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Abstract. A new model is developed for (uniform air-gap) induction motor that accounts 
for the saturation feature of the machine magnetic circuit. It is built-up starting from the basic 
electrical/mechanical laws and turns out to be quite different from the standard model that is 
widely used in control oriented literature. Specifically, the new model involves state-dependent 
parameters. An experimental validation using a real 7.5 KW machine proved the good 
accuracy of the proposed model. A simpler control-oriented version of the model is also 
developed and shown to be quite representative of the machine. 

 

 

I.  Introduction 

It is widely recognized that induction motor is going to become the main actuator for 
industrial purposes. Indeed, as compared to the DC machine, it provides a better 
power/mass ratio, allows a simpler maintenance (as it includes no mechanical 
commutators) and costs relatively cheaper. However, the problem of controlling 
induction motor is more complex because of its multivariable and nonlinear nature. 
Besides, some of its state variables are not accessible to measurement. The problem of 
induction motor control and observation has been given a great deal of interest over the 
last decade see e.g. [1]-[2]. However, most of previous works have been based on the 
standard model where the magnetic characteristic is described by a linear relation. As a 
matter of fact, such a characteristic is nonlinear in physical machines: it exhibits 
saturation and hysteresis features. To avoid drastic control performance deterioration, due 
to magnetic circuit saturation, special precautions should be taken when it comes to 
practical implementation of the obtained controllers. Specifically, two implementation 
strategies are generally followed to avoid control performance deterioration due to 
magnetic saturation. The first strategy consists in constraining the rotor flux to take small 
values so that the machine operates in the linear zone of its magnetic characteristic i.e. the 
domain where the standard model is representative of the machine. The drawback of such 
a solution is that the machine does not operate in optimal efficiency conditions especially 
in presence of high loads. Then, the consumed stator current is unnecessary large. The 
second control strategy consists in regulating the rotor flux norm around its nominal 
value which is generally located at the nonlinear part of the magnetic characteristic. To 
meet this objective, the parameters of the standard model (based upon when designing the 
controller) should be tuned so that they correspond to the above nominal operation point. 
Then, the machine efficiency is maximal when the machine load torque is close to its 
nominal value. But, the load is usually subject to large variations in practical applications. 
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If the load torque is small (with respect to the nominal load), there is a useless energy 
stored in stator inductances reducing the machine efficiency. 
 
To achieve high-performance varying-speed operation mode for induction machines, it is 
necessary to use controllers that allow large flux variations. Indeed, allowing large flux 
variations makes possible the achievement of a suitable power factor and a high 
efficiency (by limiting current absorption). But, in order to allow large flux variations the 
controller must be developed by using a model that takes into account the nonlinear 
nature of the machine magnetic characteristic. The question is: how such model can be 
obtained? 
The present work precisely focuses on such a modelling issue. This has been coped with, 
in [3]-[4], [9]-[10] by just letting the mutual inductance coefficient associated with a 
given rotor flux direction (d or q) be a nonlinear function of the stator current along the 
same direction.  This assumption is not realistic because it amounts to neglect the cross-
saturation feature. Furthermore, neither the nonlinear functions approximating the mutual 
inductances nor the resulting (saturated) model are explicitly described in the mentioned 
works. A quite different approach to account for the saturation feature has been proposed 
for synchronous machines using energetic considerations [12]-[13]. The obtained model 
is expressed in the complex notation which makes it only valid in steady-state harmonic 
regimes. 
 
The present paper develops a new approach that appropriately accounts for the magnetic 
saturation phenomenon in induction machine modelling. It thoroughly contrasts with the 
previous approaches which heavily relied upon the standard unsaturated model. 
Presently, the starting point is the machine electric equivalent scheme where the stator 
and the rotor are represented by triphase coils [7]. Additional physical laws will be 
applied to account for the (well known) coupling that exists (even in the case of a 
uniform air-gap machine) between both axes of an AC-machine, [12]. Such a coupling 
(usually called cross-saturation), is due to the nonlinear properties of magnetic materials. 
As suggested in [5], the magnetic characteristic can be approximated by a nonlinear 
function that could be polynomial, exponential, arctangent, etc. Such a function links the 

air-gap flux  to the magnetizing current I  (this includes the contribution of both 

stator and rotor currents). The obtained model is experimentally validated using a 7.5 KW 
AC-machine. The input signals are chosen so that the machine operates both in the linear 
and nonlinear parts of the corresponding magnetic characteristic. The resulting responses 
of the new model turn out to be sufficiently close to those of the true machine. On the 
contrary, the standard model responses are not so close, especially when the machine 
operates in the saturation part. The new model is quite suitable for the machine 
simulation but can hardly be used in control design, because it is highly nonlinear and 
involves many parameters depending on the machine state variables. Therefore, a simpler 
version is developed by gathering all magnetic leakage inductances at the stator side. The 
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simplified model proves to be quite accurate and, due to its simplicity, convenient for 
designing controllers and observers. 
The paper is organized as follows: Section II is devoted to modelling the magnetic 
characteristic of the studied machine; the remaining electromechanical equations are 
established in Section III; in Section IV, the static magnetisation parameter is introduced 
and, in Section V, machine modelling is completed by establishing its state-space 
representation; an experimental validation of the obtained model as well as a comparison 
with the standard model are performed in Section VI. In section VII, a simplified version 
of the above model is derived.  
 
 

Table 1. Notations 

Rs, Rr Stator and rotor resistances 
ls, lr Stator and rotor leakage inductances (constant parameters) 

 Magnetizing flux at a stator phase (flux within the air-gap) 

 Norm of the flux  

s Stator flux (through one phase) 

r Rotor flux (through one phase) 
is, ir Stator and rotor currents (through one phase) 

'
ri  Current in a rotor phase brought back to the stator, j

rr eii '  

i Magnetizing current i is  +
'
ri ; I  is its norm   

ks, kr Coefficients of the stator and rotor coils, respectively 
ns, nr Number of conductors beneath each stator pole (resp. rotor pole) 
ω, ωs Machine angular speed and stator current frequency, respectively 

r Rotor current frequency (r = s  ) 
  Rotation speed of the machine rotor, one has pw . 

θ, θs Angular positions of the rotor and rotating field, respectively 
Te , TL Electric motor torque and load torque, respectively 
J Rotor inertia 
p Number of poles pairs 

 
123sv   

123rv  Triphase stator and triphase rotor voltage, respectively 

 
123s   

123r  Triphase stator and triphase rotor flux, respectively 

 
123si   

123ri  Triphase stator and triphase rotor current, respectively 

][ sqsd v  v  ][ rqrd v  v      (d, q) components of stator and rotor voltages  

][ sqsd i  i  ]  [ rqrd ii      (d, q) components of stator and rotor currents  

][ sqsd     ][ rqrd         (d, q) components of stator and rotor fluxes  

][ qd        (d, q) components of the magnetizing flux 

)(kP         Park transformation (  is its angle) 

ss

rr

nk

nk
k      Transformation report (ratio?) of the AC machine 

 



   

 

   

   

 

   

   

 

   

    F. GIRI, L. DUGARD, H. OUADI 

 
   

 

    

 

 

   

   

 

   

   

 

   

       
 

 
 

II.   Characterisation of magnetic saturation in AC machines  

The nonlinear feature of the magnetic circuit in induction motors has been accounted for 
in many ways. Early solutions suggested capturing this through nonlinear approximations 
of the (B, H) characteristic, where B denotes the magnetic field and H the magnetic 
induction ([7], [11]). In more recent works, the magnetic saturation is accounted for 
through a flux-current relation called magnetic characteristic. This links the magnetizing 
flux norm (i.e. the useful flux at a stator phase) to the magnetizing current ([12]). Several 
laws have been suggested to describe the magnetic characteristic, e.g.: 


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ss
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Other functions such as arctangent or hyperbolic-tangent are also resorted to approximate 
the magnetic characteristic. In the present work, a spline polynomial approximation is 
developed to approach the nonlinearity of the magnetic circuit. This has several 
advantages such as: (i) simplicity of experimental determination, (ii) the larger the 
polynomial degree the better the approximation accuracy, (iii) simplicity of algebraic and 
differential transformations. 
 
Let the (unknown) real magnetic characteristic be denoted )(  I . Our purpose is to 

build up a polynomial approximation for I). The first step consists in obtaining 
experimentally a set of points of the real machine characteristic. A spline interpolation of 
the experimental points is then performed, using suitable tools, to get a polynomial 

approximation, denoted P(.) of the unknown function  .). The larger the degree of  P(.), 
the more smooth and accurate the approximation. Fig. 1 shows the polynomial P(.) 

obtained with 8n  . In the sequel, we will also need an approximation of the inverse 

characteristic )(1
 I . A polynomial approximation Pinv(.) is obtained directly from 

the available experimental set of points, using the same tools as previously (Fig 2). 
 

Remark 1. Fig. 1 shows that the largest linear zone of the magnetic characteristic 

corresponds to small values of the flux ( < 0.7 wb) whereas the machine nominal 

point, presently equal to  = 0.9 Wb, is located at the saturation elbow. 
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Fig 1. Magnetic characteristic  =  I). Crosses: experimental points ),I(    Solid: interpolation 

P(.) . Unities: I (A),  (Wb) 
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Fig 2: Inverse magnetic characteristic )(1
 I . Crosses: experimental points ),(  I . Solid: spline 

interpolation Pinv(.). Unities: I (A),  (Wb) 
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III. Induction machines equations 

III. 1 Park transformation of the stator and rotor voltages 

The proposed modelling approach is based on standard assumptions, namely: the 
machine is symmetrical, the air gap is smooth, the ferromagnetic losses are negligible, the 
induction distribution through the air gap is sinusoidal and all electromagnetic variables 
      ,...,,

3,2,13,2,13,2,1 srs i  define a well balanced triphase system, i.e. 0321  sss  . Applying 

the Park transformation to the triphase equations yields the following electrical equations, 
completed by the mechanical equation (see e.g. [7], [11]):    

 sqssdsdssd
dt

d
iRV   .       (1) 

 sdssqsqssq
dt

d
iRV   .   (2) 

 rqsrdrdr
dt

d
iR  )(.0     (3)    

 rdsrqrqr
dt

d
iR  )(.0    (4) 

 


J

f

J

T

J

T

dt

d Le    (5) 

 

III.2 Saturated flux equations in the (d, q) coordinates system 

.The magnetic fluxes for the stator and rotor phases are given by (see [7], [11]): 

    ssst/leakages il   (6) 

 rrrrrt/leakager il      (7) 

where   and r  respectively denote the magnetizing air-gap fluxes along one phase of 

the stator and rotor; stleakage /  and rtleakage /  respectively denote the stator and rotor leakage 

fluxes. Equalities (6)-(7) mean that stleakage /  and rtleakage /  are respectively proportional to 

the stator and rotor currents. This is valid in real machines because the leakage flux, 
circulating in air, not in iron, is not large. Let k denote the machine transformation ratio. 
The flux equations (6)-(7) become, in the (d,q) coordinates: 

 dsdssd il     (8) 

qsqssq il     (9) 

drdrrd kil     (10) 

qrqrrq kil     (11) 
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The contribution of the stator and rotor in the air-gap flux generation is expressed in term 
of the magnetizing current, denoted iμ ([7], [12]). Therefore, the (d-q) components of the 

123][ i system satisfy:   

 rdsdµd ikii    and  
rqsqµq ikii    (12) 

The nonlinear feature of the machine magnetic characteristic is responsible for the cross-
saturation effect, see ([12]-[13]). Accordingly, the component of a given (stator, rotor or 
magnetizing) flux, along a given axis (d or q), turns out to be dependent on both the d- 
and the q-components of both stator and rotor currents. Inspired from [5], the cross-
saturation effect is accounted for letting the magnetizing flux be expressed as follows: 

 0dqdqddd iMiM      (13) 

 0qddqqqq iMiM      (14) 

where qd  M,M  and dqM  are new inductive parameters and:  

. di , qi  denote the (d,q) components of the magnetizing current 

. dd iM   is the magnetizing flux generated, along the d-axis, by the components (along the 

same axis) of the stator and the rotor currents 

. qqiM   is the magnetizing flux generated, along the q-axis, by the components (along the 

same axis) of the stator and the rotor currents 

. ddqiM   is the coupling magnetizing flux generated, along the q-axis, by the components 

(along the same axis) of the stator and the rotor currents 

. qdqiM   is the coupling magnetizing flux generated, along the d-axis, by the components 

(along the same axis) of the stator and the rotor currents 

. 0d , 0q  are additional terms whose values depend on the way the inductive parameters 

are defined 

It is worth noticing that the coefficients qd  M,M  and dqM  are not uniquely defined. A 

judicious definition, suggested in [5], consists in choosing them so that, when differentiating 

(13) and (14) with respect to di  and qi , one gets: 

 
d

q

q

d
def

dq

q

q
def

q

d

d
def

d
ii

    M     ;
i

    M     ;
i

    M














 



















   (15) 

It follows from (13) and (14) that the functions 0q0d   and  must undergo the following 

differential equations: 

 q

d

dq

d

d

d

d

d i 
i

M
 i 

i

M

i






















 0
;        d

q

dq

q

q

q

d

q
i 

i

M
 i 

i

M

i






















 0
  (16a) 
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q

q

dq

d

q

d

q

d i 
i

M
 i 

i

M

i






















 0       and      
d

d

dq

q

d

q

d

q
i 

i

M
 i 

i

M

i






















 0  (16b) 

On the other hand, substituting (13)-(14) in (8)-(11) leads to the following expressions for 
the (d, q) flux coordinates: 

 
 
 0

0

0

0

qddqqqrqrrq

dqdqddrdrrd

qddqqqsqssq

dqdqddsdssd

iMiMkil

iMiMkil

iMiMil

iMiMil

























  (17) 

 

Remark 2.  
i) As a consequence of the cross-saturation phenomenon, both rotor flux components 

( rqrd , ) depend on all components of both the stator and rotor currents. Contrarily, the 

standard modelling (proposed or used in [3], [4], [9], [10]) leads to the fact that a given 
flux component only depends on the current component along the same direction (e.g. 

rd  only depends on rdi  and sdi ). This is a simplification of a more complex reality. 

ii) It also follows from the cross-saturation that the parameters qd  M,M  and dqM are 

time-varying as they are functions of the machine state variables. Formulas that link 
these parameters to the machine state variables are established in the next subsection. 

iii) In the case of unsaturated machine, one has 0 M dq   and qd  M,M become constant. 

Then, the resulting machine model coincides with the widely used standard model. 
 

IV. Relation between the induction coefficients and the static 
magnetization parameter 

IV.1 Definition of static magnetization parameter 

The nonlinear feature of the machine magnetic circuit is entirely accounted for 

through the magnetic characteristic )I(    (Subsection II.1). As, the instantaneous 

quantities  i  and  are synchronous, one has the relation: 

   








 i

I

I )(
   (18) 

The forthcoming development involves the static magnetizing parameter m, see [5]: 

 )Ih(    
I

I

I
m

def









 


)(
  (19) 
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In view of (18), the (d,q)-components of the magnetizing flux can be expressed as 
follows: 

 
qqdd imim    ,   (20) 

Then, the expressions (8)-(11) of the stator and rotor flux become: 

 
qrqrrqdrdrrd

qsqssqdsdssd

imkilimkil

imilimil













,

,
  (21)  

More generally, it is shown in subsequent sections, that all machine parameters, including 
induction coefficients, can be expressed as a function of m. But first, let us rewrite m as a 
function of the machine state variables. Indeed from (19) and (17), one gets: 

 
))()((

)()(

)( 221

22

221

22

sqssqsdssd

sqssqsdssd

dd

qd

ilil

ilil
m
























  (22) 

IV.2 Analytical expressions of induction coefficients  

The nonlinearity of the magnetic characteristic implies that the induction parameters Md, 
Mq and Mdq are varying with the state variables. As the model one develops involves such 
induction parameters, they need to be computable in real-time. This makes it necessary to 
explicitly express such parameters in terms of the machine state variables. To this end, 
one gets from (15) and (20) : 

 








 I

i

dI

dm
mi

i

m
mM

d

d

d

d

2





   (23) 

          




 I

i

dI

dm
mM

q

q

2

 ,          




 I

ii

dI

dm
M

qd

dq    (24) 

 

using the fact that 222
qd iiI   . Now, let us build up mathematical expressions that 

explicitly link the induction coefficients Md, Mq and Mdq to the state variables. Equations 

(23)-(24) show that this objective can be reached by expressing m and dIdm /  in terms 

of the machine state variables (measured or observed). First, recall that a set of 
experimental points ))(,(),(   III  is available. A set of experimental couples 

))( ,(  IhI  can thus be readily obtained, where (.)h  is as in (19). Using ad-hoc 

interpolation tools, the experimental couples can then be used to get a smooth polynomial 

approximation of the function (.)h . The obtained polynomial approximation for the 

considered machine, denoted Q(.), is represented by Fig 3. Notice also that the function 
Q(.) is time-derivable and bounded away from zero. 

On the other hand, as expressions (23)-(24) involve the derivative dIdm / , it also has to 

be approximated by a polynomial, denoted R(Iμ). To this end, a set of points )/, (  dIdmI  
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are first estimated from the experimental set of couples ),(  I . A smooth interpolation 

)( IR  is built up applying interpolation functions to the estimated points )/,(  dIdm I . 

The obtained function )( IR  is shown in Fig 4. The polynomial approximations, defined 

up to now are summarized in Table 2. These approximations will now be based upon to 
get expressions that explicitly link the induction coefficients to the state variables. To this 
end, it follows from (19) and (22) that: 

 2
sqssq

2
sdssd )il()il(     (25) 

 





  2

sqssq
2

sdssdinv )il()il(PI    (26) 

Therefore, combining equations (23)-(24) with (21) leads to the following expressions: 
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Remark 3. Equations (27)-(29) show that, unlike the standard unsaturated case, all the 
induction coefficients vary (with the state variables). Nevertheless, these coefficients can 

be computed on-line if the state variables ( ss i, ) are available. 

 

Table 2:  Spline approximations 
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V. Induction machine model development accounting for 
magnetic saturation feature 

Using the AC machine equations obtained in the previous section, the global model will now 
be progressively developed. Its final version must be described using only the usual state 

variables T

rqrdsqsd iiX ],,,,[  . 

V.1 Rotor flux equations 

From (3) one readily gets that: 

 rqrrdr
rd iR

dt

d



   (30) 

Since ird is not a state variable, it should be removed from the above equation. To this 
end, one obtains from (21) and (12) that: 

 
mkl

imk
i

r

sdrd
rd 2





  (31) 

which, together with (30), yields: 

 rqrsdrd
rd igg

dt

d



 21   (32) 

with 
mkl

R
g

r

r

21


  and 
mkl

kmR
g

r

r

22


 . This is the first state equation. To obtain the second 

one, let (4) be rewritten as follows: 

 rdrrqr
rq

iR
dt

d



 .   (33) 

Since irq is not a state variable it should be removed from the above equation. To this end, 
one gets from (21) and (12) that: 
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r

sqrq

rq 2


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  (34) 

which, together with (33), yields: 

 rdrsdrq

rq
igg

dt

d



 21   (35) 

This is the second state equation. 

V.2 Stator current equations 

These are derived from equations (1)-(2) which are rewritten here for convenience: 

 sqssdsdssd
dt

d
iRV   .   (36) 
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 sdssqsqssq
dt

d
iRV   .   (37) 

As sd and sq  are not state variables, they should be removed from the above equations. 

To this end, one gets from equations (21) that: 

 )il(il rdrrdk
1

sdssd     (38) 

 )il(il rqrrqk
1

sqssq     (39)  

Substituting (38)-(39) in (36)-(37), and using (31) and (34), one gets: 
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  (41) 

In this expression, dtdird /  and  dtdirq /   must be expressed in terms of the state 

variables. To this end, time-derivation of the rotor flux  equations  (17) gives, using (16): 
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Solving these equations with respect to dtdird /  and  dtdirq /  yields, using (35) and (32): 
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 MkMklkMa

sq

dqr
sd

dqqrd 0

222

0 )(     (43) 

with   12422

0 ))((


 dqqrqr MkMklMkla . Substituting (43) and (32) in (40), the 

expression of stator voltage along the d axis becomes: 

 rqsrrdrsdsd aaaaaaiaav  )()()( 33322211
  

 
dt
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aa

dt
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sqsd
sqs 60544 )(     (44) 

where the meaning of the different parameters is given in Table 3. 
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Table 3. Parameters newly introduced in equations (43)-(44) 
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Operating similar transformations on the stator voltage along the q axis, one gets: 

 rqrsdssqsq aabiaaibav  )()()( 2224411
  
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where the newly introduced coefficients are defined in Table 4. 

Table 4. Parameters newly introduced in equation (45) 
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Now the state equations of the stator currents can readily be obtained by solving 

equations (44) and (45) with respect to  dtdisd /  and dtdisq / . Doing so, one gets: 

         rqsrsdssqs
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dt

di
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 sqsdrdsr vqvqqqq 05444 )(      (46) 
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 sqsdqdsr vdvdddd 65444 )(      (47) 

These equations introduce new coefficients whose meaning is described in Table 5. 
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Table 5. Parameters newly introduced in (46)-(47) 
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V.3 Mechanical equation 

The mechanical power Pm that induces the electromagnetic torque generation is given by 
(see e.g [7]):   

          rrdrqrqrdssdsqsqsdm
dt

d
ii

dt

d
iip  )()(   

Using the rotor currents expressions (31) and (34), in the flux equations (21) yields: 
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which implies that the torque is given by: )ii(
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equation turns out to be: 
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  (48) 

This is the fifth (and last) state equation. The model of a real (saturating) AC machine 
consists of the equations (32), (35), (46), (47) and (48), which are, for convenience, 
rewritten in a more condensed form: 

 u)X(g)X(fX    (49a) 

  Trqrd Xhy 22,)(     (49b) 

with : 
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It is worth noting that, due to flux saturation, the model parameters ),,,,(  q ,q q dd d iiiiii
  

are dependent on the static magnetisation parameter m. If the magnetic saturation is 
ignored, all previous parameters become constant. The proposed model then reduces to 
the standard model which is widely used in the control literature, e.g. [1]-[2]. 
 
 

VI. Experimental validation 

The experimental part of the study was performed in the Automatic Control Dept of 
GIPSA-Lab, using a real induction motor whose features are summarised in Table 5. The 

motor control inputs are the stator voltage amplitude (Vs) and frequency )( s . The values 

of these control signals are imposed through a DC/AC converter. The measured variables 
are the stator currents, electric power and the rotor speed. The whole system is controlled 
by a PC through a DSP Card. The first experimental task consists in obtaining a number 
of experimental points of the motor magnetic characteristic. These are used to construct 

the spline approximation )(  I  (Fig 1). Presently, one proceeds with the second task 

that consists in performing a practical validation of the newly developed model (49a-d) 
using real measurements. 

Table 5 : Induction Motor Characteristics 

Power 
Nominal speed 

Nominal stator voltage 
Nominal stator current 

Nominal flux 
Nominal frequency 
Poles pair number 

PN 
ΩN 
Usn 

Isn 

Φrn 

fs 

p 

7.5 
1450 
380 
16 
1 
50 
2 

KW 
Tr / mn 

V 
A 

Wb 
HZ 
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The experimental validation consists in comparing the responses of the model (49a-d) 
with experimental measures on the real motor excited by typical input voltages Vs for 

different values of s . 

 
 First experiment. The model is compared with the real motor operating in the linear 

part of the magnetic characteristic (i.e. for small values of   and I ). To this end, Vs is 

a square signal that varies between 82 V and 140 V, srds /300  and the load torque 

TL = 0 Nm. It is worth recalling that the inputs Vs and s  of the real machine are 

generated using a converter which, in addition, generates high frequency harmonics that 
are observed on Vs (see Fig 6). To make the model validation more convincing, a 
disturbing high frequency noise is added to the input signal (Fig 6). The resulting flux 

norm ( r ) and current norm (Is) for the true machine and the model are respectively 

compared in Figures 7 and 8. These clearly show that the model behavior is very close to 
that of the real system. Fig 9 shows that the corresponding static induction parameter m is 
almost time-invariant (this shows a relative variation of just 2%). This is a direct 
consequence of the fact that the experimental conditions are such that the machine 
operates in the linear part of the machine magnetic characteristic. Note also that, in these 
conditions, the proposed model reduces to the usual standard one. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig 6. First experiment: the stator voltage amplitude Vs (V). 
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Fig 7: First experiment: flux amplitude Φr (Wb). Real machine (solid); model (49a-d) (dashed). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig 8. First experiment: the stator current amplitude Is (A). Real machine (solid); model (49a-d) (dashed). 
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Fig 9: First experiment: static induction parameter m (Wb/A) 
 
 

Second experiment. The conditions of this experiment are chosen in such a way that the 

machine operates in the nonlinear part of the magnetic characteristic (large values of   

and I ). To this end, the applied input voltage Vs is a square signal switching between 

220 and 265 V (Fig 10). The stator voltage frequency is )/(200 srds   and the load TL 

is large (TL = 30 Nm). The obtained current norm Is, for the real machine and the model, 
is shown in Fig 12. It is clearly seen that, again, the model is sufficiently accurate in 
representing the real machine. The corresponding static induction parameter m is 
represented by Figure 13. Unlike the previous experiment, here the initial and final values 
of m are very different (relative variation 60%). Consequently, the proposed model 
cannot reduce, in these conditions, to the usual standard model. 
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Fig 10. Second experiment: the stator voltage amplitude Vs (V) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig 11. Second experiment: flux amplitude Φr (Wb). Real machine (solid); model (dashed) 
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Fig 12. Second experiment: stator current norm  Is(A). Real machine (solid); model (dashed). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig 13: Second experiment: static induction parameter m (in Wb/A) 
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VII. Simplified version of the saturating model 

The new model (49a-d) was shown to be accurate through experimental validation and so 
it will be referred to experimentally validated model (EVM). Its accuracy makes it 
suitable for simulation purposes. But, it may not be quite convenient for control purpose 
because it involves many state dependent parameters. Therefore, it is of interest to find 
out if there are simplified versions that preserve the model reliability. In this section, one 
develops such a simplified model. 
 

VII. 1. Simplified model development 

A simplified version of the EVM can be obtained by gathering at the same side both 
stator and rotor leakage inductances, i.e. replacing them by a unique equivalent 
inductance that may be placed either at the stator side or at the rotor side, ([7], [11]). To 

fix idea, let seqL  denote the equivalent leakage inductance at the stator. To this end, recall 

that the stator and rotor fluxes are given by equations (21). Letting 0 l r   and 
seqs Ll   in 

(21), one gets: 

 
dsdseqsd imiL     ,     qsqseqsq imiL      (50) 

      drd imk   ,                 qrq imk     (51) 

The simplified model is easily derived from model (49) by letting 0  r l  and seqLls  . 

This gives: 

 rqssd1rdseq
rd )(iakL

dt

d



     (52a) 

 rdssq1rqseq

rq
)(iakL

dt

d



                       (52b) 

 sd

seq

sqssd2rq3rd
sd v

L

1
iiaa

dt

di
          (52c) 
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sq2sdsrqrd3
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dt
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  
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T
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p
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d L
sdrqsqrd  


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mLk

R

seq

r
3

                

  
k

R
a r1

,  
seq

r
s

L

k

R
R

a
2

2



  , 
seq

3
kL

1
a            (53) 



   

 

   

   

 

   

   

 

   

    Accounting for magnetic saturation in modelling induction machines    
 

    

 

 

   

   

 

   

   

 

   

       
 

Remark 4. The model (52a-e) obtained by simplification is still nonlinear but it involves 

only one parameter (namely ) depending on the machine magnetic state through the 
magnetization coefficient. It proved to be quite convenient for designing controllers [8]. 

VII. 2.  Simplified model validation 

The responses of the simplified model defined by (52a-e) are compared with those of 
EVM defined by (49a-d). The applied stator voltage input (Vs) is an amplitude-modulated 
sinusoid with a square modulating signal. The experimental conditions are such that the 
motor operates in the nonlinear part of the machine magnetic characteristic (large values 

of   and I ). To this end, the stator voltage amplitude sV  is a square signal switching 

between 160 and 192.5 V (Fig 17a), the stator current pulsation is set to 300s rd/s. 

Figs 17b-d show that the responses generated by the two models are very close, except at 
the switching instants. That is, the simplified model is actually representative of the AC 
motor. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 
 
 
 

a) Stator voltage norm (in V) 
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b ) Rotor speed (in rd/s): EVM (solid), simplified model (dashed) 

 
 

 
 
 
 
 
 

 

 

 
 
 
 
 
 

c) Rotor flux norm (in Wb): EVM (solid), simplified model (dashed) 
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d) Stator current norm (in A) : EVM (solid), simplified (dashed). 

Fig 14. Responses of the EVM and simplified model (52a-e) 

 

VII.3. Supremacy of the (simplified) new model over existing models 

We have shown that the simplified model (52a-e) is a quite accurate approximation of the 
experimentally validated model (49a-d). It will be referred to „simplified experimentally 
validated model‟ or simply „SEV model‟ to alleviate the text. The question is whether the 
existing simple modelling approaches can yield equally accurate approximations. The 
focus is presently made on two approaches: (i) the standard modelling approach that 
totally ignores the magnetic saturation feature; (ii) the Heinemann-Leonhard modelling 

approach that accounts for such feature but it does it in an ad hoc way. Let us first present 
the models obtained by both approaches. 
 
VII.3.a The standard model 
As mentioned earlier (Remark 3, part iii), the standard model can be derived from the 
general model (49a-b) by simply letting the static induction parameter m be constant. The 

latter is given (the quasi-constant) value obtained in the first experiment, namely 1.0m  
(see Fig 9). The obtained standard model is the following: 

sd

s

rqrd
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sqssd
sd v

l
K

T

K
ii

dt

di



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  (54a) 
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rdsrq

r

sq

r

rq

T
i

T

M

dt

d



)(

1
  (54d) 

 
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J
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T
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pM

dt

d L
sdrqsqrd
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)(    (54e) 

The involved parameters are defined in Table 7. 

Table 7. Parameters of the standard model  
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VII.3.b Heinemann-Leonhard saturated model 

Instead of going back to first-principles derivation (modifying it to include a saturation 
model of the iron) as we did in this paper, former authors chose to just add on, in a 
somewhat ad hoc manner, a model of magnetic saturation to standard models like (54). 
Following Heinemann and Leonhard [14] (see also [4]), the model (54a-e) is first subject 
to flux-orientation along d-axis. Accordingly, the q-axis flux equation (54d) is cancelled 
and the d-axis equation (54c) becomes: 

 ))(( 1

sdrd

r

rd iP
T

M

dt

d
  


 (55) 

where  M   is set to its nominal value that presently corresponds to the linearity region on 

the magnetic characteristic (.)P  (Fig 1). Equation (55) is completed by equations (54a), 

(54b) and (54e) which remain unchanged. The resulting model is rewritten for 
convenience: 
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M
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
   (56e) 

VII.3.c. Limitations of the standard and Heinemann-Leonhard models  

The standard model (described by (54a-e)) and Heinemann-Leonhard (HL) model 
(described by (56a-e)) will now be compared using numerical simulations with the 
proposed SEV model (52a-e). To be meaningful, the comparison is performed in different 
operational conditions. Accordingly, the machine operates in both linear and nonlinear 
zones of its magnetic characteristic. This is achieved by modulating the stator voltage 
amplitude with a square signal switching between 80 and 200V (Fig 15). The stator 

voltage frequency is set to srds /100 . The load couple TL switches between 0 Nm and 

15Nm (Fig 16). 

Figs 17-19 show that, as long as Vs = 80V (time-interval [0 s, 6s]), the responses (flux and 
stator current norms) of the standard and HL models are very close to those of the SEV 
model. This is normal because the machine operates in the linearity region of its magnetic 

characteristic. In fact, the rotor flux level is relatively low )6.0( Wbr   and the static 

magnetization parameter m (for the SEV model (52a-e) or the original model (49a-d)) is 
very close to the value used to obtain the standard model (i.e. m = 0.09). In these 
conditions, the standard and HL models are equally representative of the real machine. 

The situation is quite different when the machine operates in the nonlinear region of its 
magnetic characteristic. This is illustrated in the time interval [6 s, 15s] by setting the  

stator voltage to the high value Vs = 200V and the rotor flux to Wbr 1.1  a value 

located at the elbow region in the magnetic characteristic. The parameter m turns out to be 

varying, deviating far from the value 09.0  (that characterizes the standard model). Then, it 
is not surprising that the standard model responses deviate significantly from those of the 
SEV model (Figs. 17-18). The responses show that the standard model underestimates the 
absorbed stator current but overestimates the rotor flux. The deviation of the standard 
model responses (with respect to those of the SEV model) is almost 65% for the current 
and nearly 25% for the rotor flux. Figs 17-18 also show that the responses of the HL 
model (56a-e) are not so different from those of the SEV model (52a-e). This is normal 
since the magnetic saturation is not entirely ignored in the model (as this is the case in the 
standard model (54a-e)). Nevertheless, the HL model is itself unable to perfectly imitate 
the SEV model as the difference between both models is nearly 7% for the stator currents 
and 5% for the rotor flux (Figs. 17-18). Such a deviation is simply explained by the fact 
that the magnetic saturation is accounted for in an ad-hoc way in the HL model. 
Obviously, such a deviation can even be made larger by enforcing the machine to operate 
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in a more saturating regime. The larger the stator voltage and rotor flux are the larger the 
more important the deviation of the HL model from the SEV model. 

Finally, it is observed in Fig. 19 that the differences between the three models are minor as 
long as the speed response is concerned. Therefore, any of these three models can be 
based upon, to achieve a good speed regulation. However, the energetic cost will not be 
the same especially in presence of high load torque. As a matter of fact, the regulators 
obtained from the standard and HL models will absorb higher stator currents (than the new 
model) because they both underestimate the current responses. Obviously, the energetic 
cost will be higher using the standard model than with the HL model. It is worth pointing 
out that the energetic issue was never raised in the previous works where speed regulation 
was dealt with based on the standard model. 

 

VIII. Conclusion 

In this paper, a new model that accounts for magnetic saturation has been developed for 
(uniform air-gap) induction motors. As a consequence of the nonlinear feature of the 
magnetic characteristic, a coupling arises between the motor (d,q)-axes. The new model 
(49a-d) turns out to be nonlinear and involves state-dependent parameters. Its practical 
validation has been performed on a 7.5 KW induction motor. Different experiments have 
proved that the new model is well representative of the true machine. The supremacy of 
the new model over the standard (54a-e) and the Heinemann-Leonhard model (56a-e) is 
illustrated through simulations. On the other hand, the simplified version (52a-e) proved 
to be quite accurate and, consequently, can be based upon in control design. 
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Fig. 15.   Stator voltage amplitude Vs (V) 
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Fig. 16.   Load Torque (Nm) 
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Fig 17.   Rotor flux amplitude (Wb): SEV model (dotted ); Standard model (solid) and Heinemann-

Leonhard model (dashed) 
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Fig 18. Stator courant amplitude (A): SEV model (dotted); Standard model (solid) and Heinemann-

Leonhard model (dashed) 
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Fig 19. Rotor Speed (rd/s): SEV model (dotted); Standard model (solid) and Heinemann-Leonhard model 
(dashed) 
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