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We show that pulse spectral broadening in norndibpersive nonlinear fiber amplifiers
may be enhanced by introducing a suitable dispers&pering. We obtain an analytical
dispersion profile which permits to reduce pulsepagation in a varying dispersion fiber

to the case of an equivalent fiber with constanapeeters.
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| INTRODUCTION

It is well-known that intense optical pulses with iaitial parabolic power profile keep their
shape and acquire a linear frequency chirp upopggation in nonlinear optical fibers with
normal group velocity dispersion (GVD) [1-2]. Inetladditional presence of linear amplification,
parabolic pulses enjoy the remarkable propertyepfegsenting a common asymptotic state (or
attractor) for arbitrary input optical pulses wahgiven energy, irrespective of their initial time

duration or peak power [3-7]. As well known, linegain may be introduced in the normally



dispersive fiber by means of external pumping, ugglo the inherent Raman gain [7] or by

doping the fiber itself with rare-earth ions [3,8].

Because of their resistance to optical wave-brepkimd self-similar amplification behavior,
parabolic pulses or similaritons may lead to higlkrgy, ultrashort optical pulses when in
combination with a linear dispersive grating p&Bi. [Moreover, the process of similariton
formation in the normal dispersion regime permis jeneration of intense ultrashort pulses in
fiber lasers by avoiding the pulse break-up whilypical of optical solitons in the anomalous
dispersion regime [9]. In the design and optim@atdf similariton-based amplifiers and lasers,
it is of crucial importance to evaluate the trapsitfrom a given input pulse into its asymptotic
similariton solution [8,10]. Although this task generally achieved by means of intensive
numerical simulations, in recent work it was shativat the entire propagation dynamics of a
parabolic pulse in nonlinear fiber optics amplifienay be well described in terms of a simple
finite-dimensional model involving two coupled andry differential equations for the adiabatic

evolution of the pulse parameters [11].

Stable similariton pulses may also be generategassive optical fibers, provided that a
suitable tapering of the GVD profile (i.e., a hylpalic decrease of dispersion with distance) is
introduced [12]. First experimental demonstrati@fighis prediction have been reported only
quite recently by using either a comb-like profildidpersion decreasing fiber (DDF) [13], or a
three-section DDF with linearly decreasing dispmrsn each section [14]. A drawback of using
passive DDFs is the presence of linear loss, whiely negatively affect the pulse reshaping
process whenever several km of fiber are involwddreover, since along a passive DDF the
GVD decreases asymptotically to zero, the relatwstribution of higher order GVD grows

larger as the length of the DDF increases. As altepulse reshaping in the passive



configuration may exhibit a strong sensitivity tard-order dispersion, that eventually lead to

optical shock type instabilities [15]. It is theved important to consider the possible benefits of
combining amplification with dispersion tapering fihe design of similariton-based nonlinear

optical devices. Indeed, recent experiments haveodstrated that a hybrid approach for

parabolic pulse generation consisting in adding &again to picosecond pulse propagation in a
suitably tapered DDF may permit to reduce the temlpbroadening, and at the same time
increase the spectral density of the generatedpkcgulses [16].

In this work we show that it is indeed possibleotdain the asymptotic evolution of pulses
propagating in nonlinear dispersive fiber ampl8iexith varying parameters by means of a
formal description involving an equivalent amplifiith constant parameters. Indeed, we will
point out that the entire optical pulse propagatimma nonlinear DDF amplifier may be exactly
described whenever the dispersion tapering is oéidaas the solution of a Riccati equation.
Extensive numerical simulations confirm the validf the proposed approach, and suggest that
DDF fiber amplifiers may find important applicat®nto pulse spectral broadening and
supercontinuum generation, as well as telecommtiaicapplications such as for example

optical code-division multiple access.

2BASIC EQUATIONS
The propagation of short optical pulses in a na@amoptical fiber with linear gain and
varying GVD may be described in terms of the din@misss nonlinear Schrodinger equation

(NLSE) with varying coefficients
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where the dimensionless time is Tgthistance is Z=z/ly =zyP,, and q=q/,/p, represents the

dimensionless electric field, whereg,lL=1/(yPy) is the nonlinear length. Moreoves, & are
arbitrary time and power units. In additidssLy./Lp is the ratio between the nonlinear length
and the dispersion length at z=0, i.ep=ky/B,. The function 1>p() >0 describes the
longitudinal variation of the fiber GVD along iterigth. Finally,8=I¢/2=(G-a)Ln /2, G[m}]
anda[m™] are the power gain and loss coefficients of therf It is convenient to rewrite Eq.(1)

in terms of the new distance coordin&tand field amplitude u defined as [12]

EETD(X)dX

2)
u= g
JD(2)
One obtains
0§ dz|/D(z) Jdé 9z D** 2D D*dz 3)

When one divides each term in Eq.(1) b¥’Dtaking into account Eqgs.(2-3) one finally obtains

the NLSE with constant coefficients

.du_ B 0°u
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+u[ u=iou, (4)

where we defined the virtual constant (i&eindependent) gain coefficiedtl'/2 and
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Since for a DDF one has dD/dZ<0, Egs.(4-5) meat thaa properly designed DDF, the
evolution of the re-normalized complex amplitudeheys the NLSE with both constant GVD
and constant virtual linear gain coefficigntEq.(4) shows that the constant GVD is equal ¢ th
dispersion at the input end of the DDF (i.e., whe(g=0)=1), whereas Eq.(5) reveals that the
constant gain coefficiend (or I') is obtained by locally adding two Z-varying cobtitions,
namely the sum of the physical gain coefficidnand of the virtual gain which is induced by the
dispersion profile, both divided by the dispersidecrease function D(Z). As a result, we
anticipate that dispersion tailoring may permitréadluce, with respect to a constant dispersion
fiber (CDF), the linear amplifier gain which is mssary to achieve a certain amount of spectral
broadening of the input pulses. Note however thatDDF length say, dor, in the presence of a
given physical gain coefficie, should be increased with respect to the lengthd. @DF with

the corresponding virtual gain coefficigmtaccording to the relationship

TB (Z)dz=L. 6)

0
From Eq.(5), for any given set éfand &, the optimal dispersion profile D(Z) of the DDF is

obtained as the solution of the first-order nordinRiccati differential equation

dD
—=r,D-TD? D(Z=0)=1. 7
az o (2=0) (7)

The solution of the above equation is well knowtha theory of ordinary differential equations.
By following the simple steps as outlined in th@@apdix, one obtains from Eq.(7) the dispersion

profile
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which permits to calculate the integral in Eq.(6) a

L= Lj D(Z)dz :%[Iog{r (&otoor 1)+ ro} - |ogr0} , (9)
0
so that
Looe :I_—lo[log{l'o(erL —1)+I'} - Iogl’} : (10)
3ANALYSIS

We may express the field u in Eq.(4) in terms sfiitensityp and phase, or instantaneous

frequencye(T) = -0 ¢/0T

u(T,&) =/p(T.&) exdid = /o(T,4) exp{— iIT aJ(T’,E)dT'} (11)

We shall consider the propagation of initially ghfree parabolic pulses of the type

T?
T,8) = py(&)| 1- =,
p(T,$) p(f)[ TO(E)J

(T, $)=Co(T

(12)

for |T|<To(¢) (p=w=0 otherwise), with g&=0)=0, in a DDF with initial (i.e., a€&=0) normal
dispersion aho=1550 nm of [@=-5 ps/(nm km). Note that the root-mean-square twtth T,s
and the full-width-at-half-maximum gJ,m of the pulse (11-12) are related as follows:
T.=2T, / V5= \/%I' whm- The asymptotic amplification regime is analyticatlgscribed by

Egs. (11-12) with [2-5]



p5 =i exp 4%/ 3/( 2lB) = p5° exh &/ B ;
Te=3U,B/S ex BE/ Y =TS exp &/ B: (13)
Cs=20/36=C>S

where the input pulse energy4py({=0) To({=0)/3.

To be specific, let us consider the following tygi¢iber parameters: the effective area is
Aei=40 pm?, the nonlinear index is;n3.2x10%° m%W, and the SPM coefficient ig=3.2 (W
km)™. Moreover, we setgtl ps and =10 W, so that k.= 31 m andB=0.197. Figure 1(a)
shows the solution (8) for the dispersion profil€Zp corresponding to the virtual gain

coefficientd=0.5, and to different values of the physical lingain coefficiento<g <d. As it

can be seen, in each case the fiber dispersiorttiedicoefficient D(Z) rapidly decreases in the
first 100 m of DDF, whereas D(Z) decreases onlybtovith Z at longer lengths, in particular

for large values of the physical gads

Figure 1(b) shows the dispersion profile D(Z) of.([By corresponding to the real DDF gain
coefficient®,=0.05 (this means a physical gain of 14 dB/km far ¢hoice of fiber parameters as
given above), and to different values of the virgein coefficientd (namely,6=0.125, 0.25 and
1, respectively) of the equivalent CDF (see Eq.(&¥)it can be seen, the rate of decrease of the
fiber dispersion coefficient D(Z) grows larger widh In particular, ford/&=20 the dispersion
decrease is mostly concentrated in the first 10%pgf. Moreover, in this case in most of the
DDF the dispersion is close to its asymptotic valZ — o) = 005 (so that the actual DDF
dispersion is equal to -0.25 ps/(nm.km)). This flaas two consequences: first, as the GVD is
mostly close to its zero value, it is likely thhetpulse amplification will be strongly affected by

third-order dispersion. Second, it should be exgthat pulse amplification in the DDF is not



much different from the amplification that would bleserved in a CDF with the dispersion value
equal to the average (over the lengtpd) dispersion of the DDF, which obviously reduces th
interest in obtaining a special dispersion proflias in Eq.(8). Therefore, it appears that it is
preferable to introduce a dispersion profile D(Zsa@ciated with a smaller virtual CDF gain
coefficient such a$=0.25 ord=0.125 (see Fig. 1(b)), since in these cases thE BiBpersion
remains mostly above the corresponding asympteatliees of —1 ps/(nm km) or —2 ps/(hm km),

respectively.

In addition to the dispersion profile informatidmat is provided by Fig. 1, it is important to
evaluate the real DDF length that in each caseespands to a given length of the virtual CDF
as described by Eq.(4). This information is obtdify Eqg.(10) and it is displayed in Fig. 2,
which illustrates in real units the DDF length aiaction of the physical linear gaiw, for a
given value of the virtual gain coefficiedt0.5. In Fig. 2(a) the length of the virtual CDFsva
set equal to 150 m: with this choice, the physi@BF gain of 14 dB/km (which corresponds to

00=0.05) leads to a DDF length of 1 km (see vertizadw in Fig. 2(a)). Whereas in Fig. 2(a) the

horizontal arrow indicates the DDF length in thmiticase of a passive (i.€8,=>0) DDF. As it

can be seen in Fig. 2(a), wids<0.1 the necessary DDF length rapidly grows ugatgd values.
Fig. 2(b) was obtained f@=0.25: in this case the effective CDF length waseased from 150
to 350 m, so that again the DDF gain of 14 dB/ke. @,=0.05) results in a 1 km long DDF (see
arrow in Fig. 2(b)).

As we intend to exploit the active DDF for pulseshraping applications, an important

guestion is which is the minimum DDF length thanecessary for entering into the so-called

similariton propagation regime [8, 10]. Indeed,dpplying to our case the analysis of ref.[11],



we may confirm that a 1 km long DDF wifi3=0.05, and a CDF length of either 150 or 350 m
(for 6=0.5 or 0.25, respectively) is a sufficient lenfph reaching the self-similar or nonlinear
amplification regime. For example, Fig. 3 was afedi (as figure 4 (a-b) of ref.[11]) from the
finite-dimensional description of the evolutiontb& parabolic pulse parameters along the CDF:
the empty dots indicate the distance for entenmg the self-similar or similariton amplification
regime. Fig. 3 corresponds to an input a paraboplise as in Egs.(11-12) with the energy
Uo=94 pJ, which propagates as described by the dgquiv&DF equation (4) wit$=0.2 and

0=0.25. As it can be seen, the shortest distanobtained in correspondence of an input RMS

pulse widthT" =TS8 =2755/,/5, where T°°is defined by the second of equations (13). The

plot of Fig. 3 confirms that the CDF length of 3®0is the minimum distance that is required in
order that the amplification of the parabolic puigky enters into the self-similar amplification

regime.

A parameter that permits evaluate the improvemdntiwis brought about by introducing a
dispersion decreasing profile is the ratio betwtenproducts of the physical gain coefficient
times the length of the DDF, and of the same patensiéor the virtual CDF, or Reprdo/(L D).
Figure 4 shows the dependence of the DDF gaintepgiduct decrease factor R as a function
of the physical gain coefficied for a CDF length of 350 m and for the virtual ga#0.25: the
arrow corresponds to a 1 km long DDF as in figuit®.2Figure 4 shows that a 1 km long DDF
with the physical gain coefficien’=0.05 leads to about 30% reduction of the gaintleng
product with respect to the equivalent virtual CDRis means that, for relatively small values of
the physical gain coefficient, the virtual gain mpement which is introduced by dispersion

tapering overcompensates the drawback of the leingtiease of the DDF with respect to the



equivalent CDF. This result is due to the nonlinsature of the Riccati differential equation (7)

which determines the dispersion profile D(Z).

It is interesting to consider the case of a DDFhvah initially (i.e., at z=0) twice larger (in
absolute value) normal dispersion, i.e., we sgt-D0 ps/(nm km). With the choice=tl ps and
Po=20 W, one obtainsy.= 16 m; note that the dimensionlgsparameter remains unchanged at
3=0.197. In Fig. 5(a) we compare the DDF dispergimnfile that was previously shown in Fig.
1(b) (for &=0.05, 6=0.25 with Ly.= 31 m), with the dispersion profile that is obtnwith
Lni= 16 m and®=0.025 (i.e., still 14 dB/km of physical gain for the DOFR real units, and
3=0.197 whenever the initial dispersion i$=D-10 ps/(nm km)). The virtual CDF gain
coefficient is maintained unchangedda0.25 in both cases. In Fig. 5(b) we show, as m Ej
the DDF length as a function of its gain coeffitiédg, in the case of the nonlinear distance
Ln.=16 m. Here the virtual gain coefficient of the asated CDF i9=0.25, and its length is
175 m. The arrow indicates the case of a gain eguid dB/km for the DDF (that i$,=0.025)
and shows that dpr is again equal to about 1 km. By computing a plaotilar to Fig. 3, the
choice of a 175 m length for the CDF correspondsi¢ominimum distance for entering into the
self-similar regime for a parabolic pulse with ingulse energy k190 pJ that propagates in a

CDF with the virtual gain coefficie®=0.25 and k. =16 m.

4 PULSE EVOLUTION

In this section we shall investigate in some dsttile pulse reshaping action of an active
DDF with a dispersion decreasing profile adaptethéophysical distributed gain as given by the

solution (8) of section 2. In Fig. 6 we presenbanparison of the evolution with distance of the
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RMS time width of different, but initially chirp-&e, pulses in a CDF (i.e., with D(Z)=1) and in a
DDF. In both cases the physical gain coefficiens wat t0d,=0.1, which corresponds to 28 dB
over the 1 km length of the fiber amplifier withetiparameters as defined in Section 3 and the
initial normal dispersion ak=1550 nm of [@=-5 ps/(nm km), and a virtual gain coefficient
0=0.5. We deliberately used here a linear gain wiidiwice as large as the value of 14 dB/km
that was used in the previous section, in ordecléarly show the convergence into the self-
similar parabolic pulse (11-13) of different inpptilses, for distances well within the DDF
length of 1 km. In Fig. 6, the evolution in the DDF the CDF of the RMS time width of a

Gaussian pulse with the initial FWHM duration of g€ (hence 8.5 ps of RMS duration, since
for a Gaussian pulsé,,,,, =1.1774 ) and 10 W peak power is indicated by a dot-dasimed

a dotted curve, respectively. Whereas the correipgrRMS time width of an initial parabolic
pulse with the same 10 ps FWHM (hence 6.3 ps RM®) tluration and peak power is indicated
by a solid and a dashed curve, respectively. A&surit be seen in Fig. 6, after a certain distance
(about 400 m in the CDF and 700 n in the DDF) the tifferent input pulses converge to the
same self-similar parabolic attractor. Moreover,the similariton regime the time width of
pulses in the DDF is considerably shorter thamen@DF: for example, at 1 km the output pulse
RMS duration is equal to about 35 ps for the DDFswe 70 ps for the CDF. On the other hand,
the evolution of the spectral width of the differ@mput pulses in the two fibers as shown by
Fig. 7 shows that the DDF leads to much larger tsplebroadening than the CDF. Indeed, the
output spectral width of the pulses they emergmftioe 1 km long DDF is equal to 11.1 THz, as

opposed to 3.7 THz for the CDF.

The details of the intensity profiles in both theme and the frequency domains of the

Gaussian and the parabolic pulses as they emengetifie either the CDF or the DDF are shown

11



in the top and bottom part of Fig. 8, respectivélg.it can be seen in Fig. 8, the peak power of
pulses from the DDF is nearly doubled with resgedhe CDF, whereas the temporal width is
halved. At the same time, Fig. 8 confirms that $pectral broadening of both parabolic and
Gaussian pulses in the DDF is increased by abfadtar of three with respect to the CDF. It is
interesting to point out that, following the anasysf Sections 2-3, the same pulse evolution that
is observed in the DDF of Figs. 6-8 could be obsémn an equivalent CDF with a linear gain
coefficient increased by a factor of five, that as high as 140 dB/km (i.e§=0.5 in
dimensionless units). However, following Eq.(9) tength of this CDF could be reduced to just
250 m, so that the actual integrated gain of thevadent CDF would need to be equal to 35 dB.
These considerations are confirmed by the numesmatkion of Eq.(4) with the parabolic pulse

input condition (11-12), as shown by the plots igf. B.

The main advantage of describing the propagatidherDDF in terms its equivalent virtual
CDF, is that this permits using the known asymptagsults of Eq.(13) for the analytical
prediction of the evolution of the parabolic pulse the dispersion tapered amplifier. For

example, by using Egs. (11-13) one obtains (seeli@®)) the dependence of the optinmglut

FWHM time width T." =T

rms

\/5/2 of a parabolic pulse as a function of the inpuspwgnergy,

for different virtual gain coefficient$=0.25 ord=0.125 of the equivalent CDF, and the fixed
value 0f&,=0.05 for the physical gain coefficient. As it dam seen from figure 10(a), for input
pulse energies ¢Jclose to 100 pJ, the input FWHM time width decesafom 10 ps to 6 ps as
the CDF virtual gain coefficient (and the corresgiog dispersion profile D(Z) of the DDF) is

varied fromd=0.125 up t®=0.25.

In a similar manner, one may easily estimateotlput FWHM spectral width of the linearly

chirped parabolic pulses as they emerge from andemegth of DDF (say, 1 km), by calculating

12



the spectral width of the pulse at the output @f ¢brresponding virtual CDF whose length is

given by Eq.(9). Indeed, in the self-similar or #garton regime the FWHM spectral width is

Fou = F°./5/2, where F = TSCS/27. Figure 10 (b) illustrates the prediction of Eqfl<{
13) for the output FWHM spectral width of a parabglulse as a function of the input pulse
energy, for a fixed DDF length of 1 km, the phykigain coefficientd,=0.05, and different
virtual gain coefficientsd of the associated equivalent CDF (correspondingheo different
dispersion profiles which are shown in Fig. 1).iAsan be seen from Fig. 10(b), for input pulse
energies | close to 100 pJ, the output FWHM spectral widitréases from 2.8 THz up to 4.5

THz as the CDF virtual gain coefficient (and theresponding dispersion profile D(Z) of the

DDF) is varied from®=0.125 up t@®=0.25.

As shown in Fig. 11(a), we have also applied thacexasymptotic expressions (13) to
calculate the optimal input FWHM time width of arglaolic pulse versus the input pulse energy
for the dispersion profiles shown in Fig. 5. Here kept the DDF length fixed to 1 km, whereas
its physical gain coefficient i&=0.025, and the virtual gain coefficient of theasated CDF is
0=0.25. Finally, Fig. 11(b) shows the correspondmgput FWHM spectral width of the
parabolic pulse as a function of the input pulsergy, for the same choice of DDF and CDF

parameters.

S EFFECTS OF THIRD-ORDER DISPERSION

As mentioned in the introduction, one of the majbstacles to the use of a passive DDF for
similariton generation is the presence of thirdeordispersion (TOD) which leads to propagation

instabilities or shock formation [15,17]. Let usidbily consider the influence of TOD on

13



parabolic pulse propagation in a DDF amplifier: éwlution of the pulse field envelope Q is

described by the extended amplified NLSE

B(2)Q_ 4,00
2 0T? 6 0T

iQ, + +ylQ Q=i5Q,  (14)

where[3; is the third-order dispersion. Figures 12(a-b)vshioe input (dashed grey curve) and
output (after 1 km DDF with the physical gar0.1) profile (in time and frequency domains,
respectively) of an initial 10 W peak power, 10R&WHM parabolic pulse as it emerges from a
DDF with no TOD (solid curves), and with all othearameters as in the case of Fig. 8. This
should be compared with Figs. 12(c-d), where in encally solving Eqg.(14) the TOD was

increased from zero up ®=0.025 p¥km: as it can be seen, at 755 m the pulse exhibits
significant temporal and spectral asymmetry. NEigs. 13(a-b) show that after 779 m of DDF
the pulse develops a shock in its leading edgeclwhorresponds in the spectral domain to
significant amount of red-shifted radiation. Additally, the plots of Figs. 13(c-d) show that
when the TOD is reduced downfig=0.015 p¥km, the shock only develops after a 974 m long
DDF. An approximate but analytical prediction foetcritical distance at which a TOD-induced

shock may be observed in an active DDF may be mddarom the Kodama’s inequality [17]

Bs
3\/ - ,Bz

> 1 ﬂ (15)

4\ p,

wherepg is the dimensionless peak power of the pulse.1By.(vhich was rigorously obtained

for square optical pulses (i.e., nonreturn-to-zar&RZ pulses), predict that a shock wave type
of instability develops on the pulse whenever ti@DTis large enough that the inequality is
satisfied. It turns out that one may predict (wathout 10% accuracy) the onset of an optical

shock as the peak power of the pulse reaches 4% W9 m (see Fig. 13(a)), or 900 W at

14



974 m (see Fig. 13(b)), provided the path-averagees of the GVIB, and of the pulse peak

power po are used in Eq.(15). The advantage of using awea@lDF in order to reduce the

impact of TOD is clear from both the left-hand sadéEq.(15), and the nonzero asymptotic value

D(z>>1)=T (/" of the dispersion profile (8). As shown by Figa}l(in contrast with the passive

case, in the active DDF the second-order disperdioes not vanish, hence the generated

parabolic pulse will be less impacted by TQNInte finally that, although in solving Eq.(14) we

considered a TOD that is constant with z, we mdicipate that a suitable TOD management
may permit to counteract its negative influence miise propagation in DDF amplifiers.

However the detailed analysis of the influence &DI'on pulse reshaping by means of DDF

amplifiers is beyond the scope of this paper, andlan to discuss this issue elsewhere.

6 CONCLUSIONSAND ACKNOWLEDGEMENTS

In this work we presented a theoretical analysispolise propagation in a varying-
dispersion, nonlinear optical fiber amplifier. Weimted out an analytical dispersion profile
which permits to reduce optical pulse propagatioratdescription in terms of the amplified
NLSE with constant parameters. We have analysethtluence of both the physical gain and of
the dispersion tapering (or virtual gain coeffi¢gjeon the pulse reshaping properties of the active
DDF. In particular, our analysis permits to obtaimalytic relationships for both the optimal
input pulse width and the corresponding output spewidth of the optical pulses. Additionally,
by exploiting the known properties of the equivaleonstant parameters amplified NLSE, one
may determine, hence control the minimum DDF lengthich leads to the asymptotic

amplification regime,_Let us note that the propogaitielines for the dispersion profile may be

guite easily adapted to a comb like fiber set-upere a set of carefully chosen normally
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dispersive fibers mimics the continuous dispersieareaseAn added benefit of using an active

DDF, with respect to the passive case, is thaténactive case the optimal dispersion profiles do
not vanish as the DDF length grows larger, whiattuoes the deleterious influence of higher
order dispersion. Finally, we provided a simple moettto estimate the threshold for the onset of

TOD-driven pulse instabilities in active DDFs.
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APPENDI X
In order to solve Eq.(7) all that is needed is dipalar solution. Take for example the constant

solution

r

D=-2 Al
= (A1)
Then the new function d(2) is defined as
d(z) = 1 (A2)
D(Z)-D
obeys the simple linear ordinary differential edormat
d=r,d+r (A3)
whose general solution is
z T
d(Z) = Cé° e (A4)

0
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The integration constant C is determined by thedtmm that D(Z=0)=1, so that one finally

obtains the required dispersion profile as giveriEy8).
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Figure Captions
1. Fiber length dependence of the dispersion profita &) 6=0.5 and different values @ or
(b) with &= 0.05, and=0.125, 0.25, 1.

2. Length of DDF (km) as a function of the physicalngé, for a virtual gain (ap=0.5 and

CDF length of 150 m (the horizontal arrow indicatepassive DDF) (b3=0.25, and CDF

length of 350 m. Vertical arrows &=0.05 point to a DDF length of 1 km in both cases.

3. Minimum distance for entering the self-similar magi for the equivalent CDF witd=0.25,
vs. the input parabolic pulse RMS time width, witput pulse energy 494 pJ.

4. Dependence of the ratio R of gain coefficient-filmrgth producboL of the DDF and of the
equivalent CDF, vs. the DDF gadp, for 8=0.25: the arrow indicates tldg=0.05 case.

5. (a) Dispersion profile of the DDF for the nonlinedistance k. =16 m (31 m)so that
00=0.025(8,=0.05); the virtuald=0.25 in both cases; (b) DDF length vs.for Ly =16 m,
with 6=0.25 and the CDF length of 175 m. The arrow ingigahe 1 km DDF length for a
physical gain of 14 dB/km.

6. Comparison of the evolution with distance of the Rkme width of a parabolic (Gaussian)
pulse in a CDF (dashed (dotted) curve) and in a 8dHd (dot-dashed) curve) with a
physical gaimy=0.1 in each case, and a virtual gain coefficé&l.5 for the DDF.

7. Same as in Fig. 6, for the RMS spectral width.

8. Comparison of the output intensity profile vs. tirftep) and frequency (bottom), for a
parabolic (Gaussian) pulse after a 1 km long CDEYglashed thick (thin) curves) or DDF
(black solid thick (thin) curves) with the physi@ald virtual gains as in Fig. 6.

9. Evolution of the RMS (a) time and (b) frequency thiadf a parabolic pulse in a CDF as in

Figs. 6-7, but with the linear gad+0.5.
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10.Dependence of optimal parabolic pulse parametersty¥snput energy, for a fixed DDF
length of 1km, the physical gain coefficigigt0.05, and different virtual gairds (a) optimal
input FWHM time width; (b): associated output FWHidectral width.

11.Same as in Fig. 9, for a DDF gain coefficiépt0.025 (with Ly =16 m), and=0.25.

12.Input (grey dashed curves) and output (solid cyrpedse power profile versus time and
frequency for a 1 km long DDF with (8%=0 with &=0.1,6=0.5; (b) for a 755 m long DDF
with Bz=0.025 p¥km.

13.Same as Fig. 11(b), for (a) a 779 m long DDF \@i$h0.025 p&¥km; (b) a 974 m long DDF

with B3=0.015 p¥km.
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