
HAL Id: hal-00405892
https://hal.science/hal-00405892v3

Submitted on 9 Sep 2009

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution - NonCommercial 4.0 International License

Non-uniqueness of weak solutions for the fractal Burgers
equation

Nathael Alibaud, Boris Andreïanov

To cite this version:
Nathael Alibaud, Boris Andreïanov. Non-uniqueness of weak solutions for the fractal Burgers equa-
tion. Annales de l’Institut Henri Poincaré C, Analyse non linéaire, 2010, 27 (4), pp. 997-016.
�10.1016/j.anihpc.2010.01.008�. �hal-00405892v3�

https://hal.science/hal-00405892v3
http://creativecommons.org/licenses/by-nc/4.0/
http://creativecommons.org/licenses/by-nc/4.0/
https://hal.archives-ouvertes.fr
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Abstract. The notion of Kruzhkov entropy solution was extended by the first author in 2007 to

conservation laws with a fractional laplacian diffusion term; this notion led to well-posedness for the

Cauchy problem in the L
∞-framework. In the present paper, we further motivate the introduction

of entropy solutions, showing that in the case of fractional diffusion of order strictly less than one,

uniqueness of a weak solution may fail.
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1 Introduction

This paper contributes to the study of the so-called fractal/fractional Burgers equation

∂tu(t, x) + ∂x

(
u2

2

)
(t, x) + Lλ[u](t, x) = 0, (t, x) ∈ R

+× R, (1.1)

u(0, x) = u0(x), x ∈ R, (1.2)

where Lλ is the non-local operator defined for all Schwartz function ϕ ∈ S(R) through its Fourier
transform by

F(Lλ[ϕ])(ξ) := |ξ|λF(ϕ)(ξ) with λ ∈ (0, 1); (1.3)

i.e. Lλ denotes the fractional power of order λ/2 of the Laplacian operator −∆ with respect to
(w.r.t. for short) the space variable.

This equation is involved in many different physical problems, such as overdriven detonation
in gas [13] or anomalous diffusion in semiconductor growth [29], and appeared in a number of
papers, such as [5, 6, 7, 8, 17, 20, 21, 18, 1, 2, 22, 24, 15, 26, 27, 12, 4, 16, 23, 11]. Recently,
the notion of entropy solution has been introduced by Alibaud in [1] to show the global-in-time
well-posedness in the L∞-framework.

∗nathael.alibaud@ens2m.fr
†boris.andreianov@univ-fcomte.fr
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For λ > 1 the notion of weak solution (i.e. a solution in the sense of distributions; cf.
Definition 2.2 below) is sufficient to ensure the uniqueness and stability result, see the work
of Droniou, Gallouët and Vovelle in [17]. Such a result has been generalized to the critical
case λ = 1 by Kiselev, Nazarov and Shterenberg in [24], Dong, Du and Li in [15], Miao and Wu
in [27] and Chan and Czubak in [12] for a large class of initial data (either periodic or L2 or in
critical Besov spaces).

In this paper, we focus on the range of exponent λ ∈ (0, 1). By analogy with the purely
hyperbolic equation λ = 0 (cf. Olĕınik [28] and Kruzhkov [25]), a natural conjecture was that
in that case a weak solution to the Cauchy problem (1.1)-(1.2) need not be unique. Indeed,
it has been shown by Alibaud, Droniou and Vovelle in [2] that the assumption λ < 1 makes
the diffusion term too weak to prevent the appearance of discontinuities in solutions of (1.1);
see also Kiselev, Nazarov and Shterenberg [24] and Dong, Du and Li [15]. To the best of our
knownledge, yet it was unclear whether such discontinuities in a weak solution can violate the
entropy conditions of [1].

Here we construct a stationary weak solution of (1.1)-(1.2), λ < 1, which does violate the
entropy constraint (constraint which can be expressed under the form of Olĕınik’s inequality, cf.
[28]). Thus the main result of this paper is the following.

Theorem 1.1. Let λ ∈ (0, 1). There exist initial data u0 ∈ L∞(R) such that uniqueness of a
weak solution to the Cauchy problem (1.1)-(1.2) fails.

The rest of this paper is organized as follows. The next section lists the main notations,
definitions and basic results on fractal conservation laws. The Olĕınik inequality for the fractal
Burgers equation is stated and proved in Section 3. In Section 4, we present and solve a
regularized problem in which we pass to the limit in Section 5 to construct a non-entropy
stationary solution. Section 6 is devoted the proof of the main properties of the fractional
Laplacian (see Lemma 4.1) that have been used in both preceding sections. Finally, technical
proofs and results have been gathered in Appendices A–B.

2 Preliminaries

In this section, we fix some notations, recall the Lévy-Khintchine formula for the fractional
Laplacian and the associated notions of generalized solutions to fractal conservation laws.

2.1 Notations

Sets. Throughout this paper, R
± denote the sets (−∞, 0) and (0,+∞), respectively; the

set R∗ denotes R \ {0} and R denotes {−∞} ∪ R ∪ {+∞}.
Right-differentiability. A function m : R

+ → R is said to be right-differentiable at t0 > 0
if there exists the limit lim

t
>
→t0

m(t)−m(t0)
t−t0

in R; in that case, this limit is denoted by m′
r(t0).

Function spaces. Further, C∞
c = D denotes the space of infinitely differentiable compactly

supported test functions, S is the Schwartz space, D′ is the distribution space and S ′ is the
tempered distribution space. The space of k times continuously differentiable functions is de-
noted by Ck and Ck

b denotes the subspace of functions with bounded derivatives up to order k
(if k = 0, the superscripts are omitted); Cc denotes the subspace of C of functions with com-
pact support; C0 denotes the closure of Cc for the norm of the uniform convergence; Lp, Lp

loc
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and W k,p, W k,p
loc (=: Hk,Hk

loc if p = 2) denote the classical Lebesgue and Sobolev spaces, respec-
tively; BV and BVloc denote the spaces of functions which are globally and locally of bounded
variations, respectively.

When it comes to topology and if nothing else is precised, D′ and S ′ are endowed by their
usual weak-⋆ topologies and the other spaces by their usual strong topologies (of Banach spaces,
Fréchet spaces, etc).

Weak-⋆ topology in BV. Let ∂x : D′(R) → D′(R) denote the gradient (w.r.t x) operator
in the distribution sense. We let L1(R) ∩ (BV (R))w-⋆ denote the linear space L1(R) ∩ BV (R)
endowed with the smallest topology letting the inclusion L1(R) ∩ BV (R) ⊂ L1(R) and the
mapping ∂x : L1(R)∩BV (R) → (C0(R))′ be continuous, where L1(R) is endowed with its strong
topology and (C0(R))′ with its weak-⋆ topology. Hence, one has:

[
vk → v in L1(R) ∩ (BV (R))w-⋆

]
⇐⇒

{
vk → v in L1(R),

∂xvk
w-⋆
⇀ ∂xv in (C0(R))′.

We define in the same way the space (BVloc(R))w-⋆ ∩H1
loc(R \ {0}), whose notion of conver-

gence of sequences is the following one:

[
vk → v in (BVloc(R))w-⋆ ∩H1

loc(R \ {0})
]
⇐⇒

{
vk → v in H1(R \ [−R,R]), ∀R > 0,

∂xvk
w-⋆
⇀ ∂xv in (Cc(R))′;

from the Banach-Steinhaus theorem, one sees that (vk)k is (strongly) bounded in BVloc(R) ∩
H1

loc(R \ {0}), i.e.:

∀R > 0, sup
k∈N∗

(
‖vk‖H1(R\[−R,R]) + |vk|BV ((−R,R))

)
< +∞,

where | · |BV denotes the BV semi-norm.

Spaces of odd functions. In our construction, a key role is played by the spaces of odd
functions v which are in the Sobolev space H1:

H1
odd :=

{
v ∈ H1

∣∣ v is odd
}

;

notice that v ∈ H1
odd(R∗) can be discontinuous at zero so that v(0−) = −v(0+) in the sense of

traces, whereas v(0−) = v(0+) = 0 if v ∈ H1
odd(R).

The space H1
odd(R∗) and more generally H1(R∗) can be considered as subspaces of L2(R);

to avoid confusion, ∂xv always denotes the gradient of v in D′(R), so that (∂xv)|R∗
∈ L2(R)

is the gradient in D′(R∗). One has (∂xv)|R∗
= ∂xv almost everywhere (a.e. for short) on R

if and only if (iff for short) v is continuous at zero; in the other case, one has ∂xv /∈ L1
loc(R).

When the context is clear, the products
∫

R
ϕ (∂xv)|R∗

and
∫

R
(∂xv)|R∗

(∂xψ)|R∗
with ϕ ∈ L2(R)

and ψ ∈ H1(R∗) are simply denoted by
∫

R∗
ϕ∂xv and

∫
R∗
∂xv ∂xψ, respectively.

Identity and Fourier operators. By Id we denote the identity function. The Fourier
transform F on S ′(R) is denoted by F ; for explicit computations, we use the following definition
on L1(R):

F(v)(ξ) :=

∫

R

e−2iπxξv(x) dx.
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Entropy-flux pairs. By η, we denote a convex function on R; following Kruzhkov [25], we
call it an entropy and q : u 7→

∫ u
0 s dη(s) is the associated entropy flux.

Truncature functions. The sign function is defined by:

u 7→ signu :=

{
±1 if ±u > 0,

0 if u = 0.

During the proofs, we shall need to regularize the function u 7→ min{|u|, n} sign u, where n ∈ N∗

will be fixed; Tn denotes a regularization satisfying





Tn ∈ C∞
b (R) is odd,

Tn = Id on [−n+ 1, n − 1],

|Tn| ≤ n.

(2.1)

2.2 Lévy-Khintchine’s formula

Let λ ∈ (0, 1). For all ϕ ∈ S(R) and x ∈ R, we have

Lλ[ϕ](x) = −Gλ

∫

R

ϕ(x+ z) − ϕ(x)

|z|1+λ
dz, (2.2)

where Gλ =
λΓ( 1+λ

2
)

2π
1
2
+λΓ(1−λ

2
)
> 0 and Γ is Euler’s function, see e.g. [9, 19] or [18, Theorem 2.1].

2.3 Entropy and weak solutions

Formula (2.2) motivates the following notion of entropy solution introduced in [1].

Definition 2.1 (Entropy solutions). Let λ ∈ (0, 1) and u0 ∈ L∞(R). A function u ∈ L∞(R+ ×
R) is said to be an entropy solution to (1.1)-(1.2) if for all non-negative test function ϕ ∈
C∞

c ([0,+∞) × R), all entropy η ∈ C1(R) and all r > 0,

∫

R

η(u0)ϕ(0) +

∫

R+

∫

R

(η(u)∂tϕ+ q(u)∂xϕ)

+Gλ

∫

R+

∫

R

∫

|z|>r
η′(u(t, x))

u(t, x+ z) − u(t, x)

|z|1+λ
ϕ(t, x) dtdxdz

+Gλ

∫

R+

∫

R

∫

|z|≤r
η(u(t, x))

ϕ(t, x + z) − ϕ(t, x)

|z|1+λ
dtdxdz ≥ 0. (2.3)

Remark 2.1. In the above definition, r plays the role of a cut-off parameter; taking r > 0 in
(2.3), one avoids the technical difficulty while treating the singularity in the Lévy-Khintchine
formula (by doing this, one looses some information, recovered at the limit r → 0). Let us
refer to the recent paper of Karlsen and Ulusoy [23] for a different definition of the entropy
solution, equivalent to the above one; note that the framework of [23] encompasses Lévy mixed
hyperbolic/parabolic equations.
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The notion of entropy solutions provides a well-posedness theory for the Cauchy problem
for the fractional conservation law (1.1); the results are very similar to the ones for the classical
Burgers equation (cf. e.g. [28, 25]).

Theorem 2.1 ([1]). For all u0 ∈ L∞(R), there exists one and only one entropy solution u ∈
L∞(R+ × R) to (1.1)-(1.2). Moreover, u ∈ C([0,+∞);L1

loc(R)) (so that u(0) = u0), and the
solution depends continuously in C([0,+∞);L1(R)) on the initial data in L1(R) ∩ L∞(R).

As explained in the introduction, the purpose of this paper is to prove that the weaker
solution notion below would not ensure uniqueness.

Definition 2.2 (Weak solutions). Let u0 ∈ L∞(R). A function u ∈ L∞(R+ × R) is said to be
a weak solution to (1.1)-(1.2) if for all ϕ ∈ C∞

c ([0,+∞) × R),

∫

R+

∫

R

(
u∂tϕ+

u2

2
∂xϕ− uLλ[ϕ]

)
+

∫

R

u0ϕ(0) = 0. (2.4)

3 The Olĕınik inequality

Notice that it can be easily shown that an entropy solution is also a weak one. The converse
statement is false, which we will prove by constructing a weak non-entropy solution. A key fact
here is the well-known Olĕınik inequality (see [28]); in this section, we generalize it to entropy
solutions of the fractal Burgers equation.

Proposition 3.1 (Olĕınik’s inequality). Let u0 ∈ L∞(R). Let u ∈ L∞(R+ × R) be the entropy
solution to (1.1)-(1.2). Then, we have for all t > 0

∂xu(t) ≤
1

t
in D′(R). (3.1)

Remark 3.1. This result can be adapted to general uniformly convex fluxes. Moreover, we think
that the Olĕınik inequality gives a necessary and sufficient condition for a weak solution to be
an entropy solution (as for pure scalar conservation laws, cf. [28, 25]). Nevertheless, for the sake
of simplicity, we only prove the above result, which is sufficient for our purpose.

In order to prove this proposition, we need the following technical result:

Lemma 3.1. Let v ∈ C1(R+ × R) be such that for all b > a > 0,

lim
|x|→+∞

sup
t∈(a,b)

v(t, x) = −∞. (3.2)

Define m(t) := maxx∈R v(t, x) and K(t) := argmaxx∈R v(t, x). Then m is continuous and right-
differentiable on R

+ with m′
r(t) = maxx∈K(t) ∂tv(t, x).

For a proof of this result, see e.g. the survey book of Danskyn [14] on the min max theory;
for the reader’s convenience, a short proof is also given in Appendix A. We can now prove the
Olĕınik inequality.
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Proof of Proposition 3.1. For ε > 0 consider the regularized problem

∂tuε + ∂x

(
u2

ε

2

)
+ Lλ[uε] − ε∂2

xxuε = 0 in R
+ × R, (3.3)

uε(0) = u0 on R. (3.4)

It was shown in [17] that there exists a unique solution uε ∈ L∞(R+ × R) to (3.3)-(3.4) in the
sense of the Duhamel formula, and that uε ∈ C∞

b ((a,+∞) × R)) for all a > 0. Furthermore,
it has been proved in [4] that for all T > 0, uε converges to u in C

(
[0, T ];L1

loc(R)
)

as ε → 0.
Inequality (3.1) being stable by this convergence, it suffices to prove that uε satisfies (3.1).

To do so, let us derivate (3.3) w.r.t. x. We get

∂tvε + v2
ε + uε ∂xvε + Lλ[vε] − ε∂2

xxvε = 0, (3.5)

with vε := ∂xuε. Fix 0 < λ′ < λ and introduce the “barrier function” Φ(x) := (1 + |x|2)λ′

2 .
Then Φ is positive with

lim
|x|→+∞

Φ(x) = +∞; (3.6)

moreover Φ is smooth with

CΦ := ‖∂xΦ‖∞ + ‖∂2
xxΦ‖∞ + ‖Lλ[Φ]‖∞ < +∞,

thanks to Lemma B.2 in Appendix B to ensure that Lλ[Φ] ∈ Cb(R) is well-defined by (2.2).
For δ > 0 and t > 0, define

mδ(t) := max
x∈R

{vε(t, x) − δΦ(x)} .

Define Kδ(t) := argmaxx∈R {vε(t, x) − δΦ(x)}. This set is non-empty and compact, thanks to
the regularity of vε and (3.6); moreover, by Lemma 3.1, mδ is right-differentiable w.r.t. t with:

(mδ)
′
r (t) = max

x∈Kδ(t)
∂tvε(t, x) = ∂tvε(t, xδ(t))

for some xδ(t) ∈ Kδ(t). This point is also a global maximum point of vε(t) − δΦ, so that

∂xvε(t, xδ(t)) = δ∂xΦ(xδ), ∂2
xxvε(t, xδ(t)) ≤ δ∂2

xxΦ(xδ) and Lλ [vε] ≥ δLλ[Φ] (t, xδ(t))

(the last inequality is easily derived from (2.2)). We deduce that

|∂xvε(t, xδ(t))| ≤ δCΦ, ∂2
xxvε(t, xδ(t)) ≤ δCΦ and Lλ [vε] (t, xδ(t)) ≥ −δCΦ.

By (3.5), we get (mδ)
′
r (t)+v2

ε(t, xδ(t)) ≤ Cδ, for some constant C that only depends on ε, ‖uε‖∞
and CΦ. But, by construction mδ(t) = vε(t, xδ(t)) − δΦ(xδ(t)) and Φ is non-negative, so that

(mδ)
′
r (t) + (mδ(t) + δΦ(xδ(t)))

2 ≤ Cδ and (mδ)
′
r (t) − Cδ + (max{mδ(t), 0})2 ≤ 0.

Now we set m̃δ(t) := mδ(t) − Cδt. Because the function r ∈ R 7→ (max{r, 0})2 ∈ R is non-
decreasing, we infer that m̃δ ∈ C(R+) is right-differentiable with

(m̃δ)
′
r (t) + (max{m̃δ(t), 0})2 ≤ 0

for all t > 0. By Lemma B.1 in Appendix B, we can integrate this equation and conclude
that m̃δ(t) ≤ 1

t for all t > 0.
Finally, it is easy to prove that m̃δ(t) = mδ(t) − Cδt → supx∈R vε(t, x) as δ → 0, so

that supx∈R ∂xuε(t, x) ≤ 1
t (pointwise, for all t > 0). This proves (3.1) for uε in the place

of u, and thus completes the proof of the proposition. �
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4 A stationary regularized problem

The plan to show Theorem 1.1 consists in proving the existence of an odd weak stationary
solution to (1.1) with a discontinuity at x = 0 not satisfying the Olĕınik inequality. This non-
entropy solution is constructed as limit of solutions to regularized problems, see Eqs. (4.2)–(4.3)
below. This section focuses on the solvability of these problems. This is done in the second
subsection; the first one lists some properties of Lλ that will be needed.

4.1 Main properties of the non-local operator

In the sequel, Lλ is always defined by the Lévy-Khintchine formula (2.2).

Lemma 4.1. Let λ ∈ (0, 1). The operator Lλ defined by the Lévy-Khintchine formula (2.2)
enjoys the following properties:

(i) The operators Lλ and Lλ/2 are continuous as operators:

a) Lλ : Cb(R∗) ∩ C1(R∗) → C(R∗);

b) Lλ : H1(R∗) → L1
loc(R) ∩ L2

loc(R \ {0});
c) Lλ/2 : H1(R∗) → L2(R).

Moreover, Lλ is sequentially continuous as an operator:

d) Lλ : L1(R) ∩ (BV (R))w-⋆ → L1(R).

(ii) If v ∈ H1(R∗), then the definition of Lλ by Fourier transform (see (1.3)) makes sense;
more precisely,

Lλ[v] = F−1
(
ξ → |ξ|λF(v)(ξ)

)
in S ′(R).

(iii) For all v,w ∈ H1(R∗),

∫

R

Lλ[v]w =

∫

R

vLλ[w] =

∫

R

Lλ/2[v]Lλ/2[w].

(iv) If v ∈ H1(R∗) is odd (resp. even), then Lλ[v] is odd (resp. even).

(v) Let 0 6≡ v ∈ Cb(R∗) ∩ C1(R∗) be odd. Assume that x∗ > 0 is an extremum point of v such
that

v(x∗) = max
R+

v and v(x∗) ≥ 0
(
resp. v(x∗) = min

R+
v and v(x∗) ≤ 0

)
.

Then, we have Lλ[v](x∗) > 0 (resp. Lλ[v](x∗) < 0).

Remark 4.1. Item (v) can be interpreted as a positive reverse maximum principle for the frac-
tional Laplacian acting on the space of odd functions.

The proofs of these results are gathered in Section 6.
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4.2 The regularized problem

Throughout this section, ε > 0 is a fixed parameter. Consider the space H1
odd(R∗) with the

scalar product

〈v,w〉 := ε

∫

R∗

{(
vw + ∂xv ∂xw

)
+ Lλ/2[v]Lλ/2[w]

}
. (4.1)

By the item (i) (c) of Lemma 4.1, 〈·, ·〉 is well-defined and its associated norm ‖ · ‖ :=
√

〈·, ·〉 is
equivalent to the usual H1(R∗)-norm; in particular, H1

odd(R∗) is an Hilbert space.

Let us construct a solution v ∈ H1
odd(R∗) to the problem

ε(vε − ∂2
xxvε) + ∂x

(
v2
ε

2

)
+ Lλ[vε] = 0 in R∗, (4.2)

vε(0
±) = ±1, (4.3)

where Eq. (4.2) is understood in the weak sense (e.g. in D′(R∗)) and the constraint (4.3) is
understood in the sense of traces. Setting

θ(x) := (1 − |x|)+ signx, (4.4)

we equivalently look for a weak solution of (4.2) living in the affine subspace of H1
odd(R∗) given

by
E := θ +H1

odd(R) =
{
v ∈ H1

odd(R∗)
∣∣ v(0±) = ±1 in the sense of traces

}
.

Here is the main result of this section.

Proposition 4.1. Let λ ∈ (0, 1) and ε > 0. Eq. (4.2) admits a weak solution vε ∈ E satisfying

0 ≤ vε(x) sign x ≤ 1 for all x ∈ R∗, (4.5)

sup
ε∈(0,1)

∫

R

{
ε (∂xvε)

2
|R∗

+
(
Lλ/2[vε]

)2}
< +∞. (4.6)

Proof. The proof is divided into several steps.

Step one. We first fix v̄ ∈ E and introduce the auxiliary equation with modified convection
term:

ε(v − ∂2
xxv) + ρn ∂x

((
ρn Tn(v̄)

)2

2

)
+ Lλ[v] = 0, (4.7)

where for n ∈ N∗, the truncation functions Tn and ρn are given, respectively, by (2.1) and by
the formula ρn(x) := ρ

(
x

C(n,ε)

)
with





ρ ∈ C∞
c (R) even,

0 ≤ ρ ≤ ρ(0) = 1,

−1 ≤ ρ′ ≤ 0 on R
+

and with

C(n, ε) :=
n2

ε
(4.8)
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(this choice of the constant is explained in Step three). Note the property

ρn −→
n→+∞

1 uniformly on compact subsets of R. (4.9)

It is straightforward to see that solving (4.7), (4.3) in the variational sense below,

∣∣∣∣∣
find v ∈ E such that for all ϕ ∈ H1

odd(R),
∫

R∗

{
ε (vϕ+ ∂xv∂xϕ) + Lλ/2[v]Lλ/2[ϕ]

}
=
∫

R

(ρn Tn(v̄))2

2 ∂x(ρnϕ),
(4.10)

is equivalent to finding a minimizer v ∈ E for the functional

Jv̄,n :
E −→ R

u 7→ 1

2

∫

R∗

{
ε
(
u2 + (∂xu)

2
)

+
(
Lλ/2[u]

)2 − (ρn Tn(v̄))2 ∂x(ρnu)
}
.

Notice that ρn Tn(v̄) ∈ L∞(R) and ρn ∈ H1(R), so that

(ρn Tn(v̄))2 (∂x(ρnu))|R∗
∈ L1(R) with

∫

R∗

∣∣∣(ρn Tn(v̄))2 ∂x(ρnu)
∣∣∣ ≤ Cn ‖u‖;

let us precise that here and until the end of this proof, Cn denotes a generic constant that
depends only on n and eventually on the fixed parameter ε (and which can change from one
expression to another). Then the functional Jv̄,n is well-defined on E and coercive, because

Jv̄,n(u) =
1

2
‖u‖2 − 1

2

∫

R∗

(
ρn Tn(v̄)

)2
∂x(ρnu) ≥

1

2
‖u‖2 − Cn‖u‖ (4.11)

tends to infinity as ‖u‖ → +∞.
Finally, it is clear that Jv̄,n is strictly convex and strongly continuous. Thus we conclude

that there exists a unique minimizer of Jv̄,n, which is the unique solution of (4.10). We denote
this solution by Fn(v̄), which defines a map Fn : E −→ E.

Step two: apply the Schauder fixed-point theorem to the map Fn. Note that Fn(E)

is contained in the closed ball BRn := B
(
0H1

odd
(R∗), Rn

)
of H1

odd(R∗) for some radius Rn > 0

(only depending on n and ε). Indeed, let v := Fn(v̄); then by using (4.11), replacing the
minimizer v with the function θ ∈ E in (4.4), and applying the Young inequality we get

‖v‖2 ≤ 2Jv̄,n(v) + Cn‖v‖ ≤ 2Jv̄,n(θ) +
1

2
‖v‖2 + Cn.

We can restrict Fn to the closed convex set C := E ∩ BRn of the Banach space H1
odd(R∗). It

remains to show that Fn : C −→ C is continuous and compact.
In order to justify the compactness of Fn(C), take a sequence (vk)k ⊂ Fn(C) and an associated

sequence (v̄k)k ⊂ C with vk = Fn(v̄k). Because C is bounded, there exists a (not relabelled)
subsequence of (v̄k)k that converges weakly in H1(R∗) and strongly in L2

loc(R) by standart
embedding theorems; let v∞ be its limit. One has v∞ ∈ C because C is weakly closed inH1(R∗) as
strongly closed convex subset. We can assume without loss of generality that the corresponding
subsequence of (vk)k converges weakly to some v∞ ∈ C in H1

odd(R∗). Let us prove that vk

converges strongly to v∞ in H1
odd(R∗) and that v∞ = Fn(v̄∞).

9



By the above convergences, and the facts that Tn ∈ C∞
b (R) and ρn ∈ C∞

c (R), one can see
that ∫

R∗

(
ρnTn(v̄k)

)2
∂x(ρnvk) →

∫

R∗

(
ρnTn(v̄∞)

)2
∂x(ρnv∞) as k → +∞,

Moreover, using that vk is the minimizer of Jv̄k,n, we have

‖vk‖2 −
∫

R∗

(
ρnTn(v̄k)

)2
∂x(ρnvk) = 2Jv̄k ,n(vk)

≤ 2Jv̄k ,n(v∞) = ‖v∞‖2 −
∫

R∗

(
ρnTn(v̄k)

)2
∂x(ρnv∞).

Thus passing to the limit as k → +∞ in this inequality yields: ‖v∞‖ ≥ lim supk→+∞ ‖vk‖.
It follows that the convergence of vk to v∞ is actually strong in H1

odd(R∗). Passing to the
limit as k → +∞ in the variational formulation (4.10) written for vk and v̄k, we deduce by the
uniqueness of a solution to (4.10) that v∞ = Fn(v̄∞); this completes the proof of the compactness
of Fn(C).

To prove the continuity of Fn, one simply assumes that v̄k → v̄∞ strongly in H1
odd(R∗) and

repeats the above reasoning for each subsequence of (vk)k. One gets that from all subsequence
of (vk)k one can extract a subsequence strongly converging to v∞ = Fn(v̄∞); hence, the proof of
the continuity of Fn is complete.

We conclude that there exists a fixed point un of Fn in C. Then v := v̄ = un satisfies the
formulation (4.10). In addition, (4.10) is trivially satisfied with a test function ϕ ∈ H1(R) which
is even. Indeed, using the definitions of Tn and ρn and Lemma 4.1 (iv), we see that

ε
(
vϕ+ ∂xv∂xϕ

)
+ Lλ/2[v]Lλ/2[ϕ] −

(
ρnTn(v̄)

)2

2
∂x(ρnϕ)

is an odd function, so that its integral on R∗ is null. Since all function in H1(R) can be split
into the sum of an odd function in H1

odd(R) and an even function in H1(R), we have proved that
the fixed point un ∈ E of Fn satisfies for all ϕ ∈ H1(R),

∫

R

{
ε
(
unϕ+ (∂xun)|R∗

∂xϕ
)

+ Lλ/2[un]Lλ/2[ϕ]
}

=

∫

R

(ρn Tn(un))2

2
∂x(ρnϕ) (4.12)

(notice that the Rankhine-Hugoniot condition is contained in the fact that u2
n

2 is even). In
particular, using Lemma 4.1 item (iii), one has

ε(∂2
xxun − un) = ρn ∂x

(
(ρn Tn(un))2

2

)
+ Lλ[un] in D′(R∗). (4.13)

Step three: uniform estimates on the sequence (un)n. First, in order to prove a
maximum principle for un let us point out that un is regular. Indeed, thanks to Lemma 4.1 (i) (b)
and the facts that Tn ∈ C∞

b (R) and ρn ∈ C∞
c (R), the right-hand side of (4.13) belongs to L1(I)

for all compact interval I ⊂ R∗. Eq. (4.13) then implies that un ∈ W 2,1
loc (R∗) ⊂ C1(R∗). Recall

that un ∈ H1(R∗) ⊂ Cb(R∗); thus using Lemma 4.1 (i) (a), we see that the right-hand side
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of (4.13) belongs to C(I). Exploiting once more Eq. (4.13), we infer that un ∈ C2(R∗) and
(4.13) holds pointwise on R∗.

Now, we are in a position to prove that for all x > 0 and n ∈ N∗, 0 ≤ un(x) ≤ 1. Indeed,
because un ∈ H1(R+), we have limx→+∞ un(x) = 0; in addition, un(0+) = 1. Thus if un(x) /∈
[0, 1] for some x ∈ R

+, there exists x∗ ∈ R
+ such that

either un(x∗) = max
R+

u > 1 or un(x∗) = min
R+

u < 0.

Consider the first case. Since un ∈ C2(R∗), we have ∂xun(x∗) = 0 and ∂2
xxun(x∗) ≤ 0. In

addition, by Lemma 4.1 (v) we have L[un](x∗) > 0. Therefore using (4.13) at the point x∗, by
the choice of ρn and C(n, ε) in (4.8) we infer

εun(x∗) = ε∂2
xxun(x∗) − Lλ[un](x∗) − ρn(x∗) ∂x

(
(ρn(x∗)Tn(un(x∗)))

2

2

)

≤ − (ρn(x∗)Tn(u(x∗)))
2 ∂xρn(x∗) ≤ n2 1

C(n, ε)
sup
R+

(−∂xρ) ≤ ε.

Thus u(x∗) ≤ 1, which contradicts the definition of x∗. The case un(x∗) = minR+ u < 0 is
similar; we use in addition the fact that ∂xρn ≤ 0 on R+.

The function un being even, from the maximum principle of Step three we have |un| ≤ 1
on R∗. Since Tn = Id on [−n+ 1, n − 1], we have Tn(un) = un in (4.13) for all n ≥ 2.

Let us finally derive the uniformH1
odd(R∗)-bound on (un)n. To do so, replace the minimum un

of the functional Jun,n by the fixed function θ ∈ E in (4.4); we find

‖un‖2 = 2Jun,n(un) +

∫

R∗

(ρn un)2 ∂x (ρn un) ≤ 2Jun,n(θ) +

∫

R∗

∂x

(
(ρn un)3

3

)
.

Since ρn(0) = 1 = ±un(0±), we get

‖un‖2 ≤ 2Jun,n(θ) − 2

3
= ‖θ‖2 −

∫

R∗

(ρn un)2 ∂x (ρn θ) −
2

3
.

To estimate the integral term, we use that θ is supported by [−1, 1] with |∂x(ρnθ)| ≤ 1 + ε
n2 ,

thanks again to the choice of ρn in (4.8); Using finally the bound |un| ≤ 1 derived above, we get

−
∫

R∗

(ρn un)2 ∂x (ρn θ) ≤ 2 +
2ε

n2
;

hence, we obtain the following uniform estimate:

‖un‖2 ≤ ‖θ‖2 +
4

3
+

2ε

n2
. (4.14)

Step four: passage to the limit as n → +∞. The H1
odd(R∗)-estimate of Step three

permits to extract a (not relabelled) subsequence (un)n which converges weakly in H1(R∗) and
strongly in L2

loc(R), to a limit that we denote vε. We have (un)n ⊂ E which is a closed affine
subspace of H1(R∗), so that vε ∈ E. The above convergences and the convergence of ρn in (4.9)
are enough to pass to the limit in (4.12); at the limit, we conclude that vε is a weak solution
of (4.2). Notice that vε inherits the bounds on un, namely the bound (4.14) and the maximum
principle 0 ≤ un(x) sign x ≤ 1. This yields (4.5) and (4.6), thanks to the definition of ‖ · ‖ via
the scalar product (4.1). �
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Remark 4.2. When passing to the limit as n→ +∞ in (4.12) in the last step, one gets:
∫

R

{
ε
(
vεϕ+ (∂xvε)|R∗

∂xϕ
)

+ vεLλ[ϕ]
}

=

∫

R

vε
2

2
∂xϕ for all ϕ ∈ H1(R). (4.15)

5 A non-entropy stationary solution

We are now able to construct a stationary non-entropy solution to (1.1) by passing to the
limit in vε as ε → 0. Let us explain our strategy. First, we have to use the uniform estimates
of Proposition 4.1 to get compactness; this is done via the following lemma which is proved in
Appendix A:

Lemma 5.1. Assume that for all ε ∈ (0, 1), vε ∈ H1(R∗) satisfies (4.5)-(4.6). Then the family
{vε | ε ∈ (0, 1)} is relatively compact in L2

loc(R).

With Lemma 5.1 in hands, we can prove the convergence of a subsequence of vε, as ε → 0,
to some stationary weak solution v of (1.1). Next, we need to control the traces of v at x = 0±.
This is done by reformulating Definition 2.2 and by exploiting the Green-Gauss formula.

Let us begin with giving a characterization of odd weak stationary solutions of the fractional
Burgers equation.

Proposition 5.1. An odd function v ∈ L∞(R) satisfies

∂x

(
v2

2

)
+ Lλ[v] = 0 in D′(R), (5.1)

iff (i) and (ii) below hold true:

(i) there exists the trace γv2 := limh→0+
1
h

∫ h
0 v

2(x) dx;

(ii) for all odd compactly supported in R test function ϕ ∈ C∞
b (R∗),

∫

R∗

(
vLλ[ϕ] − v2

2
∂xϕ

)
= ϕ(0+) γv2.

Proof. Assume (5.1). For all h > 0, let us set ψh(x) := 1
h(h − |x|)+ signx. Let us recall

that θ(x) = (1 − |x|)+ signx. First consider

θh(x) :=

{
θ(x), x < 0

−ψh(x), x ≥ 0
and θ0(x) =

{
θ(x), x < 0

0, x ≥ 0.

By construction, θh ∈ H1(R); therefore θh can be approximated in H1(R) by functions in D(R)
and thus taken as a test function in (5.1). This gives

−
∫

R+

v2

2
∂xψh = −

∫

R−

v2

2
∂xθ +

∫

R

vLλ[θh].

But, it is obvious that θh −→ θ0 in L1(R)∩(BV (R))w-∗ as h→ 0+; thus using Lemma 4.1 (i) (d),
we conclude that the limit in item (i) of Proposition 5.1 does exist, and

γv2 := lim
h→0+

1

h

∫ h

0
v2 = − lim

h→0+

∫

R+

v2 ∂xψh = −
∫

R−

v2 ∂xθ + 2

∫

R

vLλ[θ0]. (5.2)
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Further, take a function ϕ as in item (ii) of Proposition 5.1 and set ϕh(x) := ϕ(x)−ϕ(0+)ψh(x).

One can take ϕh ∈ H1(R) as a test function in (5.1). Taking into account the fact that v2

2 ∂xϕh

and vLλ[ϕh] are even, thanks again to Lemma 4.1 (iv), we get

2

∫

R+

(
vLλ[ϕ] − v2

2
∂xϕ

)
= 2ϕ(0+)

∫

R+

(
v L[ψh] − v2

2
∂xψh

)
.

Now we pass to the limit as h → 0+. As previously, because ψh −→ 0 in L1(R) ∩ (BV (R))w-∗,
the term Lλ[ψh] vanishes in L1(R). Using (5.2), we get item (ii) of Proposition 5.1.

Conversely, assume that an odd function v satisfies items (i) and (ii) of Proposition 5.1.
Take a test function ξ ∈ D(R) and write ξ = ϕ + ψ with ϕ ∈ D(R) odd (so that ϕ(0+) = 0)
and ψ ∈ D(R) even. Then (ii) and the symmetry considerations, including Lemma 4.1 (iv),
show that

∫

R

(
v Lλ[ϕ] − v2

2
∂xϕ

)
= ϕ(0+) γv2 = 0,

∫

R

(
v Lλ[ψ] − v2

2
∂xψ

)
= 0.

Hence we deduce that v satisfies (5.1). �

Here is the existence result of a non-entropy stationary solution.

Proposition 5.2. Let λ ∈ (0, 1). There exists v ∈ L∞(R) that satisfies (5.1) and such that for
all c > 0, v does not satisfy ∂xv ≤ 1

c in D′(R).

Proof. First, by Proposition 4.1 and Lemma 5.1 there exists v ∈ L∞(R) and a sequence (εk)k,
εk ↓ 0 as k → +∞, such that the solution vεk

of (4.2) with ε = εk tends to v in L2
loc(R) by being

bounded by 1 in L∞-norm. Using in particular (4.6) to vanish the term
√
ε (∂xvε)|R∗

, we can

pass to the limit in (4.15) and infer (5.1).

In order to conclude the proof, we will show that there exist the limits

lim
h→0+

1

h

∫ h

0
v = 1, lim

h→0+

1

h

∫ 0

−h
v = −1. (5.3)

Indeed, (5.3) readily implies that for all c > 0, the function (v− 1
c Id) does not admit a non-

increasing representative. Since ∂x(v− 1
c Id) = ∂xv − 1

c , the inequality ∂xv − 1
c ≤ 0 in the

distribution sense fails to be true.
Thus it remains to show (5.3). To do so, we exploit the formulation (i)-(ii) of Proposition 5.1,

the analogous formulation of the regularized problem (4.2), the fact that vεk
(0±) = ±1, and (4.5).

Let us fix some odd compactly supported in R function ϕ ∈ C∞
b (R∗) such that ϕ(0+) = 1.

Let us take the test function ϕh(x) := ϕ(x) − ψh(x) ∈ H1(R) in (4.15). We infer
∫

R∗

{
ε (vεϕh + ∂xvε∂xϕh) + vεLλ[ϕh] − v2

ε

2
∂xϕh

}
= 0.

Each term in the above integrand is even; moreover, letting h→ 0+ and using Lemma 4.1 (i) (d)
on Lλ[ψh], we infer

∫

R∗

{
ε (vεϕ+ ∂xvε∂xϕ) + vεLλ[ϕ] − v2

ε

2
∂xϕ

}

= 2 lim
h→0+

1

h

∫ h

0

(
v2
ε

2
− ε∂xvε

)
= 1 − 2ε

h
[vε]

h
0 = 1 − 2ε

h
(vε(h) − 1) ≥ 1; (5.4)
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here in the last inequality, we have used 0 ≤ vε(x) ≤ 1 = vε(0
+) for x > 0.

Letting εk → 0 in (5.4), using again (4.6) to vanish
∫

R∗
ε ∂xvε∂xϕ, we infer

∫

R∗

{
vLλ[ϕ] − v2

2
∂xϕ

}
≥ 1. (5.5)

Recall that v is odd and solves (5.1); thus it satisfies items (i) and (ii) of Proposition 5.1. From

item (ii), we infer that limh→0+
1
h

∫ h
0 v

2 = γv2 ≥ 1. But we also have 0 ≤ v ≤ 1 on [0, h].
Therefore

lim
h→0+

1

h

∫ h

0
|1 − v| = lim

h→0+

1

h

∫ h

0

1 − v2

1 + v
≤ lim

h→0+

1

h

∫ h

0
(1 − v2) = 1 − γv2 ≤ 0.

Whence the first equality in (5.3) follows. The second one is clear because v is an odd function.
This concludes the proof. �

From Propositions 3.1 and 5.2, Theorem 1.1 readily follows.

Proof of Theorem 1.1. Take u0 := v. From (5.1) we derive that the function defined by u(t) := v
for all t ≥ 0 is a weak solution to (1.1)–(1.2). But it is not the entropy solution, because it fails
to satisfy (3.1). �

6 Proof of Lemma 4.1

We end this paper by proving the main properties of the fractional Laplacian acting on
spaces of odd functions. First, we have to state and prove some technical lemmata.

Here are embedding and density results that will be needed; for the reader’s convenience,
short proofs are given in Appendix A.

Lemma 6.1. The inclusions

H1(R∗) ⊂ BVloc(R) ∩H1
loc(R \ {0}) ⊂ L∞(R) ∩ L2(R) (6.1)

and

(BVloc(R))w-⋆ ∩H1
loc(R \ {0}) ⊂ L2(R). (6.2)

are continuous and sequentially continuous, respectively.

Lemma 6.2. The space D(R) is dense in H1(R∗) for the (BVloc(R))w-⋆∩H1
loc(R\{0})-topology.

The next lemma states weak continuity results for the fractional Laplacian. Until the end of
this section, Lλ denotes the operator defined by (2.2) and LF

λ denotes the one defined by (1.3).

Lemma 6.3. Let λ ∈ (0, 1). Then the following operators are sequentially continuous:

Lλ : (BVloc(R))w-⋆ ∩H1
loc(R \ {0}) → L1

loc(R) ∩ L2
loc(R \ {0}),

LF
λ/2 : (BVloc(R))w-⋆ ∩H1

loc(R \ {0}) → L2(R).
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Proof. The proof is divided in several steps.

Step one: strong continuity of Lλ. Let v ∈ BVloc(R) ∩H1
loc(R \ {0}) and let us derive

some estimates on Lλ[v]. For all r,R > 0, using the Fubini theorem one has

∫ R

−R

∫

R

|v(x+ z) − v(x)|
|z|1+λ

dxdz

=

∫ R

−R

∫

|z|≤r

|v(x+ z) − v(x)|
|z|1+λ

dxdz +

∫ R

−R

∫

|z|>r

|v(x+ z) − v(x)|
|z|1+λ

dxdz

≤ |v|BV ((−R−r,R+r))

∫

|z|≤r
|z|−λ dz

+

(
sup
|z|>r

‖v‖L1((−R+z,R+z)) + ‖v‖L1((−R,R))

)∫

|z|>r
|z|−1−λ dz

=
2r1−λ

1 − λ
|v|BV ((−R−r,R+r)) +

2

λrλ

(
sup
|z|>r

‖v‖L1((−R+z,R+z)) + ‖v‖L1((−R,R))

)
. (6.3)

By (6.1) of Lemma 6.1, using the Cauchy-Schwarz inequality to control the L1-norms by the L2-
norms, one sees that integral term in (2.2) makes sense a.e. with

‖Lλ[v]‖L1((−R,R)) ≤
2Gλr

1−λ

1 − λ
|v|BV ((−R−r,R+r)) +

4Gλ

λrλ

√
2R ‖v‖L2(R), (6.4)

for all r,R > 0. In the same way, by Minkowski’s integral inequality one has for R > r > 0

(∫

R\[−R,R]

(∫

R

|v(x+ z) − v(x)|
|z|1+λ

dz

)2

dx

) 1

2

≤
∫

R

(∫

R\[−R,R]

|v(x+ z) − v(x)|2
|z|2+2λ

dx

) 1

2

dz

=

∫

|z|≤r
|z|−1−λ

(∫

R\[−R,R]
|v(x+ z) − v(x)|2 dx

) 1

2

dz

+

∫

|z|>r
|z|−1−λ

(∫

R\[−R,R]
|v(x+ z) − v(x)|2 dx

) 1

2

dz

≤ 2r1−λ

1 − λ
‖∂xv‖L2(R\[−R+r,R−r]) +

4

λrλ
‖v‖L2(R);

therefore, one gets for all R > r > 0,

‖Lλ[v]‖L2(R\[−R,R]) ≤
2Gλr

1−λ

1 − λ
‖∂xv‖L2(R\[−R+r,R−r]) +

4Gλ

λrλ
‖v‖L2(R). (6.5)

Now (6.4)-(6.5) imply that Lλ : BVloc(R) ∩ H1(R \ {0}) → L1
loc(R) ∩ L2

loc(R \ {0}) is well
defined and continuous.
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Step two: weak-⋆ sequential continuity of Lλ. Consider a sequence (vk)k converging
to zero in (BVloc(R))w-⋆ ∩H1

loc(R \ {0}). For all R > 0, (vk)k is bounded in the norm of H1(R \
[−R,R]) and the semi-norm of BV ((−R,R)) by some constant CR. By (6.4), one deduces that

lim sup
k→+∞

‖Lλ[vk]‖L1((−R,R)) ≤
2Gλr

1−λ

1 − λ
CR+r.

Letting r → 0, one concludes that Lλ[vk] converges to zero in L1((−R,R)). In the same way, one
can prove that Lλ[vk] converges to zero in L2(R \ [−R,R]) by using (6.5). Since R is arbitrary,
the proof of Lemma 6.3 is complete.

Step three: strong continuity of LF
λ/2. Let us derive an L2-estimate on LF

λ/2[v]. Recall

that by Lemma 6.1 (6.1), one has v ∈ L2(R) so that | · | F(v)(·) ∈ L1
loc(R) and LF

λ/2[v] is well

defined in S ′(R).
Further, consider some fixed ρ ∈ C∞

c (R) such that ρ = 1 on some neighborhood of the origin,
say on [−1/2, 1/2], and supp ρ ⊆ [−1, 1]. Then one has v = ρv+(1−ρ)v with supp (ρv) ⊆ [−1, 1],
ρv ∈ L1(R) ∩BV (R) (since v ∈ L2(R)) and (1 − ρ)v ∈ H1(R); moreover, one readily sees that

‖ρv‖L1(R) ≤ Cρ‖v‖L2(R), (6.6)

|ρv|BV (R) ≤ Cρ

(
|v|BV ((−1/2,1/2)) + ‖v‖H1(R\[−1/2,1/2])

)
, (6.7)

‖(1 − ρ)v‖L2(R) ≤ Cρ‖v‖L2(R), (6.8)

‖∂x ((1 − ρ)v) ‖L2(R) ≤ Cρ‖v‖H1(R\[−1/2,1/2]), (6.9)

where until the end of the proof Cρ denotes a generic constant only depending on ρ.
By Plancherel’s equality, we have

∥∥∥LF
λ/2[v]

∥∥∥
L2(R)

=

∫

R

|ξ|λ |F (v) (ξ)|2 dξ

=

∫

R

|ξ|λ |F (ρv) (ξ)|2 dξ +

∫

R

|ξ|λ |F ((1 − ρ)v) (ξ)|2 dξ =: I + J. (6.10)

Let us first bound J from above. For all r > 0, one has

J =

∫

|ξ|>r
|ξ|λ |F ((1 − ρ)v) (ξ)|2 dξ +

∫

|ξ|≤r
|ξ|λ |F ((1 − ρ)v) (ξ)|2 dξ

≤
∫

|ξ|>r
|ξ|λ−2 |ξ|2 |F ((1 − ρ)v) (ξ)|2 dξ + rλ‖F ((1 − ρ)v) ‖2

L2(R)

≤ 1

r2−λ

∫

|ξ|>r
|ξ|2 |F ((1 − ρ)v) (ξ)|2 dξ + rλ‖(1 − ρ)v‖2

L2(R).

Using the formula
F(∂xw) = 2iπξ F(w) (6.11)

and again Plancherel’s equality, one gets J ≤ 1
4π2r2−λ ‖∂x ((1 − ρ)v) ‖2

L2(R) + rλ‖(1 − ρ)v‖2
L2(R);

so that by (6.8)-(6.9), one has

J ≤ Cρ

r2−λ
‖v‖2

H1(R\[−1/2,1/2]) + Cρr
λ‖v‖2

L2(R). (6.12)
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To bound I from above, one uses the boundeness of F : L1(R) → L∞(R) and the pointwise
estimate |ξ| |F(w)(ξ)| ≤ 1

2π |w|BV (R) that comes from (6.11). We get

I =

∫

|ξ|>r
|ξ|λ |F (ρv) (ξ)|2 dξ +

∫

|ξ|≤r
|ξ|λ |F (ρv) (ξ)|2 dξ

≤ 1

4π2
|ρv|2BV (R)

∫

|ξ|>r
|ξ|λ−2 dξ + ‖ρv‖2

L1(R)

∫

|ξ|≤r
|ξ|λ dξ

=
1

2π2(1 − λ)r1−λ
|ρv|2BV (R) +

2r1+λ

1 + λ
‖ρv‖2

L1(R);

so that by (6.6)-(6.7), one has

I ≤ Cρ

(1 − λ)r1−λ

(
|v|BV ((−1/2,1/2)) + ‖v‖H1(R\[−1/2,1/2])

)2
+
Cρ r

1+λ

1 + λ
‖v‖2

L2(R). (6.13)

We deduce from (6.10), (6.12) and (6.13) the final estimate:

∥∥∥LF
λ/2[v]

∥∥∥
L2(R)

≤ Cρ

(
rλ +

r1+λ

1 + λ

)
‖v‖2

L2(R)

+ Cρ

(
1

r2−λ
+

1

(1 − λ)r1−λ

) (
|v|BV ((−1/2,1/2)) + ‖v‖H1(R\[−1/2,1/2])

)2
. (6.14)

for all r > 0.
One infers that LF

λ/2 : BVloc(R) ∩H1
loc(R \ {0}) → L2(R) is continuous.

Step four: weak-⋆ sequential continuity of LF
λ/2. By (6.2) of Lemma 6.1, one sees

that if vk → 0 in the topological space (BVloc(R))w-⋆ ∩ H1
loc(R \ {0}), then vk → 0 in L2(R).

One then argues exactly as in Step two by using (6.14) instead of (6.4)-(6.5); one deduces
that LF

λ/2|vk] → 0 in L2(R) and this completes the proof of the lemma. �

We can now prove the main properties of Lλ stated in Subsection 4.1.

Proof of Lemma 4.1. Let us prove the different items step by step.

Step one: item (i) (a) and (b). Item (i) (a) is an immediate consequence of the theorem
of continuity under the integral sign; the details are left to the reader. Item (i) (b) is clear from
Lemmata 6.1 and 6.3.

Step two: item (i) (d). Passing to the limit R→ +∞ in (6.3), one gets

‖Lλ[v]‖L1(R) ≤
2Gλr

1−λ

1 − λ
|v|BV (R) +

4Gλ

λrλ
‖v‖L1(R), (6.15)

for all v ∈ L1(R) ∩ BV (R) and r > 0. With this estimate in hands, we can argue as in the
second step of the proof of Lemma 6.3 to show item (i) (d).

Step three: items (ii) and (i) (c). Let us prove item (ii) first. By Lemma 6.2, v ∈
H1(R∗) can be approximated by vk ∈ S(R) in (BVloc(R))w-⋆ ∩H1

loc(R \ {0}). One has Lλ[vk] =
LF

λ [vk] thanks to the classical Lévy-Khintchine formula. By Lemma 6.3, we infer that Lλ[vk]
converges toward Lλ[v] in S ′(R) as k → +∞. But the embedding (6.2) of Lemma 6.1 implies
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that vk → v in L2(R) so that F(vk) → F(v) in L2(R). It follows that | · |λF(vk)(·) → |· |λF(v)(·)
in S ′(R); hence, taking the inverse Fourier transform, one sees that LF

λ [vk] → LF
λ [v] in S ′(R).

By uniqueness of the limit, one has Lλ[v] = LF
λ [v] and the proof of item (ii) is complete.

As an immediate consequence, one deduces item (i) (c) by using in particular Lemmata 6.1
and 6.3.

Step four: item (iii). Take vk, wk ∈ S(R) converging in (BVloc(R))w-⋆ ∩ H1
loc(R \ {0})

to v,w ∈ H1(R∗). For such functions, it is immediate from the definition by Fourier trans-
form (1.3) that ∫

R

Lλ[vk]wk =

∫

R

vkLλ[wk] =

∫

R

Lλ/2[wk]Lλ/2[vk].

By Lemma 6.3, one has Lλ[uk] → Lλ[u] in L1
loc(R)∩L2

loc(R\{0}) for u = v,w. By Lemma 6.1 and
Banach-Alaoglu-Bourbaki’s theorem, one has the following convergence (up to a subsequence):

uk → u in L2(R) and in L∞(R) weak-⋆

for u = v,w; indeed, (6.2) implies the strong convergence in L2 and (6.1) implies that (uk)k is
bounded in L∞, since it is (strongly) bounded in BVloc(R)∩H1

loc(R\{0}) as converging sequence
in (BVloc(R))w-⋆ ∩H1

loc(R \ {0}). Hence, one clearly can pass to the limit:
∫

R

Lλ[v]w = lim
k→+∞

∫

R

Lλ[vk]wk = lim
k→+∞

∫

R

vkLλ[wk] =

∫

R

vLλ[w].

To pass to the limit in
∫

R
Lλ/2[wk]Lλ/2[vk], one uses Lemma 6.3 and item (ii). The proof of

item (iii) is complete.

Step five: item (iv). It suffices to change the variable by z → −z in (2.2).

Step six: item (v). We consider only the case where v(x∗) = maxR+ v ≥ 0, since the
case v(x∗) = minR+ v ≤ 0 is symmetric. Simple computations show that

Lλ[v](x∗) = −Gλ

∫

R

v(x∗ + z) − v(x∗)

|z|1+λ
dz

= −Gλ

∫ +∞

−x∗

v(x∗ + z) − v(x∗)

|z|1+λ
dz −Gλ

∫ −x∗

−∞

v(x∗ + z) − v(x∗)

|z|1+λ
dz

= −Gλ

∫ +∞

−x∗

v(x∗ + z) − v(x∗)

|z|1+λ
dz −Gλ

∫ +∞

−x∗

v(−x∗ − z′) − v(x∗)

|z′ + 2x∗|1+λ
dz′,

after having changed the variable by z′ = −z − 2x∗. By the oddity of v, we get

Lλ[v](x∗) = −Gλ

∫ +∞

−x∗

{
v(x∗ + z) − v(x∗)

|z|1+λ
− v(x∗ + z) + v(x∗)

|z + 2x∗|1+λ

}
dz.

Let f(z) denote the integrand above. Let us prove that for 0 6= z > −x∗, this integrand is

non-positive. It is readily seen that for such z, one always has
{

1
|z|1+λ − 1

|z+2x∗|1+λ

}
> 0. Then,

one has

f(z) = v(x∗ + z)

{
1

|z|1+λ
− 1

|z + 2x∗|1+λ

}
− v(x∗)

{
1

|z|1+λ
+

1

|z + 2x∗|1+λ

}

≤ v(x∗)

{
1

|z|1+λ
− 1

|z + 2x∗|1+λ

}
− v(x∗)

{
1

|z|1+λ
+

1

|z + 2x∗|1+λ

}
;
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indeed, x∗ + z ∈ R
+, so that v(x∗ + z) ≤ v(x∗). We infer that f(z) ≤ −v(x∗) 2

|z+2x∗|1+λ ≤ 0

and conclude that Lλ[v](x∗) ≥ 0. To finish, observe that f can not be identically equal to
zero, whenever v is non-trivial. This proves that Lλ[v](x∗) > 0 and completes the proof of the
lemma. �

A Proofs of Lemmata 3.1, 5.1, 6.1 and 6.2

Proof of Lemma 3.1. The supremum m(t) is achieved because of (3.2), so that K(t) 6= ∅; more-
over, one has for all b > a > 0

sup
t∈(a,b), x∈K(t)

|x| < +∞. (A.1)

It is quite easy to show that m is continuous and we only detail the proof of the derivability
from the right.

Let t0 > 0 be fixed and (tk)k, (xk)k be such that limk→+∞ tk = t0, tk > t0 and xk ∈ K(tk),
m(tk) = v(tk, xk) for all k ≥ 1. By (A.1), (xk)k is bounded; hence, taking a subsequence if
necessary, one can assume that xk converges toward some x0. One has

lim sup
k→+∞

m(tk) −m(t0)

tk − t0
= lim sup

k→+∞

v(tk, xk) −m(t0)

tk − t0

≤ lim sup
k→+∞

v(tk, xk) − v(t0, xk)

tk − t0
= ∂tv(t0, x0),

thanks to the C1-regularity of v. But, one has x0 ∈ K(t0); indeed, for all x ∈ R, one
has v(tk, xk) ≥ v(tk, x) so that the limit as k → +∞ gives v(t0, x0) ≥ v(t0, x). Hence, one has

proved that lim supk→+∞
m(tk)−m(t0)

tk−t0
≤ supx∈K(t0) ∂tv(t0, x) . In the same way, for all x ∈ K(t0)

one has

lim inf
k→+∞

m(tk) −m(t0)

tn − t0
≥ lim inf

k→+∞

v(tk, x) − v(t0, x)

tk − t0
= ∂tv(t0, x).

This shows that

lim inf
k→+∞

m(tk) −m(t0)

tk − t0
≥ max

x∈K(t0)
∂tv(t0, x) ≥ lim sup

k→+∞

m(tk) −m(t0)

tk − t0
,

for all t0 > 0 and (tk)k such that tk → t0, tk > t0. This means that m is right-differentiable
with m′

r(t0) = maxx∈K(t0) ∂tv(t0, x) on R
+. �

Proof of Lemma 5.1. Let us estimate the translations of vε. Fix h ∈ R and define Thvε(x) :=
vε(x − h). Classical formula gives F (Thvε) (ξ) = e−2iπξhF (vε) (ξ). By the Plancherel equality,
we deduce that

∫

R

|Thvε − vε|2 =

∫

R

∣∣∣e−2iπξh − 1
∣∣∣
2
|F (vε) (ξ)|2 dξ

=

∫

R

∣∣e−2iπξh − 1
∣∣2

|ξ|λ |ξ|λ |F (vε) (ξ)|2 dξ

≤ Mh

∫

R

|ξ|λ |F (vε) (ξ)|2 dξ,
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where Mh := maxξ∈R

|e−2iπξh−1|2
|ξ|λ

. Lemma 4.1 item (ii) and the Plancherel equality imply that

∫

R

|Thvε − vε|2 ≤Mh

∫

R

∣∣Lλ/2[vε]
∣∣2 .

By the assumptions of the lemma, we deduce that
∫

R
|Thvε − vε|2 ≤ C0Mh for some constant C0

(the constant comes from (4.6)). Using that ez − 1 = O(|z|) in a neighborhood, it is easy to see
that limh→0Mh = 0, because λ ∈ (0, 2]. The family {vε | ε ∈ (0, 1)} is bounded in L∞(R), and
thus also in L2

loc(R). By the Fréchet-Kolmogorov theorem, it is relatively compact in L2
loc(R). �

Proof of Lemma 6.1. For all v ∈ H1(R∗), there exist the traces v(0±) ∈ R; it is not difficult to
show that |v(0±)| ≤ ‖v‖H1(R∗). Further, for all ±x > 0,

v(x) = v(0±) +

∫ x

0
(∂xv)|R∗

(y)dy. (A.2)

It follows that for all R > 0, one has v ∈ BV ((−R,R)) with

|v|BV ((−R,R)) ≤ |v(0+) − v(0−)| +
∥∥(∂xv)|R∗

∥∥
L1((−R,R))

≤
(
2 +

√
2R
)
‖v‖H1(R∗).

This shows that the inclusion H1(R∗) ⊂ BVloc(R) ∩H1
loc(R \ {0}) is continuous.

Now take v ∈ BVloc(R) ∩ H1
loc(R \ {0}). Then v is continuous on R∗ and v(x) = v(1) +∫ x

1 ∂xv(y)dy, where ∂xv can be a Radon measure with singular part supported by {0}. By the
continuity of the inclusion H1(R \ [−1, 1]) ⊂ Cb(R \ (−1, 1)), one deduces that v is bounded
outside (−1, 1); since v is bounded by |v(1)| + |v|BV ((−1,1)) on [−1, 1], the inclusion BVloc(R) ∩
H1

loc(R \ {0}) ⊂ L∞(R) is continuous. From this result, it is easy to show (6.1).

The sequential embedding (6.2) is clear from (6.1). Indeed, Helly’s theorem and Lq, Lp

interpolation inequalities imply that the inclusion L∞(R) ∩ BVloc(R) ⊂ Lp
loc(R) is continuous

and compact for all p ∈ [1,+∞); since each converging sequence in (BVloc(R))w-⋆∩H1
loc(R\{0})

is (strongly) bounded in BVloc(R) ∩H1
loc(R \ {0}), the inclusions

(BVloc(R))w-⋆ ∩H1
loc(R \ {0}) ⊂ Lp

loc(R) ∩ L2
loc(R \ {0}) ⊂ L2(R)

are sequentially continuous. �

Proof of Lemma 6.2. From (A.2), one deduces that if v ∈ H1(R∗) then ∂xv = (∂xv)|R∗
+(v(0+)−

v(0−)) δ0, where one has (∂xv)|R∗
∈ L2(R) and δ0 is the Dirac delta at zero. Let (ρk)k ⊂ D(R) be

an approximate unit and define vk := ρk ∗ v. Then it is easy to check that vk → v in L2(R) and
that ∂xvk = (∂xv)|R∗

∗ ρk + (v(0+)− v(0−)) ρk converges to ∂xv in L2
loc(R \ {0}) and in

(
Cc(R)

)′

weak-⋆. �

B Technical results

Lemma B.1. Let m ∈ C(R+) be right-differentiable with

m′
r(t) + (max{m, 0})2 ≤ 0 on R

+. (B.1)

Then, one has m(t) ≤ 1
t for all t > 0.
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Proof. Let t0 > 0 be such that m(t0) is positive. The function m has to be positive on some
neighborhood of t0; since (B.1) implies thatm is non-increasing, this neighborhood has to contain
the interval (0, t0]. Dividing (B.1) by m2 = (max{m, 0})2 on this interval, we get:

(
− 1

m

)′
r
≤ −1

in (0, t0). Integrating this inequation, one deduces that for all t < t0,
1

m(t) − 1
m(t0) ≤ t− t0, which

implies that m(t0) ≤
(

1
m(t) + t0 − t

)−1
≤ (t0 − t)−1 . Letting t→ 0, we conclude that m(t0) ≤ 1

t0

whenever m(t0) is positive. The proof is complete. �

Lemma B.2. Let λ ∈ (0, 1) and Φ : R → R be locally Lipschitz-continuous and such that there
exist 0 < λ′ < λ, MΦ and LΦ with

|Φ(x)| ≤MΦ(1 + |x|λ′

) and |∂xΦ(x)| ≤ LΦ

1 + |x|1−λ′

for a.e. x ∈ R. Then Lλ[Φ] is well-defined by (2.2) and belongs to Cb(R).

The idea of the proof of this technical result comes from [3]; we give here a short proof for
the reader’s convenience.

Proof. In the sequel, C denotes a constant only depending on λ′, λ,MΦ and LΦ. For all x ∈ R

and r > 0, one has
∫

R

|Φ(x+ z) − Φ(x)|
|z|1+λ

dz

≤ ‖∂xΦ‖L∞((x−r,x+r))

∫

|z|≤r
|z|−λ dz +

∫

|z|>r

|Φ(x+ z) − Φ(x)|
|z|1+λ

dz,

≤ C r1−λ ‖∂xΦ‖L∞((x−r,x+r)) +

∫

|z|>r

|Φ(x+ z) − Φ(x)|
|z|1+λ

dz.

Since |x+ z|λ′ ≤ |x|λ′
+ |z|λ′

for all x, z ∈ R, the last integral term is bounded above by

C

∫

|z|>r

2 + 2|x|λ′
+ |z|λ′

|z|1+λ
dz ≤ C r−λ

(
1 + |x|λ′

+ rλ′
)
.

We get finally:
∫

R

|Φ(x+ z) − Φ(x)|
|z|1+λ

dz ≤ C r−λ
(
1 + |x|λ′

+ rλ′

+ r ‖∂xΦ‖L∞((x−r,x+r))

)
(B.2)

(for some constant C not depending on x ∈ R and r > 0).
This proves that Lλ[Φ](x) is well-defined by (2.2) for all x ∈ R; moreover, we let the

reader check that the continuity of Lλ[Φ] can be easily deduced from the dominated con-
vergence theorem. What is left to study is thus the behavior of Lλ[Φ] at infinity; to do

so, one takes r = |x|
2 (which is positive for large x) and gets from (B.2) the following esti-

mate: |Lλ[Φ](x)| ≤ C
(
|x|−λ + |x|λ′−λ

)
for large x. The proof is complete. �
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