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We show that pulse spectral broadening in normally dispersive nonlinear fiber amplifiers 

may be enhanced by introducing a suitable dispersion tapering. We obtain an analytical 

dispersion profile which permits to reduce pulse propagation in a varying dispersion fiber 

to the case of an equivalent fiber with constant parameters.  

          OCIS codes: 190.4370, 190.5530. 

 

I INTRODUCTION 

It is well-known that intense optical pulses with an initial parabolic power profile keep their 

shape and acquire a linear frequency chirp upon propagation in nonlinear optical fibers with 

normal group velocity dispersion (GVD) [1-2]. In the additional presence of linear amplification, 

parabolic pulses enjoy the remarkable property of representing a common asymptotic state (or 

attractor) for arbitrary input optical pulses with a given energy, irrespective of their initial time 

duration or peak power [3-7]. As well known, linear gain may be introduced in the normally 
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dispersive fiber by means of external pumping, through the inherent Raman gain [7] or by 

doping the fiber itself with rare-earth ions [3,8].  

Because of their resistance to optical wave-breaking and self-similar amplification behavior, 

parabolic pulses or similaritons may lead to high-energy, ultrashort optical pulses when in 

combination with a linear dispersive grating pair [3]. Moreover, the process of similariton 

formation in the normal dispersion regime permits the generation of intense ultrashort pulses in 

fiber lasers by avoiding the pulse break-up which is typical of optical solitons in the anomalous 

dispersion regime [9]. In the design and optimization of similariton-based amplifiers and lasers, 

it is of crucial importance to evaluate the transition from a given input pulse into its asymptotic 

similariton solution [8,10]. Although this task is generally achieved by means of intensive 

numerical simulations, in recent work it was shown that the entire propagation dynamics of a 

parabolic pulse in nonlinear fiber optics amplifiers may be well described in terms of a simple 

finite-dimensional model involving two coupled ordinary differential equations for the adiabatic 

evolution of the pulse parameters [11]. 

Stable similariton pulses may also be generated in passive optical fibers, provided that a 

suitable tapering of the GVD profile (i.e., a hyperbolic decrease of dispersion with distance) is 

introduced [12]. First experimental demonstrations of this prediction have been reported only 

quite recently by using either a comb-like profiled dispersion decreasing fiber (DDF) [13], or a 

three-section DDF with linearly decreasing dispersion in each section [14]. A drawback of using 

passive DDFs is the presence of linear loss, which may negatively affect the pulse reshaping 

process whenever several km of fiber are involved. Moreover, since along a passive DDF the 

GVD decreases asymptotically to zero, the relative contribution of higher order GVD grows 

larger as the length of the DDF increases. As a result, pulse reshaping in the passive 
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configuration may exhibit a strong sensitivity to third-order dispersion, that eventually lead to 

optical shock type instabilities [15]. It is therefore important to consider the possible benefits of 

combining amplification with dispersion tapering for the design of similariton-based nonlinear 

optical devices. Indeed, recent experiments have demonstrated that a hybrid approach for 

parabolic pulse generation consisting in adding Raman gain to picosecond pulse propagation in a 

suitably tapered DDF may permit to reduce the temporal broadening, and at the same time 

increase the spectral density of the generated parabolic pulses [16]. 

In this work we show that it is indeed possible to obtain the asymptotic evolution of pulses 

propagating in nonlinear dispersive fiber amplifiers with varying parameters by means of a 

formal description involving an equivalent amplifier with constant parameters. Indeed, we will 

point out that the entire optical pulse propagation in a nonlinear DDF amplifier may be exactly 

described whenever the dispersion tapering is obtained as the solution of a Riccati equation. 

Extensive numerical simulations confirm the validity of the proposed approach, and suggest that 

DDF fiber amplifiers may find important applications to pulse spectral broadening and 

supercontinuum generation, as well as telecommunication applications such as for example 

optical code-division multiple access. 

 

2 BASIC EQUATIONS  

The propagation of short optical pulses in a nonlinear optical fiber with linear gain and 

varying GVD may be described in terms of the dimensionless nonlinear Schrödinger equation 

(NLSE) with varying coefficients  
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where the dimensionless time is T=t/t0, distance is Z=z/LNL=zγP0, and  
0PQq =  represents the 

dimensionless electric field, where LNL =1/(γP0) is the nonlinear length. Moreover, t0, P0 are 

arbitrary time and power units. In addition, β=LNL/LD is the ratio between the nonlinear length 

and the dispersion length at z=0, i.e. LD=t0
2/β2. The function 0)z(D1 >≥  describes the 

longitudinal variation of the fiber GVD along its length. Finally, δ0=Γ0/2=(G-α)LNL/2, G[m-1] 

and α[m-1] are the power gain and loss coefficients of the fiber. It is convenient to rewrite Eq.(1) 

in terms of the new distance coordinate ξ and field amplitude u defined as [12] 
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When one divides each term in Eq.(1) by D3/2, taking into account Eqs.(2-3) one finally obtains 

the NLSE with constant coefficients 
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where we defined the virtual constant (i.e., ξ-independent) gain coefficient δ=Γ/2 and 
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Since for a DDF one has dD/dZ<0, Eqs.(4-5) mean that, in a properly designed DDF, the 

evolution of the re-normalized complex amplitude u obeys the NLSE with both constant GVD 

and constant virtual linear gain coefficient δ. Eq.(4) shows that the constant GVD is equal to the 

dispersion at the input end of the DDF (i.e., where D(Z=0)=1), whereas Eq.(5) reveals that the 

constant gain coefficient δ (or Γ) is obtained by locally adding two Z-varying contributions, 

namely the sum of the physical gain coefficient δ0 and of the virtual gain which is induced by the 

dispersion profile, both divided by the dispersion decrease function D(Z). As a result, we 

anticipate that dispersion tailoring may permit to reduce, with respect to a constant dispersion 

fiber (CDF), the linear amplifier gain which is necessary to achieve a certain amount of spectral 

broadening of the input pulses. Note however that the DDF length say, LDDF, in the presence of a 

given physical gain coefficient δ0, should be increased with respect to the length L of a CDF with 

the corresponding virtual gain coefficient δ, according to the relationship 

 .LdZ)Z(D
DDFL

0
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From Eq.(5), for any given set of δ and δ0, the optimal dispersion profile D(Z) of the DDF is 

obtained as the solution of the first-order nonlinear Riccati differential equation 
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The solution of the above equation is well known in the theory of ordinary differential equations. 

By following the simple steps as outlined in the appendix, one obtains from Eq.(7) the dispersion 

profile 
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which permits to calculate the integral in Eq.(6) as 
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3 ANALYSIS 

We may express the field u in Eq.(4) in terms of its intensity ρ and phase φ, or instantaneous 

frequency T)T( ∂∂−= φω   
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We shall consider the propagation of initially chirp-free parabolic pulses of the type 
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for |T|<T0(ξ) (ρ=ω=0 otherwise), with C0(ξ=0)=0, in a DDF with initial (i.e., at ξ=0) normal 

dispersion at λ0=1550 nm of D0=-5 ps/(nm km). Note that the root-mean-square time width Trms 

and the full-width-at-half-maximum Tfwhm of the pulse (11-12) are related as follows: 

fwhmrms TTT 5252 0 == . The asymptotic amplification regime is analytically described by 

Eqs. (11-12) with [2-5] 
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where the input pulse energy U0=4ρ0(ξ=0) T0(ξ=0)/3. 

 

To be specific, let us consider the following typical fiber parameters: the effective area is 

Aeff=40 µm2, the nonlinear index is n2=3.2x10-20 m2/W, and the SPM coefficient is γ=3.2 (W 

km)-1. Moreover, we set t0=1 ps and P0=10 W, so that LNL= 31 m and β=0.197. Figure 1(a) 

shows the solution (8) for the dispersion profile D(Z) corresponding to the virtual gain 

coefficient δ=0.5, and to different values of the physical linear gain coefficient 00 δ δ≤ ≤ . As it 

can be seen, in each case the fiber dispersion reduction coefficient D(Z) rapidly decreases in the 

first 100 m of DDF, whereas D(Z) decreases only slowly with Z at longer lengths, in particular 

for large values of the physical gain δ0. 

Figure 1(b) shows the dispersion profile D(Z) of Eq.(8) corresponding to the real DDF gain 

coefficient δ0=0.05 (this means a physical gain of 14 dB/km for the choice of fiber parameters as 

given above), and to different values of the virtual gain coefficient δ (namely, δ=0.125, 0.25 and 

1, respectively) of the equivalent CDF (see Eq.(4)). As it can be seen, the rate of decrease of the 

fiber dispersion coefficient D(Z) grows larger with δ. In particular, for δ/δ0=20 the dispersion 

decrease is mostly concentrated in the first 10% of LDDF. Moreover, in this case in most of the 

DDF the dispersion is close to its asymptotic value 05.0)Z(D =∞→  (so that the actual DDF 

dispersion is equal to -0.25 ps/(nm.km)). This fact has two consequences: first, as the GVD is 

mostly close to its zero value, it is likely that the pulse amplification will be strongly affected by 

third-order dispersion. Second, it should be expected that pulse amplification in the DDF is not 
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much different from the amplification that would be observed in a CDF with the dispersion value 

equal to the average (over the length LDDF) dispersion of the DDF, which obviously reduces the 

interest in obtaining a special dispersion profiling as in Eq.(8). Therefore, it appears that it is 

preferable to introduce a dispersion profile D(Z) associated with a smaller virtual CDF gain 

coefficient such as δ=0.25 or δ=0.125 (see Fig. 1(b)), since in these cases the DDF dispersion 

remains mostly above the corresponding asymptotic values of –1 ps/(nm km) or –2 ps/(nm km), 

respectively.  

In addition to the dispersion profile information that is provided by Fig. 1, it is important to 

evaluate the real DDF length that in each case corresponds to a given length of the virtual CDF 

as described by Eq.(4). This information is obtained by Eq.(10) and it is displayed in Fig. 2, 

which illustrates in real units the DDF length as a function of the physical linear gain δ0, for a 

given value of the virtual gain coefficient δ=0.5. In Fig. 2(a) the length of the virtual CDF was 

set equal to 150 m: with this choice, the physical DDF gain of 14 dB/km (which corresponds to 

δ0=0.05) leads to a DDF length of 1 km (see vertical arrow in Fig. 2(a)). Whereas in Fig. 2(a) the 

horizontal arrow indicates the DDF length in the limit case of a passive (i.e., δ0�0) DDF. As it 

can be seen in Fig. 2(a), with δ0<0.1 the necessary DDF length rapidly grows up to large values. 

Fig. 2(b) was obtained for δ=0.25: in this case the effective CDF length was increased from 150 

to 350 m, so that again the DDF gain of 14 dB/km (i.e., δ0=0.05) results in a 1 km long DDF (see 

arrow in Fig. 2(b)). 

As we intend to exploit the active DDF for pulse reshaping applications, an important 

question is which is the minimum DDF length that is necessary for entering into the so-called 

similariton propagation regime [8, 10]. Indeed, by applying to our case the analysis of ref.[11], 



 9 

we may confirm that a 1 km long DDF with δ0=0.05, and a CDF length of either 150 or 350 m 

(for δ=0.5 or 0.25, respectively) is a sufficient length for reaching the self-similar or nonlinear 

amplification regime. For example, Fig. 3 was obtained (as figure 4 (a-b) of ref.[11]) from the 

finite-dimensional description of the evolution of the parabolic pulse parameters along the CDF: 

the empty dots indicate the distance for entering into the self-similar or similariton amplification 

regime. Fig. 3 corresponds to an input a parabolic pulse as in Eqs.(11-12) with the energy 

U0=94 pJ, which propagates as described by the equivalent CDF equation (4) with β=0.2 and 

δ=0.25. As it can be seen, the shortest distance is obtained in correspondence of an input RMS 

pulse width 5T2TT SS
0

SS
rms

in
rms == , where T0

SS is defined by the second of equations (13). The 

plot of Fig. 3 confirms that the CDF length of 350 m is the minimum distance that is required in 

order that the amplification of the parabolic pulse fully enters into the self-similar amplification 

regime. 

A parameter that permits evaluate the improvement which is brought about by introducing a 

dispersion decreasing profile is the ratio between the products of the physical gain coefficient 

times the length of the DDF, and of the same parameters for the virtual CDF, or R=LDDFδ0/(Lδ). 

Figure 4 shows the dependence of the DDF gain/length product decrease factor R as a function 

of the physical gain coefficient δ0 for a CDF length of 350 m and for the virtual gain δ=0.25: the 

arrow corresponds to a 1 km long DDF as in figure 2(b). Figure 4 shows that a 1 km long DDF 

with the physical gain coefficient δ0=0.05 leads to about 30% reduction of the gain/length 

product with respect to the equivalent virtual CDF. This means that, for relatively small values of 

the physical gain coefficient, the virtual gain improvement which is introduced by dispersion 

tapering overcompensates the drawback of the length increase of the DDF with respect to the 
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equivalent CDF. This result is due to the nonlinear nature of the Riccati differential equation (7) 

which determines the dispersion profile D(Z). 

It is interesting to consider the case of a DDF with an initially (i.e., at z=0) twice larger (in 

absolute value) normal dispersion, i.e., we set D0=-10 ps/(nm km). With the choice t0=1 ps and 

P0=20 W, one obtains LNL= 16 m; note that the dimensionless β parameter remains unchanged at 

β=0.197. In Fig. 5(a) we compare the DDF dispersion profile that was previously shown in Fig. 

1(b) (for δ0=0.05, δ=0.25 with LNL= 31 m), with the dispersion profile that is obtained with 

LNL= 16 m and δ0=0.025 (i.e., still 14 dB/km of physical gain for the DDF in real units, and 

β=0.197 whenever the initial dispersion is D0= -10 ps/(nm km)). The virtual CDF gain 

coefficient is maintained unchanged at δ=0.25 in both cases. In Fig. 5(b) we show, as in Fig. 2, 

the DDF length as a function of its gain coefficient δ0, in the case of the nonlinear distance 

LNL=16 m. Here the virtual gain coefficient of the associated CDF is δ=0.25, and its length is 

175 m. The arrow indicates the case of a gain equal to 14 dB/km for the DDF (that is, δ0=0.025) 

and shows that LDDF is again equal to about 1 km. By computing a plot similar to Fig. 3, the 

choice of a 175 m length for the CDF corresponds to the minimum distance for entering into the 

self-similar regime for a parabolic pulse with input pulse energy U0=190 pJ that propagates in a 

CDF with the virtual gain coefficient δ=0.25 and LNL=16 m. 

 

4 PULSE EVOLUTION 

In this section we shall investigate in some details the pulse reshaping action of an active 

DDF with a dispersion decreasing profile adapted to the physical distributed gain as given by the 

solution (8) of section 2. In Fig. 6 we present a comparison of the evolution with distance of the 
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RMS time width of different, but initially chirp-free, pulses in a CDF (i.e., with D(Z)=1) and in a 

DDF. In both cases the physical gain coefficient was set to δ0=0.1, which corresponds to 28 dB 

over the 1 km length of the fiber amplifier with the parameters as defined in Section 3 and the 

initial normal dispersion at λ0=1550 nm of D0=-5 ps/(nm km), and a virtual gain coefficient 

δ=0.5. We deliberately used here a linear gain which is twice as large as the value of 14 dB/km 

that was used in the previous section, in order to clearly show the convergence into the self-

similar parabolic pulse (11-13) of different input pulses, for distances well within the DDF 

length of 1 km. In Fig. 6, the evolution in the DDF or the CDF of the RMS time width of a 

Gaussian pulse with the initial FWHM duration of 10 ps (hence 8.5 ps of RMS duration, since 

for a Gaussian pulse rmsfwhm TT 1774.1= ) and 10 W peak power is indicated by a dot-dashed and 

a dotted curve, respectively. Whereas the corresponding RMS time width of an initial parabolic 

pulse with the same 10 ps FWHM (hence 6.3 ps RMS) time duration and peak power is indicated 

by a solid and a dashed curve, respectively. As it can be seen in Fig. 6, after a certain distance 

(about 400 m in the CDF and 700 n in the DDF) the two different input pulses converge to the 

same self-similar parabolic attractor. Moreover, in the similariton regime the time width of 

pulses in the DDF is considerably shorter than in the CDF: for example, at 1 km the output pulse 

RMS duration is equal to about 35 ps for the DDF versus 70 ps for the CDF. On the other hand, 

the evolution of the spectral width of the different input pulses in the two fibers as shown by 

Fig. 7 shows that the DDF leads to much larger spectral broadening than the CDF. Indeed, the 

output spectral width of the pulses they emerge from the 1 km long DDF is equal to 11.1 THz, as 

opposed to 3.7 THz for the CDF.  

The details of the intensity profiles in both the time and the frequency domains of the 

Gaussian and the parabolic pulses as they emerge from the either the CDF or the DDF are shown 
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in the top and bottom part of Fig. 8, respectively. As it can be seen in Fig. 8, the peak power of 

pulses from the DDF is nearly doubled with respect to the CDF, whereas the temporal width is 

halved. At the same time, Fig. 8 confirms that the spectral broadening of both parabolic and 

Gaussian pulses in the DDF is increased by about a factor of three with respect to the CDF. It is 

interesting to point out that, following the analysis of Sections 2-3, the same pulse evolution that 

is observed in the DDF of Figs. 6-8 could be observed in an equivalent CDF with a linear gain 

coefficient increased by a factor of five, that is as high as 140 dB/km (i.e., δ0=0.5 in 

dimensionless units). However, following Eq.(9), the length of this CDF could be reduced to just 

250 m, so that the actual integrated gain of the equivalent CDF would need to be equal to 35 dB. 

These considerations are confirmed by the numerical solution of Eq.(4) with the parabolic pulse 

input condition (11-12), as shown by the plots of Fig. 9. 

The main advantage of describing the propagation in the DDF in terms its equivalent virtual 

CDF, is that this permits using the known asymptotic results of Eq.(13) for the analytical 

prediction of the evolution of the parabolic pulse in the dispersion tapered amplifier. For 

example, by using Eqs. (11-13) one obtains (see Fig. 10(a)) the dependence of the optimal input 

FWHM time width 25TT in
rms

in
fwhm = of a parabolic pulse as a function of the input pulse energy, 

for different virtual gain coefficients δ=0.25 or δ=0.125 of the equivalent CDF, and the fixed 

value of δ0=0.05 for the physical gain coefficient. As it can be seen from figure 10(a), for input 

pulse energies U0 close to 100 pJ, the input FWHM time width decreases from 10 ps to 6 ps as 

the CDF virtual gain coefficient (and the corresponding dispersion profile D(Z) of the DDF) is 

varied from δ=0.125 up to δ=0.25.  

In a similar manner, one may easily estimate the output FWHM spectral width of the linearly 

chirped parabolic pulses as they emerge from a given length of DDF (say, 1 km), by calculating 
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the spectral width of the pulse at the output of the corresponding virtual CDF whose length is 

given by Eq.(9). Indeed, in the self-similar or similariton regime the FWHM spectral width is 

25FF out
rms

out
fwhm = , where .2CTF S

0
S
0

out
rms π=  Figure 10 (b) illustrates the prediction of Eqs. (11-

13) for the output FWHM spectral width of a parabolic pulse as a function of the input pulse 

energy, for a fixed DDF length of 1 km, the physical gain coefficient δ0=0.05, and different 

virtual gain coefficients δ of the associated equivalent CDF (corresponding to the different 

dispersion profiles which are shown in Fig. 1). As it can be seen from Fig. 10(b), for input pulse 

energies U0 close to 100 pJ, the output FWHM spectral width increases from 2.8 THz  up to 4.5 

THz as the CDF virtual gain coefficient (and the corresponding dispersion profile D(Z) of the 

DDF) is varied from δ=0.125 up to δ=0.25. 

As shown in Fig. 11(a), we have also applied the exact asymptotic expressions (13) to 

calculate the optimal input FWHM time width of a parabolic pulse versus the input pulse energy 

for the dispersion profiles shown in Fig. 5. Here we kept the DDF length fixed to 1 km, whereas 

its physical gain coefficient is δ0=0.025, and the virtual gain coefficient of the associated CDF is 

δ=0.25. Finally, Fig. 11(b) shows the corresponding output FWHM spectral width of the 

parabolic pulse as a function of the input pulse energy, for the same choice of DDF and CDF 

parameters. 

 

5 EFFECTS OF THIRD-ORDER DISPERSION 

As mentioned in the introduction, one of the major obstacles to the use of a passive DDF for 

similariton generation is the presence of third-order dispersion (TOD) which leads to propagation 

instabilities or shock formation [15,17]. Let us briefly consider the influence of TOD on 
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parabolic pulse propagation in a DDF amplifier: the evolution of the pulse field envelope Q is 

described by the extended amplified NLSE 

( ) 2 3
22 3

02 3
,

2 6z

z Q Q
iQ i Q Q i Q

T T

β β γ δ∂ ∂+ − + =
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       (14) 

where β3 is the third-order dispersion. Figures 12(a-b) show the input (dashed grey curve) and 

output (after 1 km DDF with the physical gain δ=0.1) profile (in time and frequency domains, 

respectively) of an initial 10 W peak power, 10 ps FWHM parabolic pulse as it emerges from a 

DDF with no TOD (solid curves), and with all other parameters as in the case of Fig. 8. This 

should be compared with Figs. 12(c-d), where in numerically solving Eq.(14) the TOD was 

increased from zero up to β3=0.025 ps3/km: as it can be seen, at 755 m the pulse exhibits a 

significant temporal and spectral asymmetry. Next, Figs. 13(a-b) show that after 779 m of DDF 

the pulse develops a shock in its leading edge, which corresponds in the spectral domain to 

significant amount of red-shifted radiation. Additionally, the plots of Figs. 13(c-d) show that 

when the TOD is reduced down to β3=0.015 ps3/km, the shock only develops after a 974 m long 

DDF. An approximate but analytical prediction for the critical distance at which a TOD-induced 

shock may be observed in an active DDF may be obtained from the Kodama’s inequality [17] 
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where ρ0 is the dimensionless peak power of the pulse. Eq.(15), which was rigorously obtained 

for square optical pulses (i.e., nonreturn-to-zero or NRZ pulses), predict that a shock wave type 

of instability develops on the pulse whenever the TOD is large enough that the inequality is 

satisfied. It turns out that one may predict (with about 10% accuracy) the onset of an optical 

shock as the peak power of the pulse reaches 450 W at 779 m (see Fig. 13(a)), or 900 W at 
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974 m (see Fig. 13(b)), provided the path-average values of the GVD β2 and of the pulse peak 

power ρ0 are used in Eq.(15). The advantage of using an active DDF in order to reduce the 

impact of TOD is clear from both the left-hand side of Eq.(15), and the nonzero asymptotic value 

D(Z>>1)=Γ0/Γ of the dispersion profile (8). As shown by Fig. 1(a), in contrast with the passive 

case, in the active DDF the second-order dispersion does not vanish, hence the generated 

parabolic pulse will be less impacted by TOD. Note finally that, although in solving Eq.(14) we 

considered a TOD that is constant with z, we may anticipate that a suitable TOD management 

may permit to counteract its negative influence on pulse propagation in DDF amplifiers. 

However the detailed analysis of the influence of TOD on pulse reshaping by means of DDF 

amplifiers is beyond the scope of this paper, and we plan to discuss this issue elsewhere. 

 

6 CONCLUSIONS AND ACKNOWLEDGEMENTS 

In this work we presented a theoretical analysis of pulse propagation in a varying-

dispersion, nonlinear optical fiber amplifier. We pointed out an analytical dispersion profile 

which permits to reduce optical pulse propagation to a description in terms of the amplified 

NLSE with constant parameters. We have analysed the influence of both the physical gain and of 

the dispersion tapering (or virtual gain coefficient) on the pulse reshaping properties of the active 

DDF. In particular, our analysis permits to obtain analytic relationships for both the optimal 

input pulse width and the corresponding output spectral width of the optical pulses. Additionally, 

by exploiting the known properties of the equivalent constant parameters amplified NLSE, one 

may determine, hence control the minimum DDF length which leads to the asymptotic 

amplification regime. Let us note that the proposed guidelines for the dispersion profile may be 

quite easily adapted to a comb like fiber set-up, where a set of carefully chosen normally 
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dispersive fibers mimics the continuous dispersion decrease. An added benefit of using an active 

DDF, with respect to the passive case, is that in the active case the optimal dispersion profiles do 

not vanish as the DDF length grows larger, which reduces the deleterious influence of higher 

order dispersion. Finally, we provided a simple method to estimate the threshold for the onset of 

TOD-driven pulse instabilities in active DDFs.  

We are grateful to A. Sysoliatin for several discussions on the practical design of 

dispersion decreasing optical fibers. This research was supported by the Agence Nationale de la 

Recherche (SUPERCODE project) and by the Conseil Régional de Bourgogne. 

 

APPENDIX 

In order to solve Eq.(7) all that is needed is a particular solution. Take for example the constant 

solution 

0D
Γ=
Γ

   (A1) 

Then the new function d(Z) is defined as 

DZD
Zd

−
=

)(

1
)(   (A2) 

obeys the simple linear ordinary differential equation 

0d d′ = Γ + Γ   (A3) 

whose general solution is 

0

0

( ) Zd Z CeΓ Γ= −
Γ

  (A4) 
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The integration constant C is determined by the condition that D(Z=0)=1, so that one finally 

obtains the required dispersion profile as given by Eq.(8). 
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Figure Captions 

1. Fiber length dependence of the dispersion profile with (a) δ=0.5 and different values of δ0 or 

(b) with δ0= 0.05, and δ=0.125, 0.25, 1. 

2. Length of DDF (km) as a function of the physical gain δ0, for a virtual gain (a) δ=0.5 and 

CDF length of 150 m (the horizontal arrow indicates a passive DDF) (b) δ=0.25, and CDF 

length of 350 m. Vertical arrows at δ0=0.05 point to a DDF length of 1 km in both cases. 

3. Minimum distance for entering the self-similar regime for the equivalent CDF with δ=0.25, 

vs. the input parabolic pulse RMS time width, with input pulse energy U0=94 pJ. 

4. Dependence of the ratio R of gain coefficient-fiber length product δ0L of the DDF and of the 

equivalent CDF, vs. the DDF gain δ0, for δ=0.25: the arrow indicates the δ0=0.05 case. 

5. (a) Dispersion profile of the DDF for the nonlinear distance LNL=16 m (31 m), so that 

δ0=0.025 (δ0=0.05); the virtual δ=0.25 in both cases; (b) DDF length vs. δ0 for LNL=16 m, 

with δ=0.25 and the CDF length of 175 m. The arrow indicates the 1 km DDF length for a 

physical gain of 14 dB/km. 

6. Comparison of the evolution with distance of the RMS time width of a parabolic (Gaussian) 

pulse in a CDF (dashed (dotted) curve) and in a DDF (solid (dot-dashed) curve) with a 

physical gain δ0=0.1 in each case, and a virtual gain coefficient δ=0.5 for the DDF. 

7.  Same as in Fig. 6, for the RMS spectral width. 

8. Comparison of the output intensity profile vs. time (top) and frequency (bottom), for a 

parabolic (Gaussian) pulse after a 1 km long CDF (grey dashed thick (thin) curves) or DDF 

(black solid thick (thin) curves) with the physical and virtual gains as in Fig. 6. 

9. Evolution of the RMS (a) time and (b) frequency width of a parabolic pulse in a CDF as in 

Figs. 6-7, but with the linear gain δ=0.5. 
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10. Dependence of optimal parabolic pulse parameters vs. its input energy, for a fixed DDF 

length of 1km, the physical gain coefficient δ0=0.05, and different virtual gains δ: (a) optimal 

input FWHM time width; (b): associated output FWHM spectral width. 

11. Same as in Fig. 9, for a DDF gain coefficient δ0=0.025 (with LNL=16 m), and δ=0.25. 

12. Input (grey dashed curves) and output (solid curves) pulse power profile versus time and 

frequency for a 1 km long DDF with (a) β3=0 with δ0=0.1, δ=0.5; (b) for a 755 m long DDF 

with β3=0.025 ps3/km. 

13. Same as Fig. 11(b), for (a) a 779 m long DDF with β3=0.025 ps3/km; (b) a 974 m long DDF 

with β3=0.015 ps3/km. 
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