 u; (5.3) 5 + 2 l 1 +1 k 1 3 2 k 2 p = 2 1 l 1 (v=3m 1 ); (5.4 
)

2 k 1 5a 1 m 1 2 1 l 1 c 1 + 2 3 1 k 2 a 1 p = 2 1+k 1 m 1 w: (5.5) 
Si k 1 = 2, alors l 1 = 1. On a nécessairement p impair car q premier à p. La troisième de ces conditions impose a 1 pair, et la première impose c 1 pair, d'où une contradiction. Ce cas est donc impossible. Il en résulte que l'on a établi : est telle que l'on puisse écrire s = p q où p et q entiers premiers entre eux. Si m 1 = a 1 c 1 b 1 = 2 l 1 3m 1 , où m 1 premier à 6 et l 1 2 f0; 1g, on a de plus la condition q = 2 k 1 3 k 2 m 1 avec k 1 ; k 2 2 f0; 1g. Ceci assure que l'on a

s 2 1 2 k 1 3 k 2 m 1 Z:
On remarquera que ce résultat n'est qu'en apparence contradictoire, à cause du facteur 2 du dénominateur, avec la propostion 22. En e¤et, on avait supposé dans ce qui précède m = 2 f3; 6g. Notre dernière proposition correspond en fait à un cas où m = 6. Comme on connait les expressions de la matrice Q = N (s) = P (3), de r, de exp( s R 0 2 ), de e N et de t , on déduit de la valeur de à partir de l'égalité

N (s) = r exp( s R 0 2 ) e N + t :
On obtient ainsi une valeur cohérente avec l'expression donnée par 3.43 = 143 5400 ;

ce qu'un calcul a posteriori con…rme bien : On vient donc de véri…er sur cet exemple l'essentiel des formules données ci-dessus dans le présent article pour généraliser celles de [START_REF] Riedel | Marko¤ equation and nilpotent matrices[END_REF] à tout l'arbre des triplets de Riedel. Tout est bien calculable sur cet exemple, et l'on a en particulier obtenu une expression de s véri…ant notre dernière proposition, et montrant aussi que celle-ci est optimale avec n = 1 dans l'expression qu'elle donne pour le nombre s. 

N (s) = r exp( s R 0 2 ) e N + t
(0) = e N = T 1 T 1 1 = 1 m 1 2 ( 0 + m 2 1 2
), et avec 3.47 ou 4.3 :

N (1; 1) (0) = 1 m 1 2 0 @ 2a 1 c 1 + a 2 1 m 1 0 a 2 1 + c 2 1 a 1 ( a 2 1 + c 2 1 ) m 2 1 c 1 (a 2 1 c 2 1 ) a 2 1 c 2 1 0 2a 1 c 1 + c 2 1 m 1 1 A :
Cette matrice n'est pas dans M 3 (Z) dans le cas général. On étudie donc encore les valeurs s telles que N (1; 1) (s) 2 M 3 (Z). Pour cela on utilise

S 1 = 0 @ (a 2 1 + b 2 1 a 1 b 1 c 1 ) c 1 a 2 1 b 1 a 1 c 1 a 1 c 1 b 1 c 1 b 1 a 1 a 2 1 a 1 b 1 a 1 0 1 A ; S 1 N (1; 1) (0) = 1 m 1 ( 0 + m 1 1 ) = 1 m 1 0 @ a 2 1 c 2 1 + m 1 a 1 c 1 m 1 (c 1 + a 1 b 1 a 2 1 c 1 ) 2c 1 a 1 + m 1 a 2 1 b 1 a 1 c 1 a 2 1 m 1 a 2 1 b 1 c 1 a 3 1 2a 1 c 1 m 1 a 1 a 2 1 c 2 1 1 A :
Dans ce cas il est facile d'expliciter :

0 = 0 @ a 2 1 c 2 1 0 2c 1 a 1 2c 1 a 2 1 0 a 1 c 2 1 a 3 1 2a 1 c 1 0 a 2 1 c 2 1 1 A ; 1 = 0 @ a 1 c 1 m 1 a 1 c 1 a 2 1 a 1 a 2 1 c 1 0 a 1 9 1 
A :

L'équation 3.44 se simpli…e pour donner seulement

N (1; 1) (s) = exp( s R 1 2 )N (1; 1) (0); S 2 1 N (1; 1) (s) = S 2 1 N (1; 1) (0) = t = 0 @ c 1 a 1 m 1 a 1 a 2 1 c 1 b 1 m 1 b 1 a 1 b 1 c 2 1 m 1 c 1 a 1 c 1 1 A ; S 1 N (1; 1) (s) = S 1 N (1; 1) (0) + s t = 1 m 1 0 @ a 2 1 c 2 1 0 2c 1 a 1 2c 1 a 2 1 0 a 1 c 2 1 a 3 1 2a 1 c 1 0 a 2 1 c 2 1 1 A + 0 @ a 1 c 1 m 1 a 1 c 1 a 2 1 a 1 a 2 1 c 1 0 a 1 0 1 A +s 0 @ c 1 a 1 m 1 a 1 a 2 1 c 1 b 1 m 1 b 1 a 1 b 1 c 2 1 m 1 c 1 a 1 c 1 1 A :
Cette matrice est elle-même dans M 3 (Z) pour les valeurs s que l'on considère, qui sont donc aussi telles que la matrice colonne du milieu soit à coe¢ cients dans Z :

0 @ c 1 + a 1 m 1 + sm 1 a 1 a 2 1 sm 1 b 1 a 1 + sm 1 c 1 1 A : Comme (a 1 =3), (b 1 =3) et (c 1 =3
) sont premier entre eux, il reste seulement en considérant ces termes avec un entier 2 Z :

s = 3m 1 = 2 l 1 9m 1 :
En fait on peut faire mieux. Considérons par exemple avec le terme de la première ligne et première colonne :

((a 1 =3) 2 (c 1 =3) 2 ) + 2 l 1 9m 1 s(c 1 =3)(a 1 =3) = 2 l 1 m 1 u 11 :
Si l 1 = 1, ce qui est équivalent à dire que m 1 est pair, alors a 1 et c 1 impairs; de sorte que l'on peut simpli…er en une expression qui vaut aussi avec l 1 = 0

( (a 1 =3) 2 (c 1 =3) 2 2 l 1 ) + 9m 1 s(c 1 =3)(a 1 =3) = m 1 u 11 :
En faisant un calcul équivalent avec tous les termes de la matrice, puis en utilisant le théorème de Bezout pour construire la combinaison linéaire adéquate, il vient avec un entier 0 2 Z :

s = 0 9m 1 2 1 9m 1 Z:
On trouve donc l'équivalent du lemme 3.10 de Riedel. Pour préciser les choses on pose encore s = p q , avec p et q premiers entre eux et q diviseur de 9m 1 , donc de 3m 1 . Il en résulte que la matrice suivante est dans M 3 (Z) 0

B B @ q(a 2 1 c 2 1 )+m 1 c 1 a 1 p m 1 q m 2 1 a 1 p m 1 q q(2c 1 a 1 )+m 1 a 2 1 p m 1 q qa 1 (2c 1 a 1 ) m 1 c 1 b 1 p m 1 q m 2 1 b 1 p m 1 q qa 1 (c 2 1 a 2 1 ) m 1 a 1 b 1 p m 1 q q(2a 1 c 1 )+m 1 c 2 1 p m 1 q m 2 1 c 1 p m 1 q q(a 2 1 c 2 1 )+m 1 a 1 c 1 p m 1 q 1 C C A :
En désignant par u lc les entiers de cette matrice et en utilisant encore la décomposition m 1 = 2 l 1 3m 1 , où m 1 premier à 6 et l 1 2 f0; 1g, on trouve sur la première colonne et troisième ligne que

2qa 1 c 1 + m 1 c 2 1 p = u 31 m 1 q: Ceci impose que m 1 divise 2ga 1 c 1 et donc q.
Mais on a vu aussi que q est un diviseur de 9m 1 . Il n'y a donc pas beaucoup de possibilités pour les facteurs de q ne divisant pas m 1 . Les seules possibilités sont 1, 3 et 9, qui permettent d'écrire g = 3 k 2 m 1 avec k 2 2 f0; 1; 2g. Sans chercher à ra¢ ner cette dernière contrainte, on peut donc énoncer dans ce cas un résultat analogue, mais di¤érent, de la proposition précédente : est telle que l'on puisse écrire s = p q où p et q entiers premiers entre eux. Si m 1 = a 1 c 1 b 1 = 2 l 1 3m 1 , où m 1 premier à 6 et l 1 2 f0; 1g, on a de plus la condition q = 3 k 2 m 1 avec k 2 2 f0; 1; 2g. Ceci assure que l'on a

s 2 1 3 k 2 m 1 Z:
La comparaion avec la propriété 24 laisse ici imaginer que le cas k 2 = 2 est possible, mais ceci reste à con…rmer. 2 ) e N , avec : Remarquons maintenant, en faisant la comparaison avec la proposition 24 que si l'on voulait écrire s = n 9 1 que n ne serait pas premier à 3. Ceci con…rme une lacune dans l'énoncé de Riedel dans son lemme 3.10 de [START_REF] Riedel | Marko¤ equation and nilpotent matrices[END_REF]. On le con…rmera dans la suite. Remarquons qu'avec la valeur s =1 3 l'expression précédente fournie pour N (s) donne 

S 1 = 0 @ 9 
N (s) = Q(3) 1 P (3) = 0 @ 1 0 0 0 0 1 0 1 3 1 A 0 @ 0 1 0 1 3 0 0 0 1 1 A = 0 @ 0 1 0 0 0 1 1 3 3 1 A ; avec Q(3) 1 P (3) = N (1; 1) (s) = N (s) véri…ant : 0 @ 0 0 1 1 0 3 0 1 3 1 A 0 @ 1 6 3 0 1 3 0 0 1 1 A 0 @ 0 1 0 0 0 1 1 3 3 1 A = 0 @ 1 3 3 0 1 6 0 0 1 1 A : En calculant S 2 1 N (s) = t puis S 1 (N (s) N (0) = s t ,
N ( 1 3 ) = 0 @ 3 8 3 0 3 1 1 9 3 1 A 2 SL(3; Z); t N ( 1 
= exp( 1 2 3 5

R 0 2 )( a 1 c 1 m 1 a 0 c 0 m 0 T 0 T 1 1 + (1;0) 0 @ c 0 b 0 a 0 1 A c 1 m 1 a 1 ) = exp( s (1;0) R 0 2 )N (1;0) (0); Q(3) 1 P (3) = exp( 1 3 5 R 1 2 )( a 1 c 1 m 1 a 1 c 1 m 1 T 1 T 1 1 + (1; 1) 0 @ c 1 b 1 a 1 1 A c 1 m 1 a 1 ) = exp( s (1; 1) R 1 2 )N (1; 1) (0):
En combinant ces expressions, il vient avec 4.10 et la "relation de Chasles" 4.6 : Sur cet exemple on a pu directement calculer la valeur s sans passer par de fastidieuses décompositions, uniquement en utilisant notre "relation de Chasles" 4.6.

Q(3) 1 exp( s (1;0) R 0 2 )N (1;0) (0) = exp( s (1; 1) R 1 2 )N (1; 1) (0); Q(3) = exp( s (1;0) R 0 2 )N (1;0) (0)N (1; 1) (0) 1 exp(s (1; 1) R 1 2 ) = exp( s (1;0) R 0 2 )N (1;0) (0)N ( 1;1) (0) exp(s (1; 1) R 1 2 ) = exp( s (1;0) R 0 2 )N ( 1;0) (0) exp(s (1; 1) R 1 2 ) = exp( s (1;0) R 0 2 ) exp(s (1; 1) R 0 2 )N ( 1;0) (0) = exp((s (1; 1) s (1;0) ) R 0 2 )N ( 
On a vu ci-dessus, lors de la démonstration de cette relation, la formule de combinaison des valeurs . Appliquée ici cette dernière permet d'écrire : 

( 1;0) = ( 
Q(3) = exp( 1 2 3 5 R 0 2 )( a 1 c 1 m 1 a 0 c 0 m 0 T 0 T 1 1 + ( 1;0) 0 @ c 0 b 0 a 0 1 A c 1 m 1 a 1 ) = 0 @ 1 0 0 0 3 1 0 1 0 1 A :
On peut en déduire facilement la structure de la matrice P (3) 1 Q(3) qui envoie le triplet (a 1 ; b 1; c 1 ) = (3; 3; 6) sur (a 1 ; b 1 ; c 1 ) = (6; 3; 3). On dispose ainsi de la structure complète des matrices qui interviennent à la racine de l'arbre de Riedel. Pour atteindre notre objectif, il est utile de préciser les notations, en introduisant des indices nécessaires pour distinguer les triplets de l'arbre de Riedel (Fig. 7). Il peut s'agir de simples marqueurs si l'on veut simplement distinguer les triplets. Il peut s'agir, si l'on veut travailler sur des chemins de cet arbre, de niveaux ou hauteurs avec i = 0 pour le triplet (3; 3; 3), i = 1 pour le triplet (3; 3; 6), i = 1 pour le triplet (6; 3; 3). Il peut s'agir d'indices dyadiques si l'on veut bijectivement désigner tous les triplets de cet arbre. On pose ici en raisonnant par niveaux de l'arbre de Riedel : t N (i;j) (s (i;j) )M j N (i;j) (s (i;j) ) = M i ; N (i;j) (s (i;j) ) = exp( R j 2 s (i;j) )N (i;j) (0) = N (i;j) (0) exp( R i 2 s (i;j) )

= (1 + s (i;j) S j + s 2 (i;j)

s (i;j) 2 S 2 j )N (i;j) (0) = N (i;j) (0)(1 + s (i;j) S i + s 2 (i;j) s (i;j) 2 S 2 i ); s (i;j) + s (j;k) = s (i;k) ; N (i;j) (0) = ( a i c i m i a j c j m j T j T 1 i + (i;j) 0 @ c j b j a j 1 A c i m i a j ); r (i;j) = a i c i m i a j c j m j ; r (j;k) r (i;j) = r (i;k) ; e N (i;j) = T j T 1 i ; e N (j;k) e N (i;j) = e N (i;k) (i;j) = ( 1 a i c i m i 1 a j c j m j ) + 1 2 ( 1 m 2 i 1 m 2 j ); (i;j) + (j;k) = (i;k) : t (i;j) = 0 @ c j b j a j 1 A c i m i a i ; t (j;k) t (i;j) = 0 @ c k b k ak 1 A c j m j a j 0 @ c j b j a j 1 A c i m i a i = 0;
Il ne reste qu'à appliquer ces formules à tous les niveaux de l'arbre de Riedel.

5.4.2. Calcul des valeurs s (i+1;i) pour i 0

On a vu au début de l'article comment se construit l'arbre de Riedel avec les formules 2.2 à 2.9, et comment ces dernières pouvaient se déduire avec des permutations de deux d'entre elles. On considère donc ces deux dernières, en commençant par :

t P (a i )M (a i ; b i ; c i )P (a i ) = M (a i ; c i ; a i c i b i ) = M (a i+1 ; b i+1 ; c i+1 ):
On peut écrire ainsi, avec ici s = s (i+1;i) pourvu que l'on soit dans la partie supérieure de la …gure 7, c'est à dire dans des niveaux de l'arbre supérieurs à celui de (3; 3; 3), c'est à dire du côté de (3; 3; 6) :

P (a i ) = N (i+1;i) (s (i+1;i) ) = exp( s (i+1;i) R i 2 )N (i+1;i) (0) = 0 @ 0 1 0 1 a i 0 0 0 1 1 A : Les triplets permettent de calculer, avec m i = (a i c i b i ), m i+1 = (a i m i c i ) : T i = 0 @ c i a i c i (c i (a i c i b i ) a i ) a i c i (a i c i b i )c i (a i c i b i ) a i c i ( c 2 i ) a i c i (a i c i b i )( b i ) a i a i c 2 i a i c i (a i c i b i )a i 1 A ; det(T i ) = (a i c i m i ) 3 ; T i+1 = 0 @ m i a i m i ( a i m i c i + a i m 2 i ) a i m 2 i ( c i + a i m i ) c i + a i m i a i m 3 i a i c i m i ( c i + a i m i ) a i a i m 2 i a 2 i m i ( c i + a i m i ) 1 A ; det(T i+1 ) = (a i m i (a i m i c i )) 3 ; r (i+1;i) = a i+1 c i+1 m i+1 a i c i m i = (a i m i c i ) c i ; (i+1;i) = ( 1 (a i m i c i )m i a i 1 a i c i m i ) + 1 2 ( 1 (a i m i c i ) 2 1 m 2 i ) = (2c i a i m i ) (3a i m i a i c i 2c i + a 2 i m i ) 2a i c i m i (a i m i c i ) 2 ; S i = 0 @ (a 2 i + b 2 i a i b i c i ) a i c 2 i b i c i a i a i c i b i a i b i c i c 2 i c i b i c i 0 1 A Le calcul du produit T i T 1
i+1 donne une expression assez compliquée, mais on peut s'en passer pour calculer s en utilisant directement les expressions 3.47 et 3.49 :

S i (P (a i ) (N (i+1;i) (0) 1 2 ( 1 m 2 i+1 1 m 2 i ) t (i+1;i) )) = s (i+1;i) 0 @ m i c i (a i m i c i )c i a i c i m i b i (a i m i c i )b i a i b i m i a i (a i m i c i )a i a 2 i 1 A :
Cette égalité donne par exemple sur la dernière ligne la valeur de s (i+1;i) , et cette expression est cohérente avec notre premier exemple :

s = s (i+1;i) = a i (a i m i c i )m i = a i m i m i+1 :
Avec N (i;j) (s) 1 = N (j;i) ( s), on en déduit aussi :

s (i;i+1) = a i m i m i+1 :
On considère maintenant, toujours sur la partie supérieure de l'arbre :

t Q(c i )M (a i ; b i ; c i )Q(c i ) = M (a i c i b i ; a i ; c i ) = M (a i+1 ; b i+1 ; c i+1 ):
On peut encore écrire avec s = s (i+1;i) :

Q(c i ) = N (i+1;i) (s (i+1;i) ) = exp( s (i+1;i) R i 2 )N (i+1;i) (0) = 0 @ 1 0 0 0 c i 1 0 1 0 1 A :
Les triplets permettent de calculer, avec m i = (a i c i b i ), m i+1 = (m i c i a i ) :

T i = 0 @ c i a i c i (c i (a i c i b i ) a i ) a i c i (a i c i b i )c i (a i c i b i ) a i c i ( c 2 i ) a i c i (a i c i b i )( b i ) a i a i c 2 i a i c i (a i c i b i )a i 1 A ; det(T i ) = (a i c i m i ) 3 ; T i+1 = 0 @ c i m i c i (c i (m i c i a i ) m i ) m i c i (m i c i a i )c i (m i c i a i ) m i c i ( c 2 i ) m i c i (m i c i a i )( a i ) m i m i c 2 i m i c i (m i c i a i )m i 1 A ; det(T i+1 ) = (c i m i (c i m i a i )) 3 ; r (i+1;i) = a i+1 c i+1 m i+1 a i c i m i = (c i m i a i ) a i ; (i+1;i) = ( 1 (c i m i a i )m i c i 1 a i c i m i ) + 1 2 ( 1 (c i m i a i ) 2 1 m 2 i ) = (a 3 i c i + 4a 2 i m i 7a i c i m 2 i + 2c 2 i m 3 i 2a 2 i c 2 i m i + a i c 3 i m 2 i ) 2a i c i m 2 i (c i m i a i ) 2 ;
On utilise encore directement les expressions 3.47 et 3.49 :

S i (Q(c i ) (N (i+1;i) (0) 1 2 ( 1 m 2 i+1 1 m 2 i ) t (i+1;i) )) = s (i+1;i) 0 @ m i c i (a i m i c i )c i a i c i m i b i (a i m i c i )b i a i b i m i a i (a i m i c i )a i a 2 i 1 A :
Ceci donne les valeurs de s (i+1;i) et de s (i;i+1) :

s = s (i+1;i) = c i (c i m i a i ) m i = c i m i m i+1 ; s (i;i+1) = c i m i m i+1 :
Remarquons que si on traitait plutôt de la partie inférieure de l'arbre de Riedel, s'est à dire des niveaux négatifs de ces arbres, on devrait remplacer s (i+1;i) par s (i 1;i) , avec des formules analogues. Par exemple la dernière écrite donnerait, cette expression étant cohérente avec ce qui a été calculé à l'issue de notre troisième exemple pour Q(3) :

s (i 1;i) = c i m i 1 m i :
5.4.3. Signe des valeurs s (i+1;i) pour i 0 et observations Finalement, en reprenant les deux résultats obtenus pour i 0, et en les complètant pour les autres équations vues au début du présent article, en permutant les termes pour donner les formules correspondantes, on obtient pour les valeurs s associées :

t P (a i )M (a i ; b i ; c i )P (a i ) = M (a i ; c i ; a i c i b i ) = M (a i+1 ; b i+1 ; c i+1 ): (5.6) s = a i (a i m i c i )m i = a i m i m i+1 : (5.7) t Q(c i )M (a i ; b i ; c i )Q(c i ) = M (a i c i b i ; a i ; c i ) = M (a i+1 ; b i+1 ; c i+1 ): (5.8) s = c i (c i m i a i ) m i = c i m i m i+1 : (5.9) t P (c i )M (c i ; b i ; a i )P (c i ) = M (c i ; a i ; a i c i b i ) = M (a i+1 ; b i+1 ; c i+1 ): (5.10) 
s = c i (c i m i a i )m i = c i m i m i+1 : (5.11) t Q(a i )M (c i ; b i ; a i )Q(a i ) = M (a i c i b i ; c i ; a i ) = M (a i+1 ; b i+1 ; c i+1 ): (5.12) s = a i (a i m i c i ) m i = a i m i m i+1 : (5.13) t P (b i )M (b i ; a i ; c i )P (b i ) = M (b i ; c i ; b i c i a i ) = M (a i+1 ; b i+1 ; c i+1 ): (5.14) s = b i (b i m i c i )m i = b i m i m i+1 : (5.15) t Q(c i )M (b i ; a i ; c i )Q(c i ) = M (b i c i a i ; b i ; c i ) = M (a i+1 ; b i+1 ; c i+1 ): (5.16) s = c i (c i m i b i ) m i = c i m i m i+1 : (5.17) t P (c i )M (c i ; a i ; b i )P (c i ) = M (c i ; b i ; b i c i a i ) = M (a i+1 ; b i+1 ; c i+1 ): (5.18) s = b i (b i m i c i )m i = b i m i m i+1 : (5.19) t Q(b i )M (c i ; a i ; b i )Q(b i ) = M (b i c i a i ; c i ; b i ) = M (a i+1 ; b i+1 ; c i+1 ): (5.20) s = b i (b i m i c i ) m i = b i m i m i+1 : (5.21)
La véri…cation se fait à partir 2.2 à 2.9 en observant qu'une telle matrice apparaissant entre les niveaux i et i + 1 de l'arbre de Riedel apparait aussi entre les niveaux j et j + 1 pour j i. Il su¢ t à chaque niveau de décomposer cette matrice avec ce qui précède. Avec 2.28 on observe que l'on ne trouvera pas aux di¤érents niveaux les mêmes matrices R, ni donc a fortiori les mêmes valeurs s, et avec par exemple 3.47, pas non plus la même matrice N (0). Proposition 5.6. Les termes s donnés par les relations 5.6 à 5.21, qui correspondent à un passage d'un niveau de l'arbre de Riedel au niveau suivant et des matrices N (i+1;i) 2 SL(3; Z), s'écrivent sous la forme

s = " s i 3(m i =3)(m i+1 =3) ; où i , (m i =3), (m i+1 =3
) sont des entiers positifs, deux à deux premiers entre eux et premiers à 3, correspondant à une solution de l'équation 1.1 :

2 i + (m i =3) 2 + (m i+1 =3) 2 = 3 i (m i =3)(m i+1 =3):
Remarquons à partir de là que la condition t N (i;i+1) (s)M i+1 N (i;i+1) (s) = M i donne aussi l'autre condition t N (i;i+1) (s) 1 M i N (i;i+1) (s) 1 = M i+1 . Mais avec 4.10, on a N (i;i+1) (s) 1 = N (i+1;i) ( s). Cette dernière relation s'écrit donc aussi t N (i+1;i) ( s)M i N (i+1;i) ( s) = M i+1 avec cette fois :

s = " s i 3(m i =3)(m i+1 =3) :
On peut poser " s = " s , cependant la formule précédente ne mentionne pas i+1 mais i . Ceci ne pose pas vraiment de problème car en regardant de près les relations 5.6 à 5.21, on observe qu'en réalité i = i+1 . Qu'on augmente de niveau ou qu'on diminue dans l'arbre de Riedel, on peut donner une expression de s applicable dans les deux cas, analogue à celle de la dernière proposition. En regardant de près ce qui précède, on n'a aucune peine à s'assurer qu'avec la valeur convenable " 2 f 1; 1g la dernière proposition est transposable à tout l'arbre de Riedel.

5.4.4. Calcul des valeurs s (0;j) pour tous les triplets de l' arbre Considérons ici un chemin de l'arbre de Riedel reliant un triplet (a i ; b i ; c i ) à un autre triplet (a j ; b j ; c j ) de plus haut niveau (j > i). Il donne les relations suivantes, arête par arête de l'arbre entre les deux extrémités du chemin considéré, et en utilisant notre "relation de Chasles" :

t N (i;i+1) (s (i;i+1) )M i+1 N (i;i+1) (s (i;i+1) ) = M i ; t N (i+1;i+2) (s (i+1;i+2) )M i+2 N (i+1;i+2) (s (i+1;i+2) ) = M i+1 ; s (i;i+2) = s (i;i+1) + s (i+1;i+2) ; t N (i+2;i+3) (s (i+2;i+3) )M i+3 N (i+2;i+3) (s (i+2;i+3) ) = M i+2 ; s (i;i+3) = s (i;i+2) + s (i+2;i+3) = s (i;i+1) + s (i+1;i+2) + s (i+2;i+3) ; :::; t N (j 1;j) (s (j 1;j) )M j N (j 1;j) (s (j 1;j) ) = M j 1 ; s (i;j) = s (i;j 1) + s (j 1;j) = ::: = k=j 1 X k=i s (k;k+1) ; t N (i;j) (s (i;j) )M j N (i;j) (s (i;j) ) = M i :
On obtient par ce qui précède une expression où (i;j) 2 Z 

s (i;j) = k=j 1 X k=i " s (k;k+1) k 3(m k =3)(m k+1 =3) = (i;j)
s (0;2) = " s (0;1) 0 3 2 (m 1 =3) + " s (1;2) 1 3(m 1 =3)(m 2 =3) = (m 2 =3)" s (0;1) 0 + 2" s (1;2) 1 3 2 (m 1 =3)(m 2 =3) :
Par exemple avec (a 2 ; b 2 ; c 2 ) = (15; 3; 6) donné par P (3) suivi de Q( 6), on obtient : On est conduit à imaginer une hypothèse de récurrence qui pourrait être :

(m 2 =3) 0 + 2 1 = ( 29 
s (0;j 1) = n (0;j 1) 3 2 (m j 1 =3) :
Au début de la récurrence cette expression vaut avec : n (0;1) = " s (0;1) 0 = 1; m 1 = 15:

Comme dans ce qui précède on peut noter s (0;j 1) = n j 1 g j 1 avec :

m j 1 = a j 1 c j 1 b j 1 = 2 l j 1 3 m j 1 ;
g j 1 = 2 k 1;j 1 3 k 2;j 1 m j 1 ;

2 k 1;j 1 3 k 2;j 1 n (0;j 1) = 2 1+l j 1 3 n j 1 :

Mais on a aussi :

s (0;j) = n (0;j 1) 3 2 (m j 1 =3) + " s (j 1;j) j 1 3(m j 1 =3)(m j =3) = n (0;j 1) (m j =3) + 2" s (j 1;j) j 1 3 2 (m j 1 =3)(m j =3) :
Ceci impose donc que m j 1 dé…ni par m j 1 = 2 l j 1 3 m j 1 divise n (0;j 1) (m j =3)+ 2" s (j 1;j) j 1 . Une telle expression laisse supposer que l'on pourrait avoir mieux :

(m j 1 =3)n (0;j) = (m j =3)n (0;j 1) + 2" s (j 1;j) j 1 ;

(5.34) avec encore l'équation 1.1 :

2 j 1 + (m j 1 =3) 2 + (m j =3) 2 = 3 j 1 (m j 1 =3)(m j =3):
Si 

(m j =3)k j 1;2 j 1 k j 1 = (m j 1 =3); (m j 1 =3)k j 1 (m j =3)k j 1;1 = j 1 ; (m j 1 =3)k j 1;2 j 1 k j 1;1 = 3 j 1 (m j 1 =3) (m j =3
): La seconde de ces égalités donne aisément avec un entier ! j 1 :

n (0;j) = 2" s (j 1;j) k j 1 + ! j 1 (m j =3); n (0;j 1) = 2" s (j 1;j) k j 1;1 + ! j 1 (m j 1 =3):
On voit ainsi comment l'articulation entre les di¤érents niveaux pourrait se faire avec n (0;j) = 2" s (j;j+1) k j;1 + ! j (m j =3) = 2" s (j 1;j) k j 1 + ! j 1 (m j =3);

(5.35) mais évidemment il reste à comprendre ce que sont les nombres ! j 1 . Considérons donc à nouveau l'exemple vu ci-dessus avec j = 2, n (0;2) = 5,

1 = 2, (m 1 =3) = 5, (m 2 =3) = 29.
A partir du formalisme développé dans [START_REF] Perrine | La théorie de Marko¤ et ses développements[END_REF], le triplet (2; 5; 29) est lié à la décomposition matricielle M (2;2;2;1;1) = 29 17 Elle signi…e très simplement, si " s (j;j+1) = " s (j 1;j) que l'on a k j;1 = k j 1 , et si " s (j;j+1) = " s (j 1;j) que l'on a k j;1 + k j 1 = (m j =3). L'hypothèse de récurrence que l'on retient s'écrit maintenant :

12 7 = 5 2 2 1 M (2) 2 1 1 1 = M (2;2) M (2) M (1;1) ; et cette dernière donne directement ! 1 = 1 grâce aux valeurs " s (1;2) = 1; k 1 = 12; k 1;1 = 2; k 1;2 = 1; n (0;2) = ( 2 
s (0;j 1) = 2" s (j 1;j) k j 1;1 " s (j 1;j) (m j 1 =3) 3 2 (m j 1 =3) =
2" s (j 2;j 1) k j 2 " s (j 2;j 1) (m j 1 =3) 3 2 (m j 1 =3) :

Pour j = 2 et j = 3 on peut explicitement véri…er avec nos exemples précédents que cette expression est vraie. Le passage au niveau suivant s'e¤ectue alors grâce à 5.36 :

s (0;j) = 2" s (j 1;j) k j 1;1 " s (j 1;j) (m j 1 =3) 3 2 (m j 1 =3) + " s (j 1;j) j 1 3(m j 1 =3)(m j =3) = (2" s (j 1;j) k j 1;1 " s (j 1;j) (m j 1 =3))(m j =3) + 2" s (j 1;j) j 1 3 2 (m j 1 =3)(m j =3) = (2" s (j 1;j) k j 1;1 " s (j 1;j) (m j 1 =3))(m j =3) 3 2 (m j 1 =3)(m j =3) + 2" s (j 1;j) ((m j 1 =3)k j 1 (m j =3)k j 1;1 ) 3 2 (m j 1 =3)(m j =3) = " s (j 1;j) (m j 1 =3)(m j =3) + 2" s (j 1;j) (m j 1 =3)k j 1 3 2 (m j 1 =3)(m j =3) = 2" s (j 1;j) k j 1 " s (j 1;j) (m j =3) 3 2 (m j =3) = 2" s (j;j+1) k j;1 " s (j;j+1) (m j =3) 3 2 (m j =3) :
La dernière expression établit que la récurrence fonctionne, de sorte que l'on vient de démontrer que l'expression donnée pour s (0;j 1) est vraie. En résumant ce qui précède, on peut donc énoncer un résultat beaucoup plus précis :

Proposition 5.7. Considérons un chemin de l'arbre de Riedel reliant le triplet (a 0 ; b 0 ; c 0 ) = (3; 3; 3) à un autre triplet (a j ; b j ; c j ) où j > 1, et notons la transformation associée N (0;j) (s (0;j) ) 2 SL(3; Z) :

t N (0;j) (s (0;j) )M (a j ; b j ; c j )N (0;j) (s (0;j) ) = M (a 0 ; b 0 ; c 0 ); La valeur du paramètre s (0;j) est égale à

s (0;j) = k=j 1 X k=0 " s (k;k+1) k 3 (m k =3) (m k+1 =3) ;
où pour tout k = 0; :::; j 1, les paramètres intervenant dans le terme générique de cette somme donnent une solution de l'équation 1.1 :

2 k + (m k =3) 2 + (m k+1 =3) 2 = 3 k (m k =3)(m k+1 =3); avec " s (k;k+1) 2 f 1; +1g:
De plus cette expression de s (0;j) se simpli…e sous la forme suivante :

s (0;j) = " s (j 1;j) 2k j 1 (m j =3) 3 (m 0 =3) (m j =3) ;
où m 0 = 6 et où le paramètre k j 1 provient de la suite S du développement du nombre de Marko¤ associé à l'équation 1.1 rencontrée pour k = j 1, et véri…e (cf. [START_REF] Perrine | La théorie de Marko¤ et ses développements[END_REF] (Ch. 1)) :

[S ] = (m j =3) k j 1 ; (m j 1 =3)k j 1 (m j =3)k j 1;1 = j 1 :
Et si l'on pose m j = 2 l j 3 m j ; où m j premier à 6 et l j 2 f0; 1g, il reste

s (0;j) = " s (j 1;j) 2 1 l j k j 1 m j 3 2 m j = n (0;j) 3 2 m j ;
avec le fait supplémentaire que m j est premier à n (0;j) .

En comparant à une proposition précédente, et en remarquant que l'on peut écrire à partir de la dernière expression de la proposition précédente n (0;j) = " s (j 1;j) (2 1 l j k j 1 m j ); on a facilement, avec m j premier à 6, " s (j 1;j) = 1, et [S ] = 2 l j j k j 1 , la condition m j premier à n (0;j) . Ceci complète la démonstration de notre dernière proposition. On en déduit que le nombre s (0;j) ne peut pas être nul, sans quoi on aurait m j = 6k j 1 , et donc aussi k j 1 facteur commun de m j et de j 1 , d'où nécessairement k j 1 = 1, m j = 6, j = 0.

Notons que l'on a si i < j, on peut utiliser :

n (i;j) = ((" s (j 1;j) k j 1 (m i =3) (" s (i 1;i) k i 1 (m j =3)) +((m i =3) (m j =3))
(" s (i 1;i) " s (j 1;j) ) 2 :

Par construction, le plus grand commun diviseur de m i et de n (i;j) est égal au plus grand commun diviseur de m i et de k i 1 m j . Or m i et k i 1 n'ont aucun facteur commun car il existe pour l'indice i une relation analogue à l'égalité [S ] = 2 l j j k j 1 . Donc le plus grand commun diviseur de m i et de n (i;j) est égal au plus grand commun diviseur de m i et de m j . C'est aussi le plus grand commun diviseur de m j et de n (i;j) . Cette remarque s'étend au cas où i > j.

Remarquons également que l'on peut comparer les calculs intermédiaires donnant s (i;j) et s ( i; j) . Supposons d'abord i < j. D'un côté on part de (a i ; b i ; c i ), de l'autre on part de (a i ; b i ; c i ) = (c i ; b i ; a i ). Lorsque du premier côté on applique une matrice P (resp. Q), on applique de l'autre côté Q (resp. P ), donc les valeurs " obtenues à chaque étape des deux côtés sont opposées, par dé…nition même de ces derniers nombres. Par contre les valeurs m sont les mêmes des deux côtés, de même que les valeurs et k associées. Au …nal, ceci donne un résultat que l'on peut comparer à (a 1 c 2 c 1 a 2 )(a 1 a 2 c 1 c 2 ) = m 2 (b 1 b 2 ): : Proposition 5.9. Pour tous indices i < j correspondant à des niveaux di¤érents de l'arbre de Riedel on a pour les paramètres s (i;j) et s ( i; j) la relation : s (i;j) = s ( i; j) : La proposition s'étend facilement avec notre "relation de Chasles" au cas général pour i et j. D'autre part, si on la considère pour i = 0, on obtient s (0;j) = s (0; j) . En remarquant alors que l'on a s (j; j) = s (0; j) + s (j;0) , avec s (j;0) = s (0;j) , il reste seulement s (j; j) = 2s (0;j) . Ceci permet de préciser : Proposition 5.10. A un niveau j quelconque de l'arbre de Riedel, considérons les deux triplets (a j ; b j ; c j ) et (a j ; b j ; c j ) = (c j ; b j ; a j ), et notons la transformation associée N ( j;j) (s ( j;j) ) 2 SL(3; Z): t N ( j;j) (s ( j;j) )M (a j ; b j ; c j )N ( j;j) (s ( j;j) ) = M (c j ; b j ; a j ) = M (a j ; b j ; c j ); t N (0; 1) (s (0; 1) )M 1 N (0; 1) (s (0; 1) ) = M 0 ; t N (0;2) (s (0;2) )M 2 N (0;2) (s (0;2) ) = M 0 ; t N (0; 2) (s (0; 2) )M 2 N (0; 2) (s (0; 2) ) = M 0 :

On construit comme Riedel N (1;2) (s ) 2 SL(3; Z) et N (2; 1) (s + ) 2 SL(3; Z) : t N (1;2) (s )M 2 N (1;2) (s ) = M 1 ; t N (2; 1) (s + )M 1 N (2; 1) (s + ) = M 2 : On a t (N (1;2) (s )N (0;1) (s (0;1) ))M 2 (N (1;2) (s )N (0;1) (s (0;1) )) = t N (0;2) (s + s (0;1) )M 2 N (0;2) (s + s (0;1) ) = M 0 = t N (0;2) (s (0;2) )M 2 N (0;2) (s (0;2) ); de sorte que l'on peut expliciter ici s = s (0;2) s (0;1) ; N (1;2) (s ) = N (0;2) (s (0;2) )N (0;1) (s (0;1) ) 1 2 SL(3; Z): On a aussi t (N (2; 1) (s + )N (0;2) (s (0;2) ))M 1 (N (2; 1) (s + )N (0;2) (s (0;2) )) = t N (0; 1) (s + + s (0;2) )M 1 N (0; 1) (s + + s (0;2) ) = M 0 = t N (0; 1) (s (0; 1) )M 1 N (0; 1) (s (0; 1) ); de sorte que l'on peut aussi expliciter s + = s (0; 1) s (0;2) ; N (2; 1) (s + ) = N (0; 1) (s (0; 1) )N (0;2) (s (0;2) ) 1 2 SL(3; Z):

Résumons sur un nouveau schéma les relations que l'on considère dans la situation étudiée, en remarquant au préalable que l'on a ici s (0; 1) = s (0;1) et s (0; 2) = s (0;2) , et que l'on peut ci expliciter tous les paramètres s en fonction de s (0; (n (0;2) n (0;1) ) 2 = " 2 k j 2 1 " 1 k j 1 1 2 l + " 1 " 2 2 m:

Le terme ((" 1 " 2 )=2) est un entier, car " 1 , " 2 2 f 1; 1g. Si l = 0 ce nombre est un entier de façon évidente. Si au contraire l = 1 les deux conditions de type [S ] = ((2 l j m j )=k j 1 ) imposent que les nombres k j 1 1 et k j 2 1 soient impairs, c'est à dire que ((" 2 k j 2 1 " 1 k j 1 1 )=2) soit un entier. En résumé, on vient de s'assurer que le nombre n ( ) = ((n (0;2) n (0;1) )=2) est un entier. De même, le nombre n (+) = ((n (0;2) + n (0;1) )=2) est un entier. On peut donc noter avec ces deux derniers entiers : s = s (0;1) + s (0;2) = n ( ) 3 m ; s + = s (0;1) s (0;2) = n (+) 3 m :

Cette expression est aussi parfaitement cohérente avec ce qui précède, sachant que s 2 = 2s (0;2) = s (2; 2) intervient dans la matrice N (2; 2) ( 2s (0;2) ). Arrivé à ce stade, on est maintenant en mesure de réexaminer de façon plus précise la situation qui se présente, en ayant recours aux compléments que l'on vient d'acquérir.

Retour sur l' insu¢ sance de l' argument de Norbert Riedel

On reprend ici l'analyse de [START_REF] Riedel | Marko¤ equation and nilpotent matrices[END_REF] au niveau où on l'a arrêtée ci-dessus après avoir détecté une erreur de calcul redhibitoire. On pose pour simpli…er l = l 1 , et on écrit avec 3.63 pour la matrice N On se démarque un peu de ce que fait Riedel pour la dé…nition de ses termes A, B, C, D. La di¤érence avec sa prépublication [START_REF] Riedel | Marko¤ equation and nilpotent matrices[END_REF] provient de la volonté de ne faire apparaitre que des matrices valables pour le cas général et pas seulement pour le cas l = 0. On pose donc ici : (mod g):

A = ( 0 + m 2 
(5.53) c 2 ( t ) a 1 ( t ## ) (mod g):

(5.54) Donc loin de donner une congruence fausse impliquant une contradiction, l'argument …nal de la prépublication [START_REF] Riedel | Marko¤ equation and nilpotent matrices[END_REF] de Riedel donne une congruence vraie lorsque les calculs sont faits de façon précise. Et l'on s'est assuré ici que toutes les congruences modulo g mises en évidence sont cohérentes. Ceci con…rme d'une nouvelle façon notre a¢ rmation de défaillance déjà a¢ chée ci-dessus dans la démonstration de Norbert Riedel [START_REF] Riedel | Marko¤ equation and nilpotent matrices[END_REF]. Mais on peut être encore plus précis dans notre dernière remarque, en utilisant les notations de Riedel auxquelles on revient ici, en considérant de nouveau le cas où l = 0 et en utilisant 5.37. Nos calculs montrent que l'on a, avec 5.38 :

A + D m 1 0 (mod g):

(5.55)

Mais la dernière congruence modulo g obtenue pour A donne maintenant : La congruence à 0 modulo g 2 de A mise en avant [START_REF] Riedel | Marko¤ equation and nilpotent matrices[END_REF] (alinéa 29 page 19) dans ne peut avoir lieu car il est facile de véri…er simplement modulo g, à partir de l'équation 2.1 ainsi que de ce qui a été dit sur n 2 et g, que l'on n'a pas : 

A 2 n 2 3 a 1 2 ## 0 2 n 2 3 a 1 0 @ (c 2

Deux observations complémentaires

Si l'on reconsidère ce que l'on vient de faire, apparait de façon essentielle la condition 5.48, qui en posant x = 2 l (n 2 =3) 2 Z s'écrit aussi, multipliée par 2 et modulo Au delà de la proposition précédente, le raisonnement qui l'a donnée a attiré l'attention sur les deux équations 5.56 et 5.57. On doit d'abord pouvoir trouver des équations équivalentes modulo f , et il su¢ t de permuter le rôle des indices 1 et 2 pour les exhiber. Il n'y a pas de di¢ culté sur ce point. La structure même de la condition de divisibilité par g donnée par 5.56 conduit à se dire que si (a 2 ; b 2 ; c 2 ) est supposé connu ne véri…ant pas la conjecture, et que l'on cherche (a 1 ; b 1 ; c 1 ) supposé existant de même valeur dominante m, la valeur g correspondante est un diviseur du premier membre de 5.56. Les valeurs a 2 et c 2 sont alors des données, l vaut 0 ou 1, et la seule valeur sur laquelle on semble ne rien savoir est n 2 . Or ce nombre est dé…ni par le paramètre s 2 = (n 2 =9m) qui apparait dans les matrices N (2; 2) (s 2 ) et t N ( 2;2) ( s 2 ), la dernière étant celle qui a conduit à l'équation 5.48 équivalente à 5.56, et véri…ant : t N ( 2;2) ( s 2 )M (a 2 ; b 2 ; c j )N ( 2;2) ( s 2 ) = M (a 2 ; b 2 ; c 2 ) = M (c 2 ; b 2 ; a 2 ):

Avec les notations des propositions 31 et 34 on a une expression, où " 2 = 1 et [S ] = (m=3k) : Et il reste aussi n (0;2) = (n 2 =3) = " 2 (2 1 l k m). Donc loin de donner une contradiction, les calculs que l'on vient de faire permettent d'accéder aux paramètres utilisés dans l'exposé de Riedel [START_REF] Riedel | Marko¤ equation and nilpotent matrices[END_REF].

s 2 = n 2 9m = s ( 2;2) = n ( 2;2) 3 m = " 2 2 1 l k m 3 m = " 2 2 

Conclusion

Dans ce qui précède, on a détecté et con…rmé l'erreur qui compromet la …n de la prépublication de Norbert Riedel [START_REF] Riedel | Marko¤ equation and nilpotent matrices[END_REF]. Néanmoins, ceci ne remet pas en cause le très grand intérêt de la démarche développée par cet auteur. Il est possible au demeurant qu'une correction puisse intervenir et qu'elle règle la question de la validité de la conjecture de Frobenius. Mais le défaut précédent invalide aujourd'hui complètement la …n de la prépublication [START_REF] Riedel | Marko¤ equation and nilpotent matrices[END_REF]. De sorte que cette conjecture reste ouverte, et aucune voie de correction ne semble émerger de ce qui précède. Cette limite à l'intérêt du travail de Norbert Riedel ne doit pas faire négliger certains autres aspects de son texte sur lesquels on n'a pas insisté ci-dessus, mais sur lesquels on voudrait maintenant revenir brièvement. Dans [START_REF] Riedel | Marko¤ equation and nilpotent matrices[END_REF] (p.6) …gure une remarque très intéressante sur une interprétation de H en tant que matrice de monodromie issue de la théorie quantique des champs topologiques (TQFT). Les vues pénétrantes auxquelles cette dernière théorie a conduit ont fait émerger la tt -géométrie, un domaine en plein développement sur la base des travaux de Sergio Cecotti et Cumrun Vafa et de leur tt -équation [3] [9]. Une partie de l'article [START_REF] Cecotti | On classi…cation of N=2 supersymmetric theories[END_REF] développe quelques conséquences de cette équation, notamment ses auteurs l'utilisent pour classer di¤érentes théories des cordes supersymétriques. Ils mettent à cette occasion en évidence un lien avec la classi…cation des singularités de fonctions holomorphes f : C n ! C (graphes de Dynkin ADE). Plus particulièrement, si l'on considère on véri…e que l'on a comme dans [START_REF] Cecotti | On classi…cation of N=2 supersymmetric theories[END_REF] (p. 605) :

H = (1 A)(1 t A) 1 :
Les valeurs propres de H sont des nombres complexes de module 1 dès que l'on a la condition 0 d 4. Elles s'écrivent : Or ces dernières redonnent facilement A, d'où H et …nalement le lien évoqué précédemment. Cette remarque à connotation physique faite par Riedel dans [START_REF] Riedel | Marko¤ equation and nilpotent matrices[END_REF] est d'un très grand intérêt. Elle con…rme la pertinence des perspectives qui ont été présentées dans [START_REF] Perrine | Recherches autour de la théorie de Marko¤[END_REF]. Riedel en a ouvert une voie d'approfondissement dont l'existence était imaginée à la suite des travaux pionniers de Cohn [START_REF] Cohn | Ternary forms as invariants of Marko¤ forms and other SL 2 (Z)bundles[END_REF]. Ceci est très prometteur, par exemple pour présenter de façon directe l'interprétation géométrique de la conjecture de Frobenius donnée dans [START_REF] Rudakov | Markov numbers and exceptionnal bundles on P 2 , english translation in[END_REF], ou encore pour étudier les actions qui en résultent du groupe SL(3; Z) sur GL(3; Z). Le travail de Riedel montre comment la nilpotence de certaines matrices joue un rôle à ce niveau, et donc permet la maîtrise d'un contexte géométrique qui apparaissait jusque là assez di¢ cile à pénétrer. Bref, la prépublication de Norbert Riedel mérite un travail complémentaire, soit de correction si l'objectif reste de démontrer la validité de la conjecture de Frobenius, soit de réorganisation et d'approfondissement si l'objectif devient plus géométrique et plus général, en liaison avec la théorie des noeuds ou les développements récents de la tt -géométrie ([3] [4] [START_REF]From Hodge theory to integrability and TQFT (tt -geometry[END_REF]).

5. 5 . 1 -

 51 Des propriétés de divisibilité plus fortes .................. page 126 5.5.2 -Retour sur l'insu¢ sance de l'argument de Riedel ..... page 130 5.5.3 -Deux observations complémentaires ......................... page 137 5 -Conclusion ................................................................................... page 141 Bibliographie ..................................................................................... page 143 2. Présentation de l' approche de Norbert Riedel 2.1. Quelques rappels préliminaires Norbert Riedel rappelle d'abord qu'à une multiplication par un facteur 3 près, on peut se ramener à considérer de façon équivalente la résolution de l'équation en nombres entiers strictement positifs a 2 + b 2 + c 2 = abc: (2.1) Un triplet de Marko¤ est donc ici un triplet d'entiers strictement positifs (a; b; c) solution de cette dernière équation, c'est à dire qui véri…e 2.1. On organise habituellement tout ensemble de ces solutions en un arbre ayant pour sommets des triplets de Marko¤, et dont les arêtes indiquent comment on passe du triplet origine d'une telle arête à son triplet extrémité. Mais il y a souvent plusieurs façons de le faire. Dans mes propres travaux [17], j'ai préféré considérer toutes les solutions possibles de 2.1. Les arêtes de l'arbre correspondant sont associées à trois transformations involutives, ce qui permet d'oublier l'orientation de ces arêtes : X : (a; b; c) ! (bc a; b; c); Y : (a; b; c) ! (a; ac b; c); Z : (a; b; c) ! (a; b; ab c):

  (a; b; c) qui véri…ent la condition max(a; b; c) 2 fa; cg: On les appelle dans la suite triplets de Riedel. Et il associe à chacun d'eux une matrice de forme M (a; b; c)

  Cohn le premier, celle de Zhang le dernier, et celle de Riedel l'ensemble à quatre éléments composé des deux premiers et des deux derniers. En résumé, le choix que fait Riedel des triplets qu'il considère est très particulier et tout à fait original. Ceci permet à Riedel d'indiquer qu'à l'exception des triplets (3; 3; 3) et (3; 3; 6) on peut associer à tous les autres triplets de Zhang (a; b; c), qui sont seulement des triplets de Marko¤ tels que 0 < a < b < c, quatre triplets de Riedel (a; b; c), (b; a; c), (c; b; a), (c; a; b), et donc quatre MT-matrices. A partir de tout triplet de Zhang on peut aussi considérer le nouveau triplet (a; c; ac b) où ac b reste positif car b est positif et que l'on a a 2 + c 2 = b(ac b): Et comme cette condition donne aussi c 2 < b(ac b) < c(ac b), il en résulte que l'on a a < c < (ac b), c'est à dire le fait qu'il s'agit bien d'un nouveau triplet de Zhang. Comme déjà dit, un second triplet peut se déduire de (a; b; c), il s'agit de (b; c; bc a). C'est aussi un triplet de Zhang, comme le montre une véri…cation facile avec c 2 < a(bc a) = b 2 + c 2 < c(bc a):

@ 1 A

 1 t P (a)M (a; b; c)P (a) = M (a; c; ac b); (2.2) t Q(c)M (a; b; c)Q(c) = M (ac b; a; c); (2.3) et en permutant a et c, on en déduit aussi: t P (c)M (c; b; a)P (c) = M (c; a; ac b); (2.4) t Q(a)M (c; b; a)Q(a) = M (ac b; c; a): (2.5) Riedel parvient curieusement à ces deux dernières relations par transposition et conjugaison, c'est à dire avec la relation 0 = t M (c; b; a); alors que le raisonnement direct que l'on vient de faire su¢ t. On a vu précédemment que (a; c; ac b) étant un triplet de Zhang, sauf pour les plus petites solutions il existe quatre triplets de Riedel associés: (a; c; ac b), (c; a; ac b), (ac b; c; a), (ac b; a; c). La MT-matrice dé…nie par le premier correspond à l'égalité 2.2, celle dé…nie par le second correspond à l'égalité 2.4, celle dé…nie par le troisième correspond à l'égalité 2.5, celle dé…nie par le quatrième correspond à l'égalité 2.3. De sorte que si l'on suppose maintenant (a; b; c) est lui-même un triplet de Zhang, (a; b; c) et (c; b; a) sont tous deux des triplets de Riedel, avec (a; c; ac b) également triplet de Zhang auquel s'applique ce que l'on vient de voir. On peut traduire chacune des égalités 2.2, 2.3, 2.4, 2.5, par une arête de l'arbre de Riedel: f ig: 3 : f ig: 4 : (a; c; ac b) % (a; b; c) & (ac b; a; c) (c; a; ac b) % (c; b; a) & (ac b; c; a) Il existe deux autres triplets de Riedel dé…nis par (a; b; c) qui sont (b; a; c) et (c; a; b). Ils conduisent à considérer d'autres égalités que l'auteur ne mentionne pas, mais qui sont évidentes par permutation respectivement de a et b, puis c et b: t P (b)M (b; a; c)P (b) = M (b; c; bc a); (2.6) t Q(c)M (b; a; c)Q(c) = M (bc a; b; c); (2.7) t P (c)M (c; a; b)P (c) = M (c; b; bc a); (2.8) t Q(b)M (c; a; b)Q(b) = M (bc a; c; b):

f ig: 6 :

 6 (b; c; bc a) % (b; a; c) & (bc a; b; c) (c; b; bc a) % (c; a; b) & (bc a; c; b)

  Riedel. Ils véri…ent donc : max(a; b; c) = b: Si elle contient le triplet (a; b; c), elle contient aussi (c; b; a). Ceci laisse imaginer une nouvelle disposition des noeuds en un nouvel arbre complet où on aurait respectivement sur les deux autres branches max(a; b; c) = a et max(a; b; c) = c.

  2 avec N = P (a), (a 2 ; b 2 ; c 2 ) = (a; b; c) et (a 1 ; b 1 ; c 1 ) = (a; c; ac b). L'égalité précédente 2.11 se véri…e aisément dans ces conditions sous la forme:

12 u 13 u 21 u 22 u 23 u 31 u 32 u 33 1 A:

 1 Le développement de cette relation donne trois égalités entre des matrices dans M 2 (Z), et l'on peut passer aux traces pour en déduire une nouvelle égalité. Et si l'on note alors de façon peu naturelle (tr(A); tr(AB); tr(B)) = (c; ac b; a), on a : (c; ac b; a) = (3; 6; 3) 0 @ u 11 u 12 u 13 u 21 u 22 u 23 u 31 u 32 u 33 1 A : A partir de là, on peut maintenant visualiser sur la base (A 0 ; A 0 B 0 ; B 0 ) le passage d'un triplet admissible aux deux autres déterminés par les règles de récurrence précédentes. Le premier s'en déduit avec l'expression donnée ci-dessus pour A 2 B et la matrice Q introduite précédemment : (A; A 2 B; AB) = (A; AB; B) AB; B)Q(tr(A)): En passant comme ci-dessus aux traces, le calcul de tr(A 2 B) = c(ac b) a étant évident, on en déduit la transposée de la relation 2.13 : (c; c(ac b) a; ac b) = (c; ac b; a)Q(c): Le second est obtenu de même avec l'expression donnée ci-dessus pour AB 2 et la matrice P : (AB; AB 2 ; B) = (A; AB; B) AB; B)P (tr(B)): En passant encore aux traces, avec cette fois tr(AB 2 ) = a(ac b) c, on en déduit la transposée de la relation 2.12 : (ac b; a(ac b) c; a) = (c; ac b; a)P (a): De sorte que la signi…cation de la matrice N considérée dans la proposition 1.2 est maintenant évidente en tant que matrice de passage d'une base du Z-module libre de rang 3 que l'on vient d'exhiber à une autre. On comprend ainsi retrospectivement sur quoi sont fondées les notions qui ont permis à Riedel d'établir sa proposition 1.2, et en particulier comment il a pu transposer e¤ectivement la théorie de Marko¤ en dimension 3 (une perspective qui était a¢ chée dans [18] p. 8 ou p. 34, en liaison avec un théorème de Dyer et Formanek, mais dont l'article de Riedel donne une concrétisation e¤ective). Il reste cependant à expliquer dans ce contexte quel est l'ensemble des matrices 3 3 de forme M (a; b; c) que l'on considère, et la structure qu'il porte. On pense à une structure de sous-groupe de SL(3; Z) du fait de la relation M (a; b; c) = M ( a; ac b; c) 1 :

(

  A;AB;B) (x; y; z) = det(xA + yAB + zB): On peut explicitement calculer cette autre forme , et l'on obtient l'expression x 2 det A+y 2 det AB+z 2 det B+xytr(B) det A+yztr(A) det B+zxtr(AB 1 ) det B:

  Ce groupe pour la multiplication ordinaire des matrices, est un réseau du groupe de Lie H 1 (R), groupe dé…ni par des matrices analogues mais avec a; b; c 2 R. Ce dernier groupe dé…nit un ensemble de vecteurs tangents à toutes les courbes de H 1 (R) passant par l'unité qui est naturellement muni d'une structure d'algèbre de Lie. Il s'agit de l'algèbre de Lie de Heisenberg-Weyl h 1 qui est engendrée par trois opérateurs Q, P , I, et dont le crochet de Lie véri…e [P; Q] = I, [ I; ] = 0. Cette algèbre de Lie est l'algèbre de Lie matricielle (on dit aussi linéaire) des matrices triangulaires supérieures pP + qQ zI =

0 @(a 2 +

 02 En posant H(a; b; c) = 1+S(a; b; c) ou simplement lorsqu'il n'y a aucune ambiguité H = 1 + S, ceci introduit la matrice S = b 2 abc) ac 2 bc a ac b

  nul det(T ) = (b ac) 3 c 3 a 3 . Ceci se véri…e bien en comparant les deux matrices

Proposition 3 . 3 .

 33 s) e N + t = Q:Ceci donne une expression beaucoup plus simple pour Q que celle apparaissant dans notre dernière proposition : Avec une matrice N 2 SL(3; Z) telle qu'introduite avant, véri-…ant t N M 2 N = M 1 et dé…nissant de façon unique s N , on a équivalence pour toute matrice Q 2 SL(3; Q) des deux conditions suivantes :1/ On a t QM 2 Q = M 1 : 2/ Il existe un paramètre s uniquement dé…ni tel que l'on puisse écrire :

S 2 N

 2 (s) = rS 2 e N + s(rS 2 2 e N ) = rS 2 e N + s t ;

4. 1 .= a 1 c 1 b 1 = a 2 c 2 b 2 ;

 112 Quelques résultats arithmétiques auxiliaires N. Riedel ([19] p. 9) considère pour sa démonstration de l'impossibilité de la conjecture qu'il existe deux triplets distincts dé…nissant une valeur dominante commune m où a 1 , b 1 , c 1 , et a 2 , b 2 , c 2 , sont les composantes de l'unique triplet voisin de chacun d'eux plus proche de la racine de l'arbre, et dé…nissant chacun une MT-matrice. Il suppose m 6 = 3 et m 6 = 6, les véri…cations à la racine de l'arbre étant faciles. Il établit d'abord quelques lemmes techniques que l'on va examiner maintenant, après avoir rappelé au préalable qu'il est facile de véri…er par récurrence que tout triplet (a; b; c) véri…ant l'équation de Marko¤ 2.1 est telle que le plus grand commun diviseur de a, b, c, vaut 3, tout comme ceux de a et b, respectivement de b et c, ou encore de c et a. Proposition 4.1. (Lemme 3.2 de [19]

  Marko¤ de même terme dominant m = a 1 c 1 b 1 = a 2 c 2 b 2 = 2 f3; 6g. On fait apparaitre ainsi di¤érentes MT-matrices, M (a 1 ; b 1 ; c 1 ) = M 1 et les trois autres MT-matrices de mêmes coe¢ cients dont M (a 1 ; b 1 ; c 1 ) = M (c 1 ; b 1 ; a 1 ) = M 1 ;

peut aussi voir que b 1 6 = b 2 . 2 1 + c 2 1 = a 2 2 + c 2 2

 622222 En e¤et dans le cas contraire où b 1 = b 2 , on aurait a 1 c 1 = a 2 c 2 , et avec l'équation de Marko¤ a , c'est à dire en résolvant une équation du second degré, a 1 = a 2 et c 1 = c 2 , ou a 1 = c 2 et c 1 = a 2 , et donc une contradiction. Par l'égalité 4.1, on a aussi a 1 c 2 6 = c 1 a 2 et a 1 a 2 6 = c 1 c 2 .

Proposition 4 . 7 .

 47 ([19] Remarks 1) p. 16) On a :

1 b 1 Proposition 5 . 1 .

 151 il faut distinguer plusieurs cas. Si a 1 pair, alors b 1 pair et par l'équation de Marko¤ c 1 pair, donc une contradiction avec le fait que le plus grand commun diviseur de a 1 , b 1 , c 1 , ne peut être égal à 2. De même le cas c 1 pair est impossible. De sorte que la seule possibilité est alors a 1 , b 1 et c 1 impairs. Inversement dans ce cas m 1 est pair et donc nécessairement l 1 = 1. Ceci permet d'énoncer de façon générale : Pour tout triplet (a 1 ; b 1 ; c 1 ) de l'arbre de Riedel on a m 1 = a 1 c 1 b 1 = 2 l 1 3m 1 , où m 1 nombre premier à 6, et l 1 2 f0; 1g. De plus on a équivalence de l 1 = 1 et du fait que a 1 , b 1 et c 1 sont impairs. 5.2. Une première extension du lemme 3.10 de Riedel 5.2.1. Autour de la racine de l' arbre

Proposition 5 . 2 .

 52 Toute matrice N (s) 2 SL(3; Z) véri…ant t N (s)M (3; 3; 3)N (s) = M (a 1 ; b 1 ; c 1 )

5. 2 . 2 . 3 ; 3 s 1 = k 2 = 1 ; m 1 = 5 ;

 22331215 Premier exemple P : (3; 3; 3) ! (3; 3; 6) On peut illustrer la proposition précédente sur un exemple. Ceci montrera que le cas k 1 = k 2 = 1 est possible, et qu'améliorer l'expression donnée pour le dénominateur de s dans la dernière proposition est impossible. Avec (a 1 ; b 1 ; c 1 ) = (3; 3; 6) la matrice de passage que l'on considère est calculable grâce à 2.2, et la valeur correspondant à Q = P (3) est en fait s = s N . Pour calculer cette valeur on procéde étape par étape après avoir véri…é que t P (3)M 0 P (3) = M 1 , c'est à dire P (3) = N (1;0) (s), simplement noté ici N (s) : Q = N (s) = P (3Les valeurs de (a 0 ; b 0 ; c 0 ) = (3; 3; 3) et (a 1 ; b 1 ; c 1 ) = (3; 3; 6) permettent de calculer: det(T 1 ) = (270) 3 ; r = On utilise ici S 0 N (s) e N 1 = r(S 0 + sS 2 0 ) pour calculer s en résolvant un système d'équations. On en déduit : En multipliant à droite la système précédent par e N , on se ramène à l'égalité S 0 N (s) = r(S 0 e N + sS 2 0 e N ) qui donne La valeur trouvée pour s permet de calculer de façon directe avec 5

1 A

 1 = P (3):On en déduit également l'expression de la matrice N (0) en extrayant l'exponentielle de ce dernier calcul :N (0) = r e N + t =

5. 3 . 1 : 1 1

 311 Une seconde extension du lemme 3.10 de Riedel 5.3.1. Permutation des valeurs extrêmes des triplets On considère ici une autre situation. On part d'un triplet (a 1 ; b 1 ; c 1 ) correspondant à une valeur m 1 , on en trouve un autre correspondant à m 1 qui est (a 1 ; b 1 ; c 1 ) = (c 1 ; b 1 ; a 1 ). Le cas qui nous intéresse ici concerne le passage entre les deux, avec t N (1; 1) (s)M 1 N (1; 1) (s) = M On doit dans ce cas considérer la matrice e N = T 1 T qui donne r = 1, et con…rme 4.4. Il est de plus évident avec 3.43 que dans ce cas = 0. Avec 3.46 il vient donc N (1; 1)

Proposition 5 . 3 .

 53 Toute matrice N (s) 2 SL(3; Z) véri…ant la condition t N (s)M (c 1 ; b 1 ; a 1 )N (s) = M (a 1 ; b 1 ; c 1 )

5. 3 . 2 . 3 s

 323 Second exemple Q 1 P : (6; 3; 3) ! (3; 3; 6) On s'intéresse ici au triplet (a 1 ; b 1 ; c 1 ) = (3; 3; 6) correspondant à la valeur m 1 = 15, et à l'autre triplet correspondant à m 1 = 15 qui est (a 1 ; b 1 ; c 1 ) = (6; 3; 3). On introduit avec ce qui précède N (1; 1) Par construction on a bien t N (1; 1) (0)M 1 N (1; 1) (0) = M 1 , ici : Les valeurs de (a 1 ; b 1 ; c 1 ) et (a 1 ; b 1 ; c 1 ) permettent de calculer: 1 ) = (270) 3 ; det(T 1 ) = (270) 3 ; r = Dans le présent cas = 0, et il reste seulement N (s) = exp( s R 1

1 A:

 1 Il reste à identi…er les valeurs rationnelles s telles que N (s) soit à coe¢ cients entiers. Trouver un algorithme pour y parvenir est un problème en soi que l'on n'étudie pas ici car on n'en a pas besoin. En e¤et il su¢ t de se souvenir que P (3) envoie (3; 3; 3) sur (3; 3; 6) et que Q(3) envoie (3; 3; 3) sur (6; 3; 3). Une solution à notre problème est donc de considérer la valeur s dé…nie par la matrice Q(3) 1 P (3) qui par construction envoie (a 1 ; b 1 ; c 1 ) = (6; 3; 3) sur (a 1 ; b 1 ; c 1 ) = (3; 3; 6) :

m 1 = 5 ; k 2 = 1 :

 151 et l'on véri…e facilement que l'on a bien exp( s R 12 )N (0) = N (s), ici :

3 )

 3 La valeur (1=3) comme d'autres valeurs de s donnent des matrices du stabilisateur de M (6; 3; 3). C'est en fait la valeur appelée s N dans ce qui précède (voir proposition 8) qui vaut 5.3.3. Troisième exemple Q : (3; 3; 3) ! (6; 3; On a considéré les triplets (a 0 ; b 0 ; c 0 ) = (3; 3; 3), (a 1 ; b 1 ; c 1 ) = (3; 3; 6), et en…n (a 1 ; b 1 ; c 1 ) = (6; 3; 3). On a trouvé les deux décompositions suivantes, où m 0 = 6, m 1 = 15, (1;0) = 143 5400 , (1; 1) = 0 : P

  1;0) (0): D'où naturellement l'expression de la valeur s qui correspond à Q(3) = N ( 1;0) (0) : s ( 1;0) = s (1; 1) + s (1;0)

1 A c 1 m 1 a 1 =

 11 1; 1) + (1;0) = 143 5400 Une véri…cation directe permet alors de s'assurer que l'on a par produit des deux matrices précédentes :

5. 4 .

 4 Calcul des valeurs s = s N pour tout l' arbre de Riedel L'idée se présente naturellement d'étendre les observations que l'on vient de faire à tout l'arbre, en généralisant les calculs précédents. De façon précise, il s'agit de calculer les valeurs s = s N qui correspondent aux matrices N 2 SL(3; Z). C'est l'objectif que l'on se …xe dans le présent paragraphe 5.4.1. Précisions dans les notations

:

  Nos résultats antérieurs montrent alors qu'il est vraisemblable que numérateur et dénominateur de cette dernière expression aient des facteurs commmuns, entrainant une possibilité de simpli…cation.Illustrons sur un exemple, où i = 0. Pour (a 0 ; b 0 ; c 0 ) = (3; 3; 3), on voit apparaitre un premier terme qui s'écrit avec " s (0;1) = 1 pour P (3) et avec " s (0;1) = 1 pour Q(3) :s (0;1) = " s (0;1)1 3 2 (m 1 =3) ; où 0 = 1, m 0 = 6, (a 1 ; b 1 ; c 1 ) = (3; 3; 6), m 1 = 15 et m 1 = 5. Au niveau suivant de l'arbre, on a :

:

  On a donc une simpli…cation par un facteur 5 qui construit bien la cohérence avec nos résultats antérieurs. Dans ce cas m 2 = 87 et m 2 = 29.

  [START_REF] Howe | On the role of the Heisenberg group in harmonic analysis[END_REF]) + (29 ! 1 ); n (0;1) = (2 2) + (5 ! 1 ):

2 N ( 1 ; 1 ) 1 )

 2111 ( 2s (0;1) ) " N (2; 1) (s + ) % " N (2; 2) ( 2s (0;2) )M 1 M 2 N (0; 1) ( s (0;1) ) # N ( 1; 2) ( s ) # N (0; 2) ( s (0;2) ) M 0 M 0 f ig:10On a alors mieux que les conditions de divisibilité utilisées par Riedel dans[START_REF] Riedel | Marko¤ equation and nilpotent matrices[END_REF], car ce que l'on vient de voir permet d'écrire : + s (0;2) = ((n (0;2) n (0;1) )=2) 3 m ; s + = s (0;1) s (0;2) = ((n (0;2) + n (0;1) )=2) 3 m :Par ce qui précède, on peut écrire avec m = 2 l 3 m :

( 1 ; 2 ) 2 N ( 1 ; 2 )

 12212 (s ) 2 SL(3; Z) : m g n 2 ) 2 2 l 3 (n + g n 2 )m ( t ):

2 ((2 l n 2 3 ) 2 + (2 l n 2 3

 2323 9g):En se limitant à raisonner modulo g comme le fait Riedel dans[START_REF] Riedel | Marko¤ equation and nilpotent matrices[END_REF] (bas de la page 19 et haut de la page 20), on a :m 2 N (1;2) (s ) B C 0 (mod g); et comme on vient de voir que m 2 N (1;2) (s ) = A + B + C + D , il vient :A + D 0 (mod g):(5.38) Avec (n 2 =3) 2 Z, la matrice A est aussi dans M 3 (Z). Il su¢ t pour le con…rmer de s'assurer que le terme 1 m)) est un entier. Or c'est évident si l = 1, et de même si l = 0 car on a alors m impair, donc ((n 2 =3)m) de même parité que (n 2 =3) et aussi que (n 2 =3) 2 . L'argument décisif de Riedel à ce niveau est que A 0 modulo g 2 . Il énonce cette propriété en comparant la matrice A à m 2 N (2; 2) (s 2 ). On doit maintenant transposer cet argument avec les dé…nitons adoptées ici. Raisonnant modulo g sur A , et non A, on a d'abord (on garde En remplaçant dans l'expression donnée pour A , et toujours modulo g, on trouve cette fois : l'on compare à 5.38 et à l'expression dé…nissant D , on obtient au …nal : g); c'est à dire aussi, en inversant 2 modulo g : est très précisément celle que l'on a donnée ci-dessus en traitant modulo g la matrice apparaissant dans 5.40, de façon précise c'est une combinaison de 5.40, 5.50 et 5.43. On voit d'ailleurs que l'on a aussi, en combinant 5.39, 5.49 et 5.42, respectivement 5.41, 5.51 et 5.44 :

1 A

 1 Ceci con…rme à nouveau la défaillance de la démonstration de Norbert Riedel. Il reste d'ailleurs, avec l'expression de D : Cette dernière congruence est une égalité directement déductible de 5.52. Si A était congru à 0 modulo g, D le serait aussi. Or l'expression de 0 que l'on a donnée ci-dessus, et le fait que n 2 est premier à g, con…rme que tel n'est pas le cas. Ainsi, l'équivalent recti…é des expressions utilisées dans[START_REF] Riedel | Marko¤ equation and nilpotent matrices[END_REF] estm 2 N (1;2) (s ) = A m 1 + B + C n 2 f g( t ) + D A + B + C + D 0 (mod g);B C 0 (mod g); m 2 N (2; 2) (s 2 ) 0 (mod g 2 ); (mod g):

n 2 = 3 " 2 ( 2 1

 2322 l k m); (5.60) et en remplaçant dans 5.56, il reste seulement : ( 4c 2 ) + " 2 (2k 2 l m)(4a 2 ) + (2k 2 l m) 2 c 2 0 (mod g); et puisque g est un diviseur de m, en simpli…ant par 4 :( c 2 ) + 2" 2 k(a 2 ) + k 2 (c 2 ) 0 (mod g):Dans la théorie de Marko¤ classique on a des relations supplémentaires, comme celle-ci donnée dans[START_REF] Cassels | An introduction to Diophantine Approximation[END_REF] p.30 :k 2 + 1 0 (mod 2 l m):Introduite dans la précedente égalité, elle donne de façon équivalente, en simpli-…ant par 2 et par 3 :" 2 k(a 2 =3) (c 2 =3) (mod g):En fait, une telle congruence se déduit directement de[START_REF] Cassels | An introduction to Diophantine Approximation[END_REF] Lemma 7 p.30, la valeur de " = 1 résultant naturellement du choix fait par rapport aux notations utilisées dans l'ouvrage cité. Son lemme 7 a¢ che en e¤et l'existence d'une égalité plus générale s'écrivant avec les présentes notations :" 2 (a 2 =3)k (c 2 =3) (mod 2 l m):On a donc complètement compris d'où provient la condition 5.48 et pourquoi elle est toujours assurée pour toute diviseur g de m. Mais celle-ci était bien évidente par son équivalence à la condition m 2 N ( 2;2) ( s 2 ) 0 (mod g):Remarquons qu'en notant l'avant dernière congruence sous la forme équivalente " 2 a 2 k c 2 (mod m); les nombres a 2 , c 2 , m, étant connus, la résolution de cette congruence en " 2 k est facile. Elle permet d'identi…er k avec " 2 = 1, donc [S ] = (m=3k), et en…n s 2 avec la condition 5.59, et donc n 2 = 3(m=2 l )s 2 . Si l'on regarde de près les calculs qui ont conduit à la proposition 35, on a s 2 = (n 2 =9m) = 2s (0;2) = (n (0;2) =3m).

1 A

 1 = aP + cQ + (ac b)I = 1 M 1 ;

2 :

 2 La classi…cation des graphes de Dynkin ADE est obtenue (voir[START_REF] Cecotti | On classi…cation of N=2 supersymmetric theories[END_REF] p. 616) par l'identi…cation des matrices (de Coxeter) possibles de déterminant 8 2d :B = A t A =

  1, et il n'existe qu'une T 3 -orbite donnant toutes les solutions strictement positives. Elle a la forme en arbre suivante :

			(39; 15; 3)				(39; 3; 15)	
			" X				X "	
	(6; 15; 87)	Z	(6; 15; 3)	Y -	(6; 3; 3)	% Z	(6; 3; 15)	! (6; 87; 15) Y
					"# X			
					(3; 3; 3)			
	(3; 15; 6)	Y	(3; 3; 6)	Z .		& Y	(3; 6; 3)	Z ! (3; 6; 15)
			# X				X #	
			(15; 3; 6)				(15; 6; 3)	

  b 2 2a bc a 3 ab 2 + a 2 bc 2b + ac b 3 a 2 b bc 2 + ab 2 c 2a bc + ac 2 abc a 2 c 2 + a 2 c 2 2c ab c 3 b 2 c + abc 2

	En considérant dans 2.27 les coe¢ cients de R comme des inconnues on peut facile-
	ment trouver une expression dé…nissant désormais R :		
			0	a 2 + b 2 abc 2a + bc ac 2	2b ac	1
		R =	@	bc 2a	c 2 a 2	2c ab	A ;	(2.28)
				ac 2b	2c ab + a 2 c abc b 2 c 2	
	Avec cette expression, on a bien t RM +M R = 0 comme le montrent e¤ectivement
	les calculs de M R qui est égal à			
	0 @	abc a 2 2b + ac		2c ab + a 2 c	abc b 2 c 2	1 A ;
	et de t RM qui vaut l'opposé de cette dernière matrice. Le polynome caractéris-
	tique de R est facile à calculer :			
				det( 1 R) = 3 + d(d 4) :	
	Mais surtout en étendant l'anneau Z à un corps plus vaste comme R, R permet
	de considérer pour tout x 2 R la matrice exp(xR). Elle véri…e par construction l'équation 2.25 :
	Proposition 2.3. (Proposition 2.2 de [19]) On a :		
				t exp(xR)M exp(xR) = M:			(2.29)
		Avec 2.27, on a en e¤et pour tout k entier		
								);
	où l'on note de façon générale d = a 2 + b 2 + c 2 abc. Riedel constate ensuite
	qu'une autre matrice candidate pour satisfaire l'équation 2.25 peut être obtenue
	à partir d'une matrice R = R(a; b; c) qui véri…e, en notant ici M = M (a; b; c) :
					t RM + M R = 0:			(2.27)

  8)La suite de l'articlede Riedel ( [19] pages 10-12) est un ensemble de calculs destinés à donner des expressions des termes apparaissant dans la décomposition 3.5 de N et dans celle qui s'en déduit pour t N par 3.8. Il s'agit plus spéci…quement de comprendre par quelle relation sont éventuellement liés les deux paramètres s et t.

Remarquons en passant que les calculs du présent paragraphe ne font absolument pas intervenir le fait que les deux triplets (a 1 ; b 1 ; c 1 ) et (a 2 ; b 2 ; c 2 ) dé…nissent une même valeur dominante m. Remarquons aussi, et ceci est très important, que ces deux triplets étant choisis et la matrice N véri…ant 2.10 étant choisie, s et t sont dé…nis de façon unique. Ceci découle de la décomposition de la matrice N ( f N )

1 sur la base des matrices 3 3 formée de l'unité 1, de S 2 et de S 2 2

  Et les expressions des matrices R 2 et S 2 montrent que cette égalité ne peut avoir lieu. Comme r n'est pas non plus nul, ceci donne une contrainte liant t à s qui est la suivante :

	(t	1 2	(s 2 s)) = :	(3.37)

Inversement, lorsque cette contrainte est véri…ée, on voit que le raisonnement précédent marche dans l'autre sens pour donner M 1 = t QM 2 Q. On a donc obtenu une équivalence que l'on peut formuler comme dans

[START_REF] Riedel | Marko¤ equation and nilpotent matrices[END_REF]

, mais qui est beaucoup plus générale que celle donnée par Riedel:

Proposition 3.2. Si M 1 = M (a 1 ; b 1 ; c 1 ) et M 2 = M (

a 2 ; b 2 ; c 2 ) sont deux matrices de l'arbre de Riedel reliées par une matrice N 2 SL(3; Z) véri…ant l'équation 2.10 t N M 2 N = M 1 et dé…nissant comme indiqué ci-dessus le nombre et la matrice t , on a équivalence pour toute matrice Q 2 SL(3; Q) des deux conditions suivantes :

1/ t QM 2 Q = M 1 2/ Il existe un paramètre s tel que l'on puisse écrire

  Les termes de la dernière matrice ne sont pas nuls, ils permettent donc de calculer l'unique valeur s correspondant à Q à partir de son expression et de celle donnée par 3.47. Remarquons que les coe¢ cients de N (0), comme ceux de t et S 2 sont rationnels. Si les coe¢ cients de Q sont entiers ou rationnels, alors le nombre s correspondant est rationnel. Le nombre s N qui correspond à N 2 SL(3; Z) se déduit de même des coe¢ cients de la matrice S 2 (N N (0)) qui est d'ailleurs aussi à coe¢ cients rationnels. Il est évident à partir de là que s N est lui-même un nombre rationnel, et que t N s'en déduit. Observons que rien n'impose que la matrice N (0) ait ses coe¢ cients dans Z, donc a fortiori cette matrice est-elle di¤érente de N 2 SL(3; Z). Il en résulte en particulier que le nombre s N qui correspond à N ne peut pas être nul, et d'ailleurs aussi que N (0) a un déterminant non nul. Remarquons aussi que 3.48 peut être complétée par une autre expression, facile à établir avec la dé…nition de t :

		1
		A :	(3.49)
	1	a 1 a 2

  expression 4.2 n'est d'ailleurs autre que notre équation 3.48. Comme on a déjà établi précédemment, après 2.5, que l'on a

  3, on peut donc énoncer : Proposition 4.13. La condition N (s) 2 M 3 (Z) étant assurée, on peut factoriser m sous la forme m = 2 l 1 3f g, avec l 1 2 f0; 1g, f et g deux entiers impairs premiers entre eux et premiers à 6 tels que f 2 divise a 1 c 2 c 1 a 2 et g 2 divise a 1 a 2 c 1 c 2 . De plus g n'a aucun facteur commun avec (a 1 c 2 c 1 a 2 )(2 l 1 3f )

1 

qui est un entier, et g n'a aucun facteur premier commun avec (a 1 a 2 + c 1 c 2 )(2 l 1 3f ) 1 qui est un autre entier. Et l'on a, avec des entiers 1

  tel était le cas la récurrence envisagée fonctionnerait, et elle permettrait le passage au niveau suivant de l'arbre. Il faut donc, pour s'assurer que ce que l'on vient d'imaginer est valide, comprendre comment se construisent les nombres n (0;1) ,..., n (0;j) par des équations 5.34 se succédant les unes aux autres et s'articulant correctement. Ceci n'est pas tout à fait évident au premier coup d'oeil. Mais la lecture de[START_REF] Cassels | An introduction to Diophantine Approximation[END_REF] (Lemma 7 p. 30) ou[START_REF] Perrine | La théorie de Marko¤ et ses développements[END_REF] (Chapitre 1) permet d'associer à une telle solution de l'équation 1.1 trois nombres entiers k j 1;2 , k j 1;1 , k j 1 , tels que

  Les nombres n 2 et g sont premiers entre eux. De même n 1 et f sont premiers entre eux. Résumons les points essentiels pour la suite que l'on vient de trouver : Proposition 5.11. Les nombres n + , n , n 1 , n 2 sont tous multiples de 3, et on a avec m = 2 l 1 3f g et m = f g :

	s =	(n =3) 3g	2	1 3g	Z; s + =	(n + =3) 3f	2	1 3f	Z; s 1 ; s 2 2	1 3m	Z:

  + B + 2 l n + g 3 ( 0 + m 1 ) 2 1+l n 2 3 ( 0 + m 1 ) (2 2l n + gn 2 La matrice B est dans M 3 (Z) parce que (n + =3) 2 Z de même parité que f n + , elle est nulle modulo g 2 , ce qui veut dire que tous ses coe¢ cients sont congrus à 0 modulo g 2 . Mieux, en remarquant que les termes de t ont un facteur commun égal à 9, la matrice B est nulle modulo 9g 2 . Mieux encore : B 0 (mod 2 2l 9g 2 ):Avec (n + =3) 2 Z et (n 2 =3) 2 Z , la matrice C est aussi dans M 3 (Z), et on voit qu'elle est nulle modulo g. Mieux, en remarquant que les termes de 0 ont un facteur commun égal à 9, qu'il en est de même de ceux de m 1 ou de ceux de 3 1 , ou encore de ceux de t , la matrice C est nulle modulo 9g. Mieux encore :

								9	)( t )
	= A + B + C	2 1+l n 2 3	( 0 )
		C			0 (mod 2 l
	2 ) + 2 l n 2 3	( 0 + m 1 ) +	1 2	((2 l n 2 3	) 2 + (2 l n 2 3	m)) t ;
	B = 2 2l 1 2	((	3 n +	) 2 (n + f ))g 2	t
	=	1 2	((2 l g	n + 3	) 2 (2 l mg	n + 3	))

t ; = A = A + B + C + D :

c

1 = a 1 c 2 c 1 a 2 , car on trouverait sinon un nombre premier facteur de m divisant a 1 et c 1 , et donc une contradiction. Par contre m 2 divise 0 = a 1 a 2 c 1 c 2 : On se ramène à l'énoncé de la proposition précédente pourvu que l'on pose ici f = 1, g = m. Dans l'autre cas où (a 1 ; b 1 ; c 1 ) = (a 2 ; b 2 ; c 2 ), qui ne présente aucun intérêt véritable, on utilise encore la décomposition m = 2 l 1

l 2 m, par contre on pose cette fois f = m et g = 1.On retrouve ainsi une partie de l'énoncé de la dernière proposition, c'est à dire du corollaire 3.5 de[START_REF] Riedel | Marko¤ equation and nilpotent matrices[END_REF]. Il reste à comprendre ce qui peut être dit du facteur 2 l 1 3 l 2 qui apparait dans la factorisation de m. On va voir que ce coe¢ cient ne peut e¤ectivement qu'être égal à 3 ou 6, correspondant aux deux possibilités m = 3m ou m = 6m.Considérons d'abord le facteur 3 l 2 de m. Rappelons que tout triplet (a; b; c) véri…ant l'équation de Marko¤ 2.1 est telle que le plus grand commun diviseur de a, b, c vaut 3. On a donc l 2 1. En fait on ne peut avoir l 2 > 1. Ceci signi…erait en e¤et que m est divisible par 9, et donc m 2 par 81, avec (a 1 ; m; c 1 ) solution de l'équation de Marko¤ 2.1, et donc 3 divisant a 1 , respectivement c 1 . Divisant par 9, on retomberait sur l'équation classique 1.1 écrite avec les entiers (a 1 =3); (m=9); (c 1 =3); sous la forme :(a 1 =3) 2 + 9(m=9) 2 + (c 1 =3) 2 = 9(a 1 =3)(m=9)(c 1 =3):En considérant cette égalité modulo 3, il resterait :(a 1 =3) 2 + (c 1 =3) 2 0 (mod 3):Or une telle congruence n'est possible que si (a 1 =3) 0 (mod 3) et simultanément (c 1 =3) 0 (mod 3). On tombe donc sur une contradiction avec le fait que

3 5 .

est précisément celle qui apparaissait dans 5.42, ## 0 est celle qui apparaissait dans 5.43, et t ## celle qui apparaissait dans 5.44.

Ainsi peut-on calculer toutes les valeurs s qui correspondent aux chemins de l'arbre de Riedel. On donne celles qui sont liées à notre …gure 6 : La véri…cation se fait de façon évidente avec 5.6 à 5.21. Ceci introduit le signe " s de s qui vaut 1 avec P et +1 avec Q. On a aussi : Proposition 5.5. Toute matrice P ou Q correspondant à une arête élémentaire de l'arbre de Riedel, correspond aussi à une in…nité d'autres arêtes de cet arbre, et possède donc une in…nité de décompositions du type exp( sR=2)N (0).

Sur le même exemple le cas

Le triplet (1; 2; 5) est lié à la décomposition matricielle

On a d'ailleurs ! 0 = " s (0;1) et la formule suivante vaut également pour Q(3) qui permet de passer de (3; 3; 3) à (6; 3; 3) :

Pour passer au niveau suivant, la formule d'articulation 5.35 s'écrit :

On remarque sur l'exemple que l'on vient d'évoquer que l'on a ! 1 = " s (1;2) . Une véri…cation sur tous les autres cas de la …gure 6 donne la même observation avec (m 1 =3) = 5 et le tableau suivant : L'idée qui s'impose est de supposer que l'on a, à tous les niveaux de l'arbre de Riedel :

La formule d'articulation s'écrit alors seulement n (0;j) = 2" s (j;j+1) k j;1 " s (j;j+1) (m j =3) = 2" s (j 1;j) k j 1 " s (j 1;j) (m j =3):

(5.36)

On peut maintenant se demander aussi ce qui se passe si au lieu de partir de i = 0 dans la proposition précédente, on part de i quelconque. Une façon de traiter cette question consiste à utiliser notre "relation de Chasles" pour donner avec i < j :

On voit alors que le terme

est toujours un entier, que donc là encore une simplication se produit. On voit aussi que le cas i > j peut être traité avec 4.10, permettant d'anoncer de façon générale : Proposition 5.8. Pour tous indices i et j correspondant à des niveaux di¤érents quelconques de l'arbre de Riedel on a pour le paramètre s (i;j) une expression :

où m i et m j entiers premiers à 6, où n (i;j) 2 Z et l i ; l j 2 f0; 1g:

) considéré précédemment, cette dernière expression montre que le cas k 2 = 2 qui était envisagé ci-dessus dans la proposition 27 ne peut en réalité pas se produire.

On a :

où pour tout j, les paramètres intervenant dans cette expression ont été dé…nis précédemment. On peut aussi écrire à partir de la dernière expression de la proposition précédente

Notons également que l'on a :

Ceci con…rme la faiblesse du lemme 3.10 donné par Riedel dans [START_REF] Riedel | Marko¤ equation and nilpotent matrices[END_REF].

Application à la conjecture

Considérons de nouveau la situation étudiée par Norbert Riedel à la lumière des expressions que l'on vient de donner. On part d'un triplet (a 1 ; b 1 ; c 1 ) correspondant à une valeur m 1 , on en trouve un autre correspondant à m 1 qui est (a 1 ; b 1 ; c 1 ) = (c 1 ; b 1 ; a 1 ). Le cas qui nous intéresse est celui où il existe un troisième triplet (a 2 ; b 2 ; c 2 ) di¤érent de (a 1 ; b 1 ; c 1 ) et de (a 1 ; b 1 ; c 1 ), correspondant à la même valeur m 2 = m 1 notée aussi m. Dans ce cas, il existe un quatrième triplet (a 2 ; b 2 ; c 2 ) correspondant à cette même valeur. On s'intéresse avec ce qui précède aux valeurs s (0;1) correspondant à (a 1 ; b 1 ; c 1 ), s (0; 1) correspondant à (a 1 ; b 1 ; c 1 ), s (0;2) correspondant à (a 2 ; b 2 ; c 2 ), éventuellement s (0; 2) correspondant à (a 2 ; b 2 ; c 2 ). Ces valeurs s sont ici celles qui résultent de l'application des résultats que l'on vient d'obtenir, de sorte que les calculs que l'on va pouvoir faire sont plus précis que ceux de Riedel. D'où la possibilité d'examiner plus en détail les calculs qui concluent l'article [START_REF] Riedel | Marko¤ equation and nilpotent matrices[END_REF].

Des propriétés de divisibilité plus fortes

On note comme avant (a 0 ; b 0 ; c 0 ) = (3; 3; 3). On part donc des quatre relations suivantes, où N (0;1) (s (0;1) ), N (0; 1) (s (0; 1) ), N (0;2) (s (0;2) ), N (0; 2) (s (0; 2) ), sont des matrices de SL(3; Z) :

t N (0;1) (s (0;1) )M 1 N (0;1) (s (0;1) ) = M 0 ;

Si l'on compare au raisonnement de N. Riedel qui a été développé ci-dessus, et dont on adopte les notations, on peut simpli…er les expressions que l'on vient d'utiliser à partir d'une décomposition m = f g et de 4.18 :

Ces deux conditions imposent puisque m entier premier à 6 que l'on a 3 diviseur de n et de n + . Et l'on a alors avec (n =3) 2 Z et (n + =3) 2 Z des conditions meilleures que celles utilisées par Riedel:

En notant encore s 1 = s + + s on constate maintenant que l'on a s 1 = 2s (0;1) . Et en observant que N (1; 1) (s 1 ) est dans SL(3; Z) on a conclu antérieurement que l'on a s 1 = n + g+n f 

Cette expression est parfaitement cohérente avec ce que l'on a vu avant, sachant que s 1 = 2s (0;1) = s (1; 1) intervient dans la matrice N (1; 1) ( 2s (0;1) ). En posant maintenant s 2 = s + s , on constate que l'on a s 2 = 2s (0;2) . Avec N (2; 2) (s 2 ) 2 SL(3; Z) on a également conclu que l'on a s 2 = n + g n f 9 2 1 9 Z. De sorte que si l'on note ce nombre s 2 = (n 2 =9m), avec n 2 entier et premier à m, on a cette fois

Ces expressions se réduisent si l = 0 exactement à celles de [START_REF] Riedel | Marko¤ equation and nilpotent matrices[END_REF] à l'exception de A qui ne comprend plus le terme m 1 , et de C qui est di¤érent au niveau de son dernier terme, c'est à dire sans le facteur n 2 f g( t ) qui …gure dans [START_REF] Riedel | Marko¤ equation and nilpotent matrices[END_REF]. De façon précise, pour l = 0, les expressions de Riedel valent par raaport aux notres :

Avec nos expressions, on a dans le cas le plus général pour l :

intentionnellement ici le terme (2 l m n 2 3 ) qui est en réalité congru à 0 modulo g) :

)

Modulo g s'introduisent les matrices:

(5.39)

(5.40)

(5.41) On peut transformer maintenant 5.39 avec notre proposition 13 (Corollaire 3.5 de Riedel) qui indique que l'on a g diviseur de a 1 a 2 c 1 c 2 . On en déduit facilement modulo g :

(5.47) Modulo g, l'expression de m 2 N (2; 2) (s 2 ) que l'on vient de donner se simpli…e donc pour donner seulement

On ne trouve pas les bonnes matrices, c'est à dire celle qui apparaissent dans A = A m 1 . Cependant on voit que l'on trouve plutôt celles qui correspondent à l'indice 2 plutôt qu'à l'indice 2, car a 2 et c 2 sont permutés par rapport à ce qui serait nécessaire. En d'autres termes il faut plutôt considérer ici avec 3.63, le développement de la matrice N ( 2;2) ( s 2 ) 2 SL(3; Z) :

c'est à dire modulo g :

) 2 )( t ## );

(5.48) où les expressions de notre formulaire du paragraphe 3.5.4 conduisent à introduire ici modulo g :

Cette condition matricielle se réduit à un ensemble de conditions numériques en réalité non indépendantes les unes des autres. On voit facilement que l'on peut en extraire un ensemble équivalent de trois équations qui n'est d'ailleurs pas le meilleur possible :

2 ) x 2 b 2 0: Maintenant si l'on considère le déterminant de la matrice des coe¢ cients de ce système, on trouve :

En fait la troisième équation se déduit modulo g de la première multipliée par a 2 . Egalement en inversant c 2 modulo g en 2 , la première équation se réduit à ( 4) + x(4a 2 2 ) + x 2 0; et elle redonne la seconde en multipliant simplement par a 2 . La relation 5.48 se réduit donc …nalement à une seule condition numérique équivalente qui est :

) 2 (c 2 ) 0 (mod g):

(5.56) Par l'expression de n 2 qui a conduit à la proposition 35, on a de façon équivalente, avec

) 2 0 (mod g):

(5.57)

Cette condition est assez remarquable puisqu'elle fait intervenir le triplet de solution (a 2 ; b 2 ; c 2 ), des facteurs issus de m = a 2 c 2 b 2 = 2 l 3f g, et qu'en résolvant une équation binomiale modulo g elle semble donner le nombre s = (n =9g).

Multipliant par c 2 premier à g, avec ms = 2 l f (n =3) 2 Z, on peut écrire de façon équivalente :

2 ) 4a 2 (c 2 ms ) + (c 2 ms ) 2 0 (mod g):

Mais puisque a 2 2 + c 2 2 = mb 2 0 (mod g) et (2 l f ) inversible modulo g, on a simplement, de façon équivalente :

((n =3) 2a 2 2 (2 l f ) 1 ) 2 0 (mod g):

(5.58)

Cette condition permet d'identi…er très facilement les possibilités pour (n =3) à partir d'un entier tel que 2 0 (mod g), et avec un entier 2 Z :