HyperLogLog: the analysis of a near-optimal cardinality estimation algorithm - Archive ouverte HAL
Communication Dans Un Congrès Année : 2007

HyperLogLog: the analysis of a near-optimal cardinality estimation algorithm

Résumé

This extended abstract describes and analyses a near-optimal probabilistic algorithm, HYPERLOGLOG, dedicated to estimating the number of \emphdistinct elements (the cardinality) of very large data ensembles. Using an auxiliary memory of m units (typically, "short bytes''), HYPERLOGLOG performs a single pass over the data and produces an estimate of the cardinality such that the relative accuracy (the standard error) is typically about $1.04/\sqrt{m}$. This improves on the best previously known cardinality estimator, LOGLOG, whose accuracy can be matched by consuming only 64% of the original memory. For instance, the new algorithm makes it possible to estimate cardinalities well beyond $10^9$ with a typical accuracy of 2% while using a memory of only 1.5 kilobytes. The algorithm parallelizes optimally and adapts to the sliding window model.
Fichier principal
Vignette du fichier
dmAH0110.pdf (468.16 Ko) Télécharger le fichier
Origine Fichiers éditeurs autorisés sur une archive ouverte
Loading...

Dates et versions

hal-00406166 , version 1 (21-07-2009)
hal-00406166 , version 2 (17-08-2015)

Identifiants

Citer

Philippe Flajolet, Éric Fusy, Olivier Gandouet, Frédéric Meunier. HyperLogLog: the analysis of a near-optimal cardinality estimation algorithm. AofA: Analysis of Algorithms, Jun 2007, Juan les Pins, France. pp.137-156, ⟨10.46298/dmtcs.3545⟩. ⟨hal-00406166v2⟩
32233 Consultations
8814 Téléchargements

Altmetric

Partager

More