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Abstract: The paper describes a simple, two-stage instrumental variable method of closed loop
identification and estimation. This can be used with both continuous and discrete-time transfer
function models and the enclosed system can be unstable. The paper also shows briefly how
a third stage of estimation can be added that induces statistical efficiency when the enclosed
system is stable.
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1. INTRODUCTION

Provided there is a sufficiently exciting, external com-
mand input signal, the identification and estimation of
a continuous-time transfer function model for a system
enclosed within a closed automatic control loop has always
been relatively straightforward when using Instrumental
Variable (IV) estimation methodology. Over the past 40
years, examples range from early contributions, such as
[Young, 1970], to very recent publications (e.g. Ahmed
et al. [2008], Gilson et al. [2008]), although the number of
published papers dealing with continuous-time systems is
far less than those that consider discrete-time closed loop
systems (see e.g. Van den Hof [1998] and the references
therein). Also, most of the algorithms that have been
suggested are sub-optimal in statistical terms: while the
IV implementation ensures that the parameter estimates
are consistent and asymptotically unbiased, they are not
normally statistically efficient (minimum variance).

Some recent papers have considered optimal IV solutions
to the problem. For instance, Gilson et al. [2008] utilize
the Refined Instrumental Variable (RIV) algorithm for
Continuous-time models of the ‘hybrid’ Box-Jenkins type
(RIVCBJ), where the system is modeled in continuous-
time and the additive noise process is a standard, discrete-
time AutoRegressive, Moving Average (ARMA) process.
This is a recent modification of the original Simplified
Refined Instrumental Variable (SRIVC) algorithm [Young
and Jakeman, 1980] that was only optimal in the case of
additive white noise. Although appealing, the Gilson et
al. approach is quite complex. In this paper, therefore, we
consider a rather simpler approach and show how it can
be extended to provide an optimal solution.

First, two rather obvious and very simple two-stage
RIVCBJ-type approaches are investigated, both of which

are sub-optimal. These are in the same spirit as the two-
stage algorithm suggested by Van den Hof and Schrama
[1993] for discrete-time systems and they have the same
advantage of not requiring prior knowledge of the control
system. However, the new two-stage algorithms are more
sophisticated than the Van den Hof and Schrama approach
because each stage exploits the appropriate open loop
SRIVC/RIVCBJ algorithms: namely, the SRIVC algo-
rithm (rather than the FIR model estimation used by Van
den Hof) for estimating the control input signal, followed
by the estimation of the enclosed, controlled system, based
on this estimated control input, using either the SRIVC or
the full RIVCBJ algorithm. Moreover, the unified nature of
refined IV estimation [Young, 2008a] means that this same
approach can also be applied in the discrete-time system
case using the SRIV and RIVBJ algorithms for discrete-
time transfer function model estimation. Conveniently, all
of these algorithms are already available as computational
routines the CAPTAIN Toolbox for Matlab, a fully func-
tional demonstration version of which can be downloaded
from http://www.es.lancs.ac.uk/cres/captain/.

Although the two-stage algorithms perform well and can
even work well if the enclosed system is unstable, they
are not statistically efficient. Conveniently, however, they
point the way to the addition of a third stage that can
induce optimality and so provide parameter estimates
that have similar properties to those obtained from the
RIVCBJ algorithm applied in the equivalent open loop
situation. section 5 of the paper outlines this three-stage
algorithm, which is very simple but restricted to situations
where the enclosed system is stable.

2. THE GENERALIZED BOX-JENKINS MODEL

The two-stage algorithms are applied to either the hybrid
continuous-time, stochastic transfer function model or



the equivalent discrete-time model. Both of these models
can be considered as special examples of the following
Generalized Box-Jenkins (GBJ) model, which is a hybrid
modification of the original Box-Jenkins model [Box and
Jenkins, 1970]:

x(tk) =
B(ρ)
A(ρ)

u(tk)

y(tk) = x(tk) + ξ(tk)

ξ(tk) =
D(z−1)
C(z−1)

e(tk) e(tk) = N (0, σ2)

(1)

Here u(tk), x(tk), y(tk), ξ(tk) and e(tk) are, respectively:
the control input; the noise-free output; the noisy, mea-
sured output; the additive ARMA noise at the output; and
the zero mean, normally distributed white noise source
to the ARMA noise model, all sampled uniformly at a
sampling interval ∆t. The generalized operator ρ is the
backward shift operator z−1 in the discrete-time case and
the inverse of the derivative operator s−1, where s = d/dt,
in the hybrid continuous-time case.

This model is assumed to be contained within a feedback
system, such as that shown in Figure 1, which represents
the specific case of a unity feedback controller with the
forward path control element represented as a ratio of
polynomials P (ρ) and Q(ρ). However, the estimation pro-
cedures described in this paper will work with any linear
control system structure or design. The command input to
the control system is denoted by r(tk) and this is assumed
to be statistically independent of the additive noise to
the system ξ(tk). The control system used in the illus-
trative example considered later in section 4 is based on
the discrete-time Proportional-Integral-Plus (PIP) control
system design methodology (see e.g. Young et al. [1987],
Taylor et al. [2000] and the prior references therein).
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Fig. 1. Closed-loop configuration

3. TWO-STAGE CLOSED LOOP ESTIMATION

Provided measurements of r(tk), u(tk) and y(tk) are avail-
able, then two rather obvious approaches to closed loop
estimation are as follows:

(1) Estimate the parameters of the TF model between
r(tk) and the measured, noisy control input u(tk)
using the appropriate simplified refined IV algorithm.
The deterministic output of this model then provides
a good estimate ûk of the ‘noise-free’ input to the
enclosed system and so, at the second stage, the
appropriate refined IV algorithms can be used again
to estimate the required transfer function between
û(tk) and the noisy y(tk). This is the Two-Stage
approach suggested by Young [2008a].

(2) Use the appropriate refined IV algorithm to estimate
the parameters of the TF model for the whole closed
loop system between r(tk) and the measured, noisy
output y(tk). The deterministic output of this model
then provides a good estimate x̂k of the noise-free
output from the system and the appropriate Refined
IV algorithm can be used again, this time to estimate
the transfer function between the two estimated vari-
ables û(tk) and x̂(tk). This approach is less satisfying
in statistical terms than the first method because
the final estimation involves two estimated noise-free
variables, without direct reference to the measured
output y(tk).

As pointed out previously and confirmed in the simulation
examples of the next section 4, these algorithms can be
used even if the enclosed system is unstable. However, it
is necessary to use algorithms at the second stage of the
estimation that are modified to allow for the estimation
of an unstable system (the standard implementations in
CAPTAIN are automatically restricted to stable systems).

4. ILLUSTRATIVE EXAMPLES: ESTIMATION
WITHIN A PIP-LQ CLOSED LOOP

In this section, we consider a number of simulation exam-
ples, all of which concern the estimation of a TF model
for a system contained within a digital PIP closed loop
control system. The two-stage algorithms are implemented
using existing routines available in the CAPTAIN Toolbox,
where the the SRIVC and SRIV algorithms are options in
the CAPTAIN rivcbj and rivbj routines, respectively.

In all of the examples, the TF system is based on the
following second order, non-minimum phase, continuous-
time model:

B(s)
A(s)

=
−0.5s + 1

s2 + 2ζωns + ω2
n

(2)

where ζ and ωn take on various values; while the discrete-
time ARMA noise process always takes the form

D(z−1)
C(z−1)

=
1 + 0.5z−1

1− 0.85z−1
(3)

and σ2 in the model (1) is adjusted to provide different
levels of additive noise. In the case of continuous-time
estimation, this system is simulated in continuous-time
within Simulink for 300 secs., using the variable step
length ODE45 (Dormer and Prince) solver and enclosed
within in a discrete-time, PIP control loop based on
optimal Linear-Quadratic (LQ) design. For discrete-time
model estimation, the Simulink simulation is based on the
discrete-time equivalent of the continuous-time model, as
obtained by conversion using the c2d routine in Matlab,
with the zero-order-hold option at the selected sampling
interval.

The PIP-LQ control system is implemented in the forward
path form, with a diagonal cost function weighting matrix
having weights of 100 on the integral-of-error state and
unity on the other non-minimal state variables (past values
of the input and output signals): see Taylor et al. [2000]. In
all cases, the PIP control system is designed on the basis of
the discrete-time equivalent of the continuous-time model
at the selected sampling interval.



The first example evaluates the continuous-time model
estimation performance with ζ = 0.05 and ω2

n = 2, and the
sampling interval for both estimation and control system
design is set at ∆t = 0.02 seconds (15000 samples). The
forward path PIP control transfer function in this case is:

P (z−1)
Q(z−1)

=
7.8553z−1 − 15.682z−2 + 7.8331z−3

1− 2.4443z−1 + 2.0597z−2 − 0.61532z−3
(4)

In the second example, a discrete-time model is estimated,
again with ζ = 0.05 and ω2

n = 2, but the sampling interval
is set ten times larger at ∆t = 0.2 seconds (1500 samples),
which ensures that the eigenvalues of the discrete-time
model are not too close to the unit circle in the complex
z-plane. The forward path PIP control transfer function
in this case is:

P (z−1)
Q(z−1)

=
4.2091z−1 − 7.971z−2 + 4.0917z−3

1− 1.0985z−1 + 0.27071z−2 − 0.17222z−3

(5)
Note that no attempt is made here to control the closed
loop non-minimum phase behaviour, although this is pos-
sible in PIP design using command input anticipation
[Taylor et al., 1994]. Also, the system is not designed to
maximize disturbance rejection, so the circulatory noise
effects can be quite high.

4.1 Stable continuous-time system

In this first example, the command input signal r(tk) is
a ±1.0 PRBS signal of length 15000 samples. The Monte
Carlo Simulation (MCS) analysis involves 100 realizations
based on random selections of the white noise sequence
e(tk), k = 1, 2, . . . 15000 and the white noise variance
σ2 is selected at two levels: first, 0.0025 in order to
yield a ‘standard’ noise-to-signal ratio of 0.30 by standard
deviation (i.e. std(noise)/std(signal)=0.3) on the control
input signal u(tk) and 0.23 on the output signal y(tk);
and then this is raised to 0.0133, in order to increase the
noise-signal ratio at the input and output to 0.7 and 0.5,
respectively. A typical segment of the data in the latter
‘high’ noise case is shown in Figure 2, where we see that
the circulatory noise is quite large and highly coloured.
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Fig. 2. Segment of the data used in the closed loop
estimation experiments.

The YIC [Young, 1989] identifies a third order, [3 3 0]
model between r(tk) and u(tk) with an ARMA(2,2) noise
model. The SRIVC option of the rivcbj algorithm then
estimates a model with a coefficient of determination
R2

T = 0.999, based on the error between the [3 3 0] model

output and the underlying noise-free input (i.e. the input
u(tk) when there is no additive noise ξ(tk)). In other words,
99.9% of the underlying noise-free control input variance
is explained by the deterministic output of the estimated
[3 3 0] model between r(tk) and u(tk).

Table 1. MCS Results: Continuous-Time
Model (SD: standard deviation; SN: standard noise;

HN: high noise)

Method a1 a2 b0 b1
True 0.141 2.0 -0.5 1.0
Method 1 (SN) 0.140 1.999 -0.509 0.983
SD 0.0109 0.0167 0.0040 0.0099
Method 2 (SN) 0.140 1.999 -0.5090 0.984
SD 0.0108 0.0162 0.0045 0.0104
Method 1 (HN) 0.140 2.005 -0.511 0.987
SD 0.0328 0.0381 0.0088 0.0212
Method 2 (HN) 0.140 2.005 -0.510 0.988
SD 0.0319 0.0381 0.0099 0.0225

The results of the MCS analysis are shown in Table 1.
These and other MCS results at even higher noise levels
show that the parameter estimates are clearly consistent
and asymptotically unbiased. As expected, however, the
standard deviations of the TF denominator parameters
are higher than those obtained using a statistically efficient
three-stage algorithm (see later, section 5). Figure 3 shows
the 5→ 95 percentile bounds (95% confidence bounds) as-
sociated with the ensemble of impulse responses obtained
by Method 1 in the standard noise situation.
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Fig. 3. MCS ensemble of continuous-time impulse re-
sponses obtained for Method 1.

4.2 Stable, discrete-time system

In this example, the command input signal r(tk) is a
±1.0 PRBS signal of length 1500 samples and the white
noise input signal e(tk) has variance of σ2 = 0.01. The
resulting noise-to-signal ratios, by standard deviation, are
0.35 at the output and 0.30 at the control input. The YIC
(see previous sub-section 4.1) identifies a third order, [3 3
1] model between r(tk) and u(tk), with an ARMA(2,2)
noise model. The SRIV option of the rivbj algorithm
then estimates a model with a coefficient of determination
between the [3 3 1] model output and the underlying noise-
free input of R2

T = 0.999.

The results of the MCS analysis are presented in Table
2. These were obtained from 100 Monte Carlo realizations



Table 2. MCS Results: Discrete-Time Model

Method a1 a2 b0 b1
True -1.894 0.972 -0.0776 0.1167
Method 1 -1.894 0.972 -0.0776 0.1168
SD 0.0036 0.0033 0.0020 0.0018
pem -1.893 0.972 -0.0774 0.1164
SD 0.0035 0.0032 0.0019 0.0018
Method 2 -1.894 0.972 -0.0765 0.1150
SD 0.0032 0.0028 0.0041 0.0046
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Fig. 4. MCS ensemble of discrete-time impulse responses
obtained for Method 1.

based on random selections of the white noise sequence
e(tk), k = 1, 2, . . . 1500. As in the continuous-time case of
the previous section 4.1, these and other MCS results at
higher noise levels show that the parameter estimates are
clearly consistent and asymptotically unbiased. Also, while
the standard deviations of the TF denominator parameters
are higher than those obtained using a statistically effi-
cient three-stage algorithm, the standard deviations match
those obtained when the pem algorithm from the SID
Toolbox in Matlab is used in place of rivbj at the second
stage. In both cases, an ARMA(2,2) model is identified for
the additive noise but, in order to simplify the presenta-
tion, the parameter estimates for these ARMA models are
not shown.

Finally, the quality of the estimation is demonstrated
graphically in Figure 4, which shows the ensemble of
impulse responses for Method 1. Here, the 95% confi-
dence bounds are a little higher than in Figure 3 for
the continuous-time system, but this reflects the shorter
sample size and the higher output noise level than in the
continuous-time example.

4.3 Unstable and marginally stable system estimation

This sub-section presents three simulation examples that
demonstrate the efficacy of the simple two-stage algo-
rithms in the difficult but practically relevant case of
unstable or marginally stable systems described by un-
stable continuous and discrete-time TF models. Although
convergent estimates are obtained at high levels of noise,
the variance of the parameter estimates is naturally higher
than in the case of a stable system because the estimates
are more sensitive when the system is unstable. This means
that associated properties of the model, such as the unsta-
ble impulse response, can have very high variances.

Unstable continuous-time, oscillatory system For this
example, the damping parameter ζ in the continuous-time
model (2) is set to -0.05, i.e. the negative of its value in
the stable system analysis. The MCS results presented
in Table 3 are for a low noise situation, with the 11%
noise by standard deviation at the output and 15% at the
control input; while those in Table 4 are for output and
control input noise levels of 22% and 30%, respectively. It
is clear that, in both of these cases the two methods yield
quite similar results. If the noise is increased still further,

Table 3. MCS Results, CT model, low noise

Method a1 a2 b0 b1
True -0.1414 2.0 -0.5 1.0

Method 1 -0.1407 1.992 -0.493 1.009
SD 0.0049 0.0106 0.0022 0.0077

Method 2 -0.1413 1.993 -0.492 1.010
SD 0.0038 0.0089 0.0017 0.0060

Table 4. MCS Results, CT model, standard
noise

Method a1 a2 b0 b1
True -0.1414 2.0 -0.5 1.0

Method 1 -0.1415 1.989 -0.493 1.008
SD 0.0142 0.0262 0.0059 0.0199

Method 2 -0.1397 1.990 -0.493 1.007
SD 0.0109 0.0215 0.0039 0.0152

however, to give 100% noise at the output and 140% at
control input, then method 2 performs considerably better
than method 1, which yields unacceptable results. In this
very high noise case, the ensemble averages obtained from
the MCS analysis for Method 2 are as follows:

â1 = −0.115(0.064) â2 = 1.999(0.114)
b̂0 = −0.493(0.026) b̂1 = 0.999(0.084)

(6)

where the standard deviations are shown in parenthe-
ses. We see that the estimates are still consistent and
asymptotically unbiased but the variance is now very high,
implying that the sample size in such very high noise situ-
ations would have to be substantially increased to obtain
practically useful results. However, these are extremely
high noise levels for a closed loop system and it is likely,
in practice, that efforts would be made to reduce the noise
levels both by good experiment design and tuning control
system gains to enhance disturbance rejection.

Finally, Figure 5 compares the ensemble of impulse re-
sponses obtained for Method 1 in the low noise case
(left panel) with those generated in the medium noise
case (right panel). As one would expect, the variance of
related properties, such as the impulse response, increase
markedly as the noise level increases, because of their
sensitivity to uncertainty when the system is unstable.
Not surprisingly, therefore, the spread of impulse responses
associated with the estimation results in (6) is very large
indeed.

Discrete-time, unstable, oscillatory system This example
is the discrete-time equivalent of the above continuous-
time example and the MCS results are presented in Tables
5 and 6. Overall, the results are quite similar to those
obtained in the continuous-time case and so the ensemble
of impulse responses and higher noise results are not
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Fig. 5. MCS ensemble of continuous-time impulse re-
sponses obtained for Method 1: low noise, left panel;
medium noise, right panel.

shown. Also shown in the tables, however, are the results
obtained when the pem algorithm from the SID Toolbox
in Matlab is used, rather than the rivbj algorithm. The
results are not so good in this case, but this is probably
because the algorithm is not intended for use with unstable
systems.

Table 5. MCS Results, DT model, low noise

Method a1 a2 b0 b1
True (CT) -0.1414 2.0 -0.5 1.0
True (DT equivalent) -1.948 1.029 -0.080 0.120
Method 1 -1.948 1.029 -0.080 0.121
SD 0.0027 0.0023 0.0039 0.0035
pem -1.884 0.958 -0.051 0.0835
SD 0.0028 0.0021 0.0015 0.0021
method 2 -1.948 1.028 -0.0791 0.119
SD 0.0026 0.0024 0.0110 0.0105

Table 6. MCS Results, DT model, standard
noise

Method a1 a2 b0 b1
True (CT) -0.1414 2.0 -0.5 1.0
True (DT equivalent) -1.948 1.029 -0.080 0.120
Method 1 -1.947 1.027 -0.080 0.120
SD 0.0070 0.0074 0.0053 0.0049
pem -1.885 0.959 -0.050 0.0828
SD 0.0075 0.0063 0.0042 0.0055
Method 2 (MCS) -1.952 1.032 -0.083 0.123
SD 0.0082 0.0073 0.0087 0.078

At the very high noise level, the MCS analysis results are
as follows, where the standard deviations are shown in
parentheses:

â1 = −1.946(0.058) â2 = 1.027(0.067)
b̂0 = −0.078(0.014) b̂1 = 0.119(0.010)

(7)

Continuous-time, double integrator system The contin-
uous-time model (2) is converted to a double integrator
system if ωn = 0. All other settings in the simulations are
the same as in the stable system example of section 4.1
in the ‘standard’ noise situation. In this double integator
case, the open-loop system is, of course, violently unstable,
and so this provides an acute test for any closed-loop
identification algorithm.

Table 7. MCS Results: CT, Double Integrator

Method a1 a2 b0 b1
True 0.0 0.0 -0.5 1.0
Method 1 -0.0175 -0.0059 -0.487 1.031
SD 0.0549 0.0224 0.0116 0.0539
Method 2 -0.0239 -0.0036 -0.485 1.034
SD 0.0561 0.0205 0.0111 0.0538

A typical set of of MCS results are summarized in Table 7
and we see that the estimated TF denominator parameters
are insignificantly different from zero in statistical terms,
with the standard deviations several times larger than the
estimated values. In this example, however, there were
two ‘outlier’ realizations, where the estimation errors were
larger than those obtained in the rest of the ensemble.
These two realizations were removed to compute the
results shown in Table 7.

5. THREE-STAGE CLOSED LOOP ESTIMATION

Recent research [Young, 2008b] has shown how the two
stage algorithm of Method 1 can be extended to include
a third stage that induces statistical efficiency in the case
of a stable enclosed system. However, this algorithm has
the disadvantage that it cannot be used when the enclosed
system is unstable.

The three-stages of the estimation algorithm are as follows,
where it will be noted that the first two stages are very
similar to the Method 1, outlined in the previous sub-
section 3, except that full Refined IV algorithms are
utilized throughout:

Stage 1 Estimate the TF between the command input
r(tk) and the measured, noisy control input u(tk) using
the appropriate Refined IV algorithm, and generate an
estimate û(tk) of the underlying noise-free control input
using this model.

Stage 2 Use the appropriate Refined IV algorithm to
obtain initial, two stage estimates Â(ρ) and B̂(ρ) of the
system TF model polynomials A(ρ) and B(ρ), respectively,
based on the estimated noise-free control input signal û(tk)
obtained in Stage 1 and the noisy measured output signal
y(tk).

Stage 3 Compute the estimated noise part of the control
input signal from η̂ni(tk) = u(tk)− û(tk) and transfer this
to the output using the system model obtained in Stage 2,
i.e.

η̂no(tk) =
B̂(ρ)
Â(ρ)

η̂ni(tk) (8)

Subtract this estimated output noise signal from the
measured output to obtain the following estimate of the
output signal that does not include the circulatory noise
component from the closed loop,

ŷ(tk) = y(tk)− η̂no(tk) (9)
This is, therefore, an estimate of the noise-free output
plus only the additive noise ξ(tk). As a result, the data
set {û(tk); ŷ(tk)} provides an estimate of the data set
that would have been obtained if the system was being
estimated in the equivalent open-loop situation. Finally,
therefore, use the appropriate open-loop Refined IV algo-
rithm for a second time to re-estimate the system model
based on this constructed data set.



It should be noted that this three-stage procedure is
straightforward to implement because it only makes use
of estimation routines already available in the CAPTAIN
Toolbox. As a result, new CAPTAIN routines clrivcbj
and clrivbj, based on the three-stage algorithm and
incorporating its simpler two-stage progenitors as options,
are currently undergoing final β-testing.

Table 8. 3-Stage CT Algorithm Estimation
(SR: single run; SE: standard error; SD: stan-

dard deviation; OL: equivalent open loop)

Method a1 a2 b0 b1 c1 d1

True 0.141 2.0 -0.5 1.0 -0.85 0.5
SR 0.141 2.002 -0.509 0.981 -0.851 0.499
SE 0.0021 0.0028 0.0028 0.0055 0.0045 0.0075
MCS 0.140 2.000 -0.509 0.978 -0.856 0.487
SD 0.0025 0.0030 0.0030 0.0055 0.0047 0.0067
OL 0.140 1.999 -0.509 0.978 -0.852 0.501
SD 0.0022 0.0024 0.0030 0.0055 0.0047 0.0066

Table 8 shows the MCS results obtained with the clrivcbj
routine in the case of the example described earlier in
section 4.1 and these can be compared directly with the
equivalent results shown in Table 1. The main difference
in performance is a clear improvement in statistical ef-
ficiency, as demonstrated by the considerable reduction
in the standard deviations (SD) of the TF denominator
parameter estimates. In addition, the standard error (SE)
estimates obtained from a typical single realization (SR)
match the MCS standard deviation (SD) values; and the
estimation results match the optimal results obtained in
the equivalent open loop situation (OL) using the rivcbj
algorithm, demonstrating the optimality of the clrivcbj
estimation. Similar results are obtained when the clrivbj
routine is applied to the discrete-time example in section
4.2.

6. CONCLUSIONS

This paper describes and evaluates an extremely simple
but powerful, unified approach to the identification and
estimation of a continuous or discrete-time transfer func-
tion model for a dynamic system enclosed with a feedback
control loop, without requiring any knowledge of the con-
trol system structure or parameters. The paper concen-
trates on the application to continuous-time systems but
discrete-time results are included to demonstrate the uni-
fied nature of the general approach. The continuous-time
approach has its usual advantages (e.g. [Young and Gar-
nier, 2006]) but it is computationally more intensive: the
continuous-time algorithms are approximately ten times
slower than the equivalent discrete-time algorithms.

The two-stage estimates of the TF model parameters are
sub-optimal in statistical terms but the simulation results
show that the TF model parameter estimates are statisti-
cally consistent and asymptotically unbiased for quite high
levels of noise in the closed loop system. Moreover, this
performance is maintained even if the enclosed system is
unstable. In addition, recent research [Young, 2008b] has
shown how an additional third stage can induce statistical
optimality provided the enclosed system is stable. Early
results from this three-stage algorithm are presented that
demonstrate the statistical efficiency of the procedure.

All of the simulation results reported in the paper
have been obtained using algorithms already available
in the CAPTAIN Toolbox for Matlab 1 , including the
Proportional-Integral-Plus (PIP-LQ) control system design
routines that are used in the design of the control systems.
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