
HAL Id: hal-00406435
https://hal.science/hal-00406435v1

Submitted on 22 Jul 2009

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Large Quasi-Tree Drawing: A Neighborhood Based
Approach

Romain Bourqui, David Auber

To cite this version:
Romain Bourqui, David Auber. Large Quasi-Tree Drawing: A Neighborhood Based Approach. 13th
International Conference on Information Visualisation, Jul 2009, Spain. pp.653-660. �hal-00406435�

https://hal.science/hal-00406435v1
https://hal.archives-ouvertes.fr

Large Quasi-Tree Drawing: A Neighborhood Based Approach

Romain Bourqui and David Auber

Eindhoven University of Technology, Netherlands and LaBRI, Université Bordeaux I, France

R.Bourqui@tue.nl and david.auber@labri.fr

Abstract

In this paper, we present an algorithm to lay out a

particular class of graphs coming from real case studies:

the quasi-tree graph class. Protein and internet mappings

projects have shown the interest of devicing dedicated tools

for visualizing such graphs. Our method addresses a chal-

lenging problem which consists in computing a layout of

large graphs (up to hundred of thousands of nodes) that

emphasizes their tree-like property in an efficient time. In

order to validate our approach, we compare our results on

real data to those obtained by well known algorithms.

Keywords— Graph visualization, graph drawing, graph

clustering, quasi-tree graph.

1 Introduction

Graphs are useful in many research areas such as: bi-

ology, microelectronics, social sciences, data mining and

also computer science. Improvements in data acquisition

techniques raise a challenging problem of visualization.

Indeed the size and the complexity of these graphs do not

enable to manually draw them. Therefore, graph drawing

and information visualization communities focus on de-

signing visualization of these data.

Theoritical solutions have been found to lay out partic-

ular classes of graphs such as trees, planar graphs, directed

acyclic graphs, or biconnected outerplanar graphs classes.

These algorithms give very good results not only in terms

of time/space complexity but also in terms of aesthetic cri-

teria. However, even if these algorithms offer good solu-

tions for these particular classes of graphs, real application

graphs do not usually belong to these classes.

To draw general graphs, force directed algorithms seem

well suited since they produce visually pleasant and struc-

turally significant results (e.g. [11, 22, 24, 14]). Main

drawback of these classical force directed algorithms is

their time complexities since they are usually not sub-

quadratic and cannot therefore be applied on large graphs

(with thousands of vertices and edges).

Finding an algorithm giving good results (in term of

computation time, estheatic criteria and information em-

phasized) on general graph is a very difficult problem.

Most of the works on visualization of large graphs do a

trade-off between computation time and aesthetic criteria.

In this article, we focus on a particular class of graphs to

prevent from doing that trade-off. That class of graphs has

been observed in real case studies (e.g. webgraphs, biol-

ogy) and is called the quasi-tree graphs class. In [3], the

authors claim that a quasi-tree graph is a graph with O(n)
biconnected components (where n is the number of ver-

tices of the graph), but it seems complicated to formally

define a quasi-tree graph. Unformally, we can consider

that these graphs have a tree-like structure (for instances,

see figures 6 and 7). In this article, we focus on a visualiza-

tion of such graph which emphasizes its tree-like structure

property.

The remainder of this paper is structured as follows.

Section 2 reviews related work on large graph visualiza-

tion. Section 3 describes quasi-tree graphs and how our

method allows to emphasize this tree-like property. Then

in section 4, we give results of our algorithm on real data

and compare them to results of other well-known algo-

rithms.

2 Related Work

In this section, we present the three main approaches

to draw large graphs. Among them, the most famous is

based on improvements of force directed methods ([15, 16,

2]). Another approach consists in representing the graph

as a matrix and using linear algebra techniques ([18, 27]).

Finally, a recent technique is based on topologies detection

and the use of an appropriate algorithm for each topology

([1, 4, 3]).

2.1 Force directed based approach

To improve the time efficiency of the force directed

methods, new algorithms use vertex (or edge) filtration.

This allows to reduce the number of elements considered

when drawing the graph since each level of the filtration is

drawn separatly.

In [15], Gajer and Kobourov present a vertex filtra-

tion called the Maximal Independant Set Filtration. This

method consists in computing a set of sets V0, V1, ..., Vk

such that V = V0 ⊃ V1 ⊃ ... ⊃ Vk where ∀u, v ∈ Vi,

distG(u, v) ≥ 2i and |Vk| = 3. The three vertices of Vk

are laid out such that the euclidean distances respect the

graph distances. Then, each other Vi, 0 ≤ i < k (starting

from k − 1 and going down to 0) is drawn using either Ka-
mada and Kawai algorithm [22] or Fruchterman and Rein-

gold algorithm [24].

Hachul and Jünger describe in [16] another vertex fil-

tration in which the graph is considered as a set of so-

lar systems composed of suns, planets and moons. Then,

each solar system is collapsed into a single vertex and

that process is repeated to produce a serie of graphs G =
G0, G1, ..., Gk, whereGk is considered as “small” enough.

In addition to this multi-scale technique, the authors use a

grid to approximate the repulsive forces, thus the overall

complexity becomes O(n · log(n)).

The LGL algorithm presented in [2] was first de-

signed to visualize a protein map and can therefore handle

weighted edges. The filtration in that algorithm is made by

first computing a minimum spanning tree of the graph us-

ing the well-known Kruskal’s algorithm [23] and then root-

ing that tree on the graph center. This rooted tree allows to

know the order in which vertices of the graph must be in-

serted in the layout. Starting from the root, the algorithm

draws one by one each level of the spanning tree. Again,

to improve the computation time, the algorithm uses a grid

to approximate repulsive forces.

2.2 Matrix based approach

Harel and Koren give in [18] an algorithm consisting

in computing an m-dimensional embedding of the graph

(typicallym is set to 50) and then to project this embedding

into 2 or 3 dimensions. To define these m axis, the authors

compute a set {p1, p2, ..., pm} of m pivots (one for each

dimension) such that the distance between all pi is maxi-

mized. In that m-dimensional space, the ith coordinate of

a node u is its theoritical distance (weighted or not) to pi.

Then, to reduce the dimensionality of the embedding, the

authors use the Principal Component Analysis (for more

detail on this technique, readers are refered to [13]).

In [27], Koren et al. give an other matrix based ap-

proach using the eigenvectors of the Laplacian matrix to

compute a projection of the graph. To speed up the pro-

cess, the idea of that method is to compute an estimate for

the eigenvectors of the original Laplacian matrix. To do so,

this algorithm constructs a hierarchy of matrices such that

the size of matrix of the higher level is enough “small”. As

the highest level matrix is “small”, they can compute the

exact eigenvectors of that matrix. Then, starting from the

highest level, they recursively compute the eigenvectors of

the underneath level, until the eigenvectors of the original

matrix are found.

2.3 Topologies detection based approach

Recent articles refer to topology detection for large

graph drawing (e.g. c[1, 3, 4]). The main idea of this ap-

proach is to detect interesting or typical topological sub-

sustructures in the network and then to draw them using an

appropriate algorithm.

In [1], Abello et al. present an algorithm that first search

for the peripheral forest (i.e. proper subgraphs that are

trees) using a technique called pilling and collapse them

into single nodes. In the next step, the algorithm search for

biconnected components of the resulting graph. Finally,

if some biconnected components are ”too” large (for more

detail see [1]), they try to cluster it using MCL algorithm

of [26]. In [1], Abello et al. also present the steerable ex-

ploration tool where they integrated this algorithm. There-

fore, the graph is then drawn on demand using either a tree

drawing or a force directed algorithm (depending on the

structure to draw).

In [4], Archambault et al. use an other pipeline of

topological structures searches. They look for proper sub-

graphs that are trees, biconnected components, HDE [18]

suitable graphs (for more details see [4]), complete graphs

and finally use strength [6]. Archambault et al. adapted

this pipeline to the special properties of quasi-tree graphs

in [3]. As mentioned above, according to Archambault et

al., quasi-tree graphs contains O(n) biconnected compo-

nents. Therefore, the technique of [3] consists in detecting

the biconnected components of the graph. Then, each bi-

connected component is drawn using a modified version of

LGL [2] and the biconnected components tree is drawn us-

ing an area aware version of RINGS [25]. Finally, an edge

crossing reduction step is performed. This pipeline allows

to improve the computation time (compared to [4]) since it

only searches for caracteristical topological structures con-

tained in quasi-tree graphs.

3 Quasi-tree graphs: features descriptions

and method

To emphasize the tree-like property of quasi-tree

graphs, our approach uses the following pipeline:

1. Group detection and coarsening

2. Bottom-up drawing

3. Edge bundling

The first step consists in finding caracteristical quasi-

tree graph sub-structures using a hierarchical clustering al-

gorithm. Then each level of the hierarchy tree is drawn

using a bottom-up technique. Finally, an edge bundling

step is performed to unclutter the resulting drawing.

In the next, we first describe the main topological fea-

tures of quasi-tree graphs, then we present each of these

three steps.

3.1 Quasi-tree graphs topological fea-
tures

Figure 1. Typical topological structures of

quasi-tree graphs: (a) a star (in green), (b)
a diamond (in purple) and (c) a complete
graph (in blue).)

In this paper, we consider that a quasi-tree graph con-

tains three main types of topological structures: stars, di-

amonds and cliques.

First, a star is a subgraph of the quasi-tree induced by

a set of vertices V ′ such that V ′ contains one universal

vertex1 and each other vertex of V ′ has a degree equal to 1
(see figure 1.a).

Then, a diamond is a subgraph induced by a set V ′,

such that V ′ contains two vertices u and v linked to all

other nodes in V ′ (except to u and v) and each other ver-

tex has a degree equal to 2 (see the purple central nodes

in figure 1.b). This definition can generalized to multi-

ple diamond, i.e. a subgraph induced by a set of vertices

V ′ = V1 ∪ V2 such that each vertex of V1 is linked to all

vertices of V2 and each vertex of V2 has a degree equal to

|V1| (for instance, see figure 2.a).
And the last topological structure is the clique, i.e. an

induced complete subgraph (see figure 1.c).

In pratice, quasi-tree graphs do not contain many oc-

curences such “perfect” structures. Therefore we add to

these topological structure definitions a degree of freedom.

1i.e. linked to all other vertices of V
′.

This degree of freedom corresponds to either few edges

linking “extremities” of a star (resp. “central” nodes of a

diamond), or to few missing edges in a clique.

The property being characteristic of each of these struc-

tures is the similarity of their neighborhood (this notion

is explained in section 3.2.1). Therefore, to detect such

topological structures, our clustering algorithm is based on

nodes neigborhood and groups vertices having “similar”

neighborhoods.

3.2 Groups Detection

The first step of our approach is to compute groups of

vertices having ”almost” the same neighborhood. To do so,

we have to compute a dissimilarity measure that we will

call neighborhood dissimilarity measure. This measure is

based on the Jaccard’s index [20] where the attributes of

one element (a vertex) are its neighbors. The next step

consists in building a hierarchycal clustering of the graph

according to that measure (figure 2 illustrates that process).

3.2.1 Neighborhood dissimilarity mea-
sure

To determine whether or not two vertices are “similar”,

we define the neighborhood similarity measure as follow :

∀u ∈ V and v ∈ V :

sim(u, v) = |(N(u)\{v})∩(N(v)\{u})|+f(u,v)
|(N(u)\{v})∪(N(v)\{u})|+f(u,v) ,

where N(u) is the neighborhood of u in the graph G and

f(u, v) is equal to 1 if u and v are neighbors, 0 otherwise.

Clearly, sim(u, v) ∈ [0, 1] and if two vertices u and v
have exactly the same neighborhood then sim(u, v) = 1.
We also define the neighborhood dissimilarity measure :

∀u ∈ V and v ∈ V :

dissim(u, v) = 1 − sim(u, v)

It is straightforward to prove that ∀u, v ∈ V , if

distG(u, v) > 2 then sim(u, v) = 0 and dissim(u, v) =
1. Thus, we only need to compute the similarity (dissim-

ilarity) of each pair of vertices at distance less or equal to

2.

To find all pairs of vertices at distance less or equal to

2, we use n Breadth-First Search (BFS) of depth 2. This

can be done in
∑

u∈V (deg(u))2 which is O(ndavgdmax)
time and space complexity (where davg and dmax are re-

spectively the average and the maximum degree) . Then

to compute all similarities (dissimilarities), we have to

compare the neighborhoods of the O(ndavgdmax) pairs

of vertices. In the data structure we use, the neighbor-

hood of vertex is sorted, so that comparing the neighbor-

hoods of two vertices u and v has computation cost of

O(deg(u) + deg(v)).

Figure 2. Illustration of the group detection process. (a) Subnetwork of the website of the Computer
Science department of the University Bordeaux 1; (b) and (c), two successive passes of the clus-

tering algorithm with ǫ respectively equal to 0.1 and 0.35. Nodes surrounded in yellow correspond
to uroot defined in section 3.2.2; (d) the final corresponding quotient graph.

The overall process has a O(ndavg(dmax)2) time com-

plexity and a O(ndavgdmax) space complexity. If we con-

sider that G is of bounded degree, we obtain a O(n) time

and space complexity.

3.2.2 Clustering algorithm

To compute our groups, we use an approach based on

DBSCAN [12]. In this algorithm, groups of vertices are

computed using two thresholds ǫ and k. If the similiraty

between two nodes is more than ǫ, then these two nodes

cannot be in the same group. Moreover a group cannot

contain less than k vertices (in pratice, we use k = 2).
Our algorithm repeats iteratively a group detection based

on DBSCAN and thus needs two parameters : ǫmin and

ǫmax, respectively the minimal and the maximal thresholds

ǫ that will be used to compute the clusters.

The first step of the clustering algorithm consists in sort-

ing the vertices by their average similarity with the vertices

at distance less or equal to 2 from them. We call Vsorted

this list of sorted vertices. Clearly, this step can be done

in O(m + nlog(n)) time complexity and O(n + m) space
complexity.

The second step consists in finding the groups of the

current level. To do so, we create a new cluster and add the

first not yet considered vertex uroot of Vsorted in that clus-

ter. Then, we add to this cluster all vertices v at distance

at most 2 from uroot such that dissim(uroot, v) ≤ ǫ. This
process is repeated for each vertex of Vsorted not already

added in a cluster. It is straightforward to prove that the

time and space complexities of that step are respectively

O(ndavgdmax) and O(n + m).

And the third step consists in constructing the quotient

graph correponding to these clusters (i.e. a graph obtained

by collapsing each cluster into a single vertex). If a vertex

does not belong to a cluster, we consider that these vertex

belong to a cluster only containing it. To construct the quo-

tient graph, we add to it one node (metanode) for each clus-

ter in graph. And for two metanodes Cu and Cv respec-

tively corresponding to {u1, u2, ...up} and {v1, v2, ...vq},
there exists an edge between Cu and Cv in the quotient

graph if there exists i and j such that (ui, vj) is an edge

of the original network. Moreover, the dissimilarity be-

tween Cu and Cv is set to the average dissmilarity between

ui and vj , ∀i ∈ {1, .., p} and ∀j ∈ {1, .., q}. To do so,

we first map each vertex of the graph on the metanode of

the quotient graph it correspond to. And then we just need

to traverse each edge of the graph to find the edges of the

quotient graph, thus the third step has a O(n + m) time

complexity.

This leads to aO(ndavgdmax+nlog(n)) time complex-

ity and a O(n+m) space complexity to compute one level

of the hierarchycal clustering.

Then, we increase the threshold ǫ to ǫ + c, where c is a
constant (in pratice we use c = 0.05) and we repeat these

three steps on the quotient graph while ǫ < ǫmax. As ǫ
varies from ǫmin to ǫmax by steps of c, this three steps are
repeated (ǫmax − ǫmin)/c times, thus the time and space

complexities are respectively O(ndavgdmax + nlog(n))
and O(n + m).

The overall groups detection (including the dissimilar-

ity computation) is done in O(ndavg(dmax)2 + nlog(n))
time complexity and a O(ndavgdmax) space complexity.

At the end of the clustering algorithm, we obtain a multi-

level quotient graph which is the backbone of the network.

We will use this backbone to lay out the graph.

3.3 Bottom-up Drawing Algorithm

To draw the graph, we use a bottom-up approach that

is to say we draw one by one the clusters of the quotient

graphs corresponding to each level, starting from the deep-

est level and ending by the highest. The main advantage

of the bottom-up techniques is that they allow to know the

exact area needed to lay out each cluster. We make a dis-

tinction between the top level quotient graph and the other

levels of the hierarchy. As the top level quotient graph can

be large, we use modified version of LGL algorithm [2]

while we use either a circular drawing algorithm or and the

force directed algorithm described in [14] to draw clusters.

All these algorithms are modified to take into account the

sizes of the nodes.

3.3.1 Clusters drawings

To draw one cluster, we first detect if it is a complete

graph or if on the contrary it is a stable graph (i.e. a graph

with no edge). In these cases, we use a circular drawing

algorithm. For the others topologies, we use the force di-

rected algorithm describe in [14]. Even if this algorithm

does not offer a good computation time, it gives good re-

sults in term of stretch and as groups do not contain a large

number of nodes (or metanodes), it is usefull.

Making the circular algorithm area aware is strait-

forward. For the algorithm of [14], we take into account

the sizes of the nodes when computing attractive forces.

This solution does not give “perfect” result (see [17]) since

some node-node overlaps remain in the drawing. To re-

move such overlaps, we use the algorithm of Dwyer et

al [10] : this algorithm first generates the ”separation”

constraints according to the original nodes placements and

then find a solution to these constraints

3.3.2 Top level drawing

To draw the top level quotient graph, we use the mod-

ified version of LGL described in [3]. This extension of

LGL [2] reduce the number of node-node overlaps by mod-

ifing the size of the grid cells used in LGL. It is possible to

completely avoid node-node overlap if the size of each cell

is enought large. These modifications allow to take into

account the sizes of the nodes (and the metanodes). The

problem is that our clustering algorithm does not compute

a balanced clustering, thus to avoid completely node-node

overlaps we should set the size of each cell of the grid to

an high value and it would conduct to a very large layout.

Therefore we chose to allow some overlaps (by bounding

grid size) and to remove it at the end of the drawing by

using the algorithm of [10].

3.4 Edge Bundling

Figure 3. A subgraph of the internet network

of the University of British Colombia visual-
ized with edge bundling (a) and without edge
bundling (b).

Last step of our drawing algorithm is based on the work

of Holten [19]. In this article, the author use a standard tree

visualization of the hierarchy. Then to embed, each non-

hierarchical edges, he uses B-spline curves. For instance,

if an edge e links to nodes u and v, the edge e “follows”

the shortest path along the hierarchy from u to v. The idea
is to “merge“ edges linking ”close” clusters in the hierar-

chy. In our approach, the hierarchy is determined by the

clustering algorithm and is then lay out. We consider that

the position of each node in the hierarchy tree is lay out at

the barycenter of the nodes it corresponds to in the graph.

This technique enables to reduce the edge cluttering in the

final drawing (for instance see figure 3). It also allows to

emphasize the “tree-like” property of the graph.

4 Results

In this section, we present results obtained on real appli-

cation graphs: some webgraphs and a biological network.

Firstly, we give some sample of computation times, and

secondly, we compare two of these results to those ob-

tained by some algorithms described in section 2.

4.1 Computation time results

All our experiments were performed on a Intel Core

Duo 2.4 GHz processor with 2GB RAM. Figure 4 provides

the results obtained on a sample of graphs.

These graphs can be sorted in three differents types:

websites, biological networks and internet map. Websites

graphs are extracted by starting from the home page of a

website and then by following each hyperlink of the page in

Figure 4. Performance results of our algo-

rithm. Computation times are given in sec-
ondes, except for pgraph and Net05.

a Breadth First Search (BFS) manner. Examples of figure 4

are subnetworks of american universities (Stanford, Yale

and San Jose univerties), a canadian (University of British

Colombia), a french university (University of Bordeaux 1)

and its computer Science Department (LaBRI Laboratory,

University of Bordeaux 1). Graphs of the second type are

biological networks: b7 ferea is constructed by intagrating

data coming from Gene Ontology [5], KEGG [21], Cell-

zome (see www.cellzome.com) and SWISSPROT [7].

This graph was provided by BLASTSETS [8]. And,

pgraph is a protein homology graph provided by the LGL

project and presented in [2]. Last type is internet map,

more precisely this is the internet tomography dataset gen-

erated in 2005 by Cheswick’s Internet Mapping Project [9]

(see www.cheswick.com/ches/map/). Computa-

tion times given in figure 4 are clearly better than those

offered by classic force directed algorithms since our ap-

proach allows to draw graphs with thousands of nodes in

few seconds/minutes.

Figure 5. Average computation times spent
during each step of the algorithm: dissim-
ilarity computation, groups detection and

layout of the graph.

Figure 5 shows the average percentage of time spend by

each steps of our approach for laying out a graph. Most of

the computation time of the algorithm is spent during the

groups detection (37%) and the layout (51%) parts of the

algorithm. Thus, it could be interesting to improve these

two steps.

Figure 6. Drawing of Net05, obtained from
the Internet Mapping project. Graph con-
tains 190,384 nodes and 228,354 edges.

Drawings produced by (a) FM3, (b) LGL, (c)
SPF, (d) our approach, with computation
times indicated underneath.

4.2 Results comparisons

We compare results obtained on two real application

graphs: a webgraph, Net05 from the Internet Mapping

Project [9] and pgraph from the LGL Project [2]. These re-

sults are compared to results obtained by other algorithms.

We decided to compare our results to FM3 of [16], LGL

of [2] and to SPF of [3]. The choice of these three algo-

rithms is dictated by three different criteria: first of all, the

computation time (FM3 of [16]), then the esthetic criteria

(LGL of [2]), and finally, the “tree-like” property empha-

sizing (SPF of [3]).

Figures 6 and 7 show the resutlts obtained by FM3,

LGL, SPF and our approach. In term of computation time,

the algorithm FM3 [16] is clearly the most efficient over all

these algorithms. It is 10 times faster on Net05 and more

than 20 times faster on pgraph than our approach. The sec-

ond fastest algorithm is SPF [3] which offers quite good

computation times (52 minutes on Net05 and 47 minutes

on pgraph). For the LGL algorithm [2], computation time

on Net05 is better using our algorithm whereas they are

comparable on pgraph. This is certainly due to the average

and maximum degree of pgraph that are high (see figure 4),

furthermore the group detection of our algorithm takes a

Figure 7. Drawing of pgraph, a protein map

coming from the LGL Project [2]. Graph
contains 30,727 nodes and 1,206,654 edges.
Drawings produced by (a) FM3, (b) LGL, (c)

SPF, (d) our approach, with computation
times indicated underneath.

long time on this graph.

In term of quality, FM3 does not offer good results since

it does not emphasize many information. Nodes are laid

out along thin “branches” of the graph (for instance, see

figure 7.a). Thus neither the global nor the local structures

of the graph are shown. Results of LGL are better than

those of FM3. It succeeds in embedding the overall struc-

ture on pgraph (see figure 7.b) since we can easily see the

branches (global tree-like structure) and highly connected

groups of proteins (local structures). However, on Net05,

LGL only succeeds to emphasize the peripheral tree-like

structures but fails on the “central” part of the graph since

all the inner part of the graph is embed in an undecipher-

able manner. Results of SPF are shown in figures 6.c

and 7.c, this approach raises two main problems: first of

all, if the graph does not contain many biconnected com-

ponents or worst is biconnected (for instance in figure 7.c,

the central part of the drawing is a biconnected component

containing more than 21000 nodes, i.e. more than 70% of

the vertices) then this technique will consist in using LGL.

Secondly, the global structure of the graph is not shown,

indeed given two biconnected component of 6.c, it is not

possible to affirm if these two structures are close or not in

the graph when it is an essential information.

Finaly, results of our approach are shown in figures 6.d

and 7.d. The global tree-like property is well emphasized

by our algorithm. In Net05 (see figure 6.d), high level

branches of the graph appear clearly. Moreover another in-

formation is highlighted by our algorithm: these branches

are “plugged” into several highly connected subnetworks.

These subnetworks are the pivots of the network. Thus, one

can see the peripheral and also the inner tree-like structure

of the graph. Furthemore, the local structures of the graph

are well shown, for instance in figure 7.d, groups of pro-

teins are clearly visible.

5 Conclusion

In this paper, we presented an algorithm to lay out

large quasi-tree graphs. This is done by first detecting

typical topological features contained in quasi-tree graphs

and then by drawing these structures using appropriate al-

gorithms. Our method addresses a challenging problem

which consists in computing a layout that emphasizes the

tree-like property of the graph in an acceptable computa-

tion time.

We compared our results on real data coming from bi-

ology and an internet mapping project to those obtained

by well knwon algorithms. We have shown that even if

our method is not the most efficient in term of computation

time, it improves the readability of the results. Indeed our

approach allows to emphasize both global and local tree-

like structure of the graph.

In the near future, we plan to improve the computation

time by speeding up the layout step of our algorithm. It

could be done by improving the time efficiency of the LGL

algorithm. Another way could be to modify FM3 to im-

prove the quality of its results.

References

[1] J. Abello, F. Van Ham, and N. Krishnan. Ask-

graphview : A Large Graph Visualisation System.

IEEE Transactions on Visualization and Computer

Graphics, 12(5):669–676, 2006.

[2] A.T. Adai, S.V. Date, S. Wieland, and E.M. Marcotte.

Lgl: creating a map of protein function with an algo-

rithm for visualizing very large biological networks.

Journal Mol Biol, 340(1):179–190, 2004.

[3] Daniel Archambault, Tamara Munzner, and David

Auber. Smashing peacocks further: Drawing quasi-

trees from biconnected components. IEEE Transac-

tions on Visualization and Computer Graphics (Proc.

Vis/InfoVis 2006), 12(5):813–820, 2006.

[4] Daniel Archambault, Tamara Munzner, and David

Auber. Topolayout: Multi-level graph layout by topo-

logical features. IEEE Transactions on Visualization

and Computer Graphics, 13(2):305–317, 2007.

[5] M. Ashburner, C.A. Ball, J.A. Blake, D. Botstein,

H. Butler, J.M. Cherry, A.P. Davis, K. Dolinski, S.S.

Dwight, J.T. Eppig, M.A. Harris, D.P. Hill, L. Issel-

Tarver, A. Kasarskis, S. Lewis, J.C. Matese, J.E.

Richardson, M. Ringwald, G.M. Rubin, and G. Sher-

lock. Gene ontology: tool for the unification of bi-

ology. the gene ontology consortium. Nat Genet.,

25:25–29, 2000.

[6] D. Auber, Y. Chiricota, F. Jourdan, and G. Melançon.

Multiscale visualization of small-world networks. In

S. C. North and T. Munzner, editors, Proc. of IEEE

Information Visualization Symposium, pages 75–81,

Seattle, USA, 2003. IEEE Computer Press.

[7] A. Bairoch, R. Apweiler, C.H. Wu, W.C. Barker,

B. Boeckmann, S. Ferro, E. Gasteiger, H. Huang,

R. Lopez, M. Magrane, M.J. Martin, D.A. Natale,

C. O’Donovan, N. Redaschi, and LS. Yeh. The uni-

versal protein resource (uniprot). Nucleic Acids Res.,

33:D154–159, 2005.

[8] R. Barriot, J. Poix, A. Groppi, A. Barré, N. Goffard,

D. Sherman, I. Dutour, and A. de Daruvar. New

strategy for the representation and the integration of

biomolecular knowledge at a cellular scale. Nucl.

Acids Res, 32(12):3581–3589, 2004.

[9] B. Cheswick, H. Burch, and S. Branigan. Mapping

and visualizing the internet. In Proc. USENIX, 2000.

[10] T. Dwyer, K. Marriott, and P. Stuckey. Fast node

overlap removal. In Proc. Graph Drawing 2005

(GD’05), pages 153–164, 2005.

[11] Eades. A heuristic for graph drawing. In Congressus

Numerantium, volume 42, pages 149–160, 1984.

[12] M. Ester, H.-P. Kriegel, J. Sander, and X. Xu. A

density-based algorithm for discovering clusters in

large spatial databases with noise. In Proc. 2nd Int’l

Conf. on Knowledge Discovery and Data Mining,

pages 226–231, 2003.

[13] B. S. Everitt and G. Dunn. Applied Multivariate Data

Analysis. Arnold, 1991.

[14] A. Frick, A. Ludwig, and H.Mehldau. A fast adaptive

layout algorithm for undirected graphs. In Proceed-

ings Graph Drawing 1994 (GD’94), pages 388–403,

1994.

[15] Pawel Gajer and Stephen G. Kobourov. GRIP: Graph

dRawing with Intelligent Placement. InGraph Draw-

ing 2000 (GD’00), pages 222–228, 2000.

[16] S. Hachul and M. Jnger. Drawing large graphs

with a potential-field-based multilevel algorithm. In

Proc. Graph Drawing 2004 (GD’04), pages 285–295,

2004.

[17] D. Harel and Y. Koren. Drawing graphs with non-

uniform vertices. In Proc. Working Conference on

Advanced Visual Interfaces (AVI’02), pages 157–166.

ACM Press, 2002.

[18] D. Harel and Y. Koren. Graph drawing by high di-

mensional embedding. In Proc. Graph Drawing 2002

(GD’02), pages 207–219, 2002.

[19] D. Holten. Hierachical edge bundles: Visualization

of adjacency relations in hierarchical data. IEEE

Transactions on Visualization and Computer Graph-

ics, 12(5):805–812, 2006.

[20] P. Jaccard. Distribution de la flore alpine dans la

bassin de dranses et dans quelques régions voisines.

Bulletin de la Société Vaudoise des Sciences Na-

turelles, 37:241–272, 1901.

[21] M. Kanehisa and S. Goto. KEGG: Kyoto ency-

clopedia of genes and genomes. Nucl. Acids Res.,

28(1):27–30, 2000.

[22] Tomihisa Kamadaand Satoru Kawai. An algorithm

for drawing general undirected graphs. In Informa-

tion Processing Letters, volume 31, pages 7–15, apr

1989.

[23] J. B. Kruskal. On the shortest spanning subtree and

the traveling salesman problem. In Proceedings of

the American Mathematical Society, number 7, pages

48–50, 1956.

[24] Thomas M. J. Fruchtermanand Edward M. Reingold.

Graph Drawing by Force-directed Placement. In

Software-Practice and Experience, volume 21(11),

pages 1129–1164. nov 1991.

[25] S. T. Teoh and K. Ma. Rings: A technique for vi-

sualizing large hierarchies. In Proc. Graph Drawing

2002 (GD’02), pages 268–275, 2002.

[26] S. van Dongen. Graph Clustering by Flow Simula-

tion. PhD thesis, Universiteit Utrecht, 2000.

[27] L. Carmel Y. Koren and D. Harel. Ace: A fast mul-

tiscale eigenvectors computation for drawing huge

graphs. In Proc. IEEE Symposium on Information

Visualization, pages 137–144, 2002.

