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Abstract : We present a new method to generate dark soliton trains by exploiting the 

interaction between two time-delayed optical similaritons with the same wavelength. The 

temporal overlap of two similariton pulses creates a sinusoidal beating which subsequently 

evolves into an ultrahigh repetition-rate train of dark solitons through the combined effects 

of normal dispersion, non-linearity and adiabatic Raman gain. The experimental results are 

in good agreement with numerical predictions. We also investigate how the the repetition 

rate of the dark soliton train depends on the time separation between the initial pulses, the 

initial pulse energy, and the Raman gain. Finally, we numerically study the interaction 

between three similaritons of the same wavelength. 
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1. Introduction 

The application of self-similarity techniques to the study of nonlinear pulse propagation has been 

the subject of much recent interest in the context of parabolic pulse generation in optical fiber 

amplifiers with normal group-velocity dispersion (GVD) [1-18]. Such pulses, also called optical 

similaritons, represent a new class of solutions to the non-linear Schrödinger equation (NLSE) 

with gain. They are asymptotically generated in the amplifier, independently of the shape or 

noise of the input pulse [3,12], and propagate self-similarly subject to exponential scaling of their 

pulse amplitude, temporal duration and spectral width [5]. In this case, the interplay of normal 

dispersion, nonlinearity and gain produces a linearly chirped pulse with a parabolic intensity 

profile [3].  

Similaritons are of wide-ranging practical significance since their intrinsic resistance to 

the deleterious effects of the wave breaking [1] allows the scaling of amplifiers to higher-power 

regimes [19,20]. Moreover, their linear chirp facilitates efficient temporal compression [3,18-

20]. Combination of a similariton amplifier with an optical feedback has resulted in a new 

regime of laser mode-locking that is likely to have major implications for the development of 

high-power ultrashort pulse laser oscillators [21]. Recent experimental studies have also taken 

advantage of the similariton characteristics to propose new methods for optical pulse synthesis 

[22], for 10 GHz telecom multiwavelength sources [23] or for optical regeneration of telecom 

signal [24]. The experimental works have mainly relied on rare-earth doped fiber amplifiers with 

dopants such as Erbium [2,23] or Ytterbium [3,19-21]. However, it has been shown that a 

resonant amplification is not a necessary requirement for parabolic pulse generation and that 

Raman scattering could be efficiently used as amplification process [8,9,13]. This opens up the 

possibility to provide gain at wavelengths where no conventional doped amplifiers are possible. 
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To date, most of the theoretical and experimental studies have been devoted to the 

dynamics of single similariton pulses. The dynamics of the amplification of a pair of pulses is 

more complex.  In particular, during the amplification process, the exponential self-similar 

scaling of the temporal duration of each individual pulse leads to a temporal overlap and 

interaction of the pulses after sufficient propagation distance. As similariton-based techniques 

have been recently demonstrated in the field of telecommunication [23,24] it has become crucial 

to better understand the various phenomena which can be involved in the case of a similariton 

overlap during the propagation [25]. 

 

We present in this paper a detailed study of the interactions occurring in the overlap 

region of a pair of optical similaritons of the same wavelength generated in a Raman amplifier 

where the amplification is nearly-adiabatic. Our amplifier at 1550 nm relies on a normally 

dispersive Non-Zero Dispersion-Shifted Fiber (NZ-DSF) in association with a commercial watt-

level CW pump source [8,13]. We first detail the numerical predictions obtained using a model 

based on the Non-Linear Schrödinger Equation (NLSE) with a constant gain term. In particular, 

we demonstrate that the pulses evolve independently to generate self-similar parabolic profiles, 

only interacting in their overlap region. At the beginning of their overlap the interaction between 

the two linearly chirped parabolic pulses is almost linear and leads to a frequency beating of the 

intensity profile. After the first stage of overlap, however, the beating, subject to the combined 

effects of non-linearity, normal dispersion and adiabatic Raman gain, evolves into a train of dark 

solitons. We show that dark solitons also appear when taking into account the longitudinal and 

frequency dependences of the gain, as well as higher order linear and non-linear terms in the 

NLSE. We then compare quantitatively the results of the computations with experimental data. 

We also carry out a detailed study of the dependence of the repetition rate of dark-soliton train 
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on the characteristics of the input pulse pair and the gain of the amplifier. Finally we briefly 

consider the interaction between three similaritons of the same wavelength. 

 

2. Numerical simulations 

 2.1 Basic model 

We first present results from simulations that demonstrate numerically the generation of a train 

of dark solitons under typical experimental conditions. Evolution of the slowly varying complex 

envelope ψ  of an initial pulse during its propagation in a normal-dispersion Raman amplifier can 

be modeled by the NLSE with a constant longitudinal and spectral gain g :  

 
2
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where β2 >0  and γ  are the second-order dispersion and Kerr nonlinear coefficients, respectively. 

The asymptotic similariton solution of Eq.(1) in the limit z → ∞  is characterized by a parabolic 

intensity profile and a positive linear chirp, whose analytical expression is given by [3]: 
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Here ϕp is a phase offset. The solution (2) corresponds to a compactly-supported pulse whose 

zero-crossing points are given by Tp(z) = (6 A0 / g) (γ β2 / 2)1/2 exp(g z/3), with Ao a constant 

amplitude term Ao = 1/2 [g Uini / (γ β2 / 2)1/2] 1/3, where Uini is the initial pulse energy. These 

parabolic pulses have a peak-power given by |Ap|
2 = A0

2 exp(2 g z/3) and a positive linear chirp 

with the slope Cp = g / ( 6 π β2 ).  We note that the temporal width Tp of the pulse exponentially 

increases with the propagation length z. 
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2.2 Similariton propagation outside the overlap region 

We now consider the amplification of a pair of identical pulses separated by a time-delay ∆T = 

55.5 ps. The time origin of the copropagating frame is the temporal centre of gravity of the pair 

of initial pulses, so that the pulses are centered at t = ± ∆T / 2. Each initial pulse has a chirp-free 

Gaussian intensity profile with a duration of 5 ps, a carrier wavelength of 1550 nm and an initial 

energy of 2.9 pJ. The Raman amplifier parameters at 1550 nm are γ  = 2.0 × 10-3 W-1 m-1 and β2 

= 4.6 × 10-3 ps2 m-1. The linear gain coefficient g is 0.972 × 10-3 m-1, which leads, for an 

amplifier length of 5.3 km, to a total integrated gain of 22.3 dB. Figure 1(a) shows the evolution 

of the pair of pulses as a function of the propagation distance in the amplifier, as calculated from 

numerical integration of Eq. (1). The solid lines show the total evolution of the incident pair of 

pulses and, for comparison, the open circles show the expected evolution of one pulse 

propagating on its own.  We note that there is no noticeable difference between the intensity 

profile of a single pulse (circles) and the intensity profile of a pulse in the presence of its 

neighbor (solid line). Therefore, both before and after the pulses overlap, each pulse evolves 

separately with a parabolic profile, and only interact in the overlap region. Owing to their 

compact nature, parabolic pulses are clearly unaffected by their neighbor outside the overlap 

region. In consequence, their mean temporal positions remain constant along the amplifier. This 

is in contrast to the case of two interacting solitons, where both the position and shape of the 

pulses are modified by the interaction. 

 

2.3 Modulation of the intensity profile in the overlap region 

Figure 1 (a) clearly shows that, at a distance of 4.17 km, an oscillation appears inside the 

overlap. Indeed, as the parabolic pulses are linearly chirped, the frequency difference between 
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the overlapping leading and trailing edges of the two pulses induces a beating in the resultant 

signal. This is shown more clearly in Fig. 1(b) (solid line). 

To understand the characteristics of this beating in more detail, we first neglect the 

nonlinear effects which occur in the interaction process between the two similaritons. If we 

consider that the pulses have developed a parabolic shape as described by Eq. (2), the overlap 

region extends from t = ∆T/2 – Tp to t = Tp - ∆T/2. The resulting intensity profile in the overlap 

region will be thus given by the linear superposition of the falling edge of the first pulse, whose 

instantaneous frequency is f0 + Cp ( t + ∆T/2), with the raising edge of the second pulse whose 

instantaneous frequency is f0 + Cp ( t - ∆T/2): 
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where the phase offset terms were neglected. We will thus see a sinusoidal beating due to the 

superposition of the two instantaneous frequencies separated by fs = Cp ∆T. The intensity in the 

overlap region is then given by: 
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We thus have N = fs ( 2 Tp – ∆T) oscillations which appear in the overlap region. At the 

center of the overlap region (when / 2pt T T− ∆≪  ), the intensities of the pulses are 

comparable so that near 100% modulation is expected. At the inner edges of the overlap region, 
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the contributions of the pulses become different, so that the modulation depth decreases. The 

circles in Fig. 1(b) represent the linear superposition of the similaritons (Eq. 4) after 4.17 km of 

propagation, resulting in oscillation with a modulation frequency fs = Cp ∆T  = 622 GHz. Figure 

1(b) shows that, at the center of the overlap region, this oscillation is in good agreement with the 

numerical simulations of Eq. (1) (solid line). However, it is significant that the oscillations 

predicted by numerical simulations extend over a larger range than those obtained from simple 

linear superposition of the two parabolic pulses : the value of N obtained by numerical 

simulations is then superior to fs ( 2 Tp – ∆T). These additional oscillations, which originate in 

the wings of the similariton pulses [5,6], implicitly appear from numerical integrations of Eq. (1), 

but are neglected by assuming that the pulses have an exact parabolic shape (Eq. (4)). In our 

case, the large apparent value of the wings is related to the fact that, after 4.17 km of 

propagation, the pulses are not completely in the asymptotic regime. 

 

2.4 Generation of high-repetition rate trains of dark solitons 

When the overlapping pulses further propagate through the amplifier subject to the combined 

effects of non-linearity, normal dispersion and adiabatic Raman gain, the oscillation reshapes 

into a train of dark solitons [26]. Such a reshaping effect has been previously exploited in the 

spatial field with the transformation of a periodic sinusoidal modulation into a spatial array of 

dark solitons [27]. The normalized intensity profile of a dark soliton is given by [28] I(T) =  

A2(1-B2sech2T) /B2, where A2 is the intensity depth of the hole, B2 is a blackness factor related to 

the contrast and T is a dimensionless retarded time. Dark solitons with B2 = 1 have been called 

black, whereas other dark solitons with –1 < B < 1 are called gray. The blackness parameter |B| 

can be calculated from the values of the power and phase jump at the dip center. For example, 
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for the dark soliton designed as (1) in Fig. 1(c), the blackness parameter is |B| = 0.997 ≅ 1 and 

the phase jump is 0.97 π ≅ π, so that this hole is very close to a black soliton with a tanh2 shape. 

Indeed, Fig. 1(c) confirms that after 5.3 km of propagation, the intensity and phase profiles of the 

dip (1) (solid line) are in very good agreement with the corresponding profiles of a black soliton 

(circles) with a temporal width Td = 385 fs, a pulse depth Pd = 15.6 W and a phase jump of π. 

Taking into account that the fundamental black soliton depth is Po = β2 /(γTd
2) = 15.9 W ≅ Pd, 

we may conclude that the characteristics of dip (1) are very close to those of a fundamental black 

soliton. 

 

The repetition rate of the dark-soliton train after a propagation distance of 5.3 km is fd = 380 

GHz. Figure 2(a) shows the spectrum of the dark soliton train (solid line) after 5.3 km of 

propagation, compared with that of a single pulse (dashed grey line). As can be seen from Fig. 

2(a), the generation of a train of dark solitons is characterized by the apparition of peaks, with a 

frequency spacing equal to fd. The growth of these spectral peaks can be seen as a manifestation 

of a four-wave mixing process. 

 

Figure 2(b) represents the evolution of the contour plot of the normalized intensity profile 

of the dark soliton train with further amplification distance. The time-shifts of the dips during 

propagation, which are clearly observed if Fig. 2(b), indicate that dark solitons propagate at 

different relative velocities β with respect to the group velocity at the initial wavelength. It has 

been previously shown that β  has the same sign as B and is proportional to BBA /1 2− [28]. On 

the other hand B > 0 (B < 0) when the phase increases (decreases) across the pulse [28]. So, 

according to the phase profile shown in Fig. 1(c), at  t < 0 (B < 0) the dark soliton velocity 
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decreases, whereas at t > 0 (B > 0) the dark soliton velocity increases, in agreement with the 

numerical results of Fig. 2(b). Since |β | is a decreasing function of |B|, the highest relative 

velocities |β | are expected at the edges of the overlap region. Moreover, since |β | is an 

increasing function of A, the relative velocities |β | increase with the amplification distance. So, 

as can be seen in Fig. 2(b), the time separation between the dark soliton centers do not grow 

larger in a linear fashion with the propagation distance along the amplifier. Indeed, the repetition 

rate of the soliton train rapidly decreases from 380 to 135 GHz when the propagation distance 

only increases from 5.3 to 7.3 km. It is noteworthy to remark from Fig. 2(b) that the temporal 

width of the dark solitons decreases with propagation distance, e.g. from 380 fs at 5.3 km to 200 

fs at 7.3 km. As a matter of fact, the solitons adiabatically adapt their temporal width in order to 

satisfy the relationship between the peak power and the duration during the amplification process 

[29]. There is a global conservation of the area of the dark soliton pulse. This temporal 

compression is different from the spreading of the dark solitons, as described by Rothenberg [30] 

in the case of the generation of a train of dark solitons by the colliding of two pulses. In the 

scheme of Ref. [30], the physical phenomenon responsible for the overlap of the pulses was the 

temporal broadening induced in a passive fiber by the deleterious effect of optical wave-

breaking.  

 

 3. Use of a more realistic model 

The model (Eq. (1)) used in the previous section was based on the assumption of a constant 

longitudinal gain and neglects several effects which can affect the shape of the output pulse, such 

as the longitudinal dependence of the gain profile [4,17] or the dispersion of the Raman gain 

[31,32]. For a more accurate modelization of our experimental results, we present now 



 10 

simulations using the generalized extended NLSE [31] that rigorously includes the Raman 

amplification process through an appropriate integral term, as well as effects such as higher-

order dispersion terms and self-steepening :  
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The function R(t) = (1 – fr) δ(t) + fr hr(t)  includes the instantaneous electronic response and the 

delayed Raman contribution hr(t), with the fractional Raman contribution fr = 0.18. For hr(t), we 

used the measured Raman response of fused silica [32]. The third order dispersion is β3 = 1.0 x 

10-6 ps3m-1. The wavelength dependent loss coefficient α  is also included in Eq. (5). Here, ψ(z,t) 

= ψs(z,t) + ψr(z,t) exp(-iΩ t), where ψs and ψr are the slowly varying envelopes of signal and 

pump fields oscillating at ωs and ωr, respectively. Ω = ωr - ωs is the pump-signal frequency 

detuning chosen so that near optimal Raman gain for the signal is achieved at 1550 nm. The 

initial conditions ψs(0,t) for the signal are given by the intensity and chirp of the two input pulses 

directly measured by using a frequency-resolved optical gating (FROG) technique [33]. The 

pump ψr is assumed to be a noise free continuous wave at 1455 nm. We use a counter-

propagating amplification scheme, which has the advantage to be only slightly affected by the 

time-dependent pump depletion effects [17]. In consequence, in that pump configuration, the two 

input signal pulses have nearly the same Raman gain. On the contrary, pump depletion effects, 

which would occur in a forward pumping geometry, would lead to different effective Raman 

gain for the two signal pulses. The pump power is adjusted in order to provide a total integrated 

gain of 22.3 dB for the signal. This corresponds to a power |ψr(L)|2 of 0.95 W.  
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In practice, to improve the numerical efficiency (and thus reduce the computation time), 

assuming a continuous Raman pump, we used the following set of two coupled extended NLSE's 

[13,17] with the subscripts s and r indicating the signal and Raman pump wavelengths 

respectively: 
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The influence of pump depletion on the longitudinal pump power evolution is taken into account 

by the introduction of a term αd(z), which can be numerically determined by an iterative process 

based on an average power analysis [34]. The generalized split-step Fourier method was used to 

numerically solve Eq. (6) [31]. 

Figures 3(a) and 3(b) show the phase and intensity profiles (solid lines) obtained from 

numerical integration of Eq. (6) at a propagation distance of 5.3 km. The intensity profile of the 

initial pulses retrieved from FROG measurements is displayed in Fig. 3(a) by the dashed line. In 

Fig. 3(b), the deepest hole is in good agreement with a least-squares fit of a tanh2 function 

(circles) with a temporal width of Td = 0.42 ps. We also observe in Fig. 3(b) a brutal phase jump 

of a value close to π at the minimum of the pulse, which is the signature of a dark (black) soliton. 

The spectrum of the pair of pulses displayed in Fig. 3(c) is similar to that resulting from the 
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model with a constant gain (Fig. 2(a)). The frequency separation between two consecutive peaks 

indicates a repetition rate of 446 GHz instead of 380 GHz obtained from Eq. (2). So we can 

conclude that the simple model with a constant gain (Eq. (1)) gives a correct qualitative 

prediction of the consequences of the interaction between the two similaritons. However, an 

accurate quantitative comparison between numerical calculations and experimental results 

requires the use of the extended NLSE (Eq. (6)). 

 

4. Experimental results 

 4.1 Experimental setup 

Figure 4 shows a schematic representation of the experimental setup. The 1550 nm input pulse 

was obtained from a Pritel passively mode-locked fiber laser operating at a repetition rate of 22 

MHz. The initial pulse had a nearly Fourier transform-limited intensity profile with a temporal 

duration of 5 ps (see section 4.2). The pulses emitted from the picosecond laser were sent 

through a beamsplitter and recombined in a Mach-Zehnder interferometer with a variable delay 

between the two pulses. A variable attenuator placed in one arm of the interferometer allows us 

to obtain two pulses with the same energy, whereas a polarizer located at the interferometer 

output permits to obtain two pulses with the same linear state of polarization. The Raman 

amplifier consists in 5.3 km of NZ-DSF, whose parameters have been reported in section 2.2. 

The fiber was pumped in a backward configuration [17] by a continuous wave Raman laser 

(Keopsys), delivering a power of 1420 mW at 1455 nm. A WDM coupler with high power rating 

permitted the superposition of pump and signal beams. An optical isolator at 1480 nm was 

inserted after the polarizer to prevent that part of the residual pump in the Raman amplifier 
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disturbs the operation of the picosecond laser. Input and output pulses were characterized by 

their optical spectrum and autocorrelation. When possible (according to the pulse energy and 

recording time), the pulse intensity and phase were characterized using a FROG device based on 

second harmonic generation [13]. The phase and intensity retrieval was performed using the 

generalized projections algorithm [33]. The reliability of the FROG measurements was checked 

using the standard techniques based on comparisons of the independently-measured 

autocorrelation and spectrum with the FROG trace marginals [33].  

 

 4.2 Characterization of a single similariton 

We have first characterized using FROG the initial pulses whose retrieved intensity profile is 

shown in Fig. 5 by diamonds. Figure 5 (circles) also shows the retrieved intensity and chirp 

profiles of the pulse at the amplifier output in the case of a single initial pulse. As can be seen in 

Fig. 5, the experimental intensity and chirp profiles are in very good agreement with parabolic 

and linear fits, respectively (gray dashed line). The output pulse exhibits the expected 

characteristics of a similariton with a total temporal width 2 Tp = 73.5 ps, a chirp slope Cp = 

0.0118 THz/ps and a peak power of 10 W. The experimental data are also compared with 

numerical integration of Eq. (6) (solid line). As can be observed in Fig. 5, there is a very good 

agreement between numerical and experimental results, confirming the reliability of the model 

described by Eq. (6). It is noteworthy that the model based on the assumption of a constant gain 

(Eq. (1)) leads to significantly different parameters: 2 Tp = 85 ps and Cp = 0.0107 THz/ps. The 

assumption of a constant gain is clearly not the most appropriate to accurately reproduce the 

characteristics of the similariton as observed experimentally. As a result, we have only used the 

numerical integrations of Eq. (6) in what follows. 
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 4.3 Characterization of the interaction between two similaritons 

We now characterize the similariton interaction in the case of an initial pair of pulses with an 

energy of 2.9 pJ and a temporal separation of ∆T = 55.5 ps. We note that, as the dark solitons 

generated during the similariton interaction are expected to have a temporal width of only T0 = 

0.32 ps, pulse characterization using FROG would require both a large total temporal window 

(about 200 ps) as well as a high temporal resolution (about 20 fs) to completely define the pulse 

structure.  This would necessitate measurement of a very large number of data points and a 

corresponding long acquisition time. Unfortunately, owing to the lack of long term stability of 

our FROG device, we were not able to process a direct FROG characterization of light at the 

amplifier output. It would also be very difficult to implement a cross-correlation technique 

similar to that used in Refs. [30,35,36] since our initial pulses are much more broader than the 

dark solitons we would like to characterize. However, it was possible to characterize the 

generation of the dark soliton train via interaction of two parabolic pulses by direct 

measurements of the autocorrelation and spectrum of light at the amplifier output. 

Figure 6(a) shows the autocorrelation trace recorded at the center of the overlap region 

(circles). The experimental trace, which exhibits 410-GHz oscillations, is in good agreement 

with numerical integrations of the extended NLSE (Eq. (6)). The experimental data are also 

compared with a sinusoidal fit (dotted line). We can observe from Fig. 6(a) a large disagreement 

between the experimental results and the sinusoidal fit, which is a clear signature of the nonlinear 

reshaping of the sinusoidal modulation from the onset of the similariton interaction into a train of 

dark solitons. The experimental output spectrum, displayed in Fig. 6(b), exhibits several 

sidebands separated by 407 GHz, consistent with the repetition rate measured on the 
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autocorrelation signal. We note that that the small spectral asymmetry, which is also present in 

the experimental output spectrum of a single similariton (dashed gray line), is mainly due to the 

asymmetry of the initial pulse spectrum (not shown here), slightly accentuated by the effects of 

Raman intra-pulse scattering. The experimental spectrum is also in good agreement with the 

corresponding numerical spectrum, shown in Fig. 3(c), obtained from integration of the extended 

NLSE (Eq. (6)). In view of the excellent agreement between numerical and experimental 

spectrum and autocorrelation, we can conclude that our results provide clear experimental 

evidence for the signature of the generation of a train of dark solitons arising from the interaction 

between two optical similaritons. 

 

5. Control of the repetition rate of the dark soliton train 

In this section, we investigate both numerically and experimentally the influence of several 

parameters on the repetition rate fd of the dark soliton train generated from the interaction 

between two similaritons. We will show that the repetition rate can be controlled by specific 

choices of the initial time separation ∆T, pulse energy Uini or integrated gain G of the amplifier. 

The repetition rate has been determined by measuring the spectral separation of the characteristic 

sidebands of the spectrum of the two similaritons. Figure 7 shows the evolution of the repetition 

rate of the train of dark solitons as a function of ∆T (a), Uini (b) and G (c). The experimental 

results (circles) are compared with numerical integrations of the extended NLSE (Eq. (6)) (solid 

line) and of the NLSE with a constant gain (Eq. (1)) (dashed line), and with the frequency fs = Cp 

∆T of the precursory sinusoidal oscillation resulting from linear overlap of the similariton pulses 

(mixed line). 
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 5.1 Influence of the initial time separation ∆T 

In this study the initial pulse energy and integrated gain were fixed to 2.9 pJ and 22.3 dB, 

respectively. Figure 7(a) shows that the repetition rate fd  is a quasi-linear function of  ∆T. The 

experimental results (circles) are both in good agreement with numerical simulations based on 

Eq. (6) (solid line) and Eq. (1) (dotted line). As expected, the frequency fd  is lower than fs due to 

the transverse velocity |β| of the dark solitons. The difference δ = fs - fd decreases with ∆T : for 

∆T = 47 ps, δ = 270 GHz, whereas for ∆T = 70 ps, δ  is only 180 GHz. Since the propagation 

distance at which the pulses begin to overlap increases with ∆T, dark solitons are generated after 

a longer distance in the amplifier as ∆T increases. In consequence, after their generation dark 

solitons will propagate with their own velocities |β| on a shorter distance, so that δ  will be lower 

(see Fig. 2(b)). The results of Fig. 7(a) clearly demonstrate that the repetition rate fd of the dark 

soliton train can be precisely adjusted just by changing the time separation ∆T  between the 

initial pulses. 

 

 5.2 Influence of the initial pulse energy Uini 

With the time separation between the initial pulses being now fixed to 55.5 ps, we now change 

the value the initial pulse energy Uini. The experimental values (circles) shown in Fig. 7(b) show 

that fd only slightly decreases with Uini. The experimental results are in good agreement with the 

numerical simulations of both models (solid and dotted lines). The global behavior of fd versus 

Uini can be explained by similar considerations that those used in section 5.1. We recall that the 

frequency fs =  Cp ∆T of the oscillation created at the beginning of the similariton overlap does 

not depend on the pulse energy. Indeed the chirp parameter Cp is independent of Uini in the 
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asymptotic regime. On the other hand, the temporal width Tp of the similariton increases with the 

initial energy (see section 2.1), so that the distance at which the similaritons overlap decreases 

with Uini . In consequence, after their generation dark solitons will propagate with their own 

velocities |β| on a longer distance, so that the frequency of the periodic train of dark solitons will 

decrease (see Fig. 2(b)). Another contribution to the decrease of fd with Uini comes from the fact 

that the depth of the dark soliton increases with Uini  (see section 2.4) and the velocity |β| 

increases with the soliton depth. 

 

 5.3 Influence of the integrated gain G 

We now study the variation of the repetition rate of the dark soliton train as a function of the 

integrated gain of the Raman amplifier. The initial pulse energy and time delay between the input 

pulses were fixed to 2.9 pJ and 55.5 ps, respectively. We experimentally change the pump power 

so that the integrated gain G varies from 50 to 170 (17 to 22.3 dB). We can see from Fig. 7(c) 

that the experimental values of fd (circles) remain nearly constant. Those results are consistent 

with the evolution predicted by numerical simulations based on the Eq. (6). On the other hand 

the NLSE with a constant gain (Eq. (1)) predicts calculated values of fd which are slightly 

underestimated as the integrated gain increases. This can be explained by the fact that the effects 

of pump depletion become more significant as the integrated gain increases. 

 The very small dependence of fd versus G is rather unexpected since the frequency of the 

initial beating fs increases with the linear gain g in the fiber (mixed line): fs = Cp ∆T with Cp 

directly proportional to g (see section 2.1). So, the global evolution of fd versus G can not be only 

explained by the dependence of fs. The velocity |β| of dark solitons and the distance over which 

dark solitons will propagate after their generation play a significant role in the dependence of fd 
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versus G. Indeed, higher the gain is, lower is the propagation distance at which the overlap of the 

similaritons occurs and higher is δ = fs - fd. Moreover, the increase of the depth of the dark 

soliton with G induces an increase of the velocity |β| and consequently an increase of δ. Thus the 

evolution of fd versus G results in a balance between the increases of fs and δ.  

 

6. Interaction between three similaritons 

Finally, we investigate using numerical simulations the case of the interaction between three 

similaritons of the same wavelength and temporally separated  by same quantity ∆To = 35 ps. 

The characteristics of the three initial pulses and Raman amplifier are identical to those 

considered in section 2.2. Figure 8(a) shows that the three initial pulses are transformed into 

similaritons, characterized by a parabolic intensity profile, before overlapping. Two distinct 

overlap regions clearly appear at a propagation distance of about 3.3 km. Similarly to the case of 

the interaction between two similaritons, oscillations appear within each overlap region and 

further reshape into dark solitons for longer propagation distances. Figure 8(b) shows that at a 

distance of about 5 km both overlap regions overlap themselves and collisions of dark solitons 

appear. It is remarkable to observe from Fig. 8(b) that dark solitons are stable against collisions. 

To illustrate this property, Fig. 8(c) shows an example of a collision between two dark solitons 

that occurs at a propagation distance of 5992 m (solid line) within the time window spreading 

from – 6 ps to –2 ps. We clearly observe from Fig. 8(c) that the intensity profiles of the two 

colliding dark solitons before the collision (dashed line) remain unchanged after the collision 

(dotted line). On the other hand, Fig. 8(d) shows that a temporal shift of the dark solitons appears 

during the collision [28].  
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7. Conclusions 

In conclusion, we have analyzed the dynamics of the self-similar amplification of a pair of time-

delayed identical pulses of the same wavelength in a Raman amplifier. During the amplification 

process, due to the exponential scaling of their temporal duration, each pulse broadens, so that, 

after a given distance of propagation, the two pulses overlap and interact. Owing to their 

compact nature, similaritons are clearly unaffected by their neighbor outside the overlap region. 

Inside the overlap region, the superposition of the linearly-chirped pulses creates an oscillation. 

Due to the combination of non-linearity and gain, this oscillation adiabatically evolves into a 

finite-extent high-repetition rate train of dark solitons. Our experimental results are in good 

agreement with theoretical calculations and confirm the generation of dark-soliton train at high 

repetition rates. We have also investigated the evolutions of the repetition rate of the dark 

solitons as a function of the initial pulse temporal separation, pulse energy and integrated gain. 

These evolutions are both affected by the intrinsic properties of the similaritons and the relative 

velocities of the dark solitons. Finally, we have shown that stable collisions of dark solitons 

appear during the interaction of three similaritons. 

Although our experimental results have been obtained using Raman amplification, our 

conclusions can be extended to other amplification processes as long as we restrict ourselves to 

normal dispersion, and we are the regime of an adiabatic amplification regime. For example, 

dark solitons could also be generated via similariton interaction in ultra-long erbium-doped fibers 

with controlled dispersion properties [37].  
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Figure captions 

 

 
Fig. 1: (a) Numerical calculations of the intensity profiles of a single pulse (circles) and a pair 

of pulses (solid lines) at different distances of propagation. (b) Central part of the pulse overlap 

at z = 4.17 km: simulations (solid line), linear superposition (circles). (c) Intensity and phase 

profiles at z = 5.3 km: numerical simulations (solid lines) and black soliton fit (circles). 

 

Fig. 2:  (a) Calculated spectra of a single pulse (dashed gray line) and of the pair of pulses (solid 

line) after 5300 m of propagation. (b) Contour plot of the evolution of the normalized intensity 

profile of the dark soliton train from 5.3 to 7.3 km. 

 

Fig. 3: Numerical simulations based on the extended NLSE of the propagation of the pair of 

pulses after 5300 m of propagation. (a) Intensity profiles at the amplifier output (solid line). The 

experimental intensity profile of the initial pulses retrieved from FROG measurements is shown 

by the dashed line.  (b) Intensity and phase profiles at the center of the overlap region : numerical 

simulations (solid lines), fit by a black soliton (circles). (c) Ouput spectrum convoluted  with the 

transfer function of the optical spectrum analyzer.  

 

Fig. 4: Experimental setup used for the generation of the pair of pulses and for the self-similar 

Raman amplification. 

 

Fig. 5: Intensity and chirp profiles retrieved from FROG measurements for the initial pulse 

(diamonds, x 10) and for the output pulse (gray circles). Experimental results are compared with 
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linear and parabolic fits of the chirp and intensity profiles, respectively (dotted line) and with 

results from numerical simulations (solid line). 

 
Fig. 6: (a) Autocorrelations of the pair of pulses at z =  5.3 km: experimental results (circles), 

numerical calculations (solid line), sinusoidal fit (dotted line). (b) Output experimental spectra 

for a single pulse (dashed gray line) and a pair of pulses (solid line). 

 

Fig. 7: Evolutions of the repetition rate of the dark soliton train as a function of (a) the time 

separation between the initial pulses, (b) the initial pulse energy and (c) the integrated gain of the 

Raman amplifier. Experimental results (circles) are compared with numerical predictions of Eq. 

(6) (solid lines) and Eq. (1) (dotted lines) and with analytical predictions fs = Cp ∆T  (mixed 

lines). 

 

Fig. 8: Propagation of three initial pulses in the Raman amplifier. (a) Intensity profiles at 

different distances of propagation. (b) Contour plot of the evolution of the normalized intensity 

profile of the dark soliton trains. (c) Intensity profiles of two colliding dark solitons at different 

propagation distances : before the collision (dashed line), during the collision (solid line) and 

after the collision (dotted line). (d) Contour plot of the evolution of the normalized intensity 

profile of two pairs of colliding dark solitons. The dashed gray line represents the evolution of 

one pair of dark solitons in the absence of collision. 
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