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Abstract

An incidence in a graph G is a pair (v, e) with v ∈ V (G) and
e ∈ E(G), such that v and e are incident. Two incidences (v, e) and
(w, f) are adjacent if v = w, or e = f , or the edge vw equals e or
f . The incidence chromatic number of G is the smallest k for which
there exists a mapping from the set of incidences of G to a set of k
colors that assigns distinct colors to adjacent incidences.

In this paper, we prove that the incidence chromatic number of the
toroidal grid Tm,n = Cm2Cn equals 5 when m,n ≡ 0 (mod 5) and 6
otherwise.
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1 Introduction

Let G be a graph with vertex set V (G) and edge set E(G). An incidence

in G is a pair (v, e) with v ∈ V (G) and e ∈ E(G), such that v and e are
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incident. We denote by I(G) the set of all incidences in G. Two incidences
(v, e) and (w, f) are adjacent if one of the following holds: (i) v = w, (ii)
e = f , (iii) the edge vw equals e or f .

An incidence k-coloring of G is a mapping from I(G) to a set of k col-
ors such that adjacent incidences are assigned distinct colors. The incidence

chromatic number χi(G) of G is the smallest k such that G admits an inci-
dence k-coloring.

Incidence colorings were introduced by Brualdi and Massey in [2]. In
that paper, the authors also conjectured that the relation χi(G) ≤ ∆(G) +
2 holds for every graph G, where ∆(G) denotes the maximum degree of
G. In [5], Guiduli disproved this Incidence Coloring Conjecture (ICC for
short). Incidence coloring of various classes of graphs has been considered
in the litterature [5, 6, 7, 8, 9, 11, 12, 13, 15, 16] and the ICC conjecture
was proved to hold for several classes such as trees, complete graphs and
complete bipartite graphs [2], subcubic graphs [11], K4-minor free graphs [7],
graphs with maximum average degree less than 22

9
[6], square, hexagonal and

honeycomb meshes [8], powers of paths [9], cubic Halin graphs [13], and Halin
graphs with maximum degree at least 5 [15]. The problem of determining
whether a given graph has incidence chromatic number at most k or not was
shown to be NP-complete by Li and Tu [10].

Incidence colorings are related to various types of vertex, edge or arc
colorings. For any graph G, let H = H(G) be the bipartite graph given by

V (H) = V (G) ∪ E(G)

and

E(H) = {(v, e) : v ∈ V (G), e ∈ E(G), e and v are incident in G}.

Each edge of H corresponds to an incidence of G and, therefore, any inci-
dence coloring of G corresponds to a strong edge coloring (sometimes called
a distance-two edge-coloring) of H , that is a proper coloring of the edges of
H such that each color class is an induced matching in H [3].

The subdivision S(G) of G is the graph obtained from G by inserting a
vertex of degree two on every edge of G. Any incidence coloring of G then
corresponds to a distance-two vertex coloring of the line-graph L(S(G)) of
S(G), that is a vertex coloring such that any two vertices having the same
color are at distance at least 3.
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Let now G∗ be the digraph obtained from G by replacing each edge of
G by two opposite arcs. Any incidence (v, e) of G, with e = vw, can then
be associated with the arc vw in G∗. Therefore, any incidence coloring of G
corresponds to an arc-coloring of G∗ satisfying (i) any two arcs having the
same source vertex (of the form uv and uw) are assigned distinct colors, (ii)
any two consecutive arcs (of the form uv and vw) are assigned distinct colors.
Hence, for every color c, the subgraph of G∗ induced by the c-colored arcs
is a forest consisting of directed stars (whose arcs are directed towards the
center). The incidence chromatic number of G therefore equals the directed

star-arboricity of G∗, as introduced by Algor and Alon in [1].
Let G and H be graphs. The Cartesian product G2H of G and H is the

graph with vertex set V (G)× V (H) where two vertices (u1, v1) and (u2, v2)
are adjacent if and only if either u1 = u2 and v1v2 ∈ E(H), or v1 = v2 and
u1u2 ∈ E(G). Let Pn and Cn denote respectively the path and the cycle on
n vertices. We will denote by Gm,n = Pm2Pn the grid with m rows and n

columns and by Tm,n = Cm2Cn the toroidal grid with m rows and n columns.
In this paper, we determine the incidence chromatic number of toroidal

grids and prove that this class of graphs satisfies the ICC:

Theorem 1 For every m,n ≥ 3, χi(Tm,n) = 5 if m,n ≡ 0 (mod 5) and

χi(Tm,n) = 6 otherwise.

In [8], Huang, Wang and Chung proved that χi(Gm,n) = 5 for every m,
n. Since every toroidal grid Tm,n contains the grid Gm,n as a subgraph, we
get that χi(Tm,n) ≥ 5 for every m, n.

The paper is organized as follows. In Section 2 we give basic properties
and illustrate the techniques we shall use in the proof of our main result,
which is given in Section 3.

2 Preliminaries

Let G be a graph, u a vertex of G with maximum degree and v a neighbour
of u. Since in any incidence coloring of G all the incidences of the form (u, e)
have to get distinct colors and all of them have to get a color different from
the color of (v, vu), we have:

Proposition 2 For every graph G, χi(G) ≥ ∆(G) + 1.
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The square G2 of a graph G is given by V (G2) = V (G) and uv ∈ E(G2)
if and only if uv ∈ E(G) or there exists w ∈ V (G) such that uw, vw ∈ E(G).
In other words, any two vertices within distance at most two in G are linked
by an edge in G2. Let now c be a proper vertex coloring of G2 and µ be
the mapping defined by µ(u, uv) = c(v) for every incidence (u, uv) in I(G).
It is not difficult to check that µ is indeed an incidence coloring of G (see
Example 8 below). Therefore we have:

Proposition 3 For every graph G, χi(G) ≤ χ(G2).

In [4], Fertin, Goddard and Raspaud proved that the chromatic number
of the square of any d-dimensional grid Gn1,...,nd

is at most 2d+1, which thus
implies the above mentioned result concerning 2-dimensional grids [8].

In [14], we studied the chromatic number of the squares of toroidal grids
and proved the following:

Theorem 4 Let Tm,n = Cm2Cn. Then χ(T 2
m,n) ≤ 7 except that χ(T 2

3,3) = 9
and χ(T 2

3,5) = χ(T 2
4,4) = 8.

By Proposition 3, this result provides upper bounds on the incidence
chromatic number of toroidal grids.

In [14], we also proved the following:

Theorem 5 For every m,n ≥ 3, χ(T 2
m,n) ≥ 5. Moreover, χ(T 2

m,n) = 5 if

and only if m,n ≡ 0 (mod 5).

In [16], the second author proved the following:

Theorem 6 For a regular graph G, χi(G) = ∆(G)+1 if and only if χ(G2) =
∆(G) + 1.

Since toroidal grids are 4-regular, by combining Proposition 2, Theorems 5
and 6 we get the following:

Corollary 7 For every m,n ≥ 3, χi(Tm,n) ≥ 5. Moreover, χi(Tm,n) = 5 if

and only if m,n ≡ 0 (mod 5).

Note here that this corollary is part of our main result.
Any vertex coloring of the square of a toroidal grid Tm,n can be given as

an m×n matrix whose entries correspond in an obvious way to the colors of
the vertices. Such a matrix will be called an m× n pattern in the following.
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A =

1 2 3 4
3 4 5 6
5 6 7 8
7 8 1 2

7 8 1 2
4 2 1 3 2 4 3 1
3 4 5 6

1 2 3 4
6 4 3 5 4 6 5 3
5 6 7 8

3 4 5 6
8 6 5 7 6 8 7 5
7 8 1 2

5 6 7 8
2 8 7 1 8 2 1 7
1 2 3 4

Figure 1: A pattern A and the corresponding incidence coloring of T4,4.
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Example 8 Fig. 1 shows a 4×4 pattern A, which defines a vertex coloring of
T 2
4,4, and the incidence coloring of T4,4 induced by this pattern, according to

the discussion before Proposition 3. Note for instance that the four incidences
of the form (u, uv), for u being the second vertex in the third row, have color
6, which corresponds to the entry in row 3, column 2, of pattern A.

If A and B are patterns of size m × n and m × n′ respectively, we shall
denote by A+B the pattern of size m×(n+n′) obtained by “gluing” together
the patterns A and B. Moreover, we shall denote by ℓA, ℓ ≥ 2, the pattern
of size m× ℓn obtained by gluing together ℓ copies of the pattern A.

We now shortly describe the technique we shall use in the next section.
The main idea is to use a pattern for coloring the square of a toroidal grid
in order to get an incidence coloring of this toroidal grid. However, as shown
in [14], the squares of toroidal grids are not all 6-colorable. Therefore, we shall
use the notion of a quasi-pattern which corresponds to a vertex 6-coloring of
the square of a subgraph of a toroidal grid obtained by deleting some edges
(namely those edges that cause a conflict when transforming a vertex coloring
to its corresponding incidence coloring). We can then use such a quasi-
pattern in the same way as before to obtain a partial incidence coloring of the
toroidal grid. Finally, we shall prove that such a partial incidence coloring
can be extended to the whole toroidal grid without using any additional
color (most of the time, several distinct extensions are available and we shall
propose one of them).

We shall also use the following:

Remark 9 For every m,n ≥ 3, p, q ≥ 1, if χi(Tm,n) ≤ k then χi(Tpm,qn) ≤
k.

To see that, it is enough to observe that every incidence k-coloring c of
Tm,n can be extended to an incidence k-coloring cp,q of Tpm,qn by “repeating”
the pattern given by c, p times “vertically” and q times “horizontally”.

3 Proof of Theorem 1

According to Corollary 7, we only need to prove that χi(Tm,n) ≤ 6 for every
m,n ≥ 3. The proof is based on a series of lemmas, according to different
values of m and n.

We first consider the case when m ≡ 0 (mod 3). We have proved in [14]
the following:
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B =
3
1
2

C =
1 4 2 5
2 5 3 6
3 6 1 4

D =
1 4 3 6
2 5 1 4
3 6 2 5

E =
2 5
3 6
1 4

B + C =
3 1 4 2 5
1 2 5 3 6
2 3 6 1 4

B +D + E =
3 1 4 3 6 2 5
1 2 5 1 4 3 6
2 3 6 2 5 1 4

Figure 2: Patterns and quasi-patterns for Lemma 11.

2 5 6 1 4

5 6 3 4 1 2 4 5 2 3
1 2 5 3 6

3 6 4 2 5

6 4 1 5 2 3 5 6 3 1
2 3 6 1 4

1 4 5 3 6

4 5 2 6 3 1 6 4 1 2
3 1 4 2 5

Figure 3: Incidence coloring for Lemma 11.

Proposition 10 If k ≥ 1, n ≥ 3 and n even, then χ(T 2
3k,n) ≤ 6.

Here we prove:

Lemma 11 If k ≥ 1 and n ≥ 3, then χi(T3k,n) ≤ 6.

Proof. If n is even, the result follows from Propositions 3 and 10.
We thus assume that n is odd, and we let first k = 1. We consider three

cases.

1. n = 3.
We can easily get an incidence 6-coloring by coloring the incidences of
one dimension with {1, 2, 3} and the incidences of the other dimension
with {4, 5, 6}.
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F =

1 2 4
1 2 4
3 5 6
3 5 6

G =

1 2 3 4
1 2 3 4
3 4 5 6
3 4 5 6

H = 2F + 2G =

1 2 4 1 2 4 1 2 3 4 1 2 3 4
1 2 4 1 2 4 1 2 3 4 1 2 3 4
3 5 6 3 5 6 3 4 5 6 3 4 5 6
3 5 6 3 5 6 3 4 5 6 3 4 5 6

Figure 4: Quasi-patterns for Lemma 13.

2. n = 4ℓ+ 1.
Let B and C be the patterns depicted in Fig. 2 and consider the quasi-
pattern B + ℓC (the quasi-pattern B + C is depicted in Fig. 2). This
quasi-pattern provides a 6-coloring of T 2

m,n if we delete all the edges
linking vertices in the first column to vertices in the second column.
We can use this quasi-pattern to obtain an incidence 6-coloring of Tm,n

by modifying six incidence colors, as shown in Fig. 3 (modified colors
are in boxes).

3. n = 4ℓ+ 3.
Let B, D and E be the patterns depicted in Fig. 2 and consider the
quasi-pattern B + ℓD + E (the quasi-pattern B + D + E is depicted
in Fig. 2). As in the previous case, we can use this quasi-pattern
to obtain an incidence 6-coloring of Tm,n by modifying the same six
incidence colors.

For k ≥ 2, the result now directly follows from Remark 9.
We now consider the case when m ≡ 0 (mod 4). For m ≡ 0 (mod 5), we

have proved in [14] the following:

Proposition 12 If k ≥ 1, n ≥ 5 and n 6= 7, then χ(T 2
5k,n) ≤ 6.

Here we prove:

Lemma 13 If k ≥ 1, n ≥ 3 and (k, n) 6= (1, 5), then χi(T4k,n) ≤ 6.

Proof. For n = 5, the result holds by Proposition 12, except for k = 1.
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3 5 6
4 2 1 4 2 1
x x x

x x x
4 2 1 4 2 1
3 5 6

1 2 4
6 5 3 6 5 3
x x x

x x x
6 5 3 6 5 3
1 2 4

3 4 5 6
4 2 1 3 2 4 3 1
x x x x

x x x x
4 2 1 3 2 4 3 1
3 4 5 6

1 2 3 4
6 4 3 5 4 6 5 3
x x x x

x x x x
6 4 3 5 4 6 5 3
1 2 3 4

Figure 5: Partial incidence colorings for Lemma 13.
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I =

6 1 2 3 4 5
3 4 5 6 1 2
5 6 1 2 3 4
2 3 4 5 6 1
4 5 6 1 2 3

I ′ =

6 1 2 3 4 5
6 1 2 3 4 5
6 1 2 3 4 5
3 4 5 6 1 2
5 6 1 2 3 4
2 3 4 5 6 1
4 5 6 1 2 3

Figure 6: Patterns for Lemma 14.

Assume now k = 1 and n 6= 5 and consider the quasi-patterns F and G

depicted in Fig. 4. From these patterns, we can derive a partial incidence 6-
coloring of T4,3 and T4,4, respectively, as shown in Fig. 5, where the uncolored
incidences are denoted by x. It is easy to check that every such incidence
has only four forbidden colors and that only incidences belonging to a same
edge have to be distinct. Therefore, these partial incidence colorings can be
extended to incidence 6-colorings of T4,3 and T4,4.

For n ≥ 6, we shall use the quasi-pattern H = pF + qG where p and q

satisfy n = 3p+4q (recall that every integer except 1,2 and 5 can be written
in this form). The quasi-pattern H = 2F + 2G is depicted in Fig. 4. As in
the previous case, this quasi-pattern provides a partial incidence 6-coloring
of T4,n that can be extended to an incidence 6-coloring of T4,n.

For k ≥ 2, the result now directly follows from Remark 9.
We now consider the remaining cases.

Lemma 14 If m,n ≥ 5, m 6= 6, 8 and n 6= 7, then χi(Tm,n) ≤ 6.

Proof. Assume m,n ≥ 5, m 6= 6, 8 and n 6= 7. By Proposition 12, we have
χ(T 2

5k,n) ≤ 6 for n 6= 7. Hence, there exists a vertex 6-coloring of T 2
5k,n which

corresponds to some pattern M of size 5k × n. We claim that each row of
pattern M can be repeated one or three times to get quasi-patterns that can
be extended to incidence 6-colorings of the corresponding toroidal grids.

Let for instance M ′ be the quasi-pattern obtained from M by repeating
the first row ofM three times. The quasi-patternM ′ has thus size (5k+2)×n.
The quasi-pattern M ′ induces a partial incidence coloring of T5k+2,n in which
the only uncolored incidences are those lying on the edges linking vertices in
the first row to vertices in the second row and on the edges linking vertices
in the second row to vertices in the third row.
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4 5 6 1 2 3
5 1 6 2 1 3 2 4 3 5 4 6
x x x x x x

y y y y y y

5 1 6 2 1 3 2 4 3 5 4 6
z z z z z z

x x x x x x
5 1 6 2 1 3 2 4 3 5 4 6
3 4 5 6 1 2

6 1 2 3 4 5
2 4 3 5 4 6 5 1 6 2 1 3
5 6 1 2 3 4

3 4 5 6 1 2
4 6 5 1 6 2 1 3 2 4 3 5
2 3 4 5 6 1

5 6 1 2 3 4
1 3 2 4 3 5 4 6 5 1 6 2
4 5 6 1 2 3

2 3 4 5 6 1
3 5 4 6 5 1 6 2 1 3 2 4
6 1 2 3 4 5

Figure 7: A partial incidence coloring of T7,6.
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We illustrate this in Fig. 6 with a pattern I of size 5 × 6 (this pattern
induces a vertex 6-coloring of T 2

5,6) and its associated pattern I ′ of size 7× 6.
The partial incidence coloring of T7,6 obtained from I ′ is then given in Fig. 7,
where uncolored incidences are denoted by x, y and z.

Observe now that in each column, the two incidences denoted by x have
three forbidden colors in common and each of them has four forbidden colors
in total. Therefore, we can assign them the same color. Now, in each column,
the incidences denoted by y and z have four forbidden colors in common (the
color assigned to x is one of them) and each of them has five forbidden colors
in total. They can be thus colored with distinct colors. Doing that, we
extend the partial incidence coloring of T7,6 to an incidence 6-coloring of T7,6.

The same technique can be used for obtaining an incidence 6-coloring of
T5k+2,n since all the columns are “independent” in the quasi-pattern M ′, with
respect to uncolored incidences.

If we repeat three times several distinct rows of pattern M , each repeated
row will produce a chain of four uncolored incidences, as before, and any two
such chains in the same column will be “independent”, since they will be
separated by an edge whose incidences are both colored. Hence, we will be
able to extend the corresponding quasi-pattern to an incidence 6-coloring of
the toroidal grid, by assigning available colors to each chain as we did above.

Starting from a pattern M of size 5k × n, we can thus obtain quasi-
patterns of size (5k + 2) × n, (5k + 4) × n, (5k + 6) × n and (5k + 8) × n,
by repeating respectively one, two, three or four lines from M . Using these
quasi-patterns, we can produce incidence 6-colorings of the toroidal grid Tm,n,
m,n ≥ 5, n 6= 7, for every m except m = 6, 8.

The only remaining cases are m = 4, n = 5 and m = n = 7. Then we
have:

Lemma 15 χi(T4,5) ≤ 6 and χi(T7,7) ≤ 6.

Proof. Let m = 4 and n = 5. Consider the pattern C of size 3× 4 depicted
in Fig. 2. As in the proof of Lemma 14, we can repeat the first row of C
three times to get a quasi-pattern C ′ that can be extended to an incidence
6-coloring of T5,4. We then exchange m and n to get an incidence 6-coloring
of T4,5, depicted in Fig. 8 (the colors assigned to uncolored incidences are
drawn in boxes).

Let now m = n = 7 and consider the quasi-pattern J depicted in Fig. 9.
This quasi-pattern provides the partial incidence coloring of T7,7 given in
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1 1 1 2 3

4 3 6 4 3 6 5 4 6 5
2 2 2 3 1

5 5 5 6 4

1 6 3 1 6 3 2 1 3 2
4 4 4 5 6

2 2 2 3 1

6 3 5 6 3 5 4 6 5 4
1 1 1 2 3

4 4 4 5 6

3 6 2 3 6 2 1 3 2 1
5 5 5 6 4

Figure 8: An incidence 6-coloring of T4,5.

J =

3 5 6 3 4 5 6
1 2 4 1 2 3 4
1 2 4 1 2 3 4
3 5 6 3 4 5 6
3 5 6 3 4 5 6
1 2 4 1 2 3 4
1 2 4 1 2 3 4

Figure 9: A quasi-pattern for Lemma 15.
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1 2 4 1 2 3 4

6 4 3 1 5 2 6 4 3 5 4 6 5 3

5 6 3 5 6 1 2

3 5 6 3 4 5 6
4 2 1 4 2 1 4 2 1 3 2 4 3 1
y y y y y y y

5 6 3 5 6 1 2
4 2 1 4 2 1 4 2 1 3 2 4 3 1
3 5 6 3 4 5 6

1 2 4 1 2 3 4
6 5 3 6 5 3 6 4 3 5 4 6 5 3
x x x x x x x

x x x x x x x
6 5 3 6 5 3 6 4 3 5 4 6 5 3
1 2 4 1 2 3 4

3 5 6 3 4 5 6
4 2 1 4 2 1 4 2 1 3 2 4 3 1
x x x x x x x

x x x x x x x
4 2 1 4 2 1 4 2 1 3 2 4 3 1
3 5 6 3 4 5 6

Figure 10: A partial incidence 6-coloring of T7,7.
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Fig. 10, where incidences with modified colors are in boxes and uncolored
incidences are denoted by x and y. Observe now that the incidences denoted
by y have five forbidden colors while the incidences denoted by x have four
forbidden colors. Therefore, this partial coloring can be extended to an
incidence 6-coloring of T7,7.

By Corollary 7 and Lemmas 11-15, Theorem 1 follows directly.
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