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Detecting structural changes and command hierarchies

in dynamic social networks

Romain Bourqui∗ Frédéric Gilbert† Paolo Simonetto† Faraz Zaidi† Umang Sharan‡

Fabien Jourdan§

Abstract

Community detection in social networks varying with

time is a common yet challenging problem whereby efficient

visualization of evolving relationships and implicit hierar-

chical structure are important task. The main contribution

of this paper is towards establishing a framework to an-

alyze such social networks. The proposed framework is

based on dynamic graph discretization and graph cluster-

ing. The framework allows detection of major structural

changes over time, identifies events analyzing temporal di-

mension and reveals command hierarchies in social net-

works. We use the Catalano/Vidro dataset for empirical

evaluation and observe that our framework provides a sat-

isfactory assessment of the social and hierarchical structure

present in the dataset.

1. Introduction

Past work in social network analysis [17] has shown

that the knowledge of community structure and relationship

strength has important applications in web analytics [5],

marketing studies [7] and homeland security [18, 16]. We

can further improve our understanding of the social struc-

ture and changing roles within a network by exploiting the

temporal evolution of relationships within the network. So-

cial networks can exhibit temporal dynamics in a number of

ways. The instances in the data may appear and disappear

over time whereby different time windows may exhibit dif-

ferent characteristics. For example, various news web sites

and blogs are dependent on the temporal events taking place

globally. Moreover, the relationships in the data may repre-

sent events and associations that are significant at a particu-

lar point of time. If this is the case, then the time associated
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with these events should be modeled to capture important

information. For example the time of a phone call just be-

fore a criminal activity in a terrorist network might indicate

transmission of important information.

Community detection in social networks is of special in-

terest to data mining researchers as it finds immediate ap-

plication in marketing analytics, sociological and behav-

ioral studies, etc. Previous work has focused on commu-

nity detection through different clustering algorithms (K-

means, agglomerative-hierarchical, etc) and summarization

techniques [6]. For example [11] introduce a tool called C-

Group for temporal analysis of social networks. The tool

focuses on individuals rather than analyzing overall struc-

tural changes in the entire network. [9] proposes a sliding

time frame algorithm to display active ties between actors in

a sliding time frame covering a time interval. The approach

works well to trace the evolution of relationships between

individuals but does not capture the community structure

of the social network. Work has been done on discover-

ing changing clusters in dynamic data [10] and clustering

evolving data streams [1]. However, these techniques are

either insufficient or inefficient to characterize the changes

in community structure with time in an evolving network.

In this paper, we present a framework for intuitive visu-

alization of changing communities over time. The main ob-

jectives are to identify the changing relationships in a social

network through visualization, discover important events by

observing any radical changes in the social structure and in-

fer a role hierarchy (if present) by summarizing the social

network dynamics.

We use the Catalano/Vidro data set for empirical eval-

uation of our framework [3]. The data set consists the in-

formation of 9834 telephone calls between 400 cellphones

over a 10 day period in June 2006 in the Isla Del Sueno.

The records provide critical information about the Cata-

lano social network. The data set records each call as 5-

tuple (from user id, to user id, timestamp, call duration,

cell tower location). We present the discussion in the next

sections assuming the data set as a graph G = (V,E) where
every edge e = (u, v) ∈ E represents a call between cell-



phones u and v.
The rest of the paper is organized as follows: We present

the proposed framework in section 2. The details of the de-

composition algorithm and the network evolution measure

are presented in sections 3 and 4. In section 5, we intro-

duce a novel heuristic to determine the role hierarchy of the

network. Finally in section 6, we present conclusions and

directions for future research.

2. Framework

The given social network can be defined as a dynamic

graph G described over a time period [0 . . . T ]. The pro-

posed framework consists of four major steps which are

briefly discussed below with details presented in the follow-

ing sections.

In the first step, we convert the input social network and

the corresponding dynamic graph G into a set of snapshot

graphs. We decompose G into a sequence of static snap-

shots G[0,ǫ], . . . , G[T−ǫ,T ] = G1, . . . , Gn, where ǫ is the

discretization factor and G[t,t+ǫ] is the static snapshot cor-

responding to the time period [t, t + ǫ] (i.e. the graph con-

taining all vertices and edges involved during the time pe-

riod [t, t + ǫ]). The value of ǫ is adjusted empirically and

depends on the granularity of the time stamps present in the

data set.

The second step clusters each static graph separately us-

ing an overlapping clustering algorithm, to produce Fuzzy

Clusters. This step allows us to identify communities in the

network but also its pivots (vertices shared by several clus-

ters) while being insensitive to minor changes in the net-

work.

The third step detects major structural changes in the

network. We compare the clusterings obtained on every

pair of successive static graphs using the similarity mea-

sure described in section 4. A low similarity indicates ma-

jor changes during the period corresponding to these pair of

snapshots while a high similarity value correspond to stable

periods where the topological structure of the network does

not go any major changes. Thus, once we have the simi-

larity matrix from clusterings computed in step 2, we can

decompose the temporal changes in the input network into

periods of high activity and consensus communities during

stable periods.

The last step consists of finding a role or influence hi-

erarchy in the consensus communities filtered from step 3.
We define the influence hierarchy as a tree GT = (VT , ET )
where VT ⊂ V is a subset of vertices in the input social net-

work. The height of a node v ∈ VT represents the strength

of influence of that node in the network. Our technique is

based on the Delta efficiency metric [15, 14] which com-

putes the importance of a vertex w.r.t the flow of informa-

tion in the entire network. We use the Delta efficiency met-

ric and Kruskal’s algorithm [12] to infer the influence hier-

archy in the network.

3. Graph decomposition

3.1. Strength metric

Our decomposition algorithm is based on the Strength

metric, introduced by Auber et al. [2]. This metric quanti-

fies the neighborhood’s cohesion of a given edge and thus

identifies if an edge is an intra-community or an inter-

community edge. The strength of an edge e = (u, v), ws(e)
is defined as follows:

ws(e) =
γ3,4(e)

γmax(e)

where γ3,4(e) is the number of cycles of size 3 or 4 the edge

e belongs to and γmax(e) is the maximum possible number

of such cycles. Finally, one can define the strength of a

vertex as follows:

ws(u) =

∑
e∈adj(u) ws(e)

deg(u)

where adj(u) is the set of edges adjacent to u and deg(u) is
the degree of u.

The time complexity to compute the strength metric over

all vertices and edges is O(|E| · deg2
max) where degmax is

the maximum degree of the graph.

3.2. Maximal independent set extraction

To identify the center of communities within the net-

work, we use a method inspired by MISF 1 [8] where we

extract a maximal set ν of vertices such that ∀u, v ∈ ν ,

distG(u, v) ≥ 2. The advantages of this algorithm are

twofold: first, it gives the number of clusters with respect

to the topology of the network and secondly, this technique

guarantees the uniqueness of each found cluster (i.e. two

clusters found by our approach cannot be identical) since a

center can only belong to one cluster.

Notice that since the vertices inν are the center of com-

munities, these vertices should not be the pivots of the net-

work as this may lead to over fitting a large community in-

stead of several smaller communities. The network pivot

nodes can be identified by low strength values as they are

shared by several communities. Therefore, vertices with

high strength values have to be added to the setν .

To computeν , we sort (in descending order) the vertices

V according to their strength values as V ′. Thereafter, we

iterate over V ′ adding the top node to ν and removing it

1Maximal Independent Set Filtering



Figure 1. Framework overview

and its neighbors from V ′ until |V ′| = 0. The complexity

of the this algorithm is O(|V | · log(|V |) + |E|) in time and

O(|V | + |E|) in space.

3.3. Extracting communities

We use the high strength node set ν to extract commu-

nities from the input network. The main idea is to build

balls with radius 1 around the vertices inν . For each node

u ∈ ν , if an edge (u, v) has a strength value higher than a

given threshold τ , then this edge is considered as an intra-

cluster edge and the node v is added to the community of

u. The threshold τ is a function of the number of vertices

and edges in the network. We consider several values for

the threshold, τ1, . . . , τm obtaining m different clusterings

at each time stamp.

The time complexity of the communities extraction is

O(|E|) and its space complexity O(|V | + |E|). The over-
all complexity of our decomposition algorithm is O(|E| ·
deg2

max + |V | · log(|V |)) in time and O(|V |+ |E|) in space.
We skip the proofs of complexity in this paper due to lack

of space.

4. Consensus structures

After the Graph decomposition step, we obtain n × m
clusterings from the input network G—where n is the num-

ber of the snapshot graphs and m is the number of differ-

ent values of a parameter τ applied during the graph con-

struction or the graph decomposition. We denote the clus-

tering set by C where each clustering Ci,j corresponds to

the decomposition of the graph Gi with parameter τj . As

the decomposed graphs are naturally ordered w.r.t time, the

most probable cluster evolution can be found by comparing

each Ci,j with each Ci+1,k ∀i, j, k such that 1 ≤ i < n,
1 ≤ j, k ≤ m. We describe a similarity metric in the next

section to evaluate the similarity between each pair of clus-

terings in C.

4.1. Similarity metric

The similarity metric aims to evaluate the similarity be-

tween two collections drawn over the same elements. It is

related to the metric used in clustering protein-protein in-

teraction networks [4]. The metric is based on the concept

of representativeness. We say that a cluster ca ∈ Ci,j is a

good representative of a cluster cb ∈ Ci+1,k iff ca con-

tains a high ratio of the elements of cb and a small ratio of

elements not in cb. We define directed cluster representa-

tiveness as:

ρca→cb
= ca ∩ cb / |cb| ρcb→ca

= ca ∩ cb / |ca|

which corresponds to the normalized ratio of the common

elements between the two clusters.

We further define the undirected cluster representative-

ness, or more simply cluster representativeness as:

ρca,cb
=

√
ρca→cb

· ρcb→ca

which corresponds to the geometrical mean of the direct

representativeness of each cluster w.r.t the other.

Next, we extend the definition of cluster representative-

ness to groups of clusters or clusterings. We say that Ci,j

is a good representative of Ci+1,k if the former contains a

good representative cluster for each cluster in the latter. As

small size clusters tend to bias the representativeness values,

we give more importance to clusters representative of larger



size clusters over smaller ones. We define the directed clus-

tering representativeness as the weighted average (over the

cardinality of the clustering) of the value of the best cluster

representative found in Ci,j for each cluster in Ci+1,k:

σCi,j→Ci+1,k
=

∑
cb∈Ci+1,k

maxca∈Ci,j
ρca,cb

· |cb|∑
cb∈Ci+1,k

|cb|

Similarly, we define the undirected clustering represen-

tativeness as the similarity metric:

σCi,j ,Ci+1,k
=

√
σCi,j→Ci+1,k

· σCi+1,k→Ci,j

4.2. Clustering Visualization

Under the hypothesis that cluster evolution presents an

inertia towards drastic changes (that means that clusters do

not change drastically at each time step), the similarity be-

tween different clusterings helps to identify a better param-

eter value τ . Currently, we are unable to select the optimal

value τj that gives us the best clustering result for the graph

Gi. Nevertheless, as a heuristic to estimate a good τ , we
detect a sequence of clusteringsCi,j , Ci+1,k, Ci+2,l . . . that
has a higher similarity metric at each step than the average.

To study the behavior at two successive time steps, we

calculate the maximum and the average similarity of two

successive clusterings from σCi,j ,Ci+1,k
1 ≤ j, k ≤ m.

As described in the previous sections, if the difference be-

tween the maximum similarity and the average similarity

values is large, this signifies radical changes in the network

whereas if the difference is small, we can infer that no sig-

nificant changes occurred in the network over time. This

kind of analysis can be facilitated through a visual represen-

tation of the similarity metric value computation between

the evolving clusterings. Figure 2 shows the similarity met-

ric computation and network changes for the given data set.

For each clustering Ci,j , we add a node with coordinates

(i, j) and add an edge corresponding to clusterings com-

pared through the similarity metric with Ci,j . These edges

are then weighted with the similarity metric σ and graph-

ically displayed using a varying color scale and/or varying

edge thickness. Additionally, the maximum and the average

values of the similarity metric at each time step is repre-

sented as a linear graph at the bottom as shown in figure 2.

4.3. Community Extraction

With time, communities can expand to include new

nodes or merge with other communities or decrease in size

by deleting nodes or splitting into subgroups. Thus, a com-

munity at a given time step might appear as two distinct

groups either due to a previous split or a pending merge.

To overcome this problem and obtain a global idea of the

Figure 2. Similarity graph of the Cata
lano/Vidro network with maximum and av

erage similarity at bottom. Major changes
occurred between steps 2 and 3 and minor
changes between steps 8 and 9

community composition, we compute the consensus com-

munities in the input network. At each time step, each com-

munity is represented by clusters detected. As these clus-

ters represent a snapshot of the communities, we can follow

the community evolution by matching the clusters between

consecutive time steps.

Let Cx, Cx+1, Cx+2 . . . be the clusterings

Cx,j , Cx+1,k, Cx+2,l . . . along a similarity path. We

know the similarity metric σ for each pair of consecutive

Ci, Ci+1 clusterings and therefore the clustering represen-

tativeness between each ca ∈ Ci and cb ∈ Ci+1. Thus,

we use these values to match the clusters, and identify the

clusters cb that are representative of clusters ca.

Thereafter, the consensus communities can be detected

from the collection of matched clusters generated above.

We use different filtering algorithms—union, intersection,

fraction threshold—the optimal choice depends on the con-

text and the properties of the input data set.

The computation of σ between two clusterings

Ci,j , Ci+1,k is bounded by the computation of the intersec-

tion between each pair of cluster ca ∈ Ci,j , cb ∈ Ci+1,k.

This step requires at most Q2|V | comparisons where Q is

the maximum cardinality of Ci,j and V is the number of

nodes in the network. We have n time steps and m dif-

ferent clusterings for each time step. As each clustering

Ci,j is compared with all the clusterings at the following

time steps, we calculate the similarity metric (n − 1)m2

times. Typically n and m are not very large—thus, the over-

all complexity is acceptable for an interactive computation.

The calculation of the consensus communities depends on

the filtering algorithm chosen by the user, but it is generally

bounded by the computation of the similarity graph.



5. Influence hierarchy

In order to evaluate the measure of influence within a so-

cial network, we have to quantify the efficiency with which

the nodes in the network exchange information. We use the

idea of [13] to calculate this efficiency. We know that all

nodes exchange information over a network represented by

a graph G = (V,E), and this information can be picked

by other nodes if required. For the given data set, each cell

phone call represents such an exchange of information. The

communication efficiency of the network εij between the

nodes i and j is inversely proportional to the shortest path

in the graph between i and j: ∀i, j ∈ V εij = 1/dij , where

dij is the shortest path between i and j. If there is no path

between i and j, then dij = +∞ and εij = 0. We can

quantify the efficiency of the whole network be calculating

εij for each and every pair of nodes. The average efficiency

of the graph G can be defined as:

Eff(G) =
∑

i6=j∈V

εij / |V | · (|V | − 1)

This metric gives us the communication efficiency of the

network. To find a hierarchy in the network, we need to

evaluate the efficiency or the criticality of each node as

proposed by [13]. The idea is that if an important mem-

ber of the network is removed, the efficiency of the graph

should decrease, and vice versa. We define the Delta Effi-

ciency(DE) of a node as:

I(nodei) = ∆Effi = Eff(G) − Eff(G\{i})

From a social point of view, we know that there are three

kinds of roles in a network—the leaders, who are the think-

ing heads; the gatekeepers, who control the diffusion of in-

formation within the network and the followerswho just ex-

ecute orders. The ones that have the largest activity within

the network are the gatekeepers and therefore, they have the

highest DE values. On the other side, leaders and follow-

ers have very restricted communications (leaders just issue

orders while followers receive/execute orders) which is the

reason why they have very low DE values. Past work has

shown that leaders try to hide themselves among follow-

ers [15, 14] (due to low DE values for both) to escape de-

tection. One of the primary goals in hierarchy detection is to

distinguish between followers and leaders. Since there are

three roles that constitute a hierarchy in the social network,

we do this by finding a tree representing this hierarchy such

that it reveals the leaders and the followers.

Our inspiration comes from the fact that the edges of this

tree must be part of the input social network. We know that

the gatekeepers (right hands) of the leaders (boss) are the

most critical nodes in the hierarchy. By definition, they are

very close to the leader nodes in the network. We infer the

Input: A graph G = (V, E), DE n.∆ of each vertex n, the

spanning tree T

Output: The root node boss of the hierarchy and an

orientation of the spanning tree T

int number of nodes = 3 / 100 x |V | ;
Sort(V , rule >, ∆) ;

for i from 1 to number of nodes do
table neighborhood = V [i].getNeighborhood ;

for j from 1 to neighborhood.size do
M [i][j] = neighborhood[j];

end

end

list result;

for i from 1 to number of nodes − 1 do

for j from (i + 1) to number of nodes do

for k from 1 to M [i].size do
for l from 1 to M [j].size do

if( M[i][k] == M[j][l]) then

result.push(M[i][k]) ;

end

end

end

end

sort(result, rule >, nodes id) ;

node boss = maxTimeAppears(result) ;

makeOrientedTree(T , boss) ;

Algorithm 1: Inferring the network hierarchy.

hierarchy by using the spanning tree of the modified net-

work where each edge is weighted by the importance of the

relationship between the two nodes using DE as the impor-

tance metric. Thereafter, we classify the different role types

within the influence hierarchy computed from the spanning

tree.

5.1. Determining the spanning tree

We associate a weight with each edge between two nodes

that is the difference between the DE value of the connected

nodes. A high difference between DE values indicate that

the two connecting nodes should not be placed on the same

level in the hierarchy so the edge between these nodes can

be removed. We take the absolute value that is inversely

proportional to value associated to the edges as the edge

weights for Kruskal’s Minimum Spanning Tree algorithm

to compute the hierarchy tree.

5.2. Inferring the hierarchy

Once we have the spanning tree, the next step is to find

the leaders (boss) in the network. We know that the boss has

a low DE value as he tries to hide himself by communicat-

ing less in the network and that he is in the neighborhood

of the gatekeepers (right hands). [13] suggests that these



right hands have the highest DE values in the network. But

it may not be true that all the highest valued nodes are the

right hands of the boss. To find the correct number of right

hands of the boss we use a heuristic value of 3% that worked

well for the input data set. Future work would involve cal-

culating an optimal threshold value for the highest valued

nodes. The idea behind finding the boss is that we take the

3% nodes having the highest DE value and construct a sep-

arate neighborhood list for each of these nodes which con-

tains their immediate neighbors. Once we have these lists,

we count the number of times the elements that appear in

both the lists by taking two lists at a time. For example con-

sider two node lists list 1 and list 2 that have 3 elements

that are present in both of these lists. We add a value 1
as count to each of these elements. We repeat this process

for all the possible combinations of the lists and at the end

we come up with the node that is being communicated the

most by the right hands. This node is probably the boss of

the network as we know that the boss communicates a lot

with his right hands. In case if two or more nodes have the

same count, we take the node with the lower DE value as

we know that the boss does not have a high DE value.

Once we have a spanning hierarchical tree and the boss

of the hierarchy, we adjust the orientation of the tree, start-

ing from the root (boss) to have an ordered hierarchy.

Given the complexity of our naive implementation of DE

O((n + 1)(m + n2)) and the complexity of algorithm 1

is O(n4), the overall worst-case complexity is O(n4). In

practice, however, the algorithm performs better than the

worst-case.

6. Conclusion

In this paper, we have presented a framework to analyze

dynamic social networks to detect structural changes over

a time period based on graph discretization and temporal

clustering. We have also presented a method to discover in-

fluence hierarchy in social networks using communication

efficiency and minimum spanning tree algorithm. We have

applied our framework on the Catalano/Vidro data set and

obtained satisfactory results and we were able to correctly

identify the time frames where major structural changes oc-

curred as well as discover the influence hierarchy of the

Catalano/Vidro family hidden in the input social network

based on cell phone calls.

There are several details that we would like to address

as part of future research to improve the overall framework

like automatically picking the optimal discretization factor

ǫ, optimal selection of the filtering threshold, etc. We have

tested our framework on a single data set and we would like

to extend the experimentation on other datasets as well.
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