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Abstract : We present a new method to generate dark solieins by exploiting the

interaction between two time-delayed optical sintiteas with the same wavelength. The

temporal overlap of two similariton pulses createsnusoidal beating which subsequently

evolves into an ultrahigh repetition-rate traindafk solitons through the combined effects

of normal dispersion, non-linearity and adiabataaan gain. The experimental results are

in good agreement with numerical predictions. W& ahvestigate how the the repetition

rate of the dark soliton train depends on the ts@earation between the initial pulses, the

initial pulse energy, and the Raman gain. Finalg, numerically study the interaction

between three similaritons of the same wavelength.
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1. Introduction

The application of self-similarity techniques t@ tstudy of nonlinear pulse propagation has been
the subject of much recent interest in the contéxtarabolic pulse generation in optical fiber
amplifiers with normal group-velocity dispersion\{(B3) [1-18]. Such pulses, also called optical
similaritons, represent a new class of solutionth®non-linear Schrédinger equation (NLSE)
with gain. They are asymptotically generated in #maplifier, independently of the shape or
noise of the input pulse [3,12], and propagatesetilarly subject to exponential scaling of their
pulse amplitude, temporal duration and spectrattwjl]. In this case, the interplay of normal
dispersion, nonlinearity and gain produces a lilyeahirped pulse with a parabolic intensity
profile [3].

Similaritons are of wide-ranging practical signéfice since their intrinsic resistance to
the deleterious effects of the wave breaking [Idved the scaling of amplifiers to higher-power
regimes [19,20]. Moreover, their linear chirp féetles efficient temporal compression [3,18-
20]. Combination of a similariton amplifier with apptical feedback has resulted in a new
regime of laser mode-locking that is likely to hawajor implications for the development of
high-power ultrashort pulse laser oscillators [Rgcent experimental studies have also taken
advantage of the similariton characteristics togpps® new methods for optical pulse synthesis
[22], for 10 GHz telecom multiwavelength source8][8r for optical regeneration of telecom
signal [24]. The experimental works have mainlyeetlon rare-earth doped fiber amplifiers with
dopants such as Erbium [2,23] or Ytterbium [3,19-Zowever, it has been shown that a
resonant amplification is not a necessary requirgni@ parabolic pulse generation and that
Raman scattering could be efficiently used as dioglion process [8,9,13]. This opens up the

possibility to provide gain at wavelengths wherecnaventional doped amplifiers are possible.



To date, most of the theoretical and experimentadlies have been devoted to the
dynamics of single similariton pulses. The dynanatshe amplification of a pair of pulses is
more complex. In particular, during the amplificat process, the exponential self-similar
scaling of the temporal duration of each individyallse leads to a temporal overlap and
interaction of the pulses after sufficient propawgatdistance. As similariton-based techniques
have been recently demonstrated in the field efctshmunication [23,24] it has become crucial
to better understand the various phenomena whichbeainvolved in the case of a similariton

overlap during the propagation [25].

We present in this paper a detailed study of thieractions occurring in the overlap
region of a pair of optical similaritons of the samvavelength generated in a Raman amplifier
where the amplification is nearly-adiabatic. Ourpéfier at 1550 nm relies on a normally
dispersive Non-Zero Dispersion-Shifted Fiber (NZF)$ association with a commercial watt-
level CW pump source [8,13]. We first detail themarical predictions obtained using a model
based on the Non-Linear Schrédinger Equation (NLBi#) a constant gain term. In particular,
we demonstrate that the pulses evolve independenthgnerate self-similar parabolic profiles,
only interacting in their overlap region. At thegiening of their overlap the interaction between
the two linearly chirped parabolic pulses is almostar and leads to a frequency beating of the
intensity profile. After the first stage of overldpowever, the beating, subject to the combined
effects of non-linearity, normal dispersion andadditic Raman gain, evolves into a train of dark
solitons. We show that dark solitons also appeantaking into account the longitudinal and
frequency dependences of the gain, as well as higitier linear and non-linear terms in the
NLSE. We then compare quantitatively the resultshef computations with experimental data.

We also carry out a detailed study of the deperglenche repetition rate of dark-soliton train



on the characteristics of the input pulse pair e gain of the amplifier. Finally we briefly

consider the interaction between three similaritinthe same wavelength.

2. Numerical simulations

2.1 Basic model
We first present results from simulations that destate numerically the generation of a train
of dark solitons under typical experimental cormis. Evolution of the slowly varying complex
envelopey of an initial pulse during its propagation in@mal-dispersion Raman amplifier can

be modeled by the NLSE with a constant longitudarad spectral gaig :
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wheref,>0 andy are the second-order dispersion and Kerr nonlioeefficients, respectively.
The asymptotic similariton solution of Eq.(1) irethmit z - « is characterized by a parabolic

intensity profile and a positive linear chirp, wleamnalytical expression is given by [3]:
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Here ¢, is a phase offset. The solution (2) corresponda t@mpactly-supported pulse whose

zero-crossing points are given By(z) = (6 A / g) (v 5 / 2)"% exp(g z/3) with A, a constant

amplitude termA, = 1/2 [g Ui / (v 3 | 2)"4*® whereUy, is the initial pulse energy. These

parabolic pulses have a peak-power givenA@V = A¢> exp(2 g z/3pnd a positive linear chirp

with the slopeC, =g/ (6775 ). We note that the temporal widily of the pulse exponentially

increases with the propagation length



2.2 Similariton propagation outside the overlap region

We now consider the amplification of a pair of itdeal pulses separated by a time-detfy=
55.5 ps. The time origin of the copropagating framthe temporal centre of gravity of the pair
of initial pulses, so that the pulses are centatéd + AT / 2.Each initial pulse has a chirp-free
Gaussian intensity profile with a duration of 5 asarrier wavelength d550 nm and an initial
energy 0f2.9 pJ. The Raman amplifier parameters at 1550 nery & 2.0x 10° W' m* and3,

= 4.6 x 10° p§ m™. The linear gain coefficieng is 0.972x 10° m*, which leads, for an
amplifier length 0f5.3 km, to a total integrated gain of 22.3 dB. Fggli(a) shows the evolution
of the pair of pulses as a function of the propagadistance in the amplifier, as calculated from
numerical integration of Eq. (1). The solid lindsw the total evolution of the incident pair of
pulses and, for comparison, the open circles shiogv éxpected evolution of one pulse
propagating on its own. We note that there is aticeable difference between the intensity
profile of a single pulse (circles) and the intengrofile of a pulse in the presence of its
neighbor (solid line). Therefore, both before arfigerathe pulses overlap, each pulse evolves
separately with a parabolic profile, and only iatgrin the overlap region. Owing to their
compact nature, parabolic pulses are clearly uotfeby their neighbor outside the overlap
region. In consequence, their mean temporal posittemain constant along the amplifier. This
is in contrast to the case of two interacting solt, where both the position and shape of the

pulses are modified by the interaction.

2.3 Modulation of the intensity profile in the overlap region

Figure 1 (a) clearly shows that, at a distance .47 &«m, an oscillation appears inside the

overlap. Indeed, as the parabolic pulses are Ineairped, the frequency difference between



the overlapping leading and trailing edges of the pulses induces a beating in the resultant
signal. This is shown more clearly in Fig. 1(b)ligdine).

To understand the characteristics of this beatmgnore detail, we first neglect the
nonlinear effects which occur in the interactioroqass between the two similaritons. If we
consider that the pulses have developed a parafizdipe as described by Eq. (2), the overlap
region extends fromh= AT/2 — T, tot = T, - AT/2. The resulting intensity profile in the overlap
region will be thus given by the linear superpasitof the falling edge of the first pulse, whose
instantaneous frequencyfis+ C, ( t + 4T/2), with the raising edge of the second pulse whose
instantaneous frequencyfis+ C, ('t - AT/2).
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where the phase offset terms were neglected. Wethwis see a sinusoidal beating due to the
superposition of the two instantaneous frequenseparated b = C, AT. The intensity in the
overlap region is then given by:
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We thus haveN = fs ( 2 T, — AT) oscillations which appear in the overlap regiontife

W O =2|A (@)

center of the overlap region (wheftj< T -AT/2 ), the intensities of the pulses are

comparable so that near 100% modulation is expegtiethe inner edges of the overlap region,



the contributions of the pulses become differeattlsat the modulation depth decreases. The
circles in Fig. 1(b) represent the linear supetpmsiof the similaritons (Eq. 4) after 4.17 km of
propagation, resulting in oscillation with a modida frequencyfs = C, AT = 622 GHz. Figure
1(b) shows that, at the center of the overlap regius oscillation is in good agreement with the
numerical simulations of Eqg. (1) (solid line). Howee, it is significant that the oscillations
predicted by numerical simulations extend overrgdarange than those obtained from simple
linear superposition of the two parabolic pulsethe value ofN obtained by numerical
simulations is then superior fo( 2 T, — 4T). These additional oscillations, which originate in
the wings of the similariton pulses [5,6], impligiappear from numerical integrations of Eq. (1),
but are neglected by assuming that the pulses &awexact parabolic shape (Eq. (4)). In our
case, the large apparent value of the wings isteeldo the fact that, after 4.17 km of

propagation, the pulses are not completely in fyengtotic regime.

2.4 Generation of high-repetition rate trains of dark solitons

When the overlapping pulses further propagate tiivaihe amplifier subject to the combined
effects of non-linearity, normal dispersion andasditic Raman gain, the oscillation reshapes
into a train of dark solitons [26]. Such a reshgpaffect has been previously exploited in the
spatial field with the transformation of a periodicusoidal modulation into a spatial array of
dark solitons [27]. The normalized intensity prefif a dark soliton is given by [28(T) =
A%(1-B’sechT) /B, whereA? is the intensity depth of the hol? is a blackness factor related to
the contrast and is a dimensionless retarded time. Dark solitorth ®f = 1 have been called
black, whereas other dark solitons with —B< 1 are called gray. The blackness paramBier |

can be calculated from the values of the power@rase jump at the dip center. For example,



for the dark soliton designed as (1) in Fig. 1{og blackness parameter B £ 0.9970 1 and
the phase jump is 0.970, so that this hole is very close to a black solitgth atantf shape.
Indeed, Fig. 1(c) confirms that after 5.3 km ofgagation, the intensity and phase profiles of the
dip (1) (solid line) are in very good agreementwitie corresponding profiles of a black soliton
(circles) with a temporal widtfiy = 385 fs, a pulse dep®y = 15.6 W and a phase jump mf
Taking into account that the fundamental blacktsolidepth isP, = 3 /(yT4%) = 15.9 WO Py,

we may conclude that the characteristics of dipa(&)very close to those of a fundamental black

soliton.

The repetition rate of the dark-soliton train afeepropagation distance of 5.3 kmfjs= 380
GHz. Figure 2(a) shows the spectrum of the darkosoltrain (solid line) after 5.3 km of
propagation, compared with that of a single putisited grey line). As can be seen from Fig.
2(a), the generation of a train of dark solitonsharacterized by the apparition of peaks, with a
frequency spacing equal t¢ The growth of these spectral peaks can be seam@mifestation

of a four-wave mixing process.

Figure 2(b) represents the evolution of the conpdot of the normalized intensity profile
of the dark soliton train with further amplificatiadistance. The time-shifts of the dips during
propagation, which are clearly observed if Fig.)2¢hdicate that dark solitons propagate at

different relative velocitie® with respect to the group velocity at the initredvelength. It has

been previously shown th& has the same sign Bsand is proportional té, 1-B2/B[28]. On

the other hand > 0 B < 0) when the phase increases (decreases) abmgailse [28]. So,

according to the phase profile shown in Fig. 1&t),t < 0 (B < 0) the dark soliton velocity



decreases, whereastat 0 (B > 0) the dark soliton velocity increases, in agrest with the
numerical results of Fig. 2(b). Sincg||is a decreasing function dB|] the highest relative
velocities | are expected at the edges of the overlap redimreover, since4| is an
increasing function oA, the relative velocitieg|| increase with the amplification distance. So,
as can be seen in Fig. 2(b), the time separatibneles the dark soliton centers do not grow
larger in a linear fashion with the propagatiorntatise along the amplifier. Indeed, the repetition
rate of the soliton train rapidly decreases frofd 88 135 GHz when the propagation distance
only increases from 5.3 to 7.3 km. It is notewortbyremark from Fig. 2(b) that the temporal
width of the dark solitons decreases with propagadiistancee.g.from 380 fs at 5.3 km to 200
fs at 7.3 km. As a matter of fact, the solitonsadtically adapt their temporal width in order to
satisfy the relationship between the peak powerth@diuration during the amplification process
[29]. There is a global conservation of the areath# dark soliton pulse. This temporal
compression is different from the spreading ofdhek solitons, as described by Rothenberg [30]
in the case of the generation of a train of darlkat by the colliding of two pulses. In the
scheme of Ref. [30], the physical phenomenon resptanfor the overlap of the pulses was the
temporal broadening induced in a passive fiber liy deleterious effect of optical wave-

breaking.

3. Use of a more realistic model

The model (Eqg. (1)) used in the previous sectios Wwased on the assumption of a constant
longitudinal gain and neglects several effects Wwitian affect the shape of the output pulse, such
as the longitudinal dependence of the gain pr¢#ilé7] or the dispersion of the Raman gain

[31,32]. For a more accurate modelization of oupesimental results, we present now



simulations using the generalized extended NLSH [Bat rigorously includes the Raman
amplification process through an appropriate irdegerm, as well as effects such as higher-

order dispersion terms and self-steepening :
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The functionR(t) = (1 — f) At) + f; h(t) includes the instantaneous electronic responsehand
delayed Raman contributidn(t), with the fractional Raman contributidn= 0.18. Forh(t), we
used the measured Raman response of fused sifi¢aT]l3e third order dispersion & = 1.0 x
10° pm™. The wavelength dependent loss coefficignis also included in Eq. (5). Herg(z,t)

= Yz,t) + Y(z,t) exp(-i2 t), where ¢ and ¢ are the slowly varying envelopes of signal and
pump fields oscillating ate, and w, respectively.Q =« - @ is the pump-signal frequency
detuning chosen so that near optimal Raman gairtharsignal is achieved at 1550 nm. The
initial conditionsy(0,t) for the signal are given by the intensity and clofphe two input pulses
directly measured by using a frequency-resolvedcabgating (FROG) technique [33]. The
pump ¢ is assumed to be a noise free continuous waved@ hm. We use a counter-
propagating amplification scheme, which has theaathge to be only slightly affected by the
time-dependent pump depletion effects [17]. In egence, in that pump configuration, the two
input signal pulses have nearly the same Raman @eirthe contrary, pump depletion effects,
which would occur in a forward pumping geometry,wblead to different effective Raman
gain for the two signal pulses. The pump powerdjssted in order to provide a total integrated

gain of 22.3 dB for the signal. This corresponda fmwer §(L)|? of 0.95 W.
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In practice, to improve the numerical efficiencyndathus reduce the computation time),
assuming a continuous Raman pump, we used thevinljoset of two coupled extended NLSE's
[13,17] with the subscripts and r indicating the signal and Raman pump wavelengths

respectively:
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The influence of pump depletion on the longitudipainp power evolution is taken into account
by the introduction of a termy(z), which can be numerically determined by an iteragix@cess
based on an average power analysis [34]. The daeetaplit-step Fourier method was used to
numerically solve Eq. (6) [31].

Figures 3(a) and 3(b) show the phase and intepsdijles (solid lines) obtained from
numerical integration of Eq. (6) at a propagati@stahce of 5.3 km. The intensity profile of the
initial pulses retrieved from FROG measurementtigplayed in Fig. 3(a) by the dashed line. In
Fig. 3(b), the deepest hole is in good agreemettt wileast-squares fit of @nh function
(circles) with a temporal width dfiy = 0.42 ps. We also observe in Fig. 3(b) a brutalse jump
of a value close terat the minimum of the pulse, which is the signatira dark (black) soliton.

The spectrum of the pair of pulses displayed in Big) is similar to that resulting from the

11



model with a constant gain (Fig. 2(a)). The frequyeseparation between two consecutive peaks
indicates a repetition rate of 446 GHz instead &8 &Hz obtained from Eq. (2). So we can
conclude that the simple model with a constant g&qg. (1)) gives a correct qualitative
prediction of the consequences of the interactietwben the two similaritons. However, an
accurate quantitative comparison between numemgeaddulations and experimental results

requires the use of the extended NLSE (Eq. (6)).

4. Experimental results

4.1 Experimental setup

Figure 4 shows a schematic representation of tpererental setup. The 1550 nm input pulse
was obtained from a Pritel passively mode-lockedrfiaser operating at a repetition rate of 22
MHz. The initial pulse had a nearly Fourier tramsfdimited intensity profile with a temporal
duration of 5 ps (see section 4.2). The pulsestethirom the picosecond laser were sent
through a beamsplitter and recombined in a Machdehinterferometer with a variable delay
between the two pulses. A variable attenuator placene arm of the interferometer allows us
to obtain two pulses with the same energy, wheeeaslarizer located at the interferometer
output permits to obtain two pulses with the samear state of polarization. The Raman
amplifier consists in 5.3 km of NZ-DSF, whose pagtens have been reported in section 2.2.
The fiber was pumped in a backward configuratior] [y a continuous wave Raman laser
(Keopsys), delivering a power of 1420 mW at 1455 ArWWDM coupler with high power rating
permitted the superposition of pump and signal lseafm optical isolator at 1480 nm was

inserted after the polarizer to prevent that parthe residual pump in the Raman amplifier

12



disturks the operation of the picosecond laser. Input amgud pulses were characterized by
their optical spectrum and autocorrelation. Whesspgae (according to the pulse energy and
recording time), the pulse intensity and phase whegacterized using a FROG device based on
second harmonic generation [13]. The phase anagityeretrieval was performed using the
generalized projections algorithm [33]. The religpiof the FROG measurements was checked
using the standard techniques based on comparisginghe independently-measured

autocorrelation and spectrum with the FROG tracegmals [33].

4.2 Characterization of a single similariton

We have first characterized using FROG the inpialses whose retrieved intensity profile is
shown in Fig. 5 by diamonds. Figure 5 (circlespathiows the retrieved intensity and chirp
profiles of the pulse at the amplifier output i tbase of a single initial pulse. As can be seen in
Fig. 5, the experimental intensity and chirp pesilare in very good agreement with parabolic
and linear fits, respectively (gray dashed lineheToutput pulse exhibits the expected
characteristics of a similariton with a total temgowidth 2T, = 73.5 ps, a chirp slop@, =
0.0118 THz/ps and a peak power of 10 W. The expariat data are also compared with
numerical integration of Eq. (6) (solid line). Aarcbe observed in Fig. 5, there is a very good
agreement between numerical and experimental sesudhfirming the reliability of the model
described by Eq. (6). It is noteworthy that the eldzhsed on the assumption of a constant gain
(Eq. (1)) leads to significantly different paramste2 T, = 85 ps andC, = 0.0107 THz/ps. The
assumption of a constant gain is clearly not thestnappropriate to accurately reproduce the
characteristics of the similariton as observed grpentally. As a result, we have only used the

numerical integrations of Eq. (6) in what follows.
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4.3 Characterization of the interaction between two similaritons

We now characterize the similariton interactionthe case of an initial pair of pulses with an
energy of 2.9 pJ and a temporal separatiodoE 55.5 ps. We note that, as the dark solitons
generated during the similariton interaction arpe=ted to have a temporal width of ofily=
0.32 ps, pulse characterization using FROG woulgiire both a large total temporal window
(about 200 ps) as well as a high temporal resolui@bout 20s) to completely define the pulse
structure. This would necessitate measurement wéra large number of data points and a
corresponding long acquisition time. Unfortunatedwing to the lack of long term stability of
our FROG device, we were not able to process &tdfROG characterization of light at the
amplifier output. It would also be very difficulb timplement a cross-correlation technique
similar to that used in Refs. [30,35,36] since mitial pulses are much more broader than the
dark solitons we would like to characterize. Howewé was possible to characterize the
generation of the dark soliton train via interasti@f two parabolic pulses by direct
measurements of the autocorrelation and spectrdighdfat the amplifier output.

Figure 6(a) shows the autocorrelation trace reacbatethe center of the overlap region
(circles). The experimental trace, which exhibii)45Hz oscillations, is in good agreement
with numerical integrations of the extended NLSHK).(E6)). The experimental data are also
compared with a sinusoidal fit (dotted line). Wa cdbserve from Fig. 6(a) a large disagreement
between the experimental results and the sinusbigdalhich is a clear signature of the nonlinear
reshaping of the sinusoidal modulation from theebwé the similariton interaction into a train of
dark solitons. The experimental output spectrunspldyed in Fig. 6(b), exhibits several

sidebands separated by 407 GHz, consistent with rédpetition rate measured on the
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autocorrelation signal. We note that that the sisadictral asymmetry, which is also present in
the experimental output spectrum of a single snibdia (dashed gray line), is mainly due to the
asymmetry of the initial pulse spectrum (not shdwemne), slightly accentuated by the effects of
Raman intra-pulse scattering. The experimental tayp@cis also in good agreement with the
corresponding numerical spectrum, shown in Fig), 2(stained from integration of the extended
NLSE (Eq. (6)). In view of the excellent agreemdigtween numerical and experimental
spectrum and autocorrelation, we can conclude dhat results provide clear experimental
evidence for the signature of the generation o&ia of dark solitons arising from the interaction

between two optical similaritons.

5. Control of the repetition rate of the dark soliton train

In this section, we investigate both numericallyd aaxperimentally the influence of several
parameters on the repetition rdteof the dark soliton train generated from the iatéon
between two similaritons. We will show that the egfion rate can be controlled by specific
choices of the initial time separatiefT, pulse energyi, or integrated gai® of the amplifier.
The repetition rate has been determined by meagth@spectral separation of the characteristic
sidebands of the spectrum of the two similaritdfigure 7 shows the evolution of the repetition
rate of the train of dark solitons as a functionddt (a), U, (b) andG (c). The experimental
results (circles) are compared with numerical irdégns of the extended NLSE (Eq. (6)) (solid
line) and of the NLSE with a constant gain (Eq) (#lashed line), and with the frequerigy C,
AT of the precursory sinusoidal oscillation resultirgm linear overlap of the similariton pulses

(mixed line).
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5.1 Influence of the initial time separation AT

In this study the initial pulse energy and integdagain were fixed to 2.9 pJ and 22.3 dB,
respectively. Figure 7(a) shows that the repetitaefy is a quasi-linear function oAT. The
experimental results (circles) are both in goodeagrent with numerical simulations based on
Eq. (6) (solid line) and Eq. (1) (dotted line). &spected, the frequendy is lower tharfs due to
the transverse velocityj of the dark solitons. The differende= fs - fy decreases witlIT : for
AT = 47 ps,0 = 270 GHz, whereas fafiT = 70 ps,d is only 180 GHz. Since the propagation
distance at which the pulses begin to overlap as=e withAT, dark solitons are generated after
a longer distance in the amplifier 28 increases. In consequence, after their generatok d
solitons will propagate with their own velocitigg on a shorter distance, so tldawill be lower
(see Fig. 2(b)). The results of Fig. 7(a) cleadyndnstrate that the repetition rétef the dark
soliton train can be precisely adjusted just byndiag the time separatiodT between the

initial pulses.

5.2 Influence of the initial pulse energy Ui,
With the time separation between the initial pulsesg now fixed to 55.5 ps, we now change
the value the initial pulse enerty,. The experimental values (circles) shown in Fit,) Bhow
thatfy only slightly decreases witli,. The experimental results are in good agreemetht tive
numerical simulations of both models (solid andtetbiines). The global behavior &f versus
Uini can be explained by similar considerations thaseéhused in section 5.1. We recall that the
frequencyfs = C, AT of the oscillation created at the beginning of shwilariton overlap does

not depend on the pulse energy. Indeed the chiranpeterC, is independent oUi, in the

16



asymptotic regime. On the other hand, the tempwidth T, of the similariton increases with the
initial energy (see section 2.1), so that the distaat which the similaritons overlap decreases
with Ui, . In consequence, after their generation dark sditwill propagate with their own
velocities|£] on a longer distance, so that the frequency op#@dic train of dark solitons will
decrease (see Fig. 2(b)). Another contributiorhodecrease d§ with U;,; comes from the fact
that the depth of the dark soliton increases With (see section 2.4) and the velocjf§

increases with the soliton depth.

5.3 Influence of the integrated gain G

We now study the variation of the repetition rateh® dark soliton train as a function of the
integrated gain of the Raman amplifier. The inipalse energy and time delay between the input
pulses were fixed to 2.9 pJ and 55.5 ps, respégtie experimentally change the pump power
so that the integrated gath varies from 50 to 170 (17 to 22.3 dB). We canfsem Fig. 7(c)
that the experimental values fjf(circles) remain nearly constant. Those resukscansistent
with the evolution predicted by numerical simulagdbased on the Eg. (6). On the other hand
the NLSE with a constant gain (Eq. (1)) predicticwated values ofy which are slightly
underestimated as the integrated gain increasesc@h be explained by the fact that the effects
of pump depletion become more significant as thegirated gain increases.

The very small dependencefgiversusG is rather unexpected since the frequency of the
initial beatingfs increases with the linear gain g in the fiber (@iXine):fs = C, AT with C,
directly proportional t@ (see section 2.1%0, the global evolution d§ versusG can not be only
explained by the dependencefofThe velocity ff| of dark solitons and the distance over which

dark solitons will propagate after their generataday a significant role in the dependencdof
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versusG. Indeed, higher the gain is, lower is the propagadistance at which the overlap of the
similaritons occurs and higher &= fs - fs. Moreover, the increase of the depth of the dark
soliton withG induces an increase of the velodjy and consequently an increasedoT hus the

evolution offy versusG results in a balance between the increasésaoid J.

6. Interaction between three similaritons

Finally, we investigate using numerical simulatidghe case of the interaction between three
similaritons of the same wavelength and temporsdlgarated by same quantdy, = 35 ps.
The characteristics of the three initial pulses daman amplifier are identical to those
considered in section 2.2. Figure 8(a) shows thatthree initial pulses are transformed into
similaritons, characterized by a parabolic intgngtofile, before overlapping. Two distinct
overlap regions clearly appear at a propagatiotamie of about 3.3 km. Similarly to the case of
the interaction between two similaritons, oscilag appear within each overlap region and
further reshape into dark solitons for longer pgaieon distances. Figure 8(b) shows that at a
distance of about 5 km both overlap regions ovetitegmselves and collisions of dark solitons
appear. It is remarkable to observe from Fig. &} dark solitons are stable against collisions.
To illustrate this property, Fig. 8(c) shows anrepée of a collision between two dark solitons
that occurs at a propagation distance of 5992 nd(8ne) within the time window spreading
from — 6 ps to —2 ps. We clearly observe from Bi@:) that the intensity profiles of the two
colliding dark solitons before the collision (dadhene) remain unchanged after the collision
(dotted line). On the other hand, Fig. 8(d) shdwed & temporal shift of the dark solitons appears

during the collision [28].
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7. Conclusions

In conclusion, we have analyzed the dynamics ok#iesimilar amplification of a pair of time-
delayed identical pulses of the same wavelength Raman amplifier. During the amplification
process, due to the exponential scaling of thenptaral duration, each pulse broadens, so that,
after a given distance of propagation, the two gmilsverlap and interact. Owing to their
compact nature, similaritons are clearly unaffedigdheir neighbor outside the overlap region.
Inside the overlap region, the superposition oflthearly-chirped pulses creates an oscillation.
Due to the combination of non-linearity and gaims toscillation adiabatically evolves into a
finite-extent high-repetition rate train of darklisms. Our experimental results are in good
agreement with theoretical calculations and continen generation of dark-soliton train at high
repetition rates. We have also investigated thdu#éieas of the repetition rate of the dark
solitons as a function of the initial pulse tempa@paration, pulse energy and integrated gain.
These evolutions are both affected by the intripsaperties of the similaritons and the relative
velocities of the dark solitons. Finally, we haveown that stable collisions of dark solitons
appear during the interaction of three similaritons

Although our experimental results have been obthingng Raman amplification, our
conclusions can be extended to other amplificgpimtesses as long as we restrict ourselves to
normal dispersion, and we are the regime of anbadim amplification regime. For example,
dark solitons could also be generated via simdarihteraction in ultra-long erbium-doped fibers

with controlled dispersion properties [37].
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Figure captions

Fig. 1: (a) Numerical calculations of the intensity prafilef a single pulse (circles) and a pair
of pulses (solid lines) at different distances wigagation. (b) Central part of the pulse overlap
at z = 4.17 km: simulations (solid line), linear supasiion (circles). (c) Intensity and phase

profiles atz = 5.3 km: numerical simulations (solid lines) dndck soliton fit (circles).

Fig. 2. (a) Calculated spectra of a single pulse (dagiay line) and of the pair of pulses (solid
line) after 5300 m of propagation. (b) Contour pbthe evolution of the normalized intensity

profile of the dark soliton train from 5.3 to 7.8k

Fig. 3: Numerical simulations based on the extended NL&S#e propagation of the pair of
pulses after 5300 m of propagation. (a) Intensitfiles at the amplifier output (solid line). The
experimental intensity profile of the initial pusseetrieved from FROG measurements is shown
by the dashed line. (b) Intensity and phase @m®ft the center of the overlap region : numerical
simulations (solid lines), fit by a black solitocir€les). (c) Ouput spectrum convoluted with the

transfer function of the optical spectrum analyzer.

Fig. 4. Experimental setup used for the generation ofptiie of pulses and for the self-similar

Raman amplification.

Fig. 5: Intensity and chirp profiles retrieved from FROGasurements for the initial pulse

(diamonds, x 10) and for the output pulse (gragles). Experimental results are compared with
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linear and parabolic fits of the chirp and intepgtofiles, respectively (dotted line) and with

results from numerical simulations (solid line).

Fig. 6: (a) Autocorrelations of the pair of pulseszat 5.3 km: experimental results (circles),
numerical calculations (solid line), sinusoidal (fotted line). (b) Output experimental spectra

for a single pulse (dashed gray line) and a paputdes (solid line).

Fig. 7. Evolutions of the repetition rate of the dark &wlitrain as a function of (a) the time
separation between the initial pulses, (b) theaihgulse energy and (c) the integrated gain of the
Raman amplifier. Experimental results (circles) emenpared with numerical predictions of Eq.
(6) (solid lines) and Eq. (1) (dotted lines) andhwanalytical predictiong = C, AT (mixed

lines).

Fig. 8: Propagation of three initial pulses in the Ramarpldier. (a) Intensity profiles at
different distances of propagation. (b) Contourt pibthe evolution of the normalized intensity
profile of the dark soliton trains. (c) Intensityofiles of two colliding dark solitons at different
propagation distances : before the collision (dddivee), during the collision (solid line) and
after the collision (dotted line). (d) Contour ploft the evolution of the normalized intensity
profile of two pairs of colliding dark solitons. €dashed gray line represents the evolution of

one pair of dark solitons in the absence of caltisi
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