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The CONTSID toolbox for Matlab:
extensions and latest developments

H. Garnier, M. Gilson, V. Laurain

Centre de Recherche en Automatique de Nancy (CRAN),
Nancy-université, CNRS, BP 239, 54506 Vandoeuvre-les-Nancy Cedez,
France

Abstract: This paper describes the latest developments for the CONtinuous-Time System
IDentification (CONTSID) toolbox to be run with MATLAB which includes time-domain
identification methods for estimating continuous-time models directly from sampled data.
The main additions to the new version aim at extending the available methods to handle
wider practical situations in order to enhance the application field of the CONTSID toolbox.
The toolbox now includes routines to solve errors-in-variables and closed-loop identification
problems, as well as non-linear continuous-time model identification techniques.
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1. INTRODUCTION

This paper describes the latest developments for the
continuous-time system identification (CONTSID) tool-
box for MATLAB®, which supports continuous-time (CT)
transfer function and state-space model identification di-
rectly from regularly or irregularly time-domain sampled
data, without requiring the determination of a discrete-
time (DT) model. The motivation for developing the CON-
TSID toolbox was first to fill in a gap, since no software
support was available to serve the cause of direct time-
domain identification of continuous-time linear models but
also to provide the potential user with a platform for test-
ing and evaluating these data-based modelling techniques.
The CONTSID toolbox was first released in 1999 (Garnier
and Mensler [1999]). It has gone through several updates,
some of which have been reported at recent symposia
(Garnier and Mensler [2000], Garnier et al. [2003a, 2006]).
The key features of the CONTSID toolbox are:

e it supports most of the time-domain methods devel-
oped over the last thirty years (Garnier et al. [2003b])
for identifying linear dynamic continuous-time para-
metric models from measured input/output sampled
data;

e it provides transfer function and state-space model
identification methods for single-input single-output
(SISO) and multiple-input multiple-output (MIMO)
systems, including both traditional and more recent
approaches;

e it can handle mild irregularly sampled data in a
straightforward way;

e it may be seen as an add-on to the system identi-
fication (SID) toolbox for MATLAB®. To facilitate
its use, it has been given a similar setup to the SID
toolbox;

e it provides a flexible graphical user interface (GUI)
that lets the user analyse the experimental data,
identify and evaluate models in an easy way.

The latest version of the CONTSID toolbox has the
following three major additions:

e it supports errors-in-variables CT transfer function
model identification;

e it provides routines to estimate linear CT transfer
function model in closed loop;

e it includes methods to identify nonlinear CT Ham-
merstein models.

The paper is organised in the following way. An overview
of the standard linear CT models and methods available in
the toolbox is first presented in Section 2. A brief descrip-
tion of the toolbox is given in Section 3. Recent develop-
ments to solve continuous errors-in-variables, closed-loop
and nonlinear model identification problems are finally
described in Section 4.

2. STANDARD CONTINUOUS-TIME MODELS AND
METHODS

The CONTSID toolbox includes routines to identify CT
linear transfer function and state-space models directly
from regularly or irregularly time-domain sampled data
(Garnier et al. [2008]).

2.1 Linear time-invariant transfer function models

The toolbox supports transfer function models of the
following forms

vt =Y GO (t) + Helt) (1)

where p denotes the differential operator and ¢ is the
standard forward shift operator; u‘(tx) and y(t;) represent
the deterministic inputs and noisy output at time instant
t, respectively. e(tx) is a zero-mean DT white Gaussian
sequence. Here, the model of the basic dynamic system
is in continuous time, while the associated additive noise



model is a discrete-time, autoregressive moving-average
(ARMA) process (see (Young et al. [2008])). The elements
G;(p) and H(q) are rational according to
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Various estimation methods for identifying CT ARX, CT
hybrid OE and hybrid Box-Jenkins models are imple-
mented in the CONTSID toolbox (Garnier et al. [2008]).

A large number of parametric estimation methods for
SISO and MIMO CT ARX model identification are
available. Standard pre-processing methods as the state-
variable filtering (SVF) or the Generalised Poisson mo-
ment functional (GPMF) techniques combined with least
squares (LS) and sub-optimal instrumental variables (IV)
have been implemented (Garnier et al. [2003b, 2008]).

Two methods for identifying SISO and MISO OE structure-
based models with different denominators are available in
the toolbox. The first is based on the iterative simplified
refined instrumental variable method for continuous-time
model identification (SRIVC). This approach involves a
method of adaptive prefiltering based on an optimal sta-
tistical solution to the problem in this white noise case.
This SRIVC method has been recently extended to handle
MISO systems described by multiple CT transfer functions
with different denominators (Garnier et al. [2007]). It is im-
portant to mention that for day-to-day usage, the SRIVC
algorithm provides a quick and reliable approach
to CT model identification and has been used for many
years as the algorithm of choice for this in the CAPTAIN
toolbox ! and, more recently, in the CONTSID toolbox.

The second method abbreviated by COE (continuous-
time output error) implements the Levenberg—Marquardt
or Gauss—Newton algorithm via sensitivity functions. In
contrast to LS- and IV-based methods, these algorithms
rely on a numerical search procedure with a risk to get
stuck in local minima and also require a larger amount of
computation.

An approach based on the refined optimal IV, denoted by
RIVC, has been recently derived to estimate the param-
eters of CT hybrid Box-Jenkins (BJ) models (see (Young
et al. [2008))).

Table 1 lists the methods available in the CONTSID
toolbox for CT hybrid OE and BJ model identification.

1 See http://www.es.lancs.ac.uk/cres/captain/.

Table 1. Available methods for CT hybrid OE
and BJ model identification

OF BJ
Methods  —75 MISO SISO
COBE v 7
SRIVC v v
RIVC v

2.2 Linear time-invariant state-space models

Continuous-time state-space models considered in the
CONTSID toolbox take the form

{x(tk) = Ax(ty) + Bu(tk) (7)
y(tx) = Cx(tg) + Du(ty) + £(tx)

where u(t;) € R™ is the input vector and y(ty) € R™
the output vector and z(t;) € R™ is the state vector at
time g, £(t;) € R™ is the possibly coloured output noise
vector.

Two types of approaches for CT state-space model iden-
tification are available in the CONTSID toolbox. A first
family of techniques relies on the a priori knowledge of
structural indices, and considers the estimation of CT
canonical state-space models. From the knowledge of the
observability indices, the canonical state-space model can,
in a straightforward way, be first transformed into an
equivalent input—output polynomial description that is
linear-in-its-parameters and therefore more suitable for the
parameter estimation problem. A preprocessing method
may then be used to convert the differential equation into
a set of linear algebraic equations in a similar way to
that for CT ARX type of models. The unknown model
parameters can finally be estimated by LS or IV-based
algorithms. This scheme has been implemented for the
GPMEF approach only.

A second class of state-space model identification schemes
is based on the subspace-estimation techniques. Most effi-
cient data-based modelling methods, discussed so far, rely
on iterative, non-linear optimisation or I'V-type methods
to fit parameters in a preselected model structure, so as
to best fit the observed data. Subspace methods are an
alternative class of identification methods that are ‘one-
shot’ rather than iterative, and rely on linear algebra.

Moreover, these subspace methods are attractive since
canonical forms are not required, while fully parameterised
state-space models are estimated directly from sampled
I/0O data. Most commonly known subspace methods were
developed for DT model identification. The association of
the more efficient preprocessing methods with subspace
methods of the 4SID family has been implemented in the
toolbox.

Table 2 summarises the methods available in the CON-
TSID toolbox for CT state-space model identification.

2.8 Linear time varying transfer function models

In many situations, there is a need to estimate the model
at the same time as the data is collected during the
measurement. The model is then ‘updated’ at each time
instant some new data become available. The updating
is performed by a recursive algorithm. Recursive versions
RLSSVF, RIVSVF and RSRIVC of the LS, IV-based SVF
methods and optimal IV technique for CT hybrid OE
models are available in the CONTSID toolbox.

2.4 Identification from mild irreqularly sampled data

The problem of system identification from non-uniformly
sampled data is of importance as this case occurs in



Table 2. Available methods for CT state-space model identification

Canonical model

Fully parameterised model

LS v BCLS N4SID
GPMF v v v v
FMF v
HMF v
RPM v
LIF v

several applications. The case of irregularly sampled data
is not easily handled by discrete-time model identification
techniques while mild irregularity can be easily handled by
some of the CONTSID toolbox methods. This is because
the differential-equation model is valid whatever the time
instants considered and, in particular, it does not assume
regularly sampled data, as required in the case of the
standard difference-equation model.

Table 3 lists the functions available for CT model identi-
fication from irregularly sampled data.

3. THE CONTSID TOOLBOX: A BRIEF
DESCRIPTION

The CONTSID toolbox is compatible with MATLAB®
versions 6.x and 7.x. Two external commercial toolboxes
are required: the Control toolbox and the SID toolbox. The
current version can be considered as an add-on to the SID
toolbox and makes use of the iddata, idpoly and idss
objects used in the SID toolbox. It can be downloaded
from

http://www.cran.uhp-nancy.fr/contsid/

All available parametric model estimation functions share
the same command structure

m = function(data,modstruc)

The input argument data is an iddata object that con-
tains the output- and input-data sequences along with the
sampling time and inter-sample behaviour for the input,
while modstruc specifies the particular structure of the
model to be estimated. The specific parameters depend on
the preprocessing method used. The resulting estimated
model is contained in m, which is a model object that
stores the various usual information. The function name
is defined by the abbreviation for the estimation method
and the abbreviation for the associated preprocessing
technique, as for example, IVSVF for the instrumental
variable-based state-variable filter approach or SIDGPMF
for subspace-based state-space model identification GPMF
approach.

Note that help on any CONTSID toolbox function may
be obtained from the command window by invoking clas-
sically help name_function.

In addition to the parameter estimation routines, the tool-
box also includes tools for generating excitation signals,
selecting the model orders as well as for evaluating the
estimated CT model properties.

The main demonstration program called idcdemo provides
several examples illustrating the use and the relevance of
the CONTSID toolbox approaches. These demos also illus-

trate what might be typical sessions with the CONTSID
toolbox.

4. LATEST DEVELOPMENTS FOR THE CONTSID
TOOLBOX

Recent developments aimed at extending the available
methods to handle wider practical situations in order to
enhance the application field of the CONTSID toolbox.
The latest version of the toolbox includes routines to
solve errors-in-variables (Mahata and Garnier [2006], Thil
et al. [2008]) and closed-loop identification (Gilson et al.
[2008], Young et al. [2009]) problems, as well as non-linear
continuous-time model identification techniques (Laurain
et al. [2008]).

4.1 Linear transfer function model identification in closed
loop

H
i (6) (p)
t
T2 (t) Cc (p) ++ 'Lb(t) G(p) ++ g(é(i)

ﬁ’T_'

Fig. 1. Closed-loop configuration

The toolbox now supports routines to estimate CT linear
time-invariant transfer function in a closed loop framework
of the form shown in Figure 1. The data generating system
is assumed to be given by the relations

{y(t) = G(p)u(t) + H(pe(t) (8)
u(t) = r(t) = Ce(p)y(t)

The process is denoted by G(p) = B(p)/A(p) and the
controller by C..(p). u(t) describes the process input signal,
y(t) the process output signal. For ease of notation we
introduce an external signal r(t) = r1(t) + Cc(p)ra2(t).
Moreover, it is also assumed that the CT signals u(t) and
y(t) are uniformly sampled at Ts. A coloured disturbance
is assumed to affect the closed-loop: bearing in mind the
spectral factorisation theorem, this noise term, £(¢) =
H(p)e(t), is modelled as linearly filtered white noise. The
external signal r(t) is assumed to be uncorrelated with the
noise disturbance £(t).

The CT model identification problem is to find estimates
of G(p) from finite sequences {r(ty)}o_,, {u(ty)}r_,,
{y(tr)}2_, of, respectively, the external signal, the process
input and output DT data.



Table 3. Available functions for CT model identification from irregularly sampled data

Program Description
LSSVF LS-based state-variable filter method for CT ARX models
IVSVF IV-based state-variable filter method for CT ARX models
COE non-linear optimisation method for CT hybrid OE models
SRIVC optimal instrumental variable method for CT hybrid OE models
SIDGPMF  subspace-based generalised Poisson moment functionals method for CT state-

space models

Two methods based on optimal IV may handle closed-loop
system identification in the CONTSID toolbox. The first
one, named as CLRIVC aims at estimating the following
hybrid Box-Jenkins model structure

B(p) Clah)
y(te) F(p)u( ¥+ D(qfl)e(tk) (9)
with u(tx) = r(tk) — Ce(p)y(te)

It involves an iterative (or relaxation) algorithm in which,
at each iteration, the auxiliary model used to generate the
instrumental variables, as well as the associated prefilters,
are updated, based on the parameter estimates obtained
at the previous iteration (see Gilson et al. [2008] for a full
description of this method).

The above formulation of the CLRIVC estimation problem
is considerably simplified if it is assumed in the CT
BJ model structure that the additive noise is white, i.e.
H(p) = 1. In this case, the assumed model structure is a
CT hybrid OE model given as

B(p)

y(te) = Wu(tk) + e(tr)

with u(tx) = r(tr) — Ce(p)y(tr)

Although appealing, the above optimal IV approaches are
quite complex. Therefore, rather simpler but sub-optimal
two-stage SRIVC-based approaches have been very re-
cently developed Young et al. [2009]. These are in the
same spirit as the two- stage algorithm suggested by Van
den Hof and Schrama [1993] for discrete-time systems
and they have the same advantage of not requiring prior
knowledge of the control system. However, the new two-
stage algorithms are more sophisticated than the Van den
Hof and Schrama approach because each stage exploits the
appropriate open loop SRIVC/RIVC algorithms: namely,
the SRIVC algorithm (rather than the FIR model esti-
mation used by Van den Hof) for estimating the control
input signal, followed by the estimation of the enclosed,
controlled system, based on this estimated control input,
using either the SRIVC or the full RIVC algorithm. Con-
veniently, all of these algorithms are already available
as computational routines in the CONTSID toolbox. Al-
though the two-stage algorithms perform well and can even
work well if the enclosed system is unstable, they are not
statistically efficient. However, they point the way to the
addition of a third stage that can induce optimality and so
provide parameter estimates that have similar properties
to those obtained from the RIVC algorithm applied in the
equivalent open loop situation.

(10)

4.2 Linear errors-in-variables transfer function model
identification

The toolbox now supports routines to estimate CT linear
time-invariant transfer function in an errors-in-variables

uo (t yo(t)
o > CT system yo(:
(tr) :é'r) u(tkg F(te) :é y(tk;)

Fig. 2. CT system in an errors-in-variables (EIV) frame-

work

(EIV) framework as represented in Figure 2. The noise-
free input and output signals are related by

Yo(t) = G(p)uo(t) = Alp) uo(t)

(11)

where G(p) is the CT transfer function of the system.
up(t) and yo(t) are sampled at time-instants {¢;}2_,, not
necessarily uniformly spaced. The sampled signals are both
contaminated by discrete-time noise sequences, denoted
as u(ty) and g(tr) respectively. The measured input and
output signals are therefore given by

u(tr) = uo(tr) + w(tx) (12)
y(tk) = yo(te) + (k) (13)
with
{A(p) =aot+a1p+... + ana—lpnail-i-pn“ (14>
B(p) = bo+bip + ... + by, p"

Continuous-time model identification in an EIV framework
is a relatively unexplored area. An attempt based on
the use of second order statistics combined with state-
variable filtering has been first implemented Mahata and
Garnier [2006], when the noises contaminating the data
are assumed to be white. The whiteness of the noises
allows not only to simplify the algorithms, but to rule
out identifiability problems as well. Indeed, without any
further assumptions on the signal and noise models, it is
well-known that the general EIV model is not uniquely
identifiable from second order statistics. EIV systems
suffer from this lack of identifiability, and it is thus of
interest to study alternative approaches based on higher-
order statistics. Two simple estimators have been recently
developed. The cornerstones of the proposed solution are
the use of third or fourth-order cumulants and state-
variable filtering (Thil et al. [2007, 2008]. They can be
applied in various noise situations, including the case of
coloured and/or correlated noises on input and output of
the system.
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Fig. 3. Hammerstein block representation

4.3 Nonlinear Hammerstein model identification

This section presents the extension of the CONTSID for
the identification of Hammerstein CT Box—Jenkins models
as presented in Figure 3. The non-linear function f(.) is
assumed to be a sum of known basis functions 1,72, ...,V
given as:

!
u(t) = Zami(u(t)) with a3 = 1. (15)
i=1

u(t) and y(t) are assumed to be uniformly sampled at a
constant sampling time 7.

The Hammerstein system is described by the following
input-output relationship:

z(t) = G(p)u(t)
t

§(tk) = H(q)e(tr), (16)
y(te) = x(tr) + §(tk),
where
0 =5 (17)

B(p) and F(p) are polynomials in differential operator

p (p'x(t) = dld”;?)). The developed method is based on
the identification of a hybrid Box—Jenkins model, where
the linear and the noise models are not constrained to
have common polynomials. The coloured noise associated
with the sampled output measurement y(t) has rational
spectral density and can be represented by a discrete-time

autoregressive moving average ARMA model:

Clg™)
f tk =H q)e tk =
(1) = H(@)e(ts) = i
where C(¢~!) and D(q™') are polynomials in the back-
ward shift operator. e(fx) is a zero-mean, normally dis-
tributed, discrete-time white noise sequence: e(ty) ~

N(0,02).

e(tr) (18)

All details of the recently developed refined instrumental
variable-based identification method can be found in Lau-
rain et al. [2008].

The implemented IV-based routine is illustrated below by
an example of how it works. This example considers a
second-order SISO Hammerstein CT system without de-
lay. The complete equation for the data-generating system
has the following form

a(ty) = u(ty) + 0.5u?(tg) + 0.25u3(ty,)

10p + 30
te) = ————a(t) + e(ty),
ylts) = - alt) + elt)
where e(t;) is a zero-mean DT white Gaussian noise
sequence. Let us first create an idpoly model structure

(19)

object describing the model. The polynomials are entered
in descending powers of the differential operator

mO=idpoly(1, [10 30],1,1,[1 1 5],’Ts’,0);

‘Ts’ and 0 indicate here that the system is time continu-
ous.

u is generated using a uniform distribution centered on 0O
with values between -2 and 2 and is of length 2000. The
sampling period is chosen to be 0.5

N=2000;
u=4*(rand(N,1))-2;
Ts = 0.5;

The output of the nonlinear function is then calculated:

f=[ 1 0.5 0.25];

for ik = 1:length(f)
ubar=ubar + f(ik)*u.” ik;
end

We then create an iddata object for the input signal with
no output, the input ubar and sampling interval Ts.

datau = iddata([],ubar,Ts);

We then create an iddata object with output ydet, inputs

u, u?, u? and sampling interval Ts

upow = [u u.” 2 u.” 3]

Let us now consider the case when a white Gaussian noise
is added to the output samples. The variance of e(ty) is
adjusted to obtain a signal-to-noise ratio (SNR) of 10 dB.
The SNR is defined as

P,
SNR = 101log % (20)

€

where P, represents the average power of the zero-mean
additive noise on the system output (e.g., the variance)
while P, , denotes the average power of the noise-free
output fluctuations.

snr=10;
y = simc(m,datau,snr);
data = iddata(y,upow,Ts);

We then identify a CT Hammerstein model for this system
from the iddata object data with the NLSRIVC method.
The extra pieces of information required are

e the number of denominator and numerator parame-
ters and number of samples for the delay of the model
[nanpne] =[2 2 0];

e Note that the number of basis function (see (15)) is
directly given by the number of columns in upow

The NLSRIVC routine can now be used as follows
mH = NLSRIVC(data,[2 2 0]);

Let us now compare the model output for the input signal
with the measured noisy output. This can be done easily
by using the comparec CONTSID routine

comparec(data,mH, 1:200);

which plots the noisy and the simulated model outputs as
shown in Figure 4.
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Fig. 4. Noisy and simulated Hammerstein model output

5. CONCLUSION

This paper has outlined the main features of the latest
developments for the Matlab CONTSID toolbox and illus-
trated the recent extensions. The toolbox, which provides
access to most of the time-domain continuous-time model
identification techniques that allow for the direct identifi-
cation of continuous-time models from discrete-time data,
is in continual development. Planned new release will in-
clude more techniques to solve the non-linear continuous-
time model identification problems.
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