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Introduction

The family of quasi-two-dimensional (q-2D) charge transfer salts β"-(ET) 4 (A)[M(C 2 O 4 ) 3 ]•Solv (where ET stands for bis-ethylenedithio-tetrathiafulvalene, A is a monovalent cation, M is a a trivalent cation and Solv is a solvent) have raised great interest for many years [1]. Indeed, even though all the members of this family, denoted as (A, M, Solv) hereafter, are isostructural, it is now established that many different ground-states, including normal metal, charge density wave, superconductivity, and temperature-dependent behaviours can be observed [1].

According to band structure calculations [2], the Fermi surface (FS) of these compounds originates from a hole orbit (labelled in the following) with an area equal to that of the first Brillouin zone (FBZ). Due to small gap opening, compensated orbits with much smaller area (8.8 % of the FBZ, according to [2]) are formed, as displayed in Fig. 1a. Insofar as the Fermi level is very close to the band extrema at Y [2,3], the actual FS topology can be very sensitive to subtle structural details. Namely, in the case where the orbits intersect along the b * direction, an additional orbit is observed and the FS topology is similar to that of Fig. 1b [4]. Oppositely, if the gap is larger than in the case of Fig. 1a, the electron-type orbits transform into quasi-one dimensional sheets as displayed in Fig. 1c [4]. In addition, FS reconstruction due to phase transition such as density wave condensation can further modify the FS at low temperature. As a matter of fact, depending on the studied compound, Shubnikov-de Haas

Correspondence to: audouard@lncmp.org (SdH) oscillations spectra have revealed from one to six Fourier components in this family [5,6,7,8,9]. Their frequency are in the range 40 T to 350 T that corresponds to orbits with area ranging from 2 to 18 % of the FBZ area.

In most cases, these orbits are compensated, in agreement with band structure calculations. For example, SdH data of (NH 4 , Fe, C 3 H 7 NO) can be interpreted on the basis of three compensated orbits [5], corresponding to the textbook case [10] reported in Fig. 1b where a and ba are hole orbits while b is an electron orbit. However, more complex SdH spectra, that are strongly dependent on external parameters such as a moderate applied pressure, can also be observed. In addition, significant structural disorder, linked to the size of the solvent molecule, has been reported for many members of this family [11,12,13,14]. Influence of the nature of the solvent molecule on the physical properties, such as the behaviour of the temperature dependence of the resistivity and the occurrence or not of a superconducting ground state, has been considered. In that respect, the temperature-dependent resistivity of (H 3 O, Fe, C 6 H 4 Cl 2 ) exhibits a metallic behaviour down to few K, followed by a slight upturn. A magnetoresistance experiment performed on this compound up to 17 T yielded a SdH spectrum involving only two Fourier components [14]. The present paper reports on both magnetoresistance and torque experiments performed up to 54 T on this compound. A third Fourier component is observed. Nevertheless, the main result is the persistence of magnetoresistance oscillations at temperatures above Alphen (dHvA) spectra is discussed on the basis of the presence of both a quantum interferometer and a closed orbit with the same area. It points to a FS reconstruction at low temperature.

Experimental

Magnetoresistance and magnetic torque were measured in pulsed magnetic field up to 54 T with a pulse decay duration of 0.32 s. A one-axis rotating sample holder allowed to change the angle (θ) between the direction of the magnetic field and the c * crystal axis. For magnetoresistance measurements, the studied crystal was an elongated hexagonal platelet with approximate dimensions (0.4 × 0.2 × 0.1) mm 3 , the largest faces being parallel to the conducting ab-plane. Electrical contacts were made using annealed platinum wires of 20 µm in diameter glued with graphite paste. Alternating current (10 µA, 77 Hz and 100 µA, 50 kHz for zero-field and magnetoresistance measurements, respectively) was injected parallel to the c * direction (interlayer configuration). The explored temperature range was from 1.4 K to 32 K. Magnetic torque measurements were performed with a commercial piezoresistive microcantilever [15] in the temperature range from 1.9 K to 15 K. The crystal size was approximately (0.3 × 0.1 × 0.07) mm 3 . Variations of the cantilever piezoresistance was measured with a Wheatstone bridge with an ac excitation at a frequency of 63 kHz [16]. A lock-in amplifier with a time constant in the range 30 -100 µs was used to detect the measured signal for magnetoresistance and torque measurements. Discrete Fourier analysis of oscillatory magnetoresistance and torque were performed using Blackman-type window, which is known to avoid secondary lobes.

Results and discussion

Fourier analysis of the oscillatory part of the magnetoresistance data, obtained with magnetic field normal to the conducting plane (θ = 0 • ), is displayed in Fig. = 376 T, respectively, reported in [14]. Oscillatory spectra including frequencies F a , F b and their combinations have already been observed in few other compounds of the considered family [5,9,17] and interpreted on the basis of a FS similar to that displayed in Fig. 1b [4], taking into account that the respective location of the hole orbits a and ba can be exchanged. It is well known that linear relationship between frequencies can also be observed for FS topology analogous to Fig. 1c, namely F α + F β-α = F β , where β -α is a QI path. However, the area of the MB-induced β orbit is equal to that of the FBZ. In the case of the compound of Fig. 1c, F β = 3837 T [18]. Such a frequency value would be close to that expected for the orbit (F = 3975 T) which is an order of magnitude larger than F b .
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In the framework of the Lifshits-Kosevich (LK) formula, and assuming that the amplitude of the oscillations is small compared to the background non-oscillating part of the resistance (R bg ), the oscillatory magnetoresistance (R(B)/R bg ) can be accounted for by:

R(B) R bg = 1 + j A j cos[2π( F j B -γ j )] (1) 
where F j and γ j are the frequency and the phase factor, respectively, of the Fourier component linked to the orbit j. The Fourier amplitude is given by A

j ∝ R T j R Dj R MBj R Sj .
The thermal (for a 2D FS), Dingle, magnetic breakdown (MB) and spin damping factors are respectively given by [START_REF] Shoenberg | Magnetic Oscillations in Metals[END_REF]:

R T j = αT m * j Bsinh[αT m * j /B] (2) 
R Dj = exp[-αT D m * j /B] (3) 
R MBj = exp(- t j B MB 2B )[1 -exp(- B MB B )] bj /2 (4) R Sj = cos(πµ j /cosθ) (5) 
where m * j is the effective mass normalized to the free electron mass m e , T D = hτ -1 /2πk B is the Dingle temperature, τ -1 is the scattering rate, µ j = g * m * j (θ = 0)/2, g * is the effective Landé factor and B MB is the MB field.

Integers t j and b j are respectively the number of tunnelling and Bragg reflections that the quasiparticles come up against along their path.

In addition to Fourier analysis, information regarding the oscillatory spectra can also be derived by direct fitting of the LK formula to the field-dependent magnetoresistance. Indeed, direct fitting is useful in order to discern eventual Fourier components with close frequencies and allow for a reliable determination of γ j . In the high T/B range, and assuming t j = 0 (see Eq. 4), Eq. 1 can be approximated to:

R(B) R bg = 1 + j a j B exp(- B j B )cos[2π( F j B -γ j )] (6) 
where a j is a prefactor. Eq. 6 involves a reduced number of free parameters compared to Eq. 1 since B j ≃ α(T + T Dj )m * i . Its drawback is that, strictly speaking, it is only valid at high temperature, high T D and (or) low field. Nevertheless, it is only intended to identify the various Fourier components entering the data and to derive the parameters F j and γ j . In that respect, Eq. 6 has been successfully used at low temperature and high field for SdH oscillations of (NH 4 , Cr, DMF) under pressure [9] and dHvA oscillations of high-T c superconductors [16]. In the present case, a very good agreement between frequencies deduced from direct fittings and Fourier analysis is obtained.

Turn on now to the most striking result evidenced in 

R D = exp[- αm ′ B (T D0 + βT 2 )] (7) 
where m' is the sum of the effective masses linked to each arms of the interferometer [START_REF] Stark | [END_REF]21,22] and β is a prefactor. In this case, still assuming a quantum interferometer with a zero effective mass and neglecting MB, reduces the contribution to the b oscillations amplitude (A b ) in the high temperature range to the temperature-dependent R D given by Eq. 7. This leads to A b = exp(p 1 + p 2 T 2 ) where p 1 = a 0 -αm'T D0 /B (a 0 is a constant). Dash-dotted lines in Fig. 4 are best fits to the data in which the product αm'β has been fixed to 0.085 TK -2 . In agreement with Eq. 7 which assumes a zero-effective mass, p 1 decreases linearly with 1/B (see Fig. 5), even though a zero-effective mass must be regarded as the lowest limit. The value of q = 0°q = 27°F In the framework of the LK theory, the oscillatory part of the magnetic torque τ osc can be expressed as [START_REF] Shoenberg | Magnetic Oscillations in Metals[END_REF][START_REF] Wosnitza | Fermi Surfaces of Low-dimensional Organic Metals and Superconductors[END_REF]:

τ osc = Btanθ j T j sin[2π( F j B -γ j )], (8) 
where 

T j ∝ R T j R Dj R MBj R Sj .

  Fig. 1. (color on line) Fermi surface of (a) β"-(ET)4(NH4)[Fe(C2O4)3]•C3H7NO [2], (b) (BEDO)4Ni(CN)4•4CH3CN [4] and (c) (BEDO)5Ni(CN)4•3C2H4(OH)2 [4]. Ellipses in dashed lines stand for intersecting hole orbits with area equal to that of the First Brillouin zone ( orbits). They lead to three compensated electron (b) and hole (a and ba) orbits in Fig. 1b. orbits correspond to β orbits of Fig. 1c. The arrows indicate the quasiparticles direction (see text).
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 12 Fig. 2. (color on line) (a) Field-dependent interlayer resistance of β"-(ET)4(H3O)[Fe(C2O4)3]•C6H4Cl2 for θ = 0 • . (b) Fourier analyses deduced from the oscillatory part of the magnetoresistance displayed in the inset. The field range is 18-54 T. Marks are calculated with Fa = 74 T and F b = 348 T.

Fig. 3 .

 3 Fig. 3. (color on line) Field-dependent interlayer resistance for θ = 27 • . The upper inset displays corresponding Fourier analyses. Oscillatory part of the magnetoresistance data for temperatures above 4 K are displayed in the lower inset to evidence the change of the Onsager phase factor (γ b ) discussed in the text. Vertical lines are marks calculated with F b = 390 T and γ = 0.1.
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 4 Fig. 4. (color on line) Temperature dependence of the amplitude of the b oscillations for dHvA and SdH data. Empty and solid symbols correspond to a mean field value of 44.6 T and 30 T / cos(θ). SdH data for θ = 27 • are shifted down for clarity.Solid and dash-dotted lines are best fits of Eq. 1, assuming the Dingle damping factor is given by Eq. 3 and 7, respectively. In addition, a zero-effective mass is considered for the SdH data in the high temperature range. Dashed line is a best fit to the SdH data for θ = 0 • , assuming the contributions of closed orbit and quantum interference coexists in all the temperature range covered by the experiments (see text).
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 21112 Figs.2 and 3, namely the persistence of quantum oscillations at temperatures higher than 30 K (up to 22 K at θ = 27 • ). More insight on this feature can be derived from the field and temperature dependence of the Fourier components observed in the oscillatory part of the magnetoresistance.
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 5 (color on line) Field dependence of the parameter p1 = a0αm'TD0/B, deduced from the temperature dependence of the b oscillations amplitude in the high temperature range for θ = 0 • and 27 • . Solid straight lines are best fits to the data (see text). the slope, which is negligibly dependent on the value of assumed for αm'β 1 , yields m'T D0 = 4.3 ± 0.2 K. In the above discussion, it is implicitly assumed that each of the two phenomena (either closed orbit or quantum interference) involved in the b Fourier component occurs in a separate temperature range or, at the very least, is strongly dominant in the considered temperature range.Oppositely, coexistence of the two phenomena can be directly observed in the temperature range ∼ 6 -9 K for θ = 27 • . Indeed, in this range, two out of phase oscilla-1 A change of the αm'β value, i.e. of p2, produces a fieldindependent shift of the deduced p1 value. In addition, since a T 2 behaviour of the interlayer resistance is only observed in the range 10-20K, we have checked that assuming τi ∝ T in Eq. 7 still satisfactorily accounts for the data.
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 722 Fig.3). More insight on this behaviour can be obtained thanks to direct fittings of Eq. 6 that reveal the two b

  Examples of temperature dependence of the b oscillations amplitude are reported in Fig.4. As displayed in Fig.7(b), oscillations are detectable up to 15 K, i. e. at temperatures much higher than 6 K, at which QI oscillations start to mostly contribute to the magnetoresistance oscillations amplitude.In contrast to SdH data, no kink is observed for dHvA oscillations. This behaviour corroborates the assumption that QI is responsible for the persistence of magnetoresistance oscillations at high temperature. The effective mass deduced from dHvA data in Fig.4corresponds to m * b (θ = 0 • ) = 1.5 ± 0.1 which is in good agreement with SdH data at low temperature. The question remaining to solve deals with the actual FS topology allowing both closed orbit and QI with the same frequency. In that respect, no decisive clue is observed since the main feature that could eventually account for FS reconstruction is a slight upturn of the zero-field resistance at low temperature[14].The Dingle temperature deduced from dHvA data, T D = 3.3 ± 0.5 K, is roughly a factor of two lower than for (NH 4 , Fe, C 3 H 7 NO) and (NH 4 , Cr, C 3 H 7 NO)[5,9]. Even though T D can be significantly crystal dependent, it can be remarked that this value is in the same range as for(H 3 O, M, C 5 H 5 N), where M = Ga, Cr, Fe[7]. These rather high values are in line with the significant structural disorder observed in most of these compounds[11,12,13]. According to Ref.[11] the disorder level is related to the ability of the solvent molecule to fill the cavities of the anion layer and is therefore linked to the solvent molecule size. More precisely, it has been inferred that the length of the solvent molecule along the b crystallographic axis is the pertinent parameter for the reduction of both the disorder level and the increase of the superconducting transition temperature[14]. However, owing to the rather poor correlation between the reported T D values and the solvent molecule size (either volume or length), it can be inferred that this latter parameter cannot alone account for the scattering rate deduced from quantum oscillations.4 Summary and conclusionSdH and dHvA oscillations spectra of the q-2D chargetransfer salt β"-(ET) 4 (H 3 O)[Fe(C 2 O 4 ) 3 ]•C 6 H 4Cl 2 reveal three main frequencies F a = 74 ± 5 T, F b-a = 272 ± 5 T and F b = 348 ± 3 T. These frequencies are linked through the linear combination F a + F b-a = F b that is consistent with a FS composed of three compensated closed orbits, as already reported for few other members of this family [5,9,17]. Effective masses, m * a = 0.85 ± 0.10, m * b-a = 1.0 ± 0.1 and m * b = 1.5 ± 0.1, are in the same range as for the other salts of the family [5,6,7,8,9,17]. However, as for SdH spectra, the temperature dependence of the b component amplitude exhibits a kink at about 6 K, followed by a very weak variation. As a result, oscillations can be observed up to 32 K. This feature is not observed for dHvA oscillations (up to 15 K) which is consistent with a QI phenomenon arising from a quantum interferometer with a zero effective mass, having the same cross section as the closed orbit responsible for the b oscillations in the low temperature range. Both of them coexist, at least in the range 6 -9 K for which two Fourier components with the frequency F b , roughly in phase opposition, can be observed for θ = 27 • , likely due to a different spin-dependent behaviour of the two contributions. In fact, coexistence of these two phenomena in all the temperature range studied can be considered. This result would be in line with the hypothesis of a quantum interferometer built on the b closed orbit thanks to FS reconstruction at low temperature. Unfortunately, in the absence of a reliable knowledge of the FS topology at low temperature, this conclusion must be taken with caution. Finally, the deduced Dingle temperature lies within the range of the values reported so far in the literature for the compounds of this family. No clear dependence of the scattering rate on the solvent molecule size can be inferred from the available data. This work has been supported by FP7 I3 EuroMagNET II and by the French-Spanish exchange programm between CNRS and CSIC (number 18858).