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Abstract

We prove that the incidence chromatic number of the Cartesian
product Cm2Cn of two cycles equals 5 when m,n ≡ 0 (mod 5) and 6
otherwise.
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1 Introduction

Let G be a graph with vertex set V (G) and edge set E(G). An incidence

in G is a pair (v, e) with v ∈ V (G) and e ∈ E(G), such that v and e are
incident. We denote by I(G) the set of all incidences in G. Two incidences
(v, e) and (w, f) are adjacent if one of the following holds: (i) v = w, (ii)
e = f or (iii) the edge vw equals e or f .
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†E-mail: wujj0007@yahoo.com.tw. This work has been done while the author was

visiting the LaBRI, supported by a postdoctoral fellowship from Bordeaux 1 University.
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An incidence k-coloring of G is a mapping from I(G) to a set of k col-
ors such that adjacent incidences are assigned distinct colors. The incidence

chromatic number χi(G) of G is the smallest k such that G admits an inci-
dence k-coloring.

Incidence colorings have been introduced by Brualdi and Massey in [1]. In
this paper, the authors also conjectured that the relation χi(G) ≤ ∆(G) + 2
holds for every graph G, where ∆(G) denotes the maximum degree of G.
In [2], Guiduli disproved this Incidence Coloring Conjecture (ICC for short).
However, the ICC conjecture has been proved for several graph classes [2, 3,
4, 5, 6, 7, 8, 10, 11].

Let G and H be graphs. The Cartesian product G2H of G and H is the
graph with vertex set V (G)× V (H) where two vertices (u1, v1) and (u2, v2)
are adjacent if and only if either u1 = u2 and v1v2 ∈ E(H), or v1 = v2 and
u1u2 ∈ E(G). Let Pn and Cn denote respectively the path and the cycle on
n vertices. We will denote by Gm,n = Pm2Pn the grid with m rows and n

columns and by Tm,n = Cm2Cn the toroidal grid with m rows and n columns.
In this paper, we determine the incidence chromatic number of toroidal

grids and prove that this class of graphs satisfies the ICC:

Theorem 1 For every m,n ≥ 3, χi(Tm,n) = 5 if m,n ≡ 0 (mod 5) and

χi(Tm,n) = 6 otherwise.

In [5], Huang et al. proved that χi(Gm,n) = 5 for every m, n. Since
every toroidal graph Tm,n contains the grid Gm,n as a subgraph, we get that
χi(Tm,n) ≥ 5 for every m, n.

The paper is organized as follows. In Section 2 we give basic properties
and illustrate the techniques we shall use in the proof of our main result,
which is given in Section 3.

2 Preliminaries

Let G be a graph, u a vertex of G with maximum degree and v a neighbour
of u. Since in any incidence coloring of G all the incidences of the form (u, e)
have to get distinct colors and since all of them have to get a color distinct
from the color of (v, vu), we have:

Proposition 2 For every graph G, χi(G) ≥ ∆(G) + 1.
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The square G2 of a graph G is given by V (G2) = V (G) and uv ∈ E(G2)
if and only if uv ∈ E(G) or there exists w ∈ V (G) such that uw, vw ∈ E(G).
In other words, any two vertices within distance at most two in G are linked
by an edge in G2. Let now c be a proper vertex coloring of G2 and µ be
the mapping defined by µ(u, uv) = c(v) for every incidence (u, uv) in I(G).
It is not difficult to check that µ is indeed an incidence coloring of G (see
Example 8 below). Therefore we have:

Proposition 3 For every graph G, χi(G) ≤ χ(G2).

In [9], we studied the chromatic number of the squares of toroidal grids
and proved the following:

Theorem 4 Let Tm,n = Cm2Cn. Then χ(T 2
m,n) ≤ 7 except χ(T 2

3,3) = 9 and

χ(T 2
3,5) = χ(T 2

4,4) = 8.

By Proposition 3, this result provides upper bounds on the incidence
chromatic number of toroidal grids.

In [9], we also proved the following:

Theorem 5 For every m,n ≥ 3, χ(T 2
m,n) ≥ 5. Moreover, χ(T 2

m,n) = 5 if

and only if m,n ≡ 0 (mod 5).

In [10], the second author proved the following:

Theorem 6 If G is regular, then χi(G) = ∆(G) + 1 if and only if χ(G2) =
∆(G) + 1.

Since toroidal graphs are 4-regular, by combining Proposition 2, Theo-
rem 5 and Proposition 6 we get the following:

Corollary 7 For every m,n ≥ 3, χi(Tm,n) ≥ 5. Moreover, χi(Tm,n) = 5 if

and only if m,n ≡ 0 (mod 5).

Note here that this corollary is part of our main result.
Any vertex coloring of the square of a toroidal grid Tm,n can be given as

an m×n matrix whose entries correspond in an obvious way to the colors of
the vertices. Such a matrix will be called a pattern in the following.
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A =

1 2 3 4
3 4 5 6
5 6 7 8
7 8 1 2

7 8 1 2
4 2 1 3 2 4 3 1
3 4 5 6

1 2 3 4
6 4 3 5 4 6 5 3
5 6 7 8

3 4 5 6
8 6 5 7 6 8 7 5
7 8 1 2

5 6 7 8
2 8 7 1 8 2 1 7
1 2 3 4

Figure 1: A pattern A and the corresponding incidence coloring of T4,4
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Example 8 Figure 1 shows a 4×4 pattern A, which defines a vertex coloring
of T 2

4,4, and the incidence coloring of T4,4 induced by this pattern, according to
the discussion before Proposition 3. Note for instance that the four incidences
of the form (u, uv), for v being the second vertex in the third row, have color
6, which corresponds to the entry in row 3, column 2, of pattern A.

If A and B are patterns of size m × n and m × n′ respectively, we shall
denote by A+B the pattern of size m×(n+n′) obtained by “gluing” together
the patterns A and B. Moreover, we shall denote by ℓA, ℓ ≥ 2, the pattern
of size m× ℓn obtained by gluing together ℓ copies of the pattern A.

We now shortly describe the technique we shall use in the next section.
The main idea is to use a pattern for coloring the square of a toroidal grid
in order to get an incidence coloring of this toroidal grid. However, as shown
in [9], the squares of toroidal grids are not all 6-colorable. Therefore, we shall
use the notion of a quasi-pattern which corresponds to a vertex 6-coloring of
the square of a subgraph of a toroidal grid obtained by deleting some edges.
We can then use such a quasi-pattern in the same way as before to obtain
a partial incidence coloring of the toroidal grid. Finally, we shall prove that
such a partial incidence coloring can be extended to the whole toroidal grid
without using any additional color.

We shall also use the following:

Observation 9 For every m,n ≥ 3, p, q ≥ 1, if χi(Tm,n) ≤ k then

χi(Tpm,qn) ≤ k.

To see that, it is enough to observe that every incidence k-coloring c of
Tm,n can be extended to an incidence k-coloring cp,q of Tpm,qn by “repeating”
the pattern given by c, p times “vertically” and q times “horizontally”.

3 Proof of Theorem 1

According to Corollary 7 above, we only need to prove that χi(Tm,n) ≤ 6
for every m,n ≥ 3. The proof is based on a series of Lemmas, according to
different values of m and n.

We first consider the case when m ≡ 0 (mod 3). We have proved in [9]
the following:

Proposition 10 If k ≥ 1, n ≥ 3 and n even, then χ(T 2
3k,n) ≤ 6.
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B =
3
1
2

C =
1 4 2 5
2 5 3 6
3 6 1 4

D =
1 4 3 6
2 5 1 4
3 6 2 5

E =
2 5
3 6
1 4

B + C =
3 1 4 2 5
1 2 5 3 6
2 3 6 1 4

B +D + E =
3 1 4 3 6 2 5
1 2 5 1 4 3 6
2 3 6 2 5 1 4

Figure 2: Patterns and quasi-patterns for Lemma 11

2 5 6 1 4

5 6 3 4 1 2 4 5 2 3
1 2 5 3 6

3 6 4 2 5

6 4 1 5 2 3 5 6 3 1
2 3 6 1 4

1 4 5 3 6

4 5 2 6 3 1 6 4 1 2
3 1 4 2 5

Figure 3: Incidence coloring for Lemma 11

Here we prove:

Lemma 11 If k ≥ 1 and n ≥ 3, then χi(T3k,n) ≤ 6.

Proof. If n is even, the result follows from Propositions 3 and 10.
We thus assume that n is odd, and we let first k = 1. We consider three

cases.

1. n = 3.
We can easily get an incidence 6-coloring by coloring the incidences of
one dimension with {1, 2, 3} and the incidences of the other dimension
with {4, 5, 6}.
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F =

1 2 4
1 2 4
3 5 6
3 5 6

G =

1 2 3 4
1 2 3 4
3 4 5 6
3 4 5 6

H = 2F + 2G =

1 2 4 1 2 4 1 2 3 4 1 2 3 4
1 2 4 1 2 4 1 2 3 4 1 2 3 4
3 5 6 3 5 6 3 4 5 6 3 4 5 6
3 5 6 3 5 6 3 4 5 6 3 4 5 6

Figure 4: Quasi-patterns for Lemma 13

2. n = 4ℓ+ 1.
Let B and C be the patterns depicted in Figure 2 and consider the
quasi-pattern B+ℓC (the quasi-pattern B+C is depicted in Figure 2).
This quasi-pattern provides a 6-coloring of T 2

m,n if we delete all the edges
linking vertices in the first column to vertices in the second column.
We can use this quasi-pattern to obtain an incidence 6-coloring of Tm,n

by modifying six incidence colors, as shown in Figure 3 (modified colors
are in boxes).

3. n = 4ℓ+ 3.
Let B, D and E be the patterns depicted in Figure 2 and consider the
quasi-pattern B + ℓD + E (the quasi-pattern B + D + E is depicted
in Figure 2). As in the previous case, we can use this quasi-pattern
to obtain an incidence 6-coloring of Tm,n by modifying the same six
incidence colors.

For k ≥ 2, the result now directly follows from Observation 9.
We now consider the case when m ≡ 0 (mod 4). For m ≡ 0 (mod 5), we

have proved in [9] the following:

Proposition 12 If k ≥ 1, n ≥ 5 and n 6= 7, then χ(T 2
5k,n) ≤ 6.

Here we prove:

Lemma 13 If k ≥ 1, n ≥ 3 and (k, n) 6= (1, 5), then χi(T4k,n) ≤ 6.

Proof. For n = 5, the result holds by Proposition 12, except for k = 1.
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3 5 6
4 2 1 4 2 1
x x x

x x x
4 2 1 4 2 1
3 4 5

1 2 4
6 5 3 6 5 3
x x x

x x x
6 5 3 6 5 3
1 2 4

3 4 5 6
4 2 1 3 2 4 3 1
x x x x

x x x x
4 2 1 3 2 4 3 1
3 4 5 6

1 2 3 4
6 4 3 5 4 6 5 3
x x x x

x x x x
6 4 3 5 4 6 5 3
1 2 3 4

Figure 5: Partial incidence colorings for Lemma 13
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I =

6 1 2 3 4 5
3 4 5 6 1 2
5 6 1 2 3 4
2 3 4 5 6 1
4 5 6 1 2 3

I ′ =

6 1 2 3 4 5
6 1 2 3 4 5
6 1 2 3 4 5
3 4 5 6 1 2
5 6 1 2 3 4
2 3 4 5 6 1
4 5 6 1 2 3

Figure 6: Patterns for Lemma 14

Assume now k = 1 and n 6= 5 and consider the quasi-patterns F and G

depicted in Figure 4. From these patterns, we can derive a partial incidence
6-coloring of T4,3 and T4,4, respectively, as shown in Figure 5, where the
uncolored incidences are denoted by x. It is easy to check that every such
incidence has only four forbidden colors and that only incidences belonging to
a same edge have to be distinct. Therefore, these partial incidence colorings
can be extended to incidence 6-colorings of T4,3 and T4,4.

For n ≥ 6, we shall use the quasi-pattern H = pF + qG where p and
q are such that n = 3p + 4q (recall that every integer except 1,2 and 5
can be written in this form). The quasi-pattern H = 2F + 2G is depicted
in Figure 4. As in the previous case, this quasi-pattern provides a partial
incidence 6-coloring of T4,n that can be extended to an incidence 6-coloring
of T4,n.

For k ≥ 2, the result now directly follows from Observation 9.
We now consider the remaining cases.

Lemma 14 If m,n ≥ 5, m 6= 6, 8 and n 6= 7, then χi(Tm,n) ≤ 6.

Proof. Assume m,n ≥ 5, m 6= 6, 8 and n 6= 7. By Proposition 12, we have
χ(T 2

5k,n) ≤ 6 for n 6= 7. Hence, there exists a vertex 6-coloring of T 2
5k,n which

corresponds to some pattern M of size 5k × n. We claim that each row of
pattern M can be repeated one or three times to get quasi-patterns that can
be extended to incidence 6-colorings of the corresponding toroidal grids.

Let for instance M ′ be the quasi-pattern obtained from M by repeating
the first row ofM three times. The quasi-patternM ′ has thus size (5k+2)×n.
The quasi-pattern M ′ induces a partial incidence coloring of T5k+2,n in which
the only uncolored incidences are those lying on the edges linking vertices in
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4 5 6 1 2 3
5 1 6 2 1 3 2 4 3 5 4 6
x x x x x x

y y y y y y

5 1 6 2 1 3 2 4 3 5 4 6
z z z z z z

x x x x x x
5 1 6 2 1 3 2 4 3 5 4 6
3 4 5 6 1 2

6 1 2 3 4 5
2 4 3 5 4 6 5 1 6 2 1 3
5 6 1 2 3 4

3 4 5 6 1 2
4 6 5 1 6 2 1 3 2 4 3 5
2 3 4 5 6 1

5 6 1 2 3 4
1 3 2 4 3 5 4 6 5 1 6 2
4 5 6 1 2 3

2 3 4 5 6 1
3 5 4 6 5 1 6 2 1 3 2 4
6 1 2 3 4 5

Figure 7: A partial incidence coloring of T7,6
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the first row to vertices in the second row and on the edges linking vertices
in the second row to vertices in the third row.

We illustrate this in Figure 6 with a pattern I of size 5× 6 (this pattern
induces a vertex 6-coloring of T 2

5,6) and its associated pattern I ′ of size 7 ×
6. The partial incidence coloring of T7,6 obtained from I ′ is then given in
Figure 7, where uncolored incidences are denoted by x, y and z.

Observe now that in each column, the two incidences denoted by x have
three forbidden colors in common and each of them has four forbidden colors
in total. Therefore, we can assign them the same color. Now, in each column,
the incidences denoted by y and z have four forbidden colors in common (the
color assigned to x is one of them) and each of them has five forbidden colors
in total. They can be thus colored with distinct colors. Doing that, we
extend the partial incidence coloring of T7,6 to an incidence 6-coloring of T7,6.

The same technique can be used for obtaining an incidence 6-coloring of
T5k+2,n since all the columns are “independent” in the quasi-pattern M ′, with
respect to uncolored incidences.

If we repeat three times several distinct rows of pattern M , each repeated
row will produce a chain of four uncolored incidences, as before, and any two
such chains in the same column will be “independent”, since they will be
separated by an edge whose incidences are both colored. Hence, we will be
able to extend to corresponding quasi-pattern to an incidence 6-coloring of
the toroidal grid, by assigning available colors to each chain as we did above.

Starting from a pattern M of size 5k × n, we can thus obtain quasi-
patterns of size (5k + 2) × n, (5k + 4) × n, (5k + 6) × n and (5k + 8) × n,
by repeating respectively one, two, three or four lines from M . Using these
quasi-patterns, we can produce incidence 6-colorings of the toroidal grid Tm,n,
m,n ≥ 5, n 6= 7, for every m except m = 6, 8.

The only remaining cases are m = 4, n = 5 and m = n = 7. Then we
have:

Lemma 15 χi(T4,5) ≤ 6 and χi(T7,7) ≤ 6.

Proof. Let m = 4 and n = 5. Consider the pattern C of size 3× 4 depicted
in Figure 2. As in the proof of Lemma 14, we can repeat the first row of C
three times to get a quasi-pattern C ′ that can be extended to an incidence
6-coloring of T5,4. We then exchange m and n to get an incidence 6-coloring
of T4,5, depicted in Figure 8 (the colors assigned to uncolored incidences are
drawn in boxes).
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1 1 1 2 3

4 3 6 4 3 6 5 4 6 5
2 2 2 3 1

5 5 5 6 4

1 6 3 1 6 3 2 1 3 2
4 4 4 5 6

2 2 2 3 1

6 3 5 6 3 5 4 6 5 4
1 1 1 2 3

4 4 4 5 6

3 6 2 3 6 2 1 3 2 1
5 5 5 6 4

Figure 8: An incidence 6-coloring of T4,5

J =

3 5 6 3 4 5 6
1 2 4 1 2 3 4
1 2 4 1 2 3 4
3 5 6 3 4 5 6
3 5 6 3 4 5 6
1 2 4 1 2 3 4
1 2 4 1 2 3 4

Figure 9: A quasi-pattern for Lemma 15
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1 2 4 1 2 3 4

6 4 3 1 5 2 6 4 3 5 4 6 5 3

5 6 3 5 6 1 2

3 5 6 3 4 5 6
4 2 1 4 2 1 4 2 1 3 2 4 3 1
y y y y y y y

5 6 3 5 6 1 2
4 2 1 4 2 1 4 2 1 3 2 4 3 1
3 5 6 3 4 5 6

1 2 4 1 2 3 4
6 5 3 6 5 3 6 4 3 5 4 6 5 3
x x x x x x x

x x x x x x x
6 5 3 6 5 3 6 4 3 5 4 6 5 3
1 2 4 1 2 3 4

3 5 6 3 4 5 6
4 2 1 4 2 1 4 2 1 3 2 4 3 1
x x x x x x x

x x x x x x x
4 2 1 4 2 1 4 2 1 3 2 4 3 1
3 5 6 3 4 5 6

Figure 10: A partial incidence 6-coloring of T7,7
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Let nowm = n = 7 and consider the quasi-pattern J depicted in Figure 9.
This quasi-pattern provides the partial incidence coloring of T7,7 given in
Figure 10, where incidences with modified colors are in boxes and uncolored
incidences are denoted by x and y. Observe now that the incidences denoted
by y have five forbidden colors while the incidences denoted by x have four
forbidden colors. Therefore, this partial coloring can be extended to an
incidence 6-coloring of T7,7.

We are now able to prove our main result:
Proof of Theorem 1. From Corollary 7, we get that χi(Tm,n) ≥ 5 for every
m, n, and that equality holds if and only if m,n ≡ 0 (mod 5).

For m = 3 or 6, the result follows from Lemma 11 and, for m = 4 or 8,
the result follows from Lemma 13, except the case when m = 4 and n = 5
which follows from Lemma 15.

Assume now that m > 6 and m 6= 7. If n = 7, the result follows from
Lemma 15 when m = 7 and from Lemma 14 when m 6= 7, by exchanging m

and n. Finally, if n 6= 7, the result follows from Lemma 14.
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