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By Judith Rousseau∗,
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In this paper, we study the asymptotic posterior distribution of
linear functionals of the density by deriving general conditions to ob-
tain a semi-parametric version of the Bernstein-von Mises theorem.
The special case of the cumulative distributive function evaluated
at a specific point is widely considered. In particular, we show that
for infinite dimensional exponential families, under quite general as-
sumptions, the asymptotic posterior distribution of the functional
can be either Gaussian or a mixture of Gaussian distributions with
different centering points. This illustrates the positive but also the
negative phenomena that can occur for the study of Bernstein-von
Mises results.

1. Introduction. The Bernstein-von Mises property, in Bayesian anal-
ysis, concerns the asymptotic form of the posterior distribution of a quantity
of interest θ, and more specifically it corresponds to the asymptotic normal-
ity of the posterior distribution of θ with mean θ̂ and asymptotic variance
σ2 and where, if θ is the true parameter, θ̂ is asymptotically distributed as a
Gaussian random variable with mean θ and variance σ2. Such results are well
known in regular parametric frameworks, see for instance [16] where general
conditions are given. This is an important property for both practical and
theoretical reasons. In particular the asymptotic normality of the posterior
distributions allows us to construct approximate credible regions and the
duality between the behavior of the posterior distribution and the frequen-
tist distribution of the asymptotic centering point of the posterior implies
that credible regions will also have good frequentist properties. These results
are given in many Bayesian textbooks see for instance [20] or [1].
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2 V. RIVOIRARD AND J. ROUSSEAU.

In a frequentist perspective the Bernstein-von Mises property enables the
construction of confidence regions since under this property a Bayesian credi-
ble region will be asymptotically a frequentist confidence region as well. This
is even more important in complex models, since in such models the con-
struction of confidence regions can be difficult whereas the Markov Chain
Monte Carlo algorithms usually make the construction of a Bayesian cred-
ible region feasible. But of course, the more complex the model the harder
it is to derive Bernstein-von Mises theorems.

Semi-parametric and non-parametric models are widely popular both
from a theoretical and practical perspective and have been used by frequen-
tists as well as Bayesians although their theoretical asymptotic properties
have been mainly studied in the frequentist literature. The use of Bayesian
non-parametric or semi-parametric approaches is more recent and has been
made possible mainly by the development of algorithms such as Markov
Chain Monte-Carlo algorithms but has grown rapidly over the past decade.

However, there is still little work on asymptotic properties of Bayesian
procedures in semi-parametric models or even in non-parametric models.
Most of existing works on the asymptotic posterior distributions deal with
consistency or rates of concentration of the posterior. In other words it con-
sists in controlling objects of the form Pπ [Un|Xn] where Pπ[.|Xn] denotes
the posterior distribution given a n-vector of observations Xn and Un de-
notes either a fixed neighborhood (consistency) or a sequence of shrinking
neighborhoods (rates of concentration). As remarked by [5] consistency is an
important condition, even from a subjectivist view point. Obtaining concen-
tration rates of the posterior helps to understand the impact of the choice of
a specific prior and allows for a comparison between priors to some extent.
However, to obtain a Bernstein-von Mises theorem it is necessary not only to
bound from above Pπ [Un|Xn], as in the studies of consistency and concen-
tration rates of the posterior distribution but also to determine an equivalent
of Pπ [Un|Xn] for some specific types of sets Un. This difficulty explains that
there is up to now hardly any work on Bernstein-von Mises theorems in
infinite dimensional models. The most well known results are negative re-
sults and are given in [6]. Some positive results are provided by [7] on the
asymptotic normality of the posterior distribution of the parameter in an ex-
ponential family with increasing number of parameters. In a discrete setting,
[2] derive Bernstein-von Mises results. Nice positive results are obtained in
[14] and [15], however they rely heavily on a conjugacy property and on the
fact that their priors put mass one on discrete probabilities which makes
the comparison with the empirical distribution more tractable. In a semi-
parametric framework, where the parameter can be separated into a finite
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BVM FOR LINEAR FUNCTIONALS OF THE DENSITY 3

dimensional parameter of interest and an infinite dimensional nuisance pa-
rameter, [3] obtains interesting conditions leading to a Bernstein-von Mises
theorem on the parameter of interest, clarifying an earlier work of [21]. More
precisely, when the parameter of interest is handled in the case of no loss
of information, then some classical parametric tools can be used (such as
the continuity around the true parameter). The framework considered in
the sequel does not make possible such a separation. Other differences with
our paper have to be pointed out: The centering considered by [21] is based
on the sieve maximum likelihood estimate, whereas priors considered by [3]
are merely Gaussian in the information loss case. In Section 2.1 we describe
more precisely results by [3, 21] and compare them with ours.

In this paper we are interested in studying the existence of a Bernstein-von
Mises property in semi-parametric models where the parameter of interest is
a functional of the density of the observations. The estimation of functionals
of infinite dimensional parameters such as the cumulative distribution func-
tion at a specific point is a widely studied problem both in the frequentist
and Bayesian literature. There is a vast literature on the rates of convergence
and on the asymptotic distribution of frequentist estimates of functionals of
unknown curves and of finite dimensional functionals of curves in particular,
see for instance [24] for an excellent presentation of a general theory on such
problems.

One of the most common functionals considered in the literature is the
cumulative distribution function calculated at a given point, say F (x0). The
empirical cumulative distribution function is a natural frequentist estimator
and its asymptotic distribution is Gaussian with mean F (x0) and variance
F (x0)(1− F (x0))/n.

The Bayesian counterpart of this estimator is the one derived from a
Dirichlet process prior and it is well known to be asymptotically equiva-
lent to Fn(x0), see for instance [11]. This result is obtained by using the
conjugate nature of the Dirichlet prior, leading to an explicit posterior dis-
tribution. Other frequentist estimators, based on density estimates such as
kernel estimators have also been studied in the frequentist literature. Hence
a natural question arises. Can we generalize the Bernstein-von Mises theo-
rem of the Dirichlet estimator to other Bayesian estimators? What happens
if the prior has support on distributions absolutely continuous with respect
to the Lebesgue measure?

In this paper we provide an answer to these questions by establishing
conditions under which a Bernstein-von Mises theorem can be obtained for
linear functionals of the density of f such as F (x0). We also study cases
where the asymptotic posterior distribution of the functional is not asymp-
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4 V. RIVOIRARD AND J. ROUSSEAU.

totically Gaussian but is asymptotically a mixture of Gaussian distributions
with different centering points.

1.1. Notation and aim. In this paper, we assume that, given a distribu-
tion P with a compactly supported density f with respect to the Lebesgue
measure, X1, ..., Xn are independent and identically distributed according
to P. We set Xn = (X1, ..., Xn) and denote F the cumulative distribution
function associated with f . Without loss of generality we assume that for
any i, Xi ∈ [0, 1] and we set

F =

{
f : [0, 1] → R+ s.t.

∫ 1

0
f(x)dx = 1

}
.

We denote #n(f) the log-likelihood associated with the density f . For any
integrable function g, we set F (g) =

∫ 1
0 f(u)g(u)du. We denote by < ., . >f

the inner product and by ||.||f the associated norm in

L2(F ) =

{
g s.t.

∫
g2(x)f(x)dx < +∞

}
.

We also consider the classical inner product in L2[0, 1], denoted < ., . >2,
and ||.||2, the associated norm. The Kullback-Leibler divergence and the
Hellinger distance between two densities f1 and f2 will be respectively de-
noted K(f1, f2) and h(f1, f2). We recall that

K(f1, f2) = F1 (log(f1/f2)) , h(f1, f2) =

[∫ (√
f1(x)−

√
f2(x)

)2
dx

]1/2
.

In the sequel, we shall also use

V (f1, f2) = F1
(
(log(f1/f2))

2
)
.

Let P0 be the true distribution of the observations Xi whose density and
cumulative distribution function are respectively denoted f0 and F0. We
consider usual notation on empirical processes, namely for any measurable
function g such that F0(|g|) < ∞,

Pn(g) =
1

n

n∑

i=1

g(Xi), Gn(g) =
1√
n

n∑

i=1

[g(Xi)− F0(g)]

and Fn is the empirical distribution function.
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BVM FOR LINEAR FUNCTIONALS OF THE DENSITY 5

For any given ψ ∈ L∞[0, 1], we consider Ψ the functional on M, the set
of finite measures on [0, 1], defined by

(1.1) Ψ(µ) =

∫
ψdµ, µ ∈ M.

In particular, we have

Ψ(Pn) = Pn(ψ) =

∑n
i=1 ψ(Xi)

n
.

Most of the time, to simplify notation when µ is absolutely continuous with
respect to the Lebesgue measure with g = dµ

dx , we use Ψ(g) instead of Ψ(µ).
A typical example of such functionals is given by the cumulative distribution
function at a fixed point x0:

Ψx0(f) = F (x0) =

∫ 1

0
1lx≤x0f(x)dx, x0 ∈ [0, 1].

Let π be a prior on F . The aim of this paper is to study the posterior
distribution of Ψ(f) and to derive conditions under which, for all z ∈ R

Pπ
[√

n(Ψ(f)−Ψ(Pn)) ≤ z|Xn
]
→ ΦV0(Z) in P0-probability,(1.2)

where V0 is the variance of
√
nΨ(Pn) under P0 and ΦV0 is the cumulative dis-

tribution function of a centered Gaussian random variable with variance V0.
Note that under this duality between the Bayesian and the frequentist be-
haviors, credible regions for Ψ(f) (such as highest posterior density regions,
equal tail or one-sided intervals) have also the correct asymptotic frequen-
tist coverage. In Section 2.3, we study in detail the special case of infinite
dimensional exponential families as described in the following section.

1.2. Infinite dimensional exponential families based on Fourier and wavelet
expansions. Fourier and wavelet bases are the dictionaries from which we
build exponential families in the sequel. We recall that Fourier bases con-
stitute unconditional bases of periodized Sobolev spaces W γ where γ is the
smoothness parameter. Wavelet expansions of any periodized function h take
the following form:

h(x) = θ−101l[0,1](x) +
+∞∑

j=0

2j−1∑

k=0

θjkϕjk(x), x ∈ [0, 1]

where θ−10 =
∫ 1
0 h(x)dx and θjk =

∫ 1
0 h(x)ϕjk(x)dx. We recall that the

functions ϕjk are obtained by periodizing dilations and translations of a
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6 V. RIVOIRARD AND J. ROUSSEAU.

mother wavelet ϕ that can be assumed to be compactly supported. Under
standard properties of ϕ involving its regularity and its vanishing moments
(see Lemma D.1), wavelet bases constitute unconditional bases of Besov

spaces Bγ
p,q for 1 ≤ p, q ≤ +∞ and γ > max

(
0, 1p − 1

2

)
. We refer the reader

to [12] for a good review of wavelets and Besov spaces. We just mention
that the scale of Besov spaces includes Sobolev spaces: W γ = Bγ

2,2. In the
sequel, to shorten notation, the considered orthonormal basis will be denoted
Φ = (φλ)λ∈N, where φ0 = 1l[0,1] and

- for the Fourier basis, if λ ≥ 1,

φ2λ−1(x) =
√
2 sin(2πλx), φ2λ(x) =

√
2 cos(2πλx),

- for the wavelet basis, if λ = 2j +k, with j ∈ N and k ∈ {0, . . . , 2j −1},

φλ = ϕjk.

Here and in the sequel, N denotes the set of non negative integers, and N∗ the
set of positive integers. Now, the decomposition of each periodized function
h ∈ L2[0, 1] on (φλ)λ∈N is written as follows:

h(x) =
∑

λ∈N
θλφλ(x), x ∈ [0, 1],

where θλ =
∫ 1
0 h(x)φλ(x)dx. We denote ||.||γ and ||.||γ,p,q the norms associated

with W γ and Bγ
p,q respectively.

We use such expansions to build non-parametric priors on F in the fol-
lowing way: For any k ∈ N∗, we set

Fk =

{
fθ = exp

(
k∑

λ=1

θλφλ − c(θ)

)
s.t. θ ∈ Rk

}
,

where

c(θ) = log

(∫ 1

0
exp

(
k∑

λ=1

θλφλ(x)

)
dx

)
.(1.3)

So, we define a prior π on the set F∞ = ∪kFk ⊂ F by defining a prior p
on N∗ and then, once k is chosen, we fix a prior πk on Fk. Such priors are
often considered in the Bayesian non-parametric literature. See for instance
[22]. The special case of log-spline priors has been studied by [8] and [13],
whereas the prior considered by [26] is based on Legendre polynomials. The
wavelet basis is treated in [13] in the special case of the Haar basis.

We now define the class of priors π considered for these models, which we
call the class of sieve priors.
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BVM FOR LINEAR FUNCTIONALS OF THE DENSITY 7

Definition 1.1. Given β > 1/2, the prior p on k satisfies one of the
following conditions:

[Case (PH)] There exist two positive constants c1 and c2 and r ∈ {0, 1}
such that for any k ∈ N∗,

(1.4) exp (−c1kL(k)) ≤ p(k) ≤ exp (−c2kL(k)) ,

where L(x) = (log x)r.

[Case (D)] Let k∗n = *k0n1/(2β+1)+, i.e. the largest integer smaller than
k0n1/(2β+1), where k0 is some fixed positive real number, then k is determin-
istic and we set k := k∗n (p is then the Dirac mass at the point k∗n).

Conditionally on k the prior πk on Fk is defined by

θλ√
τλ

iid∼ g, τλ = τ0λ
−2β 1 ≤ λ ≤ k,

where τ0 is a positive constant and g is a continuous density on R such that
for any x,

A∗ exp (−c̃∗|x|p∗) ≤ g(x) ≤ B∗ exp (−c∗|x|p∗) ,

where p∗, A∗, B∗, c̃∗ and c∗ are positive constants.

Observe that the prior is not necessarily Gaussian since we allow for
densities g with different tails. In the Dirac case (D), the prior on k is non
random. For the case (PH), L(x) = log(x) typically corresponds to a Poisson
prior on k and the case L(x) = 1 typically corresponds to geometric priors.

1.3. Organization of the paper. We first give very general conditions un-
der which we obtain a Bernstein-von Mises Theorem (see Theorem 2.1 in
Section 2.1). Section 2.2 gives a first illustration of Theorem 2.1, based on
random histograms. In Section 2.3, we focus on infinite dimensional expo-
nential families. Theorem 2.3 gives the asymptotic posterior distribution of
Ψ(f) which can be either Gaussian or a mixture of Gaussian distributions.
Corollary 2.2 illustrates positive results with respect to our purpose, but
Proposition 2.1 shows that some bad phenomenons may happen. Finally,
our message is summarized in Section 2.4. Proofs of the results are given in
Section 3. Other technical aspects are given in Appendix.

2. Bernstein-von Mises theorems.
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8 V. RIVOIRARD AND J. ROUSSEAU.

2.1. The general case. In the sequel, we consider a functional Ψ as de-
fined in (1.1) associated with the function ψ ∈ L∞[0, 1] and we set

(2.1) ψ̃(x) = ψ(x)− F0(ψ).

Note that this notation is coherent with the definition of the influence func-
tion associated with the tangent set {s ∈ L2(F0) s.t. F0(s) = 0}, defined
for instance in Chapter 25 of [24] or used by [23].

For each density function f ∈ F , we define h such that for any x,

h(x) =
√
n log

(
f(x)

f0(x)

)
or equivalently f(x) = f0(x) exp

(
h(x)√

n

)
.

For the sake of clarity, we sometime write fh instead of f and hf instead of
h to emphasize the relationship between f and h. Note that in this context
h is not the score function, as defined in Chapter 25 of [24] since F0(h) -= 0.
Then we consider the following assumptions.

(A1) The posterior distribution concentrates around f0. More precisely,
there exists un = o(1) such that if A1

un
=

{
f ∈ F s.t. V (f0, f) ≤ u2n

}

the posterior distribution of A1
un

satisfies

Pπ
{
A1

un
|Xn

}
= 1 + oP0(1).

(A2) There exists ũn = o(1) such that if An is the subset of functions
f ∈ A1

un
such that

(2.2)

∫ ∣∣∣∣log
(

f(x)

f0(x)

)∣∣∣∣ f(x)dx ≤ ũn

then
Pπ {An|Xn} = 1 + oP0(1).

(A3) Let

Rn(hf ) =
√
nF0(hf ) +

F0(h2f )

2
and for any x,

ψ̄hf ,n(x) = ψ̃(x) +

√
n

t
log

(
F0

[
exp

(
hf√
n
− tψ̃√

n

)])
.

We have for any t,

∫
An

exp

(
−

F0((hf−tψ̄hf ,n)2)

2 +Gn(hf − tψ̄hf ,n) +Rn(hf − tψ̄hf ,n)

)
dπ(f)

∫
An

exp

(
−F0(h2

f )

2 +Gn(hf ) +Rn(hf )

)
dπ(f)

= 1 + oP0(1).(2.3)
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BVM FOR LINEAR FUNCTIONALS OF THE DENSITY 9

Now, we can state the main result of this section.

Theorem 2.1. Let f0 be a density on F such that || log(f0)||∞ < ∞.
Assume that (A1), (A2) and (A3) are true. Then, we have for any z ∈ R,
as n goes to infinity,

Pπ
{√

n(Ψ(f)−Ψ(Pn)) ≤ z|Xn
}
− ΦF0(ψ̃2)(z) → 0,(2.4)

in P0-probability.

The proof of Theorem 2.1 is given in Section 3.1. It is based on the asymp-
totic behavior of the Laplace transform of

√
n(Ψ(f)−Ψ(Pn))1lAn calculated

at the point t which is proved to be equivalent to exp(t2F0(ψ̃2)/2) times the
left hand side of (2.3) under (A1) and (A2), so that (A3) implies (2.4).

Now, we discuss assumptions. Condition (A1) concerns concentration
rates of the posterior distribution and there exists now a large literature
on such results, see for instance [23] or [8] for general results. The difficulty
here comes from the use of V instead of the Hellinger or the L1 distances.
However note that un does not need to be optimal. In our examples, ob-
taining a posterior concentration rate in terms of V leads us to modify the
prior in the case of random histograms and thus to suboptimal posterior
concentration rates but has no impact in the case of exponential families. It
is also interesting to note that the loss function V is similar to the ||.||L-norm
considered in [3] (i.e. the norm induced by the LAN expansion associated
to linear paths on log f) and to the Fisher norm considered in [21]. Indeed,
the proof of Theorem 2.1 gives:

(2.5) #n(f)− #n(f0) = −nV (f0, f)

2
+Gn(hf ) +Rn(hf )

with Rn(hf ) = oP0(1) pointwise (i.e. for a fixed function hf ). Condition
(A1) is thus to be related to Condition C in [3] and to Condition (9) in [21].
However, the formulation of Condition (9) in [21] is not quite as general as
Condition C in [3] or as our conditions since [21] also requires (stated in our
framework):

sup
f :V (f0,f)>ε2n

{#n(f)− #n(f0)} ≤ −cnε2n.

Indeed, a concern of [21] is to obtain a Bernstein-von Mises theorem with
a centering point which is the maximum likelihood (or a sieve maximum
likelihood estimator), for which such a condition is quite natural. It is known
now, see for instance [9], that weaker conditions can be obtained to derive
the posterior concentration rate.
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10 V. RIVOIRARD AND J. ROUSSEAU.

Condition (A2) could be viewed as a symmetrization of (A1) since if on
A1

un
, we also have V (f, f0) ≤ u2n then (A2) is true. Actually, (A2) is a weaker

condition since it is only based on the first moment of log(f/f0) with respect
to the density f .

The main difficulty comes from condition (A3). Roughly speaking, (A3)
means that a change of parameter induced by a transformation T of the form
T (fh) = fh−tψ̄h,n

, or close enough to it, can be considered and such that
the prior is hardly modified by this transformation. In parametric setups,
continuity of the prior near the true value is enough to ensure that the prior
would hardly be modified by such a transformation. A similar condition can
be found in [21] (see Condition (14)). We emphasize two major differences
between Shen’s condition ([21]) and ours: first Shen’s condition is based on
the sieve MLE of log f , which we do not consider since we re-center on the
empirical Ψ(Pn). Secondly and more importantly, Condition (14) in [21] is
expressed in terms of the conditional prior distribution of f given θ = Ψ(f)
which is very difficult to control in most non-parametric models, whereas in
our case the expectation is taken with respect to the prior on f .

However, (A3) still remains a demanding condition (the most demanding
one) to verify in general models, and it is often the condition which is not
verified when the Bernstein-von Mises theorem is not satisfied, as illustrated
in our examples below. Interestingly, this condition can also be found in [3],
but in a less explicit way. Indeed, in [3], the parameter is split into (θ, g) say,
where g is a function (so it is infinite dimensional) and θ is the parameter
of interest and is finite dimensional. Two cases are then considered, namely
the case without loss of information and the case with loss. In the former,
the computations simplify greatly and the change of parameter is only made
on the parametric part θ, which usually is easy to verify. In the latter, the
non-parametric part is more influential and this case is handled merely in
the setup of Gaussian priors for which an interesting discussion on how this
change of parameter is influenced by the respective smoothness of the prior
(see page 14 of [3]) and of the true parameter is lead. In our context, the
smoothness of the functional Ψ, of the true density f0 and of the prior are
certainly influential, as will be illustrated in the examples below. However,
for non-Gaussian priors, the notion of smoothness of the prior is not so
clearly defined. In particular priors leading to adaptive posterior concen-
tration rates cannot be said to have a smoothness of their own. We rather
view this condition as a no bias condition, which also applies to the Gaus-
sian case. Indeed, choosing a less regular Gaussian prior allows for correct
approximation of rougher curves and thus avoids biases in the estimation
of rough functionals. To make this statement more precise we consider now
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BVM FOR LINEAR FUNCTIONALS OF THE DENSITY 11

the framework of sieve models.
Consider (Fk)k, a sequence of subsets, such that ∪kFk ⊂ F and Fk =

{fθ s.t. θ ∈ Θk} with Θk ⊂ Rrk and (rk)k is an increasing sequence going
to infinity. A prior on F is then defined as a probability on k, say p(.) and
given k a probability on θ, say πk. This setup is quite general and it includes
in particular the two types of examples considered in the paper, namely
the random histograms (see Section 2.2) and the exponential families (see
Section 2.3). For notational ease, we write hθ instead of hfθ and ψ̄h,n instead
of ψ̄hfθ

,n. Assumption (A3) then corresponds to a change of parameter from

hθ to hθ − tψ̄h,n. So, a first difficulty comes from expressing this change
in terms of θ. This change of parameter has just to be done locally and
more precisely has to be defined on a set Ãn closely related to the set An

introduced in (A2). In other words, we construct Ãn and for each k, a map
Tk : Ãn ∩Θk → Θk and we define ψk,θ such that

hTkθ = hθ − tψk,θ

(equivalently fTkθ = fθe−tψk,θ/
√
n). The aim of this construction is to build

Tk such that ψk,θ ≈ ψ̄h,n. Mathematically, this approximation is expressed
via log-likelihoods and we set

ρn(θ) := #n(fTkθ)− #n(fθe
−tψ̄h,n/

√
n).

By using (2.5) or (3.6), note that

ρn(θ) = −
F0(h2Tkθ

)

2
+Gn(hTkθ) +Rn(hTkθ)

−
(
−
F0((hθ − tψ̄h,n)2)

2
+Gn(hθ − tψ̄h,n) +Rn(hθ − tψ̄h,n)

)
.

Then, Relation (2.3) of assumption (A3) can be reduced to the following
one: for all k such that Θk ∩ Ãn -= ∅

∫
Ãn∩Θk

exp

(
−

F0(h2
Tkθ)

2 +Gn(hTkθ) +Rn(hTkθ)

)
e−ρn(θ)πk(θ)dθ

∫
Ãn∩Θk

exp
(
−F0(h2

θ)
2 +Gn(hθ) +Rn(hθ)

)
πk(θ)dθ

= 1 + oP0(1).(2.6)

Proposition A.1 in Appendix gives the rigorous construction of Ãn and of
the map Tk. Proposition A.1 also states that under mild conditions

ρn(θ) = −tF0[∆k,θhθ] + tGn(∆k,θ)

− t2

2
F0((ψ̄h,n − ψk,θ)

2) + t2F0
[
(ψ̄h,n − ψk,θ)ψ̄h,n

]
+ oP0(1),
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12 V. RIVOIRARD AND J. ROUSSEAU.

uniformly in θ ∈ Ãn ∩Θk, where ∆k,θ is the difference ψ̄h,n − ψk,θ up to an
additive constant, i.e. there exists a constant bk,θ ∈ R such that

∆k,θ(x) = ψ̄h,n(x)− ψk,θ(x) + bk,θ, x ∈ [0; 1].

Note that the function ψk,θ is related to the approximation γn of the least
favorable direction considered in [3].

As will be illustrated in subsequent examples, under many priors, we can
obtain πk(Tkθ) = πk(θ)(1 + o(1)) uniformly over Ãn ∩ Θk and integration
over Ãn∩Θk is hardly modified by Tk. Therefore, the key condition to verify
(A3) is ρn(θ) = oP0(1) uniformly in θ ∈ Ãn, which is implied by

F0(hθ∆k,θ) = o(1) & F0((ψ̄h,n − ψk,θ)
2) = o(1)(2.7)

uniformly over Ãn (see Proposition A.1). Condition (2.7) expresses that the
difference ψ̄h,n − ψk,θ has to be small enough, illustrating in this context
what we mean by a no bias condition.

Before studying in details infinite dimensional exponential families, we
illustrate this general result in the setup of priors based on random his-
tograms with random partitions. Such priors have often been considered in
the Bayesian non-parametric literature, see for instance [11], since they are
both simple to implement and flexible.

2.2. Bernstein-von Mises for random histograms with random partitions.
Let fη,z be the density on [0, 1] defined for any x, by

fη,z(x) =
k∑

j=1

ηj
∆zj

1lIj (x), ηj ≥ 0,
k∑

j=1

ηj = 1, k ∈ N∗,

where ∆zj = zj − zj−1, Ij = (zj−1, zj ], 0 = z0 < z1 < ... < zk = 1. To define
πz|k the conditional density of z given k, we consider the parametrization
(∆z1, . . . ,∆zk), which lies in the k-dimensional simplex:

Sk =

{
(x1, ...., xk) ∈ [0, 1]k s.t.

k∑

i=1

xi = 1

}
.

Given c1 > 0 and α > 0, we consider the prior on Sk whose density with
respect to the Lebesgue measure is

πz|k(∆z1, ...,∆zk) =
e−c1

∑k
i=1 ∆z−α

i

bk(c1)
1lSk(∆z1, ...,∆zk)
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BVM FOR LINEAR FUNCTIONALS OF THE DENSITY 13

with for c > 0,

bk(c) =

∫

Sk

e−c
∑k

i=1 x
−α
i dx1 . . . dxk.

Conditionally on k and z, η has a density with respect to the Lebesgue
measure on Sk satisfying

πη|k(η1, ..., ηk) =
e−c2

∑k
i=1 η

−α
i

bk(c2)
1lSk(η1, ..., ηk)

where c2 > 0. We finally consider a prior on k which satisfies the following
property: there exist C0, C ′

0, c0, c
′
0 > 0 such that when k is large,

C0e
−c0kα+1 ≤ p(k) ≤ C ′

0e
−c′0k

α+1
.

We have the following result.

Theorem 2.2. We consider ψ(x) = x. Under the above prior, if f0
is γ-Hölderian with (α + 1)/2 < γ ≤ 1, strictly positive on [0, 1] and al-
most surely differentiable on (0, 1) with derivative f ′

0(x) > c0 for almost
all x ∈ (0, 1) then assumptions (A1), (A2) and (A3) are satisfied and
the conclusion of Theorem 2.1 holds. Moreover, under the above prior, the
rate of concentration of the posterior distribution around f0 is of order
O((n/ log n)−2γ/(2γ+α+1) log n).

The proof is given in Appendix C. The prior is assumed to follow quite
stringent tail conditions, inducing a loss in the concentration rate. This is
due to the need of controlling the posterior concentration rate in terms of
the divergence V . We do not claim that this concentration rate is sharp, and
it is quite possible that it can be improved. However this would not shed
more lights on the Bernstein-von Mises property per se.

As explained before, a key condition for the Bernstein-von Mises theorem
to be satisfied is that for any z and any η such that

V (f0, fη,z) = O((n/ log n)−2γ/(2γ+α+1) log n)

we have:
(2.8)

√
n




k∑

j=1

∫

Ij

f0(x) (log(f0(x))− log(ηj/∆zj)) (ψ̃(x)− ψ̃j)dx



 = o(1),

with ψ̃j = (
∫
Ij
ψ̃(x)f0(x)dx)/∆zj , which is a transcription of the first part of

relation (2.7). This is satisfied under the condition f ′
0(x) > c0. The proof of
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14 V. RIVOIRARD AND J. ROUSSEAU.

Theorem 2.2 shows that the result remains valid if ψ is any Lipschitz func-
tion. Equation (2.8) shows that we have to approximate conveniently both
f0 and ψ̃ by piecewise constant functions. Since the asymptotic posterior
distribution is driven by the smoothness of f0, it is sometimes necessary to
force the prior to remove the bias due to the shift by ψ̃ in the approximation
of fe−tψ̄h,n/

√
n in the prior model to validate (2.7). This is illustrated in the

following section.

2.3. Bernstein-von Mises for exponential families. In this section, we
consider the non-parametric models (priors) defined in Section 1.2. Assume
that f0 is 1-periodic and log(f0) ∈ L2[0, 1]. Let Φ = (φλ)λ∈N be one of the
bases introduced in Section 1.2, then there exists a sequence θ0 = (θ0λ)λ∈N∗

such that

f0(x) = exp

(
∑

λ∈N∗

θ0λφλ(x)− c(θ0)

)
.

We denote Πf0,k the projection operator on the vector space generated by
(φλ)0≤λ≤k for the scalar product < ., . >f0 and

∆k = ψ −Πf0,kψ = ψ̃ −Πf0,kψ̃,

where ψ̃ is defined in (2.1). We expand the functions ψ̃ and Πf0,kψ̃ on Φ:

ψ̃(x) =
∑

λ∈N
ψ̃λφλ(x), Πf0,kψ̃(x) =

k∑

λ=0

ψ̃Π,λφλ(x), x ∈ [0, 1]

so that (ψ̃λ)λ∈N and (ψ̃Π,λ)λ≤k denote the sequences of coefficients of the
expansions of the functions ψ̃ and Πf0,kψ̃ respectively. We finally note:

ψ̃[k]
Π = (ψ̃Π,1, ..., ψ̃Π,k).

Let (εn)n be the sequence decreasing to zero defined in Theorem B.1 (see
Appendix B). The sequence L(n) is based on the function L defined in the
case (PH) of Definition 1.1 and, in the sequel, we set L(n) = 1 in the case
(D) by convention. Using Definition 1.1, for all a > 0, there exists a constant

l0 > 0 large enough so that Pp

(
k > l0nε2n

L(n)

)
≤ e−anε2n . Following for instance

[9] p. 221, it implies that there exists c > 0 and l0 large enough such that

P0

[
Pπ

(
k >

l0nε2n
L(n)

∣∣∣∣X
n

)
≤ e−cnε2n

]
= 1 + o(1).

Define ln = l0nε2n/L(n) in the case (PH). In the case (D) we set ln = k∗n,
where k∗n is defined in Definition 1.1 . We have the following result.
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Theorem 2.3. We consider the prior defined in Definition 1.1. We as-
sume that || log(f0)||∞ < ∞ and log(f0) ∈ Bγ

p,q with p ≥ 2, 1 ≤ q ≤ ∞ and
γ > 1/2 is such that

β < 1/2 + γ if p∗ ≤ 2 and β < γ + 1/p∗ if p∗ > 2,

where p∗ is defined in Definition 1.1. For any k ∈ N∗, set

Bk =

{
θ ∈ Rk s.t.

k∑

λ=1

(θλ − θ0λ)
2 ≤ 4 (logn)3

L2(n)
ε2n

}
,

and assume that for any t ∈ R,

lim
n→+∞

max
k≤ln

sup
θ∈Bk

πk(θ)

πk

(
θ − tψ̃

[k]
Π√
n

) = 1(2.9)

and

sup
k≤ln

{
||
∑

λ>k

ψ̃λφλ||∞ +
√
k||

∑

λ>k

ψ̃λφλ||2

}
= o

(
(log n)−3

√
nε2n

)
(2.10)

(replace k ≤ ln with k = ln in the case (D)). Then, for all z ∈ R,

(2.11) Pπ
[√

n(Ψ(f)−Ψ(Pn)) ≤ z|Xn
]
=

∑

k

p(k|Xn)ΦV0k (z + µn,k) + oP0(1),

where

- V0k = F0(ψ̃2)− F0(∆2
k),

- µn,k =
√
nF0

(
∆k

∑
λ≥k+1 θ0λφλ

)
+Gn(∆k).

In the case (D), if

(2.12)
∑

λ>k∗n

ψ̃2
λ = o

(
n

2γ
2β+1−1

)

then, for any z ∈ R,

Pπ
[√

n(Ψ(f)−Ψ(Pn)) ≤ z|Xn
]

= ΦV0 (z) + oP0(1),(2.13)

where V0 = F0(ψ̃2).
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16 V. RIVOIRARD AND J. ROUSSEAU.

The proof of Theorem 2.3 is given in Section 3.2. This result is a conse-
quence of Theorem 2.1. Conditions (A1) and (A2) are verified using Theorem
B.1. Conditions (2.9) and (2.10) are needed to study the asymptotic behav-
ior of the ratio defined in equation (2.3) which must go to 1 for condition
(A3) to be satisfied. As explained in Section 2.1, to control the ratio defined
in (2.3) we need to express the change of parameter h to h−tψ̄h,n in terms of

a change of parameter from θ ∈ Bk to θ− tψ̃[k]
Π /

√
n. Condition (2.9) ensures

that the prior is not dramatically modified by this change of parameter. The
following three examples of priors illustrate this condition. For the sake of
simplicity, we only consider the case p = q = 2.

Corollary 2.1. Assume that log(f0) ∈ W γ. We still assume that β >
1/2 and γ > 1/2. Condition (2.9) is satisfied in the following cases:

- g is the standard Gaussian density and γ > β − 1/4 for the case
(PH), γ > β − 1/2 for the case (D).

- g is the Laplace density g(x) ∝ e−|x| and γ > β − 1/2 for the case
(PH) (no further condition for the case (D)).

- g is a Student density g(x) ∝ (1 + x2/d)−(d+1)/2 under the same
conditions as for the Gaussian density.

Corollary 2.1 holds for any bounded function ψ. For the special case
ψ(x) = 1lx≤x0 , conditions on γ and β can be relaxed. In particular, in the
case (PH), if g is the Laplace density, (2.9) is satisfied as soon as γ > β−1/2.
By choosing 1/2 < β ≤ 1, this is satisfied for any γ > 1/2 as imposed by
Theorem 2.3. Note that in the case (PH), Theorem B.1 implies that the
posterior distribution concentrates with the adaptive minimax rate up to a
logarithmic term, so that choosing β close to 1/2 is not restrictive.

Condition (2.10) is needed to obtain ||∆k||∞ = o(
√
nu2n)

−1) for all k ≤ ln
as required by Proposition A.1, which is the first step used to establish
Theorem 2.3. Indeed, (3.13) gives

√
nu2n =

√
nε2n(log n)

3 which goes to 0
with n, so that Condition (2.10) is quite mild. It requires some minimal
smoothness on ψ through the decay to zero of its coefficients. Note that we
require εn = o(n−1/4), which is a consequence of the conditions imposed
on β, γ and p∗, but which is necessary in various parts of the proof. The
threshold n−1/4 is often encountered in semi-parametric analysis as the no
bias condition (see for instance [25], Section 25.8) and is also required in [3]
in the Cox model example (i.e. with information loss).

Conditions (2.9) and (2.10) are rather mild, so that quite generally, the
posterior distribution of

√
n(Ψ(f) − Ψ(Pn)) is asymptotically a mixture of

Gaussian distributions with variances V0k − F0(∆2
k) and mean values −µn,k
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with weights p(k|Xn). To obtain an asymptotic Gaussian distribution with
mean zero and variance V0 it is necessary for µn,k and F0(∆2

k) to be small
whenever p(k|Xn) is not. The situation where F0(∆2

k) -= o(1) under the pos-
terior distribution corresponds to the case where there exists k0 such that
f0 ∈ Fk0 . In that case, it can be proved that Pπ[k0|Xn] = 1 + oP0(1), see
[4], and the posterior distribution of Ψ(f) is asymptotically Gaussian with
mean Ψ(fθ̂k0

), where θ̂k0 is the maximum likelihood estimator in Fk0 , and

the variance is the asymptotic variance of Ψ(fθ̂k0
). The posterior distribution

therefore satisfies a Bernstein-von Mises theorem, but it is a parametric re-
sult and not a non-parametric Bernstein-von Mises Theorem. However, even
if F0(∆2

k) = o(1), in the setup of exponential families, it may happen that
√
nF0

(
∆k

∑
λ≥k+1 θ0λφλ

)
-= o(1) so µn,k -= oP0(1) and the posterior distri-

bution would not satisfy the non-parametric Bernstein-von Mises property.
The term µn,k is a bias term in the posterior distribution. It is related to the
term γn−γ in [3] in the case of information loss, since Πf0,kψ̃ plays the same
role as γn. In the case of Gaussian priors the control of γn − γ is induced
by a smoothness assumption on the prior. Here the notion of smoothness is
not so clearly defined and the control of µn,k strongly depends on a lower
bound on the set of k’s such that

∑
λ≥k+1 θ

2
0λ ≤ ε2n, which can be interpreted

as a no bias condition. Indeed |µn,k| ≤ C
√
n
(∑

λ>k ψ̃
2
λ

)1/2 (∑
λ>k θ

2
0λ

)1/2
.

Therefore for the Bernstein-von Mises property to be satisfied over a class
of functions f0, the posterior on k needs to be almost 0 for k’s such that(∑

λ>k ψ̃
2
λ

)1/2
is larger than [

√
n
(∑

λ>k θ
2
0λ

)1/2
]−1. In general we cannot

assess a lower bound on k for which
∑

λ>k θ
2
0λ ≤ ε2n unless we assume some

extra conditions on the behavior of the θ0λ’s. Thus in the case (PH), the
Bernstein-von Mises theorem will often not be satisfied, even for regular
functional ψ̃ unless strong assumptions are put on the behavior of the coef-
ficients (θ0λ)λ. This remark is illustrated in Proposition 2.1, where we prove
the non validity of the Bernstein-von Mises theorem for a given family of
functions f0 (with various smoothness parameters).

The Bernstein-von Mises theorem is however satisfied in the case of a
prior of type (D), under condition (2.12). The latter is verified if either
γ > β + 1/2 or if γ > β and ψ is a smooth function like a continuously
differentiable function in the case of the Fourier basis or a piecewise constant
function (as in the case of the cumulative distribution function). Therefore
to obtain a BVM theorem, the true density f0 and the functional ψ̃ are
required to have a minimal smoothness (γ > 1/2 for f0 and condition (2.10)
on ψ̃). Conditions (2.12), k = k∗n and the constraints on β, force the prior
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18 V. RIVOIRARD AND J. ROUSSEAU.

to approximate correctly functions that are potentially less regular than f0.
We illustrate this issue in the special case of the cumulative distribution

function calculated at a given point x0: ψ(x) = 1lx≤x0 . We recall that the
variance of Gn(ψ) under P0 is equal to V0 = F0(x0)(1−F0(x0)). We consider
the case of the Fourier basis (the case of wavelet bases can be handled in
the same way). Straightforward computations lead to the following result.

Corollary 2.2. Let x0 ∈ [0; 1]. Assume that ψ is a piecewise constant
function. Consider the class of sieve priors defined in Definition 1.1 in the
case (D) with g is either the Gaussian or the Laplace density. Then if f0 ∈
W γ, with γ ≥ β > 1/2, the posterior distribution of

√
n(F (x0) − Fn(x0))

is asymptotically Gaussian with mean 0 and variance V0. If g is a Student
density and if γ ≥ β > 1, the same result holds.

We now illustrate the fact that for the case (PH), the Bernstein-von Mises
property may be not valid.

Proposition 2.1. Let us consider the Fourier basis and let

f0(x) = exp




∑

λ≥k0

θ0λφλ(x)− c(θ0)





where k0 is fixed and for any λ, θ0,2λ+1 = 0 and

θ0,2λ =
sin(2πλx0)

λγ+1/2
√
log λ log log λ

.

Consider the prior defined in Section 1.2 with g being the Gaussian or the
Laplace density but the prior p is now the Poisson distribution with param-
eter ν > 0. If k0 is large enough, f0 ∈ W γ and there exists x0 such that the
posterior distribution of

√
n(F (x0)−Fn(x0)) is not asymptotically Gaussian

with mean 0 and variance F0(x0)(1− F0(x0)).

Actually, we prove that the asymptotic posterior distribution of F (x0)−
Fn(x0) is a mixture of Gaussian distributions with means µn,k and variance
F0(x0)(1 − F0(x0))/n and the support of the posterior distribution of k is
included in {m ∈ N∗ s.t. m ≤ ckn} where c is a constant and kn is defined
in (3.23).

2.4. A conclusion. As a conclusion on the existence of Bernstein von
Mises theorem for linear functionals of the density, we see that apart from the
usual concentration results of the posterior distribution, the key condition is

imsart-aos ver. 2009/05/21 file: BVM-rev2011.tex date: September 29, 2011



BVM FOR LINEAR FUNCTIONALS OF THE DENSITY 19

to be able to define a change of parameter from f to fe−tψ̄h,n/
√
n which does

not significantly modify the prior. Such a construction differs, depending on
the family of priors considered. In this paper we have called this a no bias
condition since it means that not only f0 needs to be well approximated
with such a prior but also fe−tψ̄h,n/

√
n, for all f in a neighborhood of f0.

Remember that ψ̄h,n is equal to the functional ψ up to a constant, so the
influence of ψ is of course non-negligible. This no bias condition can be
problematic since the posterior (being driven by the likelihood) is targeted to
approximate correctly f0 and in the case of adaptive posterior distributions
such as (PH), it is thus adapted to the smoothness of f0, which might not be
the same as the smoothness of fe−tψ̄h,n/

√
n. In the case of Gaussian priors,

as considered in [3], this implies that the prior is not too smooth so that
fe−tψ̄h,n/

√
n can be correctly approximated by sequences in the associated

RKHS. In the family of sieve priors it means that the posterior distribution
concentrates on k’s that are large enough.

3. Proofs. This section contains the proofs of all the results except
Theorem 2.2 for which we need to establish rates of posterior distributions.
So, its proof is deferred in Appendix which contains all the aspects about
concentration rates.

In the sequel, C denotes a generic positive constant whose value is of no
importance and may change from line to line. To simplify some expressions,
we omit at some places the integer part *·+.

3.1. Proof of Theorem 2.1. Let Zn =
√
n(Ψ(f)−Ψ(Pn)). We have

(3.1) Pπ {An|Xn} = 1 + oP0(1).

So, it is enough to prove that conditionally on An and Xn, the distribution
of Zn converges to the distribution of a Gaussian variable whose variance is
F0(ψ̃2). This will be established if for any t ∈ R,

(3.2) lim
n→+∞

Ln(t) = exp

(
t2

2
F0

[
ψ̃2

])
,

where Ln(t) is the Laplace transform of Zn conditionally on An and Xn:

Ln(t) = E π
[
exp(t

√
n(Ψ(f)−Ψ(Pn)))|An, X

n
]

(3.3)

=
E π [exp(t

√
n(Ψ(f)−Ψ(Pn)))1lAn(f)|Xn]

Pπ {An|Xn}

=

∫
An

exp (t
√
n(Ψ(f)−Ψ(Pn)) + #n(f)− #n(f0)) dπ(f)∫
An

exp (#n(f)− #n(f0)) dπ(f)
.
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We first deal with t
√
n(Ψ(f) − Ψ(Pn)). For this purpose, we introduce for

any x,

Bh,n(x) =

∫ 1

0
(1− u)euh(x)/

√
ndu.(3.4)

Note that, with h = hf =
√
n(log f − log f0),

Bh,n(x) ≤ 0.5× 1{f(x)≤f0(x)} + 1{f(x)>f0(x)}

∫ 1

0
eu(log f(x)−log f0(x))du

≤ 1{f(x)≤f0(x)} + 1{f(x)>f0(x)}(log f(x)− log f0(x))
−1 f(x)

f0(x)
.(3.5)

So, using (3.4), a Taylor expansion gives

exp

(
h(x)√

n

)
= 1 +

h(x)√
n

+
h2(x)

n
Bh,n(x),

which implies that

f(x)− f0(x) = f0(x)

(
h(x)√

n
+

h2(x)

n
Bh,n(x)

)

and

t
√
n(Ψ(f)−Ψ(Pn)) = −tGn(ψ̃) + t

√
n

(∫
ψ̃(x)(f(x)− f0(x))dx

)

= −tGn(ψ̃) + tF0(hψ̃) +
t√
n
F0(h

2Bh,nψ̃).

Since we have

(3.6) #n(f)− #n(f0) = −F0(h2)

2
+Gn(h) +Rn(h),

we can write Ln(t) as

Ln(t) =

∫
An

exp
(
Gn(h− tψ̃) + tF0(hψ̃) +

t√
n
F0(h2Bh,nψ̃)− F0(h2)

2 +Rn(h)
)
dπ(f)

∫
An

exp
(
−F0(h2)

2 +Gn(h) +Rn(h)
)
dπ(f)

=

∫
An

exp
(
−F0((h−tψ̄h,n)2)

2 +Gn(h− tψ̄h,n) +Rn(h− tψ̄h,n) + Uh,n

)
dπ(f)

∫
An

exp
(
−F0(h2)

2 +Gn(h) +Rn(h)
)
dπ(f)

,
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where straightforward computations show that

Uh,n = tF0(h(ψ̃ − ψ̄h,n)) +
t2

2
F0(ψ̄

2
h,n) +Rn(h)−Rn(h− tψ̄h,n) +

t√
n
F0(h

2Bh,nψ̃)

= tF0(hψ̃) + t
√
nF0(ψ̄h,n) +

t√
n
F0(h

2Bh,nψ̃)

= tF0(hψ̃) + n log

(
F0

[
exp

(
h√
n
− tψ̃√

n

)])
+

t√
n
F0

(
h2Bh,nψ̃

)
.

Now, let us study each term of the last expression. Using

(3.7) ||ψ̃||∞ ≤ 2||ψ||∞ < ∞,

the Taylor expansion of exp
(
−tψ̃/

√
n
)
and the formula

f(x) = f0(x) exp

(
h(x)√

n

)
,

we obtain:

F0

[
exp

(
h√
n
− tψ̃√

n

)]
= F0

[
e

h√
n

(
1− tψ̃√

n
+

t2

2n
ψ̃2

)]
+O(n− 3

2 )

= 1− t√
n
F0

[
e

h√
n ψ̃

]
+

t2

2n
F0

[
e

h√
n ψ̃2

]
+O(n− 3

2 ).

Also,

F0

[
e

h√
n ψ̃

]
=

F0[hψ̃]√
n

+
F0[h2Bh,nψ̃]

n
; F0

[
e

h√
n ψ̃2

]
= F0

[
ψ̃2

]
+
F0[hψ̃2]√

n
+
F0[h2Bh,nψ̃2]

n
.

Note that, on An, we have F0(h2) = O(nu2n) and, by using (3.5),

F0
(
h2Bh,n

)
≤ nF0

[(
log

(
f

f0

))2
]
+ nF

[∣∣∣∣log
(

f

f0

)∣∣∣∣

]

≤ nu2n + nũn
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so, F0
(
h2Bh,n

)
= o(n). So, uniformly on An, since ψ̃ is bounded (see (3.7))

F0

[
exp

(
h√
n
− tψ̃√

n

)]
= 1− t√

n

(
F0[hψ̃]√

n
+

F0[h2Bh,nψ̃]

n

)

+
t2

2n

(
F0

[
ψ̃2

]
+

F0[hψ̃2]√
n

+
F0[h2Bh,nψ̃2]

n

)
+ o

(
n−1

)

= 1− t

n

[
F0[hψ̃] +

F0[h2Bh,nψ̃]√
n

− tF0(ψ̃2)

2
+ o(1)

]

= 1 + o
(
n−1/2

)
(3.8)

and

n log

(
F0

[
exp

(
h√
n
− tψ̃√

n

)])
= −t

[
F0(hψ̃) +

F0[h2Bh,nψ̃]√
n

− tF0(ψ̃2)

2

]
+ o(1).

Finally,

Uh,n =
t2

2
F0

[
ψ̃2

]
+ o(1)

and up to the multiplicative factor 1 + o(1), Ln(t) is equal to

exp

(
t2

2
F0

[
ψ̃2

])
∫
An

exp
(
−F0((h−tψ̄h,n)2)

2 +Gn(h− tψ̄h,n) +Rn(h− tψ̄h,n)
)
dπ(f)

∫
An

exp
(
−F0(h2)

2 +Gn(h) +Rn(h)
)
dπ(f)

.

Finally (A3) implies (3.2) and the theorem is proved.

3.2. Proof of Theorem 2.3. We use the same approach as in Theorem
2.1. We first prove that conditions (A1) and (A2) are satisfied. Let εn be the
posterior concentration rate obtained in Theorem B.1. Recall that

- εn = ε0n
− γ

2γ+1 (log n)
γ

2γ+1 and ln = l0nε2n
L(n) in the case (PH),

- εn = ε0(log n)
1{γ≥β}n− β∧γ

2β+1 and ln = k∗n = k0n
1

2β+1 in the case (D).

Note that for any a ≥ 0, since γ > 1/2 and β > 1/2, we have:

(3.9) (logn)alnε
2
n = o(1).

Note also that in the sequel we can restrict ourselves to ∪k≤lnFk. Indeed, in
the case of the prior (PH)

Pπ [(∪k≤lnFk)
c] =

∑

λ>ln

p(λ)

≤ C exp (−c2lnL(ln)) = o(e−cnε2n),(3.10)
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for some positive constant c and in the case of the prior (D) Pπ [(∪k≤lnFk)c] =
0 by definition.

In the sequel, for any k ≤ ln and any θ ∈ Rk, we still denote θ the sequence
whose λ-th component is equal to θλ for λ ≤ k and whose λ-th component
is equal to 0 for λ > k. Then we can define

Ãn =

{
θ ∈ ∪k≤lnRk s.t. ||θ − θ0||+2 ≤ 2(log n)3/2εn

L(n)1/2

}
.

In the same spirit as for Proposition A.1, with a slight abuse of notation,
we also denote

Ãn = {fθ s.t. θ ∈ Ãn}.

Note that from Theorem B.1,

Pπ
{
Ãn|Xn

}
= 1 + oP0(1).

To prove (A1) and (A2) we control V (f0, fθ) and Fθ[| log(fθ/f0)|] for fθ ∈
Ãn. For any θ ∈ Ãn, we have:

V (f0, fθ) ≤ 2||f0||∞||θ − θ0||2+2 + 2(c(θ)− c(θ0))
2.

We show that the second term of the right hand side is smaller than the
first one up to a constant. For this purpose, note that for θ ∈ Ãn, by using
(D.1), (D.3) and (3.9),

(3.11) ||
+∞∑

λ=1

(θ0λ − θλ)φλ||∞ ≤ C
√

ln||θ − θ0||+2 + Cl
1
2−γ
n = o(1).

Therefore for θ ∈ Ãn,

c(θ)− c(θ0) = log

(∫ 1

0
f0(x)e

−
∑+∞

λ=1(θ0λ−θλ)φλ(x)dx

)

= log




1−
+∞∑

λ=1

(θ0λ − θλ)F0(φλ) +
1

2
F0




(

+∞∑

λ=1

(θ0λ − θλ)φλ

)2


 (1 + o(1))






= −
+∞∑

λ=1

(θ0λ − θλ)F0(φλ)(1 + o(1)) +O(||θ − θ0||2+2)

and for n large enough,

|c(θ)− c(θ0)| ≤ 2||f0||2||θ − θ0||+2 .(3.12)
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Using Theorem B.1, this implies that on Ãn,

V (f0, fθ) = O(ε2n(log n)
3/L(n)).(3.13)

Thus (A1) is verified with u2n = u20ε
2
n(log n)

3/L(n) and u0 large enough. To
establish (A2), we observe that we have:

|| log fθ − log f0||∞ ≤ ||
∑

λ∈N∗

(θ0λ − θλ)φλ||∞ + |c(θ)− c(θ0)|

≤ 2||
∑

λ∈N∗

(θ0λ − θλ)φλ||∞ = o(1)

by using (3.11). So, on Ãn,

V (fθ, f0) ≤ CV (f0, fθ)

and (A2) is implied by (A1). Conditions 1 and 2 of Proposition A.1 are also
true with wn = 1 for any n. Now, let us study the validity of (A3): For any
t, we study the term

In =

∫
Ãn

exp
(
−F0((hf−tψ̄h,n)2)

2 +Gn(hf − tψ̄h,n) +Rn(hf − tψ̄h,n)
)
dπ(f)

∫
Ãn

exp

(
−F0(h2

f )

2 +Gn(hf ) +Rn(hf )

)
dπ(f)

.

We introduce

Jk,n :=

∫
Ãn∩Fk

exp
(
−F0((hf−tψ̄h,n)2)

2 +Gn(hf − tψ̄h,n) +Rn(hf − tψ̄h,n)
)
dπk(f)

∫
Ãn∩Fk

exp

(
−F0(h2

f )

2 +Gn(hf ) +Rn(hf )

)
dπk(f)

,

so that

In =

∑
k Jk,nPπ[Ãn ∩ Fk|Xn]
∑

k Pπ[Ãn ∩ Fk|Xn]
.(3.14)

We now study Jk,n, using the approach described in Section 2.1 and Proposi-
tion A.1. At this stage, we have only to focus on Condition 3. of Proposition
A.1. To define ψk,θ and Tkθ for all θ ∈ Ãn ∩ Rk, first define

Dn,k,t =
tΠf0,kψ̃ − tψ̃Π,0√

n
=

t√
n

k∑

λ=1

ψ̃Π,λφλ.
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We have, using (D.1) and since k ≤ ln,

||Dn,k,t||∞ ≤ t
√
k√
n
||ψ̃[k]

Π ||+2 ≤ t
√
k√
n
||Πf0,kψ̃||2 ≤

t
√
k

√
c0
√
n
||Πf0,kψ̃||f0

≤ t
√
k

√
c0
√
n
||ψ̃||f0 ≤ t

√
ln√

c0
√
n
||ψ̃||∞ = O(εn),

where c0 is a lower bound for f0. Now, we can set

Tkθ = θ − t
ψ̃[k]
Π√
n

and

ψk,θ =

√
nDn,k,t

t
−

√
n

t

(
c(θ)− c

(
θ − t

ψ̃[k]
Π√
n

))
.

So, fTkθ = fθe−tψk,θ/
√
n and ψ̄h,n−ψk,θ = ∆k,θ−bk,θ with ∆k,θ = ψ̃−Πf0,kψ̃

and straightforward computations show that:

bk,θ = −ψ̃Π,0 −
√
n

t

(
c(θ)− c

(
θ − t

ψ̃[k]
Π√
n

))
−

√
n

t
log

(
F0

[
exp

(
hθ√
n
− tψ̃√

n

)])

=

√
n

t
log

[
F0(eHn+t∆k,θ/

√
n)

F0(eHn)

]
,

with Hn = (hθ − tψ̃)/
√
n.

We first bound ||∆k,θ||∞. To emphasize the fact that ∆k,θ does not depend
on θ, we write hereafter ∆k := ∆k,θ. Since ||ψ̃||∞ = O(1) and since on Ãn,

n−1/2||hθ||∞ ≤ ||
+∞∑

λ=1

(θ0λ − θλ)φλ(x)− c(θ0) + c(θ)||∞

≤ C
√
ln||θ0 − θ||+2 + C||θ0 − θ||+2 = o(1),

||Hn||∞ = o(1). To bound ||∆k||∞, we set ψ+k =
∑

λ>k ψ̃λφλ, so ∆k = ψ+k −
Πf0,k(ψ+k). Then by using (D.1),

||∆k||∞ ≤ ||ψ+k||∞ + ||Πf0,kψ+k||∞
≤ ||ψ+k||∞ + C

√
k||Πf0,kψ+k||f0

≤ ||ψ+k||∞ + C
√
k||ψ+k||f0

≤ ||ψ+k||∞ + C
√
k||ψ+k||2 = o

(
1√
nu2n

)
,
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where the last inequality comes from condition (2.10).
We now bound bk,θ. Since F0(∆2

k) = O(1) and ||∆k||∞ = o(
√
n),

F0(e
Hn+t∆k/

√
n) = F0

(
eHn

(
1 +

t∆k√
n

))
+O

(
F0(∆2

k)

n

)

= F0
(
eHn

)
+

t√
n
F0(e

Hn∆k) + o(1/
√
n).

Note also that from (3.8), F0(eHn) = 1 + o(1/
√
n). Furthermore, since

F0(|∆k|) < ∞, ||ψ̃||∞ < ∞ and since n−1/2||hθ||∞ = o(1),

F0(e
Hn∆k) = F0

(
∆ke

hθ/
√
n
)
− t√

n
F0

(
∆ke

hθ/
√
nψ̃

)
+O

(
1

n

)

= F0(∆k) + o(1) = o(1).

We thus obtain that

bk,θ =

√
n

t
log

[
F0(eHn+t∆k/

√
n)

F0(eHn)

]
= o(1).(3.15)

Note that F0((ψ̄h,n − ψk,θ)2) = F0((∆k − bk,θ)2) = F0(∆2
k) + o(1) = O(1)

uniformly over Ãn and condition 3 of Proposition A.1 is satisfied with wn = 1
for any n, which implies that

ρn(θ) = −tF0[∆khθ] + tGn(∆k)

− t2

2
F0((ψ̄h,n − ψk,θ)

2) + t2F0
[
(ψ̄h,n − ψk,θ)ψ̄h,n

]
+ o(1).

We can simplify this last expression. Indeed, since ∆k is orthogonal to any
φλ,λ ≤ k including φ0 = 1, we obtain, using the expression of hθ in expo-
nential families,

F0(hθ∆k) = −
√
nF0((

∑

λ>k

θ0λφλ)∆k),

which is independent of θ. Also,

F0((ψ̄h,n − ψk,θ)ψ̄h,n) = F0(∆
2
k) + F0(ψk,θ∆k) + o(1) = F0(∆

2
k) + o(1),

where the last equality comes from the orthogonality between ∆k and ψk,θ.
Therefore, uniformly in θ,

ρn(θ) = tµn,k +
t2

2
F0(∆

2
k) + o(1)
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and for all k such that Fk ∩ Ãn -= ∅, by using the definition of ρn(θ) in
Section 2.1, we obtain finally:

Jk,n = e
−t2F0(∆

2
k)

2 e−tµn,k

∫
Rk∩Ãn

e−
F0

(
h2Tkθ

)

2 +Gn(hTkθ)+Rn(hTkθ)dπk(θ)

∫
Rk∩Ãn

e−
F0(h

2
θ
)

2 +Gn(hθ)+Rn(hθ)dπk(θ)

(1 + o(1)).

We now prove that the prior πk is not affected by the change of parameter

θ → Tkθ. For k ≤ ln, ||ψ̃[k]
Π ||+2 ≤ C, where C does not depend on k and n.

So, if we set

Tk(Ãn) =

{
θ + t

ψ̃[k]
Π√
n

s.t. θ ∈ Rk ∩ Ãn

}
,

for all θ ∈ Tk(Ãn), using Theorem B.1 and (a+ b)2 ≤ 2a2 + 2b2,

||θ − θ0||2+2 ≤ 4ε2n log
3 n

L(n)
+

2t2C2

n
≤ 4ε2n log

3 n

L(n)
(1 + o(1))

since nε2n → +∞. Conversely, for all θ ∈ Rk ∩ Ãn such that ||θ − θ0||+2 ≤
1.5(log n)3/2L(n)−1/2εn

θ − t
ψ̃[k]
Π√
n

∈ Ãn ∩ Rk

for n large enough and we can write (still for n large enough)

Rk ∩ Ãn,1 ⊂ Tk(Ãn) ⊂ Rk ∩ Ãn,2(3.16)

with

Ãn,1 =
{
θ ∈ Ãn s.t. ||θ − θ0||+2 ≤ 1.5(log n)3/2L(n)−1/2εn

}
,

Ãn,2 =
{
θ s.t. ||θ − θ0||+2 ≤

√
5(log n)3/2L(n)−1/2εn

}
.

Therefore,

Jk,n ≤ e−t2
F0(∆

2
k)

2 e−tµn,k

∫
Rk∩Ãn,2

e−
F0(h

2
θ)

2 +Gn(hθ)+Rn(hθ)dπk(θ)

∫
Rk∩Ãn

e−
F0(h

2
θ
)

2 +Gn(hθ)+Rn(hθ)dπk(θ)

(1 + o(1)),

Jk,n ≥ e−t2
F0(∆

2
k)

2 e−tµn,k

∫
Rk∩Ãn,1

e−
F0(h

2
θ)

2 +Gn(hθ)+Rn(hθ)dπk(θ)

∫
Rk∩Ãn

e−
F0(h

2
θ
)

2 +Gn(hθ)+Rn(hθ)dπk(θ)

(1 + o(1)).
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Therefore, using (3.3) and the last equality of the proof of Theorem 2.1 and
combining the above inequalities with (3.14) we obtain

ζn(t) := E π[exp(t
√
n(Ψ(f)−Ψ(P n)))1lÃn

(f)|Xn]

= Ln(t)× Pπ
{
Ãn|Xn

}
= Ln(t)(1 + o(1))

= e
t2F0(ψ̃

2)
2 In(1 + o(1)).

Therefore,

ζn(t) ≤ e
t2F0(ψ̃

2)
2

∑ln
k=1 e

−t2
F0(∆

2
k)

2 e−tµn,kPπ
[
Ãn,2 ∩ Rk|Xn

]

∑ln
k=1 Pπ

[
Ãn,1 ∩ Rk|Xn

] (1 + o(1))

≤ e
t2F0(ψ̃

2)
2

ln∑

k=1

e−t2
F0(∆

2
k)

2 e−tµn,kPπ[k|Xn](1 + o(1)).(3.17)

We now have to provide a lower bound of ζn(t). Using the exponential rate
pointed out in Theorem B.1, We first observe that with P0-probability tend-

ing to 1, Pπ
[
Ãn,i|Xn

]
≥ 1 − e−ncε2n , for some positive c > 0 and i = 1, 2.

We also have that for 0 < a < 1/(2max(β; γ) + 1),

P0

[
max
k≤ln

|Gn(∆k)| > n−anε2n

]
≤

ln∑

k=1

F0[∆2
k]

n−2a(nε2n)
2

≤ F0[ψ̃2]ln
n−2a(nε2n)

2
= o(1).

Define the event

Ωn =

{
max
k≤ln

|Gn(∆k)| ≤ n−anε2n, Pπ
[
Ãn,i|Xn

]
≥ 1− e−ncε2n , i = 1, 2

}
,

so that P0[Ωc
n] = o(1) and on Ωn we have

ζn(t) ≥ e
t2F0(ψ̃

2)
2

∑ln
k=1 e

−t2
F0(∆

2
k)

2 e−tµn,kPπ
[
Ãn,1 ∩ Rk|Xn

]

∑ln
k=1 Pπ

[
Ãn,2 ∩ Rk|Xn

] (1 + o(1))

≥ e
t2F0(ψ̃

2)
2

ln∑

k=1

e−t2
F0(∆

2
k)

2 e−tµn,k

[
Pπ[k|Xn]− Pπ

[
(Ãn,1)

c ∩ Rk|Xn
]]

.
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Now, we introduce

I0 =
{
k ≤ ln s.t. Pπ[k|Xn] ≥ r−1

n Pπ
[
(Ãn,1)

c ∩ Rk|Xn
]}

I1 =
{
k ≤ ln s.t. Pπ[k|Xn] < r−1

n Pπ
[
(Ãn,1)

c ∩ Rk|Xn
]}

,

with rn = e−
ncε2n

2 . We have

ζn(t) ≥ (1− rn)e
t2

F0(ψ̃
2)

2

∑

k∈I0

e−tµn,ke−t2
F0(∆

2
k)

2 Pπ[k|Xn]

and

(3.18)
∑

k∈I1

Pπ[k|Xn] ≤ r−1
n Pπ

[
(Ãn,1)

c|Xn
]
≤ e−

ncε2n
2 .

Moreover, on Ωn,

|µn,k| ≤ C



√n

(
+∞∑

λ=k+1

ψ̃2
λ

)1/2( +∞∑

λ=k+1

θ20λ

)1/2

+ n−anε2n





≤ 2n−anε2n,

for n large enough. This yields

∑

k∈I1

e−tµn,ke−t2
F0(∆

2
k)

2 Pπ[k|Xn] ≤ Ce2tn
−anε2n−

ncε2n
2 .

Using (3.10) and (3.18), for n large enough,

∑

k∈I0

e−tµn,ke−t2
F0(∆

2
k)

2 Pπ[k|Xn] ≥ e−3tn−anε2n

≥ e
ncε2n

4

∑

k∈I1

e−tµn,ke−t2
F0(∆

2
k)

2 Pπ[k|Xn].

This yields

(3.19) ζn(t) ≥ et
2 F0(ψ̃

2)
2

ln∑

k=1

e−tµn,ke−t2
F0(∆

2
k)

2 Pπ[k|Xn](1 + o(1)).

Inequalities (3.17) and (3.19) prove that the posterior distribution of
√
n(Ψ(f)−

Ψ(Pn)) is asymptotically equal to a mixture of Gaussian distributions with
variance V0k = F0(ψ̃2)−F0(∆2

k), means−µn,k and weights Pπ(k|Xn). Straight-
forward computations prove the last part of the theorem.
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3.3. Proof of Corollary 2.1. Condition (2.9) is satisfied if

(3.20) max
1≤k≤ln

sup
θ∈Bk

k∑

λ=1

∣∣∣∣∣log g
(

θλ√
τλ

)
− log g

(
θλ√
τλ

− t√
n

ψ̃Π,λ√
τλ

)∣∣∣∣∣ = o(1).

So, if we introduce the conditions

(3.21)
ln∑

λ=1

ψ̃2
Π,λλ

2β = o(n)

and

(3.22) max
1≤k≤ln

k∑

λ=1

θλψ̃Π,λλ
2β = o(

√
n),

then:

- if g is the Laplace density, (3.20) is satisfied if (3.21) is satisfied,
- if g is the Gaussian or the Student density, (3.20) is satisfied if (3.21)
and (3.22) are satisfied.

Now, since
∑ln

λ=1 ψ̃
2
Π,λ ≤ C (see the arguments in the proof of Theorem 2.3),

ln∑

λ=1

ψ̃2
Π,λλ

2β ≤ Cl2βn = o(n)

under the assumptions of Corollary 2.1. Furthermore, for 1 ≤ k ≤ ln,

k∑

λ=1

θλψ̃Π,λλ
2β ≤ l2βn

k∑

λ=1

|θλ − θ0λ||ψ̃Π,λ|+
ln∑

λ=1

λ2β−γλγ |θ0λ||ψ̃Π,λ|

≤ C

(
l2βn εn

(log n)3/2

L(n)
+ l2β−γ

n + 1

)
.

The expressions of ln and εn in the cases (PH) and (D) and straightforward
computations allow to finish the proof.

3.4. Proof of Proposition 2.1. We first prove that f0 ∈ W γ for any k0.
Indeed, for any J1 > 3,

∑

λ≥J1

θ20λλ
2γ ≤

∑

λ≥J1

1

λ log λ(log log λ)2

≤
∫ ∞

J1

1

x log x(log log x)2
dx =

1

log log J1
.
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In the same spirit, observe that for J1 > 3,

∑

λ≥J1

θ20λ ≤
∑

λ≥J1

1

λ2γ+1 log λ(log log λ)2
≤

∫ ∞

J1

1

x2γ+1 log x(log log x)2
dx

=

[
− 1

2γx2γ log x(log log x)2

]∞

J1

(1 + o(1))

=
1

2γJ2γ
1 log J1(log log J1)2

(1 + o(1)),

and if x0 = 1/4

∑

λ≥J1

θ20λ ≥
∑

λ≥J1

1

(2λ+ 1)2γ+1 log(2λ+ 1)(log log(2λ+ 1))2

≥
∫ ∞

J1+1

1

(2x+ 1)2γ+1 log(2x+ 1)(log log(2x+ 1))2
dx

=

[
− 2−(2γ+1)

2γx2γ log x(log log x)2

]∞

J1

(1 + o(1))

=
2−(2γ+1)

2γJ2γ
1 log J1(log log J1)2

(1 + o(1)),

when J1 → ∞. Set ε2n = n−2γ/(2γ+1)(log n)(2γ−1)/(2γ+1)(log log n)−2/(2γ+1)

and

(3.23) kn = n1/(2γ+1)(log n)−2/(2γ+1)(log log n)−2/(2γ+1).

Previous computations lead to the existence of 0 < c1 < c2 < +∞ such that

c1ε
2
n ≤

∑

λ≥kn

θ20λ ≤ c2ε
2
n.(3.24)

Furthermore, nε2n is of the same order as kn log n and it is straightforward
to prove that there exists c > 0 such that

Pπ
{
K(f0, fθ) ≤ ε2n, V (f0, fθ) ≤ ε2n

}
≥ e−cnε2n ,

which implies, using Lemma 8.1 of [8], that

∫

F
e+n(f)−+n(f0)dπ(f) ≥ e−cnε2n
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for some constant c > 0 with probability going to 1. If k1 is large enough,
then Pπ[k > k1kn] ≤ e−2cnε2n and the computation of [8] p. 525 implies

Pπ[k ≤ k1kn|Xn] = 1 + oP0(1).

This also implies from Theorem B.1 that the posterior concentration rate
(for the #2-loss) is less than M0εn log n for some positive M0.

Moreover, inequality (3.23) implies that there exists k2 such that for all
k ≤ k2kn(log n)−1/(2γ) and all θ ∈ Rk, ||θ − θ0||+2 > M0εn log n, so we can
restrict ourselves to k ≥ k2kn(log n)−1/(2γ). So, there exist k1 > 0 and k2 > 0
such that

Pπ
{
k2kn(log n)

−1/(2γ) ≤ k ≤ k1kn|Xn
}
= 1 + oP0(1).

We now show that

(3.25) P0

[
min

k2kn(logn)−1/(2γ)≤k≤k1kn
µn,k ≥ c

√
log n

]
→ 1.

First, by using the same arguments as in the proof of Theorem 2.3, we note
that when k ∈ [k2kn(log n)−1/(2γ), k1kn] Gn(∆k) = oP0(1) and also that

max
k2kn(logn)−1/(2γ)≤k≤k1kn

|Gn(∆k)| = OP0(1).

Now, we have:

µn,k =
√
nF0



∆k

∑

λ≥k+1

θ0λφλ



+Gn(∆k)

=
√
n

∫
∆k

∑

λ≥k+1

θ0λφλ −
√
n

∫
(1− f0)∆k

∑

λ≥k+1

θ0λφλ +Gn(∆k)

:= µn,k,1 + µn,k,2 +Gn(∆k).

We first consider µn,k,1:

µn,k,1 =
√
n

∫
ψ̃

∑

λ≥k+1

θ0λφλ =
√
n

∑

λ≥k+1

θ0λ

∫
1u≤x0φλ(u)du

=
√
2n

∑

l≥(k+1)/2

θ0,2l
sin(2πlx0)

2πl
=

√
n√
2π

∑

l≥(k+1)/2

sin2(2πlx0)

lγ+3/2
√
log l log log l

.

With x0 = 1/4, we finally obtain:

µn,k,1 =

√
n√
2π

∑

m≥(k+1)/4−1/2

1

(2m+ 1)γ+3/2 log1/2(2m+ 1) log log(2m+ 1)
,
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so that there exist two constants c′1 and c′2 such that for all k ≤ k1kn,

µn,k,1 ≥ c′1
√
nk−γ−1/2(log k)−1/2(log log k)−1 ≥ c′2

√
log n.

Now, let us deal with µn,k,2. We have

∆k =
∑

λ≥k+1

ψ̃λφλ −Πf0,k




∑

λ≥k+1

ψ̃λφλ





and
∥∥∥∥∥∥
Πf0,k




∑

λ≥k+1

ψ̃λφλ





∥∥∥∥∥∥

2

2

≤ C
∑

λ≥k+1

ψ̃2
λ.

So, for any k ∈ [k2kn(log n)−1/(2γ), k1kn],

|µn,k,2| ≤ C
√
n‖f0 − 1‖∞




∑

λ≥k+1

ψ̃2
λ




1/2


∑

λ≥k+1

θ20λ




1/2

≤ C
√
n‖f0 − 1‖∞

k−γ−1/2

√
log k log log k

= O(‖f0 − 1‖∞µn,k,1).

By choosing k0 large enough ‖f0 − 1‖∞ can be made as small as needed, so
that we finally obtain that there exists c > 0 such that (3.25) is true.

APPENDIX A: PRELIMINARY RESULT TO PROVE (A3)

We state the following technical result that constitutes the first step to
prove the condition (A3) which expresses the change of parameter. We use
notations of Section 2.1.

Proposition A.1. For a sequence (un)n such that
√
nun → +∞, we

assume that the following three conditions are satisfied.

1. Assumption (A1) is satisfied with (un)n and there exists a sequence
(ln)n of integers such that Pπ [k > ln|Xn] = oP0(1).

2. There exists a sequence (wn)n lower bounded by a positive constant
such that wn

√
nu2n = o(1) and

Ãn ⊂ A1
un

∩ (∪k≤lnFk) ∩ {fθ s.t. V (fθ, f0) ≤ wnu
2
n},
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satisfies
Pπ[Ãn|Xn] = 1 + oP0(1).

To simplify notations, in the sequel, Ãn will also denote the set of
sequences θ such that fθ ∈ Ãn.

3. For each k such that Fk ∩ Ãn -= ∅, there exists a map : Tk : Ãn∩Θk →
Θk and a function ψk,θ such that for all θ ∈ Ãn ∩Θk

(a) fTkθ = fθe−tψk,θ/
√
n

(b)
max
k≤ln

sup
θ∈Θk∩Ãn

F0
[
(ψ̄h,n − ψk,θ)

2
]
= O(1)

(c) for all θ ∈ Θk such that fθ ∈ Ãn, ψ̄h,n(x)−ψk,θ(x) can be decom-
posed as

ψ̄h,n(x)− ψk,θ(x) = ∆k,θ(x)− bk,θ,

where bk,θ is a constant such that

max
k≤ln

sup
θ∈Θk∩Ãn

|bk,θ| = o(u−1
n w−1/2

n )

and ∆k,θ(x) is a function satisfying

max
k≤ln

sup
f∈Fk∩Ãn

||∆k,θ||∞ = o(w−1
n n−1/2u−2

n ∧ n1/2).

Then, we have uniformly over ∪k≤lnFk ∩ Ãn

ρn(θ) = −tF0[∆k,θhθ] + tGn(∆k,θ)

− t2

2
F0((ψ̄h,n − ψk,θ)

2) + t2F0
[
(ψ̄h,n − ψk,θ)ψ̄h,n

]
+ o(1).

The conditions considered in Proposition A.1 are mild and, apart from
condition 3, are slightly stronger versions of assumptions (A1) and (A2). In
the two types of examples considered in this paper wn = 1 and in many
cases wn increases to infinity at most as a power of logn. The constraints
on bk,θ and ∆k,θ are mild since the right hand terms go to infinity.

Proof of Proposition A.1: We consider the change of parameter θ 5→ Tkθ
for all θ such that fθ ∈ Ãn ∩ Fk and we study

ρn(θ) = −
F0(h2Tkθ

)

2
+Gn(hTkθ) +Rn(hTkθ)

−
(
−
F0((hθ − tψ̄h,n)2)

2
+Gn(hθ − tψ̄h,n) +Rn(hθ − tψ̄h,n)

)
,
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with hTkθ =
√
n log(fTkθ/f0). Recall that

ψ̄h,n = ψ̃ +

√
n

t
log

(
F0

[
exp

(
hθ√
n
− tψ̃√

n

)])

and ||ψ̃||∞ < ∞. From (3.8)

√
n

t
log

(
F0

[
exp

(
hθ√
n
− tψ̃√

n

)])
= o(1),

so that ||ψ̄h,n||∞ < +∞. Writing hTkθ = hθ − tψ̄h,n + t(ψ̄h,n − ψk,θ) and
combining the above upper bound with Condition 3 of Proposition A.1, we
obtain

F0(h
2
Tkθ) = F0((hθ − tψ̄h,n)

2) + t2F0((ψ̄h,n − ψk,θ)
2) + 2tF0(hθ(ψ̄h,n − ψk,θ))

−2t2F0(ψ̄h,n(ψ̄h,n − ψk,θ)),

Gn(hTkθ) = Gn(hθ − tψ̄h,n) + tGn(ψ̄h,n − ψk,θ) = Gn(hθ − tψ̄h,n) + tGn(∆k,θ)

and

Rn(hTkθ) = Rn(hθ − tψ̄h,n) + t
√
nF0(ψ̄h,n − ψk,θ) +

t2

2
F0((ψ̄h,n − ψk,θ)

2)

+tF0((ψ̄h,n − ψk,θ)(hθ − tψ̄h,n))

so that
ρn(θ) = t

√
nF0(ψ̄h,n − ψk,θ) + tGn(∆k,θ).

To give the final expression of ρn(θ), we use following computations. Recall
that ψ̄h,n −ψk,θ = ∆k,θ − bk,θ where bk,θ is a constant with respect to x and

note that by definition of ψk,θ, F0(e(hθ−tψk,θ)/
√
n) = 1 so that since

||ψ̄h,n − ψk,θ||∞ = ||∆k,θ − bk,θ||∞ = o(
√
n),

we have:

1 = F0(e
(hθ−tψ̄h,n)/

√
n+t(ψ̄h,n−ψk,θ)/

√
n)

= F0(e
(hθ−tψ̄h,n)/

√
n) +

t√
n
F0(e

(hθ−tψ̄h,n)/
√
n(ψ̄h,n − ψk,θ))

+
t2

n
F0(e

(hθ−tψ̄h,n)/
√
n(ψ̄h,n − ψk,θ)

2B(ψ̄h,n−ψk,θ),n
),
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where Bh,n is defined in (3.4). Note that F0(e(hθ−tψ̄h,n)/
√
n) = 1 and multi-

plying the previous expression by n, we obtain:
∑6

i=1 Si = 0, with

S1 = t
√
nF0(ψ̄h,n − ψk,θ), S2 = tF0[(ψ̄h,n − ψk,θ)(hθ − tψ̄h,n)],

S3 =
t√
n
F0[(ψ̄h,n−ψk,θ)(hθ−tψ̄h,n)

2Bhθ−tψ̄h,n,n
], S4 = t2F0[(ψ̄h,n−ψk,θ)

2B(ψ̄h,n−ψk,θ),n
],

S5 =
t2√
n
F0[(ψ̄h,n − ψk,θ)

2(hθ − tψ̄h,n)B(ψ̄h,n−ψk,θ),n
]

and

S6 =
t2

n
F0[(ψ̄h,n − ψk,θ)

2(hθ − tψ̄h,n)
2B(ψ̄h,n−ψk,θ),n

Bhθ−tψ̄h,n,n
].

We successively study each term except the first one.

S2 = tF0(∆k,θhθ)− tbk,θF0(hθ)− t2F0[(ψ̄h,n − ψk,θ)ψ̄h,n].

Since ||ψ̄h,n||∞ ≤ C, Bhθ−tψ̄h,n,n
= Bhθ,n(1 + O(1/

√
n)) uniformly over Ãn.

Then,

S3 = −
tbk,θ√

n
F0[h

2
θBhθ−tψ̄h,n,n

] + o(u−1
n w−1/2

n n−1/2 + w−1
n n−1u−2

n )

+O(n−1/2||∆k,θ||∞F0
(
h2θBhθ,n)

)
) +O(n−1/2(|bk,θ|+ ||∆k,θ||∞)F0(|hθ|Bhθ,n))

since from condition (3c) of Proposition A.1, we have |bk,θ| = o(u−1
n w−1/2

n )
and ||∆k,θ||∞ = o(w−1

n n−1/2u−2
n ). We have also used that

2f0(x)Bhθ,n(x) = 2

∫ 1

0
(1− u)f1−u

0 (x)fu
θ (x)du ≤ f0(x) + fθ(x).

This inequality implies

2F0
(
h2θBhθ,n

)
≤ F0(h

2
θ) + Fθ(h

2
θ) ≤ 2nu2nwn, 2F0 (|hθ|Bhθ,n) ≤ 2un

√
nwn

therefore,

S3 = −
tbk,θ√

n
F0[h

2
θBhθ,n] + o(1).

Using ||ψ̄h,n − ψk,θ||∞ = o(
√
n) (see previously), we have:

‖B(ψ̄h,n−ψk,θ),n
− 0.5‖∞ = ‖

∫ 1

0
(1− u)eu(ψ̄h,n−ψk,θ)/

√
ndu− 0.5‖∞ = o(1),
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and

S4 =
t2F0((ψ̄h,n − ψk,θ)2)

2
(1 + o(1)).

The fifth term is controlled as follows:

|S5| ≤
t2||ψ̄h,n − ψk,θ||∞√

n

(
F0(h

2
θ)
)1/2 (

F0((ψ̄h,n − ψk,θ)
2
)1/2

+ o(1)

= o

( √
nun√

nun
√
wn

+

√
nun

nu2nwn

)
+ o(1) = o(1).

Finally,

|S6| ≤
t2||ψ̄h,n − ψk,θ||2∞F0(h2θBhθ,n)

n
+ o(1) = o(1).

So, we finally obtain

0 = t
√
nF0(ψ̄h,n − ψk,θ) + tF0(∆k,θhθ)− tbk,θF0(hθ)−

tbk,θ√
n
F0[h

2
θBhθ,n]

+
t2F0((ψ̄h,n − ψk,θ)2)

2
− t2F0[(ψ̄h,n − ψk,θ)ψ̄h,n] + o(1).

Using the relation

F0(hθ) +
F0(h2θBhθ,n)√

n
= 0,

which comes from a Taylor expansion of 1 = F0(ehθ/
√
n), we obtain

0 = t
√
nF0(ψ̄h,n − ψk,θ) + tF0(∆k,θhθ) +

t2F0((ψ̄h,n − ψk,θ)2)

2
− t2F0[(ψ̄h,n − ψk,θ)ψ̄h,n] + o(1).

We finally obtain that uniformly on Ãn,

ρn(θ) = −tF0[∆k,θhθ]+tGn(∆k,θ)−
t2

2
F0((ψ̄h,n−ψk,θ)

2)+t2F0[(ψ̄h,n−ψk,θ)ψ̄h,n]+o(1)

and Proposition A.1 is proved.

APPENDIX B: POSTERIOR RATES FOR INFINITE DIMENSIONAL
EXPONENTIAL FAMILIES

Since one of the key conditions needed to obtain a Bernstein-von Mises
theorem is a concentration rate of the posterior distribution, we now state
the following result established in [19]. We use notations of Section 1.2.
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Theorem B.1. We assume that || log(f0)||∞ < ∞ and log(f0) ∈ Bγ
p,q(R)

with p ≥ 2, 1 ≤ q ≤ ∞ and γ > 1/2 is such that

β < 1/2 + γ if p∗ ≤ 2 and β < γ + 1/p∗ if p∗ > 2.

Then, there exists c > 0 such that if

Ωn =

{
θ s.t. h(f0, fθ) ≤

√
log n

L(n)
εn and ||θ0 − θ||+2 ≤

√
(log n)3

L(n)
εn

}

lim
n→+∞

P0
{
Pπ {Ωn|Xn} ≥ 1− exp(−cnε2n)

}
= 1,

where in the case (PH),

εn = ε0

(
log n

n

) γ
2γ+1

,

in the case (D), L(n) = 1,

εn = ε0(log n)n
− β

2β+1 , if γ ≥ β

εn = ε0n
− γ

2β+1 , if γ < β

and ε0 is a given constant. We also have that there exists a > 0 such that

Pπ
{
fθ s.t. K(f0, fθ) ≤ ε2n;V (f0, fθ) ≤ ε2n

}
≥ e−anε2n .

APPENDIX C: PROOF OF THEOREM 2.2

To prove Theorem 2.2, we need to prove that assumptions (A1), (A2)
and (A3) are satisfied. Obtaining a posterior concentration rate in terms of
the Hellinger distance, for such a prior is quite straightforward following [8],
however some technical details are required to obtain a posterior concentra-
tion rate in terms of the divergence V and to check condition (A2). We first
give the main arguments to check assumptions (A1) and (A2). Recall that
f0 is Hölderian with smoothness γ ≤ 1:

• Let z∗j = j/k, j = 0, ...., k, z∗ = (z∗0 , ...., z
∗
k) and η∗j =

∫ z∗j
z∗j−1

f0(x)dx,

j ≥ 1 then using the fact that for some positive constants a < b, we
have a ≤ f0(x) ≤ b for all x, so that fη∗,z∗(x) ∈ [a, b] for all x and

||fη∗,z∗ − f0||22 =
k∑

j=1

∫ z∗j

z∗j−1

(f0(x)− kη∗j )
2 ≤ C

k∑

j=1

(z∗j − z∗j−1)
2γ+1

≤ Ck−2γ ,
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we deduce that || log f0− log fη∗,z∗ ||2f0 ≤ Ca−1k−2γ , |f0/fη∗,z∗(x)| ≤ b/a

and h(f0, fη∗,z∗) ≤ Ca−1/2k−γ/2. Then, using Lemma 8.2 of [8] and the
above bounds, we have:

K(f0, fη∗,z∗) ≤ Ck−2γ V (f0, fη∗,z∗) ≤ Ck−2γ .

Consider z = (zj)j=0,...,k, η = (ηj)j=1,...,k with

|zj − z∗j | ≤ k−H1 , |ηj − η∗j | ≤ k−H1 , j ∈ {1, ..., k − 1}

with H1 > 1 large enough, then it is easy to prove that V (f0, fη,z) ≤
2Ck−2γ and K(f0, fη,z) ≤ 2Ck−2γ . Set εn ≥ ε0n−γ/(2γ+α+1) and k =
*k0n1/(2γ+α+1)+, for some positive constants k0 and ε0. Remember that
both η and (∆z1, ...,∆zk) have a density with respect to the Lebesgue
measure on Sk that has the following form:

πk(x1, ..., xk) =
e−c

∑k
i=1 x

−α
i

bk(c)
,

where bk(c) is the normalization constant. We have for all τ < 1

bk(c) =

∫

Sk

e−c
∑k

i=1 x
−α
i dx ≤ 1

(k − 1)!

bk(c) ≥ e−cτ−αkα+1
∫ k−1∏

i=1

1l[τ/k,1/k](ηi)dηi = e−cτ−αk1+α
(1− τ)k−1k−(k−1).

Therefore,

Pπ({f s.t. K(f0, f) ≤ ε2n, V (f0, f) ≤ ε2n})

≥

∫
Sk∩{|xi−η∗i |≤k−H1 ,∀i} e

−c2
∑k

i=1 x
−α
i dx

bk(c2)

∫
Sk∩{|xi−∆z∗i |≤k−H1 ,∀i} e

−c1
∑k

i=1 x
−α
i dx

bk(c1)

and since η∗i ≥ k−1a and ∆z∗i := z∗i − z∗i−1 = 1/k, |η∗i − xi| ≤ n−H1

implies that xi > a/(2k) for n large enough and |xi − ∆z∗i | ≤ k−H1

implies that xi > 1/(2k). This leads to

Pπ({f s.t. K(f0, f) ≤ ε2n, V (f0, f) ≤ ε2n}) ≥ C((k − 1)!)2e−(c0+2α(c1+a−αc2))kα+1

≥ e−nε2n ,

if ε0 is large enough.
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• For k1 a constant, let kn = k1n1/(2γ+α+1), A,H > 0 and

Fn = {fη,z s.t. k ≤ kn, n
−H ≤ ∆zj , ∀j = 1, .., k−1,

k∑

j=1

η−α
j ≤ Anε2n},

H > (α+ 1)/[α(2γ + α+ 1)]. Note that for all k if there exists j such
that ∆zj ≤ n−H then

∑
j ∆z−α

j ≥ nαH ≥ Anε2n for any A > 0 if n is

large enough, and vice-versa if
∑k

j=1 η
−α
j ≤ Anε2n then ηj ≥ (Anε2n)

1/α

for all j = 1, ..., k. Therefore

Pπ(Fc
n) ≤ p(k > kn) + e−Ac2nε2n

∑

k≤kn

1

bk(c2)
+ e−Ac1nε2n

∑

k≤kn

1

bk(c1)

≤ e−Cnε2n ,

for any C > 0, by choosing k1 and A large enough.
• For all k ≤ kn and all (fη,z, fη′,z′) ∈ Fn

2, we have: h2(fη′,z′ , fη,z) ≤
ε2n as soon as |∆zj − ∆z′j | ≤ n−H1−H for all j = 1, ..., k − 1 and

|ηj−η′j | ≤ n−H1 for some positive value H1 large enough, where ∆z′j =
z′j − z′j−1. Indeed, note that under the above conditions |zj − z′j | ≤∑j

i=1 |∆zi − ∆z′i| ≤ kn−H1−H for all j and also that Ij ∩ (I ′j)
c =

(Ij ∩ I ′j−1) ∪ (Ij ∩ I ′j+1) for all j, with I ′j = (z′j−1, z
′
j ], and vice-versa,

so that

h(fη,z, fη′,z′)
2 ≤

k∑

j=1

(∆zj ∧∆z′j)

(
η1/2j

∆z1/2j

−
(η′j)

1/2

(∆z′j)
1/2

)2

+4

∫ zj−1∨z′j−1

zj−1∧z′j−1

(
ηj
∆zj

+
η′j
∆z′j

)

≤ 2kn−2H1+H + 3n−2H1 ≤ ε2n,

for H1 large enough. We conclude that the covering number of Fn is
bounded by exp(Ck log n) = o(exp(nε2n)).

This implies that the posterior distribution satisfies : if M is large enough,

Pπ [{f s.t. h(f0, f) ≤ Mεn}|Xn] = oP0(1).
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To obtain the posterior concentration rate in terms of V , note that, if
fη,z ∈ Fn, with h2(f0, fη,z) ≤ ε2n,

M1 =

[∫ 1

0

f2
0 (x)

fη,z(x)
dx

] 1
2

≤ ||f0||∞




∫ 1

0

k∑

j=1

∆zj
ηj

1Ij (x)dx





1
2

≤ ||f0||∞
(
max

j

∆zj
ηj

)1/2

≤ ||f0||∞nH/2

and using Theorem 5 of [27],

V (f0, fη,z) ≤ 5h2(f0, fη,z) (| logM1|+ | log h(f0, fη,z)|)2 ≤ Cε2n(log n)
2

and K(f0, fη,z) ≤ Cε2n log n, which achieves the proof of condition (A1).
Assumption(A2) is proved along the same lines. Indeed whenever fη,z ∈ Fn,

[∫ 1

0

f2
η,z(x)

f0(x)
dx

] 1
2

≤ ||f−1
0 ||1/2∞ nH/2

so that using Theorem 5 of [27], when h2(fη,z, f0) ≤ ε2n

V (fη,z, f0) ≤ Cε2n(log n)
2,

which together with the inequality
∫

fη,z(x)| log fη,z − log f0|(x)dx ≤ V (fη,z, f0)
1/2

proves Assumption (A2) with un 7 ũn = O(εn log n). We now validate As-
sumption (A3) using Proposition A.1. Set Ãn = Fn∩{fη,z s.t. V (f0, fη,z) ≤
u2n, V (fη,z, f0) ≤ u2n} with u2n = Cε2n(log n)

2, the above results imply

Pπ
[
Ãn|Xn

]
= 1 + oP0(1),

which proves that conditions 1 and 2 of Proposition A.1 are satisfied with
wn = 1. Note that u2n = o(n−1/4) and nu2n → +∞. We prove that condition 3
of Proposition A.1 is satisfied. Let An = {(k, η, z) s.t. fη,z ∈ Ãn}, θ = (η, z)
and for any x,

f̃(x) =
k∑

j=1

ψ̃j1lIj (x), ψ̃j =
F0(1lIj ψ̃)

F0(1lIj )
.
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Denote also

ψk,θ =
∑

j

ψ̃j1lIj +

√
n

t
log




∑

j

ηje
−tψ̃j/

√
n



 ,

and note that ψ̄h,n − ψk,θ = ∆k,θ − bk,θ with

∆k,θ = ψ̃ − f̃ , bk,θ =

√
n

t
log




F0

(
ehθ/

√
ne−tf̃/

√
n
)

F0

(
ehθ/

√
ne−tψ̃/

√
n
)



 .

For every θ = (η, z) we set Tkθ = (η′, z′) with

η′j =
ηje

−
tψ̃j√

n

∑
i ηie

− tψ̃i√
n

, j = 1, ..., k z′ = z,(C.1)

then by construction hTkθ = fθe−tψk,θ/
√
n. For all partition z of [0, 1], if

u∗ = (u∗1, ..., u
∗
k), u∗j = F0(1lj log f0)/F0(Ij),

then u∗ minimizes in u ∈ Rk

k∑

j=1

∫

Ij

f0(x) (uj − log f0(x))
2 dx.

Note also that, since f ′
0(x) ≥ c0 > 0 (or equivalently f ′

0(x) < −c0) for all
x ∈ (0, 1), there exists c′0 > 0 such that (log f0(x))′ > c′0 for all x ∈ (0, 1) (or
< −c′0) and

k∑

j=1

∫

Ij

f0(x)
(
u∗j − log f0(x)

)2
dx ≥ c′0

2
∑

j

∆z3j ,

so that for all θ = (η, z),

V (f0, fη,z) ≥ c′0
2
∑

j

∆z3j .(C.2)

Therefore,
k∑

j=1

∆z3j ≤ C0(εn log n)
2,
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for some positive constant C0 on An. Since ψ(x) = x,

||f̃ − ψ̃||22 = O(
∑

j

∆z3j ) = O((εn log n)
2)

and since for any x ∈ Ij , |e−t(f̃(x)−ψ̃(x))/
√
n − 1| ≤ 2t∆zj√

n
,

bk,θ =

√
n

t
log




F0

(
ehθ/

√
ne−tψ̃/

√
ne−t(f̃−ψ̃)/

√
n
)

F0

(
ehθ/

√
ne−tψ̃/

√
n
)





≤
√
n

t
log

[
1 + C

t√
n

∑
∆z2j ηj

]

≤ C(
∑

j

∆z3j )
1/2.

We deduce:

sup
(k,θ)∈An

F0((ψk,θ − ψ̄h,n)
2) = O(

∑

j

∆z3j ) = O((εn log n)
2),(C.3)

sup
(k,θ)∈An

[||∆k,θ||∞ + |bk,θ|] = O((εn log n)
2/3).

So Condition 3 of Proposition A.1 is verified and

ρn(θ) = −tF0(hθ(ψ̃ − f̃)) + tGn(ψ̃ − f̃) + oP0(1).

We have |F0(hθ(ψ̃ − f̃))| ≤
√
nun||ψ̃ − f̃ ||f0 which from (C.3) is of order

O(
√
nu2n) = o(1) uniformly over An. We now prove that Gn(ψ̄h,n − ψk,θ) =

oP0(1) uniformly. Note that ψk,θ is monotone, so that [ψk,θ− ψ̃]ε−2/3
n belongs

to the class G of functions that are of variation bounded by 1, with values
in [−1, 1]. Hence from [25] p 273, since sup(k,θ)∈An

||ψk,θ||∞ = O(1), the
bracketing entropy of G is bounded as follows

logN[](ε,G,L2(P0)) ≤ Kε−1 ∀ε > 0

for some positive constant K and Theorem 19.5 of [25] leads to

sup
g∈G

|Gn(g)−G(g)| = op(1)

where G is a tight centered Gaussian process in l∞(G), the set of bounded
functions on G, with covariance matrix given by Ef0(G(f1)G(f2)) = F0(f1f2)−
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F0(f1)F0(f2). Thus P[supg∈G |G(g)| < +∞] = 1. Moreover note that for all

n and all (k, θ) ∈ An, ε
−2/3
n (ψk,θ − ψ̃) ∈ G, therefore

lim
a→+∞

limsupnP[ sup
(k,θ)∈An

|G(ε−2/3
n (ψk,θ − ψ̃))| > a] = 0,

and sup(k,θ)∈An
|Gn(ψk,θ − ψ̃)| = oP0(1). We finally obtain that

In =

∫
Ãn

exp

(
−

F0((hf−tψ̄hf ,n)2)

2 +Gn(hf − tψ̄hf ,n) +Rn(hf − tψ̄hf ,n)

)
dπ(f)

∫
Ãn

exp

(
−F0(h2

f )

2 +Gn(hf ) +Rn(hf )

)
dπ(f)

=
∑

k≤ln

p(k|Xn)

∫
Ãn∩S2

k
exp

(
−

F0(h2
Tkθ)

2 +Gn(hTkθ) +Rn(hTkθ)

)
dπk(θ)

∫
Ãn∩S2

k
exp

(
−F0(h2

θ)
2 +Gn(hθ) +Rn(hθ)

)
dπk(θ)

+ o(1).

Using (C.3) we obtain that for all k ≤ ln, TkAn ⊂ {θ ∈ S2
k ;V (f0, fθ) ≤

2u2n, V (fθ, f0) ≤ 2u2n} := An,2 ∩ S2
k and vice-versa An,1 ∩ S2

k := {θ ∈
S2
k ;V (f0, fθ) ≤ u2n/2, V (fθ, f0) ≤ u2n/2} ⊂ TkAn and also under the prior on

θ = (η, z), using Tkθ = (η′, z)
∣∣∣∣log

(
πη|k(η

′)

πη|k(η)

)∣∣∣∣ ≤ C√
n

∑

j

η−α
j

≤ C
√
nε2n = o(1)

as soon as α+ 1 < 2γ on Fn. Hence using (3.3) and the last equality of the
proof of Theorem 2.1 we finally obtain

ζn(t) := E π[exp(t
√
n(Ψ(f)−Ψ(P n)))1lÃn

(f)|Xn]

= Ln(t)× Pπ
{
Ãn|Xn

}
= Ln(t)(1 + o(1))

= e
t2F0(ψ̃

2)
2 In(1 + o(1)).

Therefore,

ζn(t) ≤ e
t2F0(ψ̃

2)
2

∑ln
k=1 Pπ

[
An,2 ∩ S2

k |Xn
]

∑ln
k=1 Pπ

[
An,1 ∩ S2

k |Xn
](1 + o(1))

≤ e
t2F0(ψ̃

2)
2 (1 + o(1))

ζn(t) ≥ e
t2F0(ψ̃

2)
2

∑ln
k=1 Pπ

[
An,1 ∩ S2

k |Xn
]

∑ln
k=1 Pπ

[
An,2 ∩ S2

k |Xn
](1 + o(1))

≥ e
t2F0(ψ̃

2)
2 (1 + o(1)),
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which achieves the proof of Theorem 2.2.

APPENDIX D: TECHNICAL LEMMA

In Section 3, we use at many places results of the following lemma. We
use notations of Section 1.2.

Lemma D.1. Set Kn = {1, 2, . . . , kn} with kn ∈ N∗. Assume one of the
following two cases:

- γ > 0, p = q = 2 when Φ is the Fourier basis
- 0 < γ < r, 2 ≤ p ≤ ∞, 1 ≤ q ≤ ∞ when Φ is the wavelet basis with r
vanishing moments (see [12]).

Then the following results hold.

- There exists a constant c1,Φ depending only on Φ such that for any
θ = (θλ)λ ∈ Rkn,

(D.1)

∥∥∥∥∥∥

∑

λ∈Kn

θλφλ

∥∥∥∥∥∥
∞

≤ c1,Φ
√

kn||θ||+2 .

- If log(f0) ∈ Bγ
p,q(R), then there exists c2,γ depending only on γ such

that

(D.2)
∑

λ/∈Kn

θ20λ ≤ c2,γ R2k−2γ
n .

- If log(f0) ∈ Bγ
p,q(R) with γ > 1

2 , then there exists c3,Φ,γ depending only
on Φ and γ such that:

(D.3)

∥∥∥∥∥∥

∑

λ/∈Kn

θ0λφλ

∥∥∥∥∥∥
∞

≤ c3,Φ,γ R k
1
2−γ
n .

Proof. Let us first consider the Fourier basis. We have:
∥∥∥∥∥∥

∑

λ∈Kn

θλφλ

∥∥∥∥∥∥
∞

≤
∑

λ∈Kn

|θλ|× ||φλ||∞

≤
√
2
∑

λ∈Kn

|θλ|,
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which proves (D.1). Inequality (D.2) follows from the definition of Bγ
2,2 =

W γ . To prove (D.3), we use the following inequality: for any x,
∣∣∣∣∣∣

∑

λ/∈Kn

θ0λφλ(x)

∣∣∣∣∣∣
≤

√
2
∑

λ/∈Kn

|θ0λ|

≤
√
2




∑

λ/∈Kn

|λ|2γθ20λ





1
2



∑

λ/∈Kn

|λ|−2γ





1
2

.

Now, we consider the wavelet basis. Without loss of generality, we assume
that log2(kn + 1) ∈ N∗. We have for any x,

∣∣∣∣∣∣

∑

λ∈Kn

θλφλ(x)

∣∣∣∣∣∣
≤




∑

λ∈Kn

θ2λ





1
2



∑

λ∈Kn

φ2
λ(x)





1
2

≤ ||θ||+2




∑

−1≤j≤log2(kn)

∑

k<2j

ϕ2
jk(x)





1
2

,

with ϕ−10 = 1l[0,1]. Since for some constant A > 0, ϕ(x) = 0 for x /∈ [−A,A],
for j ≥ 0,

card
{
k ∈ {0, . . . , 2j − 1} s.t. ϕjk(x) -= 0

}
≤ 3(2A+ 1).

(see [17], p. 282 or [18], p. 112). So, there exists cϕ depending only on ϕ
such that

∣∣∣∣∣∣

∑

λ∈Kn

θλφλ(x)

∣∣∣∣∣∣
≤ ||θ||+2




∑

0≤j≤log2(kn)

3(2A+ 1)2jc2ϕ





1
2

,

which proves (D.1). For the second point, we just use the inclusion Bγ
p,q(R) ⊂

Bγ
2,∞(R) and

∑

λ/∈Kn

θ20λ =
∑

j>log2(kn)

2j−1∑

k=0

θ20jk ≤ R2
∑

j>log2(kn)

2−2jγ ≤ R2

1− 2−2γ
k−2γ
n .

Finally, for the last point, we have for any x:
∣∣∣∣∣∣

∑

λ/∈Kn

θ0λφλ(x)

∣∣∣∣∣∣
≤

∑

j>log2(kn)




2j−1∑

k=0

θ20jk





1
2



2j−1∑

k=0

ϕ2
jk(x)





1
2

≤ Ck
1
2−γ
n ,
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where C ≤ R(3(2A+ 1))
1
2 cϕ(1− 2

1
2−γ)−1.
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