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In this paper, we study the asymptotic posterior distribution of
linear functionals of the density. In particular, we give general condi-
tions to obtain a semiparametric version of the Bernstein-Von Mises
theorem. We then apply this general result to nonparametric priors
based on infinite dimensional exponential families. As a byproduct,
we also derive adaptive nonparametric rates of concentration of the
posterior distributions under these families of priors on the class of
Sobolev and Besov spaces.

1. Introduction. The Bernstein-Von Mises property, in Bayesian anal-
ysis, concerns the asymptotic form of the posterior distribution of a quantity
of interest, and more specifically it corresponds to the asymptotic normality
of the posterior distribution centered at some kind of maximum likelihood
estimator with variance being equal to the asymptotic frequentist variance
of the centering point. Such results are well know in parametric frameworks,
see for instance [14] where general conditions are given. This is an impor-
tant property for both practical and theoretical reasons. In particular the
asymptotic normality of the posterior distributions allows us to construct
approximate credible regions and the duality between the behaviour of the
posterior distribution and the frequentist distribution of the asymptotic cen-
tering point of the posterior implies that credible regions will have also good
frequentist properties. These results are given in many Bayesian textbooks
see for instance [17] or [1].

In a frequentist perspective the Bernstein-Von Mises property enables the
construction of confidence regions since under this property a Bayesian credi-
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2 V. RIVOIRARD AND J. ROUSSEAU.

ble region will be asymptotically a frequentist confidence region as well. This
is even more important in complex models, since in such models the con-
struction of confidence regions can be difficult whereas, the Markov Chain
Monte Carlo algorithms usually make the construction of a Bayesian credi-
ble region feasible. However the more complex the model the harder it is to
derive Bernstein - Von Mises theorems. In infinite dimensional setups, the
mechanisms are even more complex.

Semi-parametric and non parametric models are widely popular both from
a theoretical and practical perspective and have been used by frequentists
as well as Bayesians although their theoretical asymptotic properties have
been mainly studied in the frequentist literature. The use of Bayesian non
parametric or semi-parametric approaches is more recent and has been made
possible mainly by the development of algorithms such as Markov Chain
Monte-Carlo algorithms but has grown rapidly over the past decade.

However, there is still little work on asymptotic properties of Bayesian
procedures in semi-parametric models or even in nonparametric models.
Most of existing works on the asymptotic posterior distributions deal with
consistency or rates of concentration of the posterior. In other words it con-
sists in controlling objects in the form P7 [U,|X"] where P™[.|X"] denotes
the posterior distribution given a n vector of observationsX™ and U, de-
notes either a fixed neighbourhood (consistency) or a sequence of shrinking
neighbourhoods (rates of concentration). As remarked by [6] consistency is
an important condition since it is not possible to construct subjective prior
in a nonparametric framework. Obtaining concentration rates of the poste-
rior helps in understanding the impact of the choice of a specific prior and
allows for a comparison between priors to some extent. However, to obtain a
Bernstein-Von Mises theorem it is necessary not only to bound P™ [U,,|X"]
but to determine an equivalent of P™ [U,,|X™] for some specific types of sets
U,,. This difficulty explains that there is up to now very little work on Bern-
stein Von Mises theorems in infinite dimensional models. The most well
known results are negative results and are given in [7]. Some positiv e e
results are provided by [8] on the asymptotic normality of the posterior dis-
tribution of the parameter in an exponential family with increasing number
of parameters. In a discrete setting [2] derive Bernstein-Von Mises results, in
particular satisfied by Dirichlet priors. Nice positive results are obtained in
[12] and [13], however they rely heavily on a conjugacy type of property of
the family of priors they consider and on the fact that their priors put mass
one on discrete probabilities which makes the comparison with the empirical
distribution more tractable.

In a semi-parametric framework, where the parameter can be separated
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BERNSTEIN VON MISES THEOREM FOR FUNCTIONALS OF THE DENSITY 3

into a parametric part, which is the parameter of interest and a non paramet-
ric part, which is the nuisance parameter, [3] obtains interesting conditions
leading to a Bernstein - Von Mises theorem on the parametric part, clarifying
an earlier work of [18].

In this paper we are interested in studying the existence of a Bernstein-
Von Mises property in semi-parametric models where the parameter of in-
terest is a functional of the nuisance parameter, which is the density of
the observations. The estimation of functionals of infinite dimensional pa-
rameters such as the cumulative distribution function at a specific point,
is a widely studied problem both in the frequentist literature and in the
Bayesian literature. There is a vast literature on the rates of convergence
and on the asymptotic distribution of frequentist estimates of functionals of
unknown curves and of finite dimensional functionals of curves in particular,
see for instance [21] for an excellent presentation of a general theory on such
problems.

One of the most common functional considered in the literature is the
cumulative distribution function calculated at a given point, say F'(z). The
empirical cumulative distribution function, F,(x) is a natural frequentist
estimator and its asymptotic distribution is Gaussian with mean F(z) and
variance F(z)(1 — F(x))/n.

The Bayesian counterpart of this estimator is the one derived from a
Dirichlet process prior and it is well known to be asymptotically equivalent
to Fy,(x), see for instance [10].This result is obtained using the conjugate
nature of the Dirichlet prior, leading to an explicit posterior distribution.
Other frequentist estimators, based on frequentist estimates of the density
have also been studied in the frequentist literature, in particular estimates
based on kernel estimators. Hence a natural question arises. Can we gener-
alize the Bernstein - Von Mises theorem of the Dirichlet estimator to other
Bayesian estimators? What happens if the prior has support on distributions
absolutely continuous with respect to Lebesgue Measure?

In this paper we provide an answer to these questions by establishing
conditions under which a Bernstein-Von Mises theorem can be obtained for
linear functional of the density of f, such as the cumulative distribution
function F(z), with centering its empirical counterpart, for instance F,(x)
the empirical cumulative distribution function, when the prior puts positive
mass on absolutely continuous densities with respect to Lebesgue measures.
We also study cases where the asymptotic posterior distribution of the func-
tional is not asymptotically Gaussian but is asymptotically a mixture of
Gaussian distributions with different centering points.
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4 V. RIVOIRARD AND J. ROUSSEAU.

1. Notations and aim . In this paper, we assume that given a distribu-
tion P with a compactly supported density f with respect to the Lebesgue
measure, X1, ..., X, are independent and identically distributed by P. We set
X" = (Xy,...,X,) and denote F' the cumulative distribution function associ-
ated with f. Without loss of generality we assume that for any i, X; € [0, 1]
and we set

j—':{f:[O,l}—ﬂR*, /Olf(:n)dle}.

We now define other notations that will be used throughout the paper.
Denote 1,,(f) the log-likelihood associated with the density f and if it is
parametrized by a finite dimensional parameter 6, [,,(0) = [,,(fg). For an
integrable function g, we sometimes use the notation F(g) = fol f(u)g(u)du.
We denote by < .,. > the inner product in

Ly(F { /g z)dz < —|—oo}

and by |.| s the corresponding norm.

We also consider the inner product in Lg[0, 1] denoted < .,. >9 and |.|2
the corresponding norm. When there is no ambiguity we note < .,. >y by
<...>and |l by I

Let K(f, f') and h(f, f') respectively the Kullback-Leibler divergence and
the Hellinger distance between two densities f and f’, where we recall that

K(f,1") = F (log(f/f)). h(f.f [/ (F V(@) ) dx] ,

and define
V(. ) = F ((log(f/1'))?) -
Finally, let Py the true distribution of the observations X;. fy is the asso-

ciated density and Fy the associated cumulative distribution function. We
consider the usual notations on the empirical process, namely

> 00X, Gale) = - g[go@) ~ Ri(g).

and F;, the empirical distribution function.

Consider a prior II on the set F. The aim of this paper is to study the
posterior distribution of ¥(f), where ¥ is a continuous linear form on L2[0, 1]
(a typical example is ¥(f) = F(z9) = P[X < zg] for zp € R) and to derive
conditions under which

P [Vn(U(f) —¥(P,)) < z|X"] — ®y,(z) in Py Probability,

imsart-aos ver. 2007/12/10 file: bvm_final.tex date: July 21, 2009



BERNSTEIN VON MISES THEOREM FOR FUNCTIONALS OF THE DENSITY 5

where V} is the variance of /nW¥(P,) under Py and for any V', &y (z) is the
cumulative distribution function of a Gaussian random variable centered at
0 with variance V.

1.2. Organization of the paper. In Section 2 we present the general Bern-
stein Von Mises theorem, which is given in the formal way in the case where
linear submodels are adapted to the prior. We then apply, in Section 3, this
general theorem to the case where the prior is based on infinite dimensional
exponential families. In this section, we first give general results giving the
asymptotic posterior distribution of ¥(f) which can be either Gaussian or a
mixture of Gaussian distributions. We also provide a theorem describing the
posterior concentration rate under such priors (see Section 3.2). Finally, in
Section 3.4, using an example, we explain how bad phenomenons can occur.
The proofs are postponed in Section 4.

2. Bernstein Von Mises theorems.

2.1. Some heuristics for proving Bernstein Von Mises theorems. We first
define some notions that are useful in the study of asymptotic properties of
semi-parametric models. These notions can be found for instance in [21].

As in Chapter 25 of [21], to study the asymptotic behaviour of semi-
parametric models we consider 1-dimensional differentiable paths locally
around the true parameter fy, that is submodels of the form: v — f, for
0 < u < ug, for some ug > 0 such that for each path there exists a measur-
able function g called the score function for the submodel {f,,,0 < u < up}
at u = 0 satisfying

u—0 u 2

/2000 _ (12, 2
(2.1) lim R( w (@) = Jo )—lg(m)f&ﬂ(:n)) dr = 0.

We denote by Fj, the tangent set, i.e. the collection of score functions g
associated with these differentiable paths. Using (2.1), Fy, can be identified
with a subset of {g € La(Fp) : Fp(g) = 0}. For instance, when considering
all probability laws, the most usual collection of differentiable paths is given
by

(2.2) Ful@) = c(t) fo(x)e @)

with |g]eo < o0 and ¢ such that ¢(0) = 1 and ¢/(0) = 0. In this case, g is the
score function. Note that as explained in [21], the collection of differentiable
paths of the form f,(z) = 2c(u) fo(z)(1 + exp(—2ug(z)))~! (with previous

imsart-aos ver. 2007/12/10 file: bvm_final.tex date: July 21, 2009



6 V. RIVOIRARD AND J. ROUSSEAU.

conditions on c¢), leads to the tangent space given by {g € La(Fp) : Fo(g) =

0}.
Now, consider a continuous linear form ¥ on Ly. We can identify such a
functional by a function ¢ € Ly such that for all f € Ly

(2.3 W) = [ f@ylayda

Then for any differentiable path ¢ — f; with score function g, if the function
1 is bounded on R (or on the support of f, for all 0 < u < uy),

‘lj(f)—‘lf(f) 1/2 1/2( ))2
ULV UL V- /w ) folz dz+/ W(x)da

t
1/2 12
12 [(a) ( @)=t ()—§g<x>f5/2<x>) o2 @)da

= <,9>+o(1).

Then, we can define the efficient influence function ¢ belonging to lin(Fy,)
(the closure of the linear space generated by Fjy,) that satisfies for any
geF fo>

[ dwg@)fo(a)da = [ o(@g(a) fo(e)do

This implies:

=<1, >.
u—0 u

The efficient influence function will play an important role for our purpose.
The efficient influence function is also a key notion to characterize asymp-
totically efficient estimators (see Section 25.3 of [21]).

Now, let us provide some examples by specifying different types of con-
tinuous linear forms that can be considered.

EXAMPLE 2.1.  An important example is provided by the cumulative dis-
tribution function. If xg € R is fized, consider for any density function
f € Lo whose cdf is F,

U(f)= /Hméxof(x)da: = F(xo)
so that in this case, Y(u) = Uy<q,, which is a bounded function and if Fy,
is the subspace of Lo(Fy) of functions g satisfying Fy(g) = 0 then ¥(x) =
lp<ao — Fo(wo).
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BERNSTEIN VON MISES THEOREM FOR FUNCTIONALS OF THE DENSITY 7

EXAMPLE 2.2.  More generally, for any measurable set A consider (x) =
Npea and for any density function f € Lo

V() = [ Deeasuid

satisfies the above conditions and ¢(z) = lyeq — [ fo(z)dz.

EXAMPLE 2.3.  If fo has bounded support, say on [0, 1] then the functional
1
() =Ef(X] = [ af @)

satisfies the above conditions, (x) = z and )(z) = x — E [X].

In this framework, the Bernstein Von Mises theorem could be derived from
the convergence of the following Laplace transform defined for any ¢t € R by

Ln(t) = ET[exp(tvn(¥(f) — U(Fn)))|X"]
Jexp (tvn(¥(f) = ¥ (Pn)) + In(f) = In(f0)) dm(f)
Jexp (In(f) = In(f0)) dm(f) '

Now, let us set fg, = fu if u = n=3. We have:

Vi (U(fgn) —U(P) = \/ﬁ/w(l’)(fg,n(x) — fo(z))dz — Gp(®))
= <1,9>—Gn(¥) + An(g).

Furthermore,
In(fgn) —n(fo) = Rn(g)+ Gulg) — F0(292)7
with
Ratg) = np (10g (122 - Go(9) + 24
So,
R (U (Fam) = U(P)) + bn(fom) — bn(fo)
= R,(9) - FO(QQQ) 4 Gnlg — ) + tAn(g) +t < b, g >
— Ru(g — t0) + Gulg — ) — Fo((g - t1))?) N t2F02(1;2) o
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8 V. RIVOIRARD AND J. ROUSSEAU.
with .
Un = tAn(g) + Rn(g) - Rn(g - W)

Lemma 25.14 of [21] shows that under (2.1), R, (g) = o(1) and (2.4) yields
Ay (g) = o(1) for a fixed g. It is not enough however to derive a Bernstein-
Von Mises theorem. Nonetheless if we can choose a prior distribution w
adapted to the previous framework to obtain uniformly U,, = o(1),

Vi (¥(fgn) = U(f) + In(fon) = In(f) = o(1)

and the equalities

i eRn(g—tlﬁ)—an(g—tl/?)—Mdﬂ(f) _ Jexp (In(f) = ln(fo)) dr(f, 1 0p)
[ eRn(9)+Gn(g)—FO<292> dr(f) Jexp (In(f) = n(fo)) dr(f)
= 14 o(1),
then

L,(t) =exp <t2F02(¢2)> (14 o(1)).

In this case, our goal is reached. However, it is not obvious that a given prior
7 satisfies all these properties. In particular, in a nonparametric framework,
the property R, (g) = o(1) uniformly over a set whose posterior probability
goes to 1, is usually not satisfied. We thus consider an alternative approach
based on linear submodels.

2.2. Bernstein Von Mises under linear submodels. In this section we
study the case where linear local models are adapted to the prior. More
precisely, we assume that | log(fo)|eo < 00 so, for each density function f,
we define h such that for any =z,

h(z) = v/nlog (%) or equivalently f(z) = fo(x)exp (h\(};)> .
For the sake of clarity, we sometime write fj instead of f and hy instead of
h to underline the relationship between f and h. Note that in this context h
is not the score function since Fy(h) # 0. It would be equivalent to consider
local models of the form f = fo(1 + h/y/n), except that we would have to
impose constraints on h for f to be positive. We consider a continuous linear
form ¥ on Ly such that for any f € Lo, we consider ¢ such that (2.3) is
satisfied and we set for any =z,

(2.5) Ye(x) = h(x) = Fo(4).
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BERNSTEIN VON MISES THEOREM FOR FUNCTIONALS OF THE DENSITY 9

Note that 1. coincides with the influence function ¢ associated with the
tangent set {g € Lo(Fp); Fo(g) = 0}. Then we consider the following as-
sumptions.

(A1) The posterior distribution concentrates around fy. More precisely,
there exists u, = o(1) such that if A} ={feF: V(fo,f) <ui}
the posterior distribution of A satisfies

P {4}, X"} =1+ o, (1).

(A2) The posterior distribution of the subset A, C A} of densities such

that
3
20 |l (L) e+ s de = o)
satisfies
P™ (A, X"] = 1 + op, (1).
(A3) Let

Fo(h?)

Ry(h) = VAFo(h) + 2

and for any =z,

Fun@) = () + ¥ og (o e (fa - %)D |

We have
[ exp (—w + Gulhy = tr0) + Bu(hy = t1,0)) dr(f)
oo exp (=252 4 Gulhg) + Rulhy) ) dn()
2.7) =1+ op(1).

Before stating our main result, let us discuss these assumptions. Condition
(A1) concerns concentration rates of the posterior distribution and there
exists now a large literature on such results. See for instance [20] or [9] for
general results. The difficulty here comes from the use of V' instead of the
Hellinger or the L;-distance. However since u,, does not need to be optimal,
deriving rates in terms of V' from those in terms of the Hellinger distance is
often not a problem (see below).

Condition (A2) is a refinement of (A1) but can often be derived from (A1)
as illustrated below.
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10 V. RIVOIRARD AND J. ROUSSEAU.

The main difficulty comes from condition (A3). To prove it, we need to
be able to construct a transformation 7" such that T'f, = fj_,, , exists and
such that the prior is hardly modified by this transformation. In parametric
setups, continuity of the prior near the true value is enough to ensure that
the prior would hardly be modified by such a transform and this remains true
in semi-parametric setups where we can write the parameter as (6,n) where
0 is the parameter of interest and is finite dimensional. Indeed as shown
in [3] under certain conditions the transformations can be transferred to
transformations on 6 which is finite dimensional. Here this is more complex
since T is a transformation on f which is infinite dimensional so that a
condition of the form dn (T f) = dn(f)(1+ o(1)) does not necessarily make
sense. We study this aspect in more details in Section 3.

Now, we can state the main result of this section.

THEOREM 2.1.  Let fy be a density on F such that | log(fo)]c < 00 and
[] oo < 00. Assume that (A1), (A2) and (A3) are true. Then, if

_ i1 (X
- n

@(I%J ::f%(¢>
we have for any z, in probability with respect to Py,
PT{VR(U(f) = U(Pn)) < 2| X"} — @gy(yz)(2) — 0.

The proof of Theorem 2.1 is given in Section 4.1.

Sieve priors lead to interesting behaviours of the posterior distribution
as illustrated in the following section. Indeed they have a behaviour which
is half way between parametric and non parametric. We illustrate these
features in the following two sections.

3. Bernstein Von Mises theorem under infinite dimensional ex-
ponential families. In this section, we study a specific class of priors
based on infinite dimensional exponential families on the following class of
densities supported by [0, 1]:

1
F={r=z0: fis tperiodic. [ fle)de =1, log() € La(0. 1)

We assume that fy € F and we consider two types of orthonormal bases
defined in the following section, namely the Fourier and wavelet bases.
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BERNSTEIN VON MISES THEOREM FOR FUNCTIONALS OF THE DENSITY11

3.1. Orthonormal bases. Fourier bases constitute unconditional bases of
periodized Sobolev spaces W7 where v is the smoothness parameter. Our
results are also valid for a wide range of Besov spaces. In this case, we
consider wavelet bases which allow for the following expansions:

400201

fl@) = 0_100p1y(x) + > > 0k z € [0,1]

7=0 k=0

where 6_1p = fol f(xz)dz and 0, = fol f(x)¥,(x)dx. We recall that the
functions ¥;; are obtained by periodizing dilations and translations of a
mother wavelet ¥ that can be assumed to be supported by the compact set
[—A, A
; +00
Uip(x) =22 Y Wz —k+21), xec[0,1].
l=—00
If ¥ belongs to the Holder space C" and has r vanishing moments then the
wavelet basis constitutes an unconditional basis of the Besov space B] , for
1 <p,q <400 and max (0 = — 7> <y <. In this case, B] , is the set of

functions f of Ly[0, 1] such that | flly,p,g < 00 where

1
g L
’9_10‘+< +0023q % % (223 1|9]k|p)p>q if g < oo

1

”f”'y,p,q = L1 i 1
0_10] + sup,;>g {2 +273) (ZQ ! \ij|p) } if g =00

We refer the reader to [16] for a good review of wavelets and Besov spaces.
We just mention that Besov spaces include in particular Sobolev spaces
(WY = BJ,) and, when 7 is not an integer, Holder spaces (C7 = B, ).
To shorten notations, the orthonormal basis will be denoted (¢))en, where
¢o = 1jp,1) and

- for the Fourier basis, for A > 1,
dor_1(x) = V2sin(27Az),  dox(x) = V2 cos(2mAz).
- for the wavelet basis, if A = 2/ 4+ k, with j € Nand k € {0,...,2/ — 1},
A=Y

Now, the decomposition of each periodized function f € Ly[0, 1] on (¢x)ren
is written as follows:

.1‘) = Z 9,\(1))\(.%'), T € [O, 1],

AeN
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12 V. RIVOIRARD AND J. ROUSSEAU.

where 0y = fol f(z)px(z)dz. Recall that when the Fourier basis is used, f
lies in W7 for v > 0 if and only if | f|, < oo, where

2

1715 = {05+ > NP6}
AEN*

We respectively use |.|, and |.|p,q to define the radius of the balls of W7
and Bj , respectively. We now present the general result on posterior con-
centration rates associated with such prior models.

3.2. Posterior rates. Assume that fo € F and let @ be one of the or-
thonormal basis introduced in Section 3.1, then

log(/o) — [ loa(fofedz = 3 tuao.

AEN*

Set 8o = (Aox)en+ and define c(6g) = — [ log(fo(z))dz, we have

fo(x) = exp Z Oorda(x) — 0(00)) .

AEN*

We consider the following family of models: for any k& € N*, we set

k
Fr. = {fgzexp <29>\¢5>\—c(9)> : GGRk},

A=1

where

1 k
(3.1) ¢(8) = log (/0 exp (Z ewA(x)) dx) .
=1

So, we define a prior m on the set F = UpF; by defining a prior p on
N* and then, once k is chosen, we fix a prior m; on Fj. Such priors are
often considered in the Bayesian non parametric literature. See for instance
[19]. The special case of log-spline priors has been studied by [9] and [11],
whereas the prior considered by [22] is based on Legendre polynomials. For
the wavelet case, [11] considered the special case of the Haar basis.

Since one of the key conditions needed to obtain a Bernstein Von Mises
theorem is a concentration rate of the posterior distribution of order ¢, we
first give two general results on concentration rates of posterior distributions
based on the two different setups of orthonormal bases: the Fourier basis and
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BERNSTEIN VON MISES THEOREM FOR FUNCTIONALS OF THE DENSITY13

the wavelet basis. These results have their own interest since we obtain in
such contexts optimal adaptive rates of convergence. In a similar spirit [19]
considers infinite dimensional exponential families and derives minimax and
adaptive posterior concentration rates. Her work differs from the following
theorem in two main aspects. Firstly she restricts her attention to the case
of Sobolev spaces and Fourier basis, whereas we consider Besov spaces and
secondly she obtains adaptivity by putting a prior on the smoothness of
the Sobolev class whereas we obtain adaptivity by constructing a prior on
the size k of the parametric spaces, which to our opinion is a more natural
approach. Moreover [19] merely considers Gaussian priors. Also related to
this problem is the work of [11] who derives a general framework to obtain
adaptive posterior concentration rates and apply her results to the Haar
basis case. The limitation in her case, apart from the fact that she considers
the Haar basis and no other wavelet basis is that she constraints the 6;’s in
each k dimensional model to belong to a ball with fixed radius.
Now, we specify the conditions on the prior m:

DEFINITION 3.1.  Let 1 > 3> 1/2 be fized and let g be a continuous and
positive density on R bounded (up to a contant) by the function M,, (x) =
exp (—c|x|P*) for positive constants ¢, p. and assume that for all M > 0 there
exists a,b such that

gy +u) > aexp{=b(|y[’* + [u["*)}, Vy|<M, VYueR

The prior p on k satisfies one of the following conditions:

[Case (PH)| There exist two positive constants ¢1 and cy such that for
any k € N*,
(3.2) exp (—c1kL(k)) < p(k) < exp (—c2kL(k)),

where L is the function that can be either L(x) =1 or L(z) = log(z).
[Case (D)] If k = n!/(0+1)

p(k) = o (k).
Conditionally on k we define the prior on Fi by assuming that the prior
distribution m on 0 = (0\)1<x<k s given by
1Y
VT
where B < 1/24+p./2 if pr <2 and B < 1/2+ 1/p« if ps > 2.

~g, TN= 7'0)\72ﬁ i.1.d.
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14 V. RIVOIRARD AND J. ROUSSEAU.

Observe that we do not necessarily consider Gaussian priors since we
allow for densities g to have different tails. The prior on k can be non
random, which corresponds to the Dirac case (D). For the case (PH), L(z) =
log(x) corresponds typically to a Poisson prior on k and the case L(z) =
1 corresponds typically to hypergeometric priors. Now, we have the the
following result.

THEOREM 3.1.  Assume that |log(fo)|ec < 00 and that there exists v >

1/2 such that log(fo) € B} ,, withp > 2 and 1 < q < oo. Then,

logn

(3.3) P”{fe: h(fmfe)éL(n)ean”}=1+0P(1),

and

2

(34) P { oo 160 — 0] < (&™)

where in case (PH),

0l
logn\ zv+1
€n = €0 s
n

in case (D),
__B
€, = €glognn 2841, ify >

€n = eon_wwﬁ, ifvy< B
and €y s a constant large enough.
The proof of Theorem 3.1 is given in Section 4.2.
REMARK 1. If the density g only satisfies a tail condition of the form
g(x) < Cylx|™P, |z| large enough

with p. > 1, then, in case (PH), if v > 1 the rates defined by (3.3) and (3.4)
remain valid.

REMARK 2. Note that in the case (PH) the posterior concentration is,
up to a logn term, the minimax rate of convergence on the collection of
spaces with smoothness v > 1/2, whereas in the case (D) the minimax rate
1s achieved only when v = .
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BERNSTEIN VON MISES THEOREM FOR FUNCTIONALS OF THE DENSITY15

3.3. Bernstein Von Mises under these models. In this section, we apply
Theorem 2.1 of Section 2.2 to establish the following Bernstein Von Mises-
type result. For this purpose, let us expand the function 1. defined in (2.5)
on the basis (¢ )ren:

Y= herdr-
AEN
We denote Iy, . the projection operator on the vector space generated by

(éx)o<a<k for the scalar product < f,g >= Fy(fg) and Ay = b, — Ilg pt)e.
So we can write for any z € [0, 1],

k
gy k() = Prieo + Y Yrmerda(w),

A=1

since ¢g(x) = 1. We denote B, , the renormalized sequence of coefficients
that appear in the above sum:

Urie,
Bk = HTTLUC], Ve k) = (VIe)1<a<k-

Such quantities will play a key role in the sequel. Let [y > 0 be large enough

so that )
lone;, X"

L(n)

—eme2
<e cnen’

P [k>

for some positive ¢ > 0, where ¢, is the posterior concentration rate defined
in Theorem 3.1 and define I,, = lgne2/L(n). In the case (D) we set l,, = k.
In the following, in the case (D), whenever a statement concerns k < [, it
is to be understood as k = [,,.

We have the following result.

THEOREM 3.2. Let us assume that the prior is defined as in Definition
3.1 and for allt € R, 1 < k <, (ork} in case (D)), assume that

(log n)? ]
L(n) "

m(0)
7Tk(9 — tBan)

k
(3.5) =14o1), if 36— 60)° <
j=1

uniformly over {0; |0 — 6oz < 3(logn)%e,}. Assume also that

e ES ol — o [ d0B) 2
(3.6) sglp(l\zwcﬂ%llooﬂL knzwqﬁbﬂb) % .

2
Sl sk >k Ve,
Under assumptions of Theorem 3.1
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16 V. RIVOIRARD AND J. ROUSSEAU.

e forallz€eR

P™ [Vn(U(f) = U(Py) < 2|X"] = Y p(k|X™) Py, (2 + pin k) + 0B, (1),
k
(3.7)
where

— Vor = Fo(y2) — Fo(A).
— ping = —VNFo[(Ye — gy ke) 35 k11 00j05] + Gn(Ay)
e In the case (D), if v > (3,

(3.8)  PT[Vn(¥(f) = ¥(Pn)) < 2| X"] = Py (2) + opy (1),
where Vo = Fy(¢?).

The Bernstein-Von Mises property obtained in the case (D) is deduced by
proving relation (3.6) in this case. Indeed if v > [ there exists a > 0 such
that /ne2 < n~%, besides

I tejdile < 1+ tejdiloo
J>k J<k
< Clogn

and 355 g4 ng = 0(1/k), so that relation (3.6) is satisfied. Apart from this
argument the proof of Theorem 3.2 is given in Section 4.3. The first part
of Theorem 3.2 shows that the posterior distribution of /n(¥(f) — ¥(P,))
is asymptotically a mixture of Gaussian distributions with variances V —
FO(A%}) and mean values i, ;, with weight p(k|X™). To obtain an asymptotic
Gaussian distribution with mean zero and variance Vj it is necessary for p,, x
to be small whenever p(k|X"™) is not. The conditions given in the second part
of Theorem 3.2 ensure that this is the case, however they are not necessary
conditions. Nevertheless, in Section 3.4, we give a counter-example for which
the Bernstein-Von Mises property is not satisfied in the cases (PH) and (D)
with v < 3.

We now discuss condition (3.5) in three different examples. Note first that
Ay, CH{0;10 — 00)2 < 3(logn)%e,} with 6 € O, k < 1.

e Gaussian: If g is Gaussian then for all k¥ < [,, (or &}, in the case of a
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BERNSTEIN VON MISES THEOREM FOR FUNCTIONALS OF THE DENSITY17

type (D) prior) and all j < k, §; ~ N(0,78572) and for all § € A,NFy

k 2 -
il CRP i) o
n - n = "
Vn vn
c 2 (1.28—
< =10 6ol + (67 4 1)
= o(1).

This implies that uniformly over A,
7Tk(0 — Bn,k) = Wk(e)(l + 0(1))

e Laplace: If g is Laplace, g(z) oc e~ 1#],

() (3] < e

So that
kB
I (0 — By,) c i=13" e
’ [ i (0) ” - Vn
kB
< C%:o(l),

forall v >1/2,1> (> 1/2 in the cases (D) and (PH), and condition
(3.5) is satisfied.

e Student: In the Student case for ¢ we can use the calculations made
in the Gaussian case since

zkj log (1 + Oj%ej?) ~log (1 +CP(0; — te; /\/5)2)

j=1
k
=0 (Z 722105 — tipe; /) — 9?})
j=1
o(1)

Therefore in all these cases condition (3.5) is satisfied.

Interestingly Theorem 3.2 shows that parametric sieve models (increasing
sequence of models) have a behaviour which is a mix between parametric
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18 V. RIVOIRARD AND J. ROUSSEAU.

and nonparametric models. Indeed if the posterior distribution puts most of
its mass on k’s large enough the posterior distribution has a Bernstein Von
Mises property centered on the empirical (nonparametric MLE) estimator
with the correct variance whereas if it allows for k’s that are not large enough
(corresponding to Zle 72810, — twcj/\/ﬁ)2 - 9]2] or Ay not small enough)
then the posterior distribution is not asymptotically Gaussian with the right
centering, nor with the right variance. An extreme case corresponds to the
situation where F()(A?p) # o(1) under the posterior distribution, which is
equivalent to

ko, s.t.Ve>0 liminf,_ooPl [P7 [ko|X"] > €] > 0.

For each k > 0 fixed, if infypcpr K(fo, fo) > 0, since the model is reg-
ular, there exists ¢ > 0 such that P [P" [k|X"] > e "] — 1. Therefore,
FO(A?p) # o(1) under the posterior distribution if there exists ko such that
infycpro K (fo, fo) > 0, i.e. if there exists 6y € R0 such that fo = fg,. In that
case it can be proved that P [ko| X"] = 1+ op(1), see [4], and the Bernstein
Von Mises theorem to be expected is the parametric one, under the model
O, which is regular. However, even if Ay, = op(1), the posterior distri-
bution might not satisfy the non parametric Bernstein Von Mises property
with the correct centering. We illustrate in the following section this issue
in the special case of the cumulative distribution function.

3.4. An example: the cumulative distribution function. As a special case,
consider the functional on f to be the cumulative distribution function cal-
culated at a given point xg. As seen in Section 2, t.(x) = U<z, — Fo(xo).
We have F,,(z¢) = P,(¢) and recall that the variance of G, (¢) under P is
equal to Vo = Fy(xo)(1 — Fo(xp)).

As an illustration, consider the case of the Fourier basis. The case of
wavelet bases is dealt with in the same way. In other words for A > 1,

Baxn_1(x) = v/2sin(27Ax), dax(z) = V2 cos(2mAx) and ¢o(z) = 1.

COROLLARY 3.1. If the prior density g on the coefficients is Gaussian or
Laplace then if fo € Sy, with v > 3 and if the prior on k is the Dirac mass
on k then the posterior distribution of \/n(F(xo)—Fn(x0)) is asymptotically
Gaussian with mean 0 and variance Vj.

If the prior density g is Student and if v > 8 > 1, then the same result
remains valid.

This result is a direct application of Theorem 3.2.
Counter-ezample: In this remark we illustrate the fact that in the case of
a random k, which leads to an adaptive minimax rate of convergence for the
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BERNSTEIN VON MISES THEOREM FOR FUNCTIONALS OF THE DENSITY19

posterior distribution we might not have a Bernstein - Von Mises theorem.
Consider a density fp in the form

fo=-exp (Z 00 (u)du — 0(90))

Jj>ko

where kg is fixed but can be large and 0y 2; = 0 and

0o,2j—1 = sin(2mjz) /[ /% /log j log log j].

Then for J; > 3

1
o0 1
< d
- /j z log z(log log x)? o
_ 1
~ loglog J;’
and similarly
LN 1
53 7 = 53 727+ log j log log 52

i 1
< d
- /jl 227+ og x(log log )2 “

1 o
= |- 1 1
{ 272*7 log x(loglog )2 | 5, (1+o(1)

1
3.9 = 1+ o(1
(3.9) 2*;/1]127 log J; (log log J1)2( )

when J; — oo.

Consider a Poisson distribution on k with parameter v > 0 fixed then for
such fo, if k, = nt/ D (logn)~2/1 D (loglogn)~2/(27*1) and k; is large
enough

Pk < k1kn| X" =14 o(1).

We now study the mean terms p, ;; and we show that if & < kiky,, pn 1 #
o(1) nor can P™(k|X™) be neglected.
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20 V. RIVOIRARD AND J. ROUSSEAU.
First note that when k — oo G,,(Ay) = o(1)
fing = VnFy[($e — g, kbe)(lo — g, klo)]

= /nF, (i ¢cj¢j)(l0_ﬂfo,kl0)]

j=k+1

= \/ﬁ/ [(e = Mo kthe) (lo — o ilo)]
(3.10) v [[(fo =1 [0 = Ty atbe)lo = Ty o)
We first consider the first term of the right hand side of (3.10).

Pkl = \/5/ {( i ¢aj¢j)(lo—ﬂfo,klo)]

j=k+1

= vn Z Yeiboj

j=k+1

NS

1>k/2

sin?(2mxl)
(20 + 1)7+3/2log (21 + 1)Y/2log log (2] + 1)

and if x = 1/4 we have

1
(47 + 3)7+3/2(log 45 + 3)1/2log log(4j + 3)

Hnk1l = \/E Z

§>k/4—1/2
Lk—r—1/2

Ovil———m—m
\/ﬁ\/logk‘loglogk‘

C'vn L
> —_—_—.
Bkl = n\/logklog log k

Note that there exists ¢ > 0 such that for all £ < k,,

Hn k1 = cy/logn.

We now consider the second term of (3.10). Let M ;, denote the projection
on (oo, ..., pr) with respect to the scalar product < f,g >o= [ fg(u)du and
note that

<

o0
g, klo = Myglo + gy k] Y 0ob]
ekt
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BERNSTEIN VON MISES THEOREM FOR FUNCTIONALS OF THE DENSITY21

k2l = ¢n(h—U(§é%%Ww4%M4‘

| j=k+1

= |Wn[(fo—1) [( i Yejdi)(lo — Ml,kZO)”

| j=k+1

\/ﬁ/(fo —-1) [( i Vid;) (M klo — Hfo,klo)] l

+
j=kt1
. 2 1/2
< 2fo—1e | D ¥ > 65
=kt =kt
k,—q/—l/Q
< C\/ﬁ|f0_1’oo

vl1og kloglog k
By choosing ko large enough |fy — 1|oc can be made as small as need be so
that we finally obtain that there exists ¢ > 0 such that for all £ < k&,

Pk > c\/logn.

Note that in case (D) with v < /3, the same calculations lead to
B
Pz = €TV 1572 (log n)_% (loglogn)™*.

Thus in this case the posterior distribution is not asymptotically Gaussian
with mean F),(z) and variance Fy(x)(1 — Fy(x))/n. Whether it is asymp-
totically equivalent to a mixture of Gaussians is not clear. It would be a
consequence of the way the posterior distribution of k concentrates as n
goes to infinity. In the case (D), the posterior distribution is asymptotically
Gaussian with mean Fy,(x) — fin -

4. Proofs. In this section we prove Theorems 2.1, 3.1 and 3.2. In the
sequel, C' denotes a generic positive constant whose value is of no impor-
tance.

4.1. Proof of Theorem 2.1. Let Z, = /n(¥(f) — V(P,)). We have
(4.1) PT{A,| X"} =1+ op,(1).

So, it is enough to prove that conditionally on A, and X", the distribution
of Z,, converges to the distribution of a Gaussian variable whose variance is
Fo(10?). This will be established if for any ¢ € R,

(4.2) lim Ly (t) = exp (t;FO WD ,

n—-+00
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22 V. RIVOIRARD AND J. ROUSSEAU.

where L, (t) is the Laplace transform of Z,, conditionally on A, and X™:

Ln(t) = E7 [exp(tv/n(¥(f) = ¥(Pn)))|An, X"]
_ ET[exp(tv/n(¥(f) — W(Pn)))lla, (f)[X"]

P {A,| X"}
~ Ja, exp /n(B(f) = W(Fn)) + In(f) = In(fo)) dr(f)
Ja, xp (n(f) = In(fo)) dm(f) '
We set for any =z,
(4.3) B (z) = /01(1 — ) M@V gy,
S0, ,
exp (h\(/%)) =1+ h\(;l) + h T(lx)Bh,n(ﬂU);

which implies that

£(2) = fola) = folw) ("(};2 4 1) Bh,nm)

and

WP = (R = G0 + i ([ 67— folw)ie)

= —tGn(e) + tFo(htbe) + \/tﬁ Fo(h®Bpnte)-
Since )
W)~ o) = =0 ) + Ry
we have
L) = Ja, exp (Gn(h — t1pe) + tEo(hibe) + = Fo(h* Buntbe) — %hz) + Rn(h)) dm(f)

Ja, exp (=25 4 Gu(h) + Ry (h))dw(f)
Ja, exp (— U0 l) 4 G (h— ) + BB — 1) + Un ) d(f)
S, D (=295 4 G (h) + Ru(h)) dr(f)

where straightforward computations show that

I

— 2 — —
Un,h = tFO(h(l/}c - wt,n)) + %Fo(’t/ff,n) + Rn(h) - RN(h - twt,n) + \/tﬁFO(hQBhJﬂ%)

— tFy(hbe) + /R Fo (fum) + jﬁFo<hZBh,nwc>
= tFy(he) + nlog (Fo [eXp (\hf i%)D T \/tﬁFo (hZBhwc) .
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BERNSTEIN VON MISES THEOREM FOR FUNCTIONALS OF THE DENSITY23
Now, let us study each term of the last expression. We have

ol = Al (%)

-1 tF{fﬁw%tZF{fwﬂﬂLO( )
= \/ﬁoe c 2n0€ c n .

—i—O(n_%)

So,

Fy [hwc] Fy[h?Bpnte] . Fo[h?] +Fo[h2Bh7n¢§]
vn n ’ Vn n '

Note that, on A, we have Fy(h?) = 0(nu?) and Fy (h®By,,) = o(n). There-
fore, uniformly on A,,

Fo Jexo (5= - )| = 1t<Fo[hwc1+Fo[h2Bh,n¢c1>

By [e¥7u| - By [e¥ 2| = Fu [u2)+

vnoo/n v\ vn n
+i <F0 {wz] n Fo\[%ﬁ?] N Fo[hzih,n%/)g]) ‘o (n_1>
2

= 1 lFo[hwc] + Tl %’”M - Oéwg) +o(1)

= 1+4o (n‘l/z)
and

2 2

nlog (Fo {exp (;ﬁ - %)D _ [Fo(hl/)c) | Bl %,nwc} B tFoéwc) +o(1).
Finally,

Uni = ﬁFo [v2] +o(1)

and up to a multiplicative factor equal to 1+ o(1),

2 {wﬂ) Ja, exp <_Fo((h+@tn)2) + Gn(h =t ) + Ry (h — wjtm)) dr(f)
‘ L4, exp (=202 4 Gy (h) + Ra(h)) dr(f) '

Finally (A3) implies (4.2) and the theorem is proved.

4.2. Proof of Theorem 3.1. We first give a preliminary lemma which will
be used extensively in the sequel.
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24 V. RIVOIRARD AND J. ROUSSEAU.

4.2.1. Preliminary lemma. Let us first state the following lemma.

LEMMA 4.1. Set K,, ={1,2,...,k,} with k, € N*. Assume either of the
following two cases:

- v>0, p=q=2 when @ is the Fourier basis
-0<y<r,2<p< o0, 1< q< o0 when @ is the wavelet basis with r
vanishing moments.

Then the following results hold.

- There exists a constant c1¢ depending only on ® such that for any

0= (9)\))\ ERkn,

(4.4) > 0aba|| < croVEn|O]e,.

AeK ),

[e.e]

- If log(fo) € B} ,(R), then there exists ca depending on v only such
that

(4.5) D 65y < cay RPE,.
K

- If log(fo) € B} ,(R) with v > %, then there exists c3 o~ depending on
@ and v only such that:

> Ooaga

AEKn

1
37

(46) < C3,8,y R ki

[e.9]

PROOF. Let us first consider the Fourier basis. We have:

> 0o < > 160a] % [oaleo
AeK, ~ AeK,
< ”¢”aa 2{: IGAL
K,

which proves (4.4). Inequality (4.5) follows from the definition of By , = W7.
To prove (4.6), we use the following inequality: for any x,

> boada(x)

K,

IN

[¢loe > 100l

K,

} }
< oleo ( > W%%) (Z IAI_”) '
MK, AEKn
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BERNSTEIN VON MISES THEOREM FOR FUNCTIONALS OF THE DENSITY25

Now, we consider the wavelet basis. Without loss of generality, we assume
that logy(ky, + 1) € N*. We have for any z,

< (Z 9?) (Z qbi(w))
ANeKy, AeKy

= HHH@( > Z_:‘I’fk(w)) -

0<j<logy(kn) k=0

> ga(z)

AeKy

NI

Since ¥(x) =0 for = ¢ [—A, A],
card {k € {0,...,2/ =1} : Wy (2) # 0} <3(24+1),

(see [15], p. 282 or [16], p. 112). So, there exists cy depending only on ¥
such that

1
2

> Oaa(z)| < H@H@( > 3<2A+1>2jcfp) ,

AEK‘n OSjSIOgQ(kn)

which proves (4.4). For the second point, we just use the inclusion B} ,(R) C
B; (R) and
271 R2
2 _ 2 2 —2j -2
D= Y. D <R Y 2 < kT
AEKn j>logy(kn) k=0 j>logy(kn)

Finally, for the last point, we have for any x:

27 -1 3 251 3
D boaga(z)| < > > 65 szk(x))
ANKy, j>logy(kn) \ k=0 k=0
< Cki,
where C' < R(3(2A + 1))zcy (1 — 2277)~1L, 0

4.2.2.  Proof of Theorem 3.1. Denote for any n,

Bu(en)={f€F: K(fo.f) <&, V(fo,f) < e},

To prove Theorem 3.1, we use the following version of the theorem on pos-
terior convergence rates. Its proof is not given, but it is a slight modification
of Theorem 2.4 of [9].
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26 V. RIVOIRARD AND J. ROUSSEAU.

THEOREM 4.1. Let fy be the true density. We assume that there exists
a constant ¢ such that for any n, there exists F; C F and a prior m on F
satisfying the following conditions:

() 2
PT {f‘;LkC} _ O(ef(c+2)nen)'
- (B) For any j € N*, let
Sng={f€Fy: Jjen <h(fo,f) < (G+Den},

and H, j the Hellinger metric entropy of Sy j. There exists Jo, (that
may depend on n) such that for all j > Jop,

HnJ < (K - 1)nj26?m

where K 1s an absolute constant.

- (C) Let
Bu(en) ={f € F: K(fo,f) <ep V(fo.f) < e}
Then, ,
P™{By(€n)} > e n.
We have:

P7 {f : h(f(]:f) < JO,nEn’Xn} =1+ Op(l)

To prove Theorem 3.1 it is thus enough to prove that conditions (A), (B)
and (C) of the previous result are satisfied. We consider (A,,), the increasing
sequence of subsets of N* defined by A,, = {1,2,...,[,} with [, € N*. For
any n, we set:

Fp = {f@ €F,: fo=exp ( > 0xoa —0(9)) 10, < wn},

AEA,
with
wy, = exp(won”(logn)?), p>0
Recall that
__ 0
- €, = ¢on 2+ (logn) 2+ in case (PH)

__B_
- €, = €on 25F1 in case (D).

Define I,, by
lone2
4. I, = —2
o "7 L)
where [y is some positive constant. When ~, 5 > %, we have
(4.8) lne2 — 0.
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Proof of condition (A):. We have, since >, 7 < 00

m{F ) < Zp(k)HP’“{Z o >wi}

k>ln k<l
< Cexp(— )+ Z P { }
k<l
T | k?|p wg
< Cexp( lone,, )—l—k;]? {exp( > exp o

< Cexp (—lone2) +Cl, exp( j)
< Cexp (—zonei) + cexp( )
for any positive H > 0. Hence,
™ {F} < Cexp (~(lo — ey

and Condition (A) is proved.

Proof of condition (B):. We apply Lemma 4.1 with K, = A,, and k,, = [,,.
For this purpose, we show that the Hellinger distance between two functions
of F, is related to the f3-distance of the associated coefficients. So, let us
consider fy and fp belonging to F,; with

fo = exp ( > Oaga - 0(9)) , for=exp ( Y 0o - 0(9/)) :

AEA, AEA,
1/2

Let us assume that 0" — 0], < c1epln '° with ¢ a positive constant, then

using (4.4) and (4.8),

< CVI |0 — 00y < CVIL|0 — 8]0, < Cerey, — 0

o0

lc(8) —c(8')] = |log (/01 fo(z) exp ( Z (0 — (9))(%(1’))) |

AEA,

3" (65— 0))oa

AEA,

and

< |log (1 +C| Z (05 — 9A)¢A”00)
AEA,
< Cl Y () — 03l

AEA,
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28 V. RIVOIRARD AND J. ROUSSEAU.

Then,
1 2
W2 (fo, for) = /fe (eXp ( > (05— 0\)oa(x) + 3 (c(0) —c(ef))) - 1) dz
AEA,
1 2
< /0 fo(z) (exp <0|| gA:n(@& —HA)MOO) - 1) dx
< O Y (0a— )l

)\GAT},
(4.9 < Cl|0 07, <Ci2|o - 0|,

The next lemma establishes a converse inequality.

LEMMA 4.2.  There exists a constant ¢ < 1/2 depending on vy, 3,R and
@ such that if

(j +1)2%€1, < ¢ x min (co, (1-— 6_1)2)
then for fg € Sy j,

1
160 — 0]7, < @(10gn)2h2(f0,f9)-

WHEPRE:
PRrROOF. Using Theorem 5 of [23], with M; = (fo IAG) dw) , if

R (fo, fo) < (1 —e )2,

we have

(4.10)  V(fo,fo) < 5h2(fo, fo) (|log M| — log(h(fo, fs))*.
But

My, = / fo(z eXp( (Box — Ox)oa(z) + D foroa(x —0(90)+C(9)) dx

AeA, AgAn
1_
< [ ot exp (Il — Ole, + REET) = l60) +(6)) d,
by using (4.4) and (4.6). Furthermore,
(4.11) c(60) = c(0)] < C[VInlo — Oley + R 17 ).
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BERNSTEIN VON MISES THEOREM FOR FUNCTIONALS OF THE DENSITY29

So,
1
[log My| < C[\/1n|00 — Ole, + R 127].
Finally, since fy € S, j for j > 1,

. 2
Vo fs) < 5h2(fos fo) (cmneo—eummﬁ ”1—1og<en>)
< Ch2(fo, fo) (Ll — O, + (logn)?).

Since fo(x) > ¢p for any x and fol da(x)dz =0 for any A € A, we have
(4.12) V(fo, fo) = colbo— 07,
Combining (4.9) and (4.12), we conclude that

100 — 017, < Cllogn)*h*(fo, fo),

if h2(fo, fo)ln < (§ + 1)%€21, < 1/(2C). Lemma 4.2 is proved by taking
c = (max(C,1))7t/2. O

Now, under assumptions of Lemma 4.2, using (4.9), we obtain
H, ; <log ((C’ln(j +1)log n)l") <l,log (Cegl\/alog n) .
Then, since I,,L(n) = lpne?, we have
H,; <(K - 1)nj2e?

as soon as

where jp is a constant and condition (B) is satisfied for such j’s. Now, let j
be such that

(4.13) c(y + I)Qezln > min <C20, %(1 — 6_1)2) .

In this case, since for fy € F,

H9”€1 < \/EHHHZQ < \/Ewna

for n large enough,
In
H, ; <log ((Clnwnegl) ) < 21y, log(wy,) < 2wol,n”(logn)9.

Then, using (4.13), condition (B) is satisfied if wy and ¢ are small enough
and if
12(logn)? < n'™*,

which is true for n large enough, since v, 3 > %, for p small enough.
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30 V. RIVOIRARD AND J. ROUSSEAU.

Proof of condition (C). Let k, € N, going to oo and K,, = {1,...,k,}, we
assume that 6 belongs to A(u,) where
(4.14)

A(up) =<60: 6y =0 for every A\ ¢ K,, and Z (Box — 0))? < ui} ,
AeK,

where u,, goes to 0 such that

(4.15) VEntin — 0.
We define for any A € A,

Ba(fo) = /01 ox(x) fo(z)dz.

Let us introduce the following notations:

fok,, = exp ( > boada(z) — 6(90Kn)> , for, = exp ( > boada(z) — C(%Kn)) -

AeKy, ey
We have
K(fo, fox,) = Z OorBxr(fo) + c(bok, ) — c(6o)
MK,
1
= BoxBx(fo) + log fola)e™ Lagin 0003 gy
Ag:Kn oxOA(Jo (/o 0 )

Using inequality (4.6) of Lemma 4.1 and a Taylor expansion of the function
e’ we obtain

1
/ fola)e Doagn 00202 (@) g,
0

2
= 1- > 90AﬁA(f0)+;/01 fo(z) ( > 90A¢>A(l’)) dz x (1+o0(1)).

AEKn MKy,
We have

=

> 0oaBx(fo)

K,

< lfoll2 ( > 93>\)

K,

and

2
/01 fo(z) ( > 90A¢,\($)) dr < folls D 65

AEKn MK,
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So,
1 2
log (/0 fo(x)efz”“(" HOAm(x)dw) = = > boaBa(fo) — = ( >~ oaBr(fo )
MK, MKy
1 /1 ’
5 | foa) [ 3 tononta) | oo 3 6]
0 ALK, ALK,
So, finally,
. 2 2
K(fo, forx,) = 5/ fo(z) ( > €0A¢A(37)) dr — = ( > BoaBr(fo ) +o0 ( > 98,\)
0 ALK, A, ALK,

This implies that for n large enough,
K(fo, forc,) < I follee Y 081 < Dk
MK,
Now, if fy € Fp,, with fy = exp (Xycx, Ordr — c(f)) , we have
K(fo,fo) = K(fo.fox,)+ > (Box —0x)Bxr(fo) — c(box,) + c(6)
XeK,
Dk, + 3 (Box — 02)6r(fo) — c(box,) + ¢(6).

AEKp

IN

We set for any z,

T(x)= > (6x— 0ox) ().

AeKn,
Using (4.4),
1T < CVkpu, — 0.
So,

/1 fox, (x) exp(T(x))dx = 1—&—/1 fox,, (:U)T(ar:)da:—i—/1 fox, (2)T*(z)v(n, x)dz,
0 0 0

where v is a bounded function. Since log(1 + u) < u for any u > —1, for
0 € A(uy,) and n large enough,

log (/ fox, (x x)d:(})

< /0 fore, (o)) + | " fore, (2)T(@)o(n, z)da

< Y (0 = 00x)Ba(fox,) + Dk,
NERn

| = cbox,) +¢(0)] =
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32 V. RIVOIRARD AND J. ROUSSEAU.
So,

K(fo.fo) < Dk, + > (Box — 05) (Br(fo) — Br(fox,))

ANeKy,
< Dk 4l fo — for,|l2

Using (4.6), we have

2
Ifo— for.ll3 < lfoll% / (1—6XP( > boada(z —090Kn)+0(90))) de.

ALK,
and
lc(box,) —c(00)] < | D Oordaloe-
A K
Finally,
1_
Ifo = forcull2 < DI Y Ooadaloe < Dk
AEK,
and
1_
(4.16) K(fo, fo) < Dk;*' 4+ Dunk2 ™.

We now bound V' (fo, fg). For this purpose, we refine the control of |¢(fyxk,,) — ¢(6o)]:

c(bok,,) — c(bo)] = |log (/01 fo(z) exp (- > 90,\45,\(95)) dl‘) ‘

K,

2
1
= log/o fo@) | 1= Y Ooaga(z) + w(n, z) (Z Oorga(w ) dr|,

MKy ALK,

where w is a bounded function. So,

IN

|c(foxc,,) — c(6o)]

2
D > |60x5x(fo) H’/ (Z Oorda(x ) dz

MKy AEKr

1
2
D ( > %) < Dk,7.

K,

IN
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In addition,

le(Bor,) — c(0)] < D 105 — boal 18 (fox, )| + D,
ANeK,
< un (| fo = fox, |2 + | fol2) + Dkyus,
< Duy, + Dkyu?
Finally,
(4.17) V(fo, fo) < wup+ Dk,* + Dkyus.

Now, let us consider the case (PH). We take k,, and u,, such that

_1
(4.18) kTZQ'Y < k‘oﬁ% and u, = ugenkn 2,

where ko and ug are constants depending on | fy|oo, 7, R and @. If ky and
uo are small enough, then, by using (4.16) and (4.17),

K(f07 f@) < 6% and V(fo, f@) < e%'
So, Condition (C) is satisfied if

P {A(un)} > e,
where, A(uy) is defined in (4.14). We have:
P™{A(un)} > P7¢0: Z (0 — 0())\)2 < ufl x exp (—c1knL(ky)}
Ky,
The prior on 8 implies that

P = ]P”{O: Z(Qx—eoA)Qﬁui}

AeK,

AV
=
5]

0: Y |V PGyt < un}

{ NEKR
_1
<7 “Up,

1 } H g(xy)dzy

2
STo “Un f ek,

_1
H g (y,\ + 7 2/\590)\> dy)\.
AEKy,

-1
0: > )\_B‘G)\—TO N
AEK,

{
> /"'/1{ZA6KnAﬂyAISTo%“”}

_1
TA—T, 2 M\B0x
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34 V. RIVOIRARD AND J. ROUSSEAU.

_1
o 2)\P0ps| < oo and since

Using (4.5), when v > 3, we have sup,¢ g,

_1
(4.19) sup {7’0 ngun} < 0
n

using assumptions on the prior, there exists a constant D3 such that

P > D "//1 B ]
1 3 {ZAeKn)‘_ﬂ\yAISTO %un} H Yx

K,

> D3n/.../1 1 dy)\
{ZAEKnlyMSTO 2un} )\g{n
(4.20) > exp (—Dykylogn),

where Dy is a constant. When v < (3, since there exists a,b > 0 such that
V|y| < M for some positive M

9y +u) = aexp(—dluf"")

using the above calculations we obtain if p* < 2

P > Dlgf" exp{—C Z )\p*BIHO,\!p*}Z/.../l{Z iy |<T_%u } H dyx
AEKn AEKn AM=To - Bn fAeK,
> exp {—Ck,lfp*/ﬂﬂ*'q exp (— D4k, logn)
> exp(—(Ds+ 1)kylogn) if f<1/2+p"/2
and if ¢t > 2
P > Ditexp{—C Y M7|6o\|""} exp (=Daky logn)
AeKn,

> exp(—(Dsg+ 1)kplogn) i f<1/2+1/p*
So, Condition (C) is established as soon as Dk, logn < cne2. Using
(4.18), this can be satisfied if and only if we take k,, such that

2
cne;,

< v
"= Dylogn’

1

1
(4.21) ko Ten” <k

which is possible if and only if ¢ is large enough. In particular, this implies

that -
{ (log n> EEEESY }
sSup\ €p | — < 0.
n n

Note that when k,, satisfies (4.21), Conditions (4.15) and (4.19) are satisfied
as well.
Similar computations show the result for the case (D).
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4.3. Proof of Theorem 3.2. Our goal is to prove conditions (Al), (A2)
and (A3) of Section 2.2 to apply Theorem 2.1. Let ¢, be the posterior con-
centration rate as obtained in Theorem 3.1.

Let us consider f = fy € Fy for 1 < k < l,,, where l,, = lgne2/L(n) in the
case of type (PH) priors and [,, = &} in the case of type (D) priors. First,
using the same upper bound as in the proof of Lemma 4.2 we have

(4.22) V(fo, f) < 2C(logn)?é
as soon as h(fo, f) < €,. Thus, using (3.4), we have

P {A} 1X"} =1+ 0, (1)

with u, = ug(logn)?e2, for a constant ug large enough. Note that we can
restrict ourselves to A}, N (Ug<y, Fi), since P™ [(Ug<y, Fi)€] < e~ for any
¢ > 0 by choosing [y large enough, see the proof of Theorem 3.1.

To establish (A2), we observe that

[log fo —log folee < | Y (Box = 0x)daloc + [(8) — c(60)
AEN*

C (Vo = ol + 1) = 0(0),

by using Lemma 4.1 and (4.11). So, (A2) is implied by (A1l). Now, let us
establish (A3). Denote A,, the set defined in assumption (A2) and restricted
to (Ug<i, Fk). For any t, we study the term

_tab 2 — _
Ja, exp (— ) 4 G (hy = thy) + Ry — tinn) ) dr(f)

IN

I =
n Fo(h2)
a, 050 (=252 + Gulhg) + ) ) dn()
s )2 _ _
B S1<k<t, P(K) fAnm}‘k exp <_M + Gn(hy —trn) + Rn(hy — td’t,n)) dmi(f)
B (h ) ‘
Yr<k<t, P(K) [a, 07, €XP ( + Gp(hy) + Ry (hf)) dri(f)
If we set i
tHfo,kwc th,C,O o L
bkt = NG —\/ﬁgﬂmcw,\,
we have using (4.4) and since k < I,,:
tVk
an,k,t ”OO < \/7\/» ” fo,quz)c - ¢H,c,0”f0
< 2y = Ofe).
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36 V. RIVOIRARD AND J. ROUSSEAU.

for cg a constant. Recall that for fy € Fy,

ho = Vn ( D (0x = Ooa)pa — c(0) + c(@o)) and By = YiLe k]

AEN vn
so, for ¢/ = 0 — tB,, j,, with H,, = (hg — tp.)//n and Ay = e — g, ke
ho = hg — /byt + vVn(c(d) — c(0 —tBny))
= hg — tep + (e — gy k3e) — v/nlog [Fo(e::;f)/\/ﬁ)}

= h@ - t&t,n + tAzp - Ana

with

F()(@H")

Hy+tAy /1
A, = \/ﬁlog [FO(e )]

Now, (4.11) implies |hg|oo/v/n < VEen, = o(1) and since F(Ai) = 0(1),
[Agloo = O(VITn) = O(Vnen),
2A2 A
Ho+tAy /vy H, tAy | 1Ay 2\ Ao

F()(e ¥ ) = FO (6 (1 + \/ﬁ + m )) +0 (F(Aw) n3/2

= (e (1480 L EO0)) g ()

= Iy (6 (1 + \/'ﬁ + on +0 "

= F (eH") + iF (efn Ay) + ﬁFo(eH”A2) +o <1)

0 n ! LD ™ v n)’

NG

Also, for any function v satisfying Fy(|v|) < oo

(4.23) Fy(e™v) = R <veh9/‘/ﬁ) — \/tﬁFo (vehQ/\/ﬁwc) +0 (i) :

Note that in the case v = 1 since Fy(e®/ ‘/ﬁ) = 1 we can be more precise
and obtain

Fy(efny = 1—\/%1?0 (") + 0(1/m)

_ 1 _ tholhete) LA AN G
(4.24) =1 - +o<\/ﬁ+n>_1+ (ﬁ>
Moreover
(4.25) Fy (ve/V) = Fy(v) + o(Fo(Ju])).
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Therefore using (4.23) with v = Afb leads to

(et Ayt RyfeAy) | F

1
: S (1)
Fy(efln) vno Fy(efn) o 0(Ay) +o n)’
and using (4.23) with v = Ay, together with (4.24) and using (4.25)

t H. ot N 12 1
%Fo(e Aw) = %FO (Awe 0 ) — gFO (Awwc) +o0 E .
Also
_ 1 1
F (ehe/fAd}) = ﬁ |:F0 (h@Ad,) + ﬁF{) (thhO:"Aw)} s

where By, ,, is defined by (4.3). Since Fy(e"/V™.) = Fy(te) + o(1) = o(1),
we thus obtain using the fact that Fy(ef") =1+ o0 (ﬁ) and Fy(1:.Ay) =
Fo(AZ)

Fy(eHntthu/vn) B ¢ ho/ /i 2 ) 1
Ry © Lt () R (a) +o(z)
and finally,
Fy(eHntthe /vy
A, = 1
\/ﬁ og [ Fo(eH”)
=Ry (MIVTA) — Sy (2) 4o (L)
2/n ¥ vn
¢ Fo (h3BpynA t
(426) = n[FO (ho ) + 8 9\/’;7;)77Z J _§F0(A12p) + o(n~Y?).
Moreover

Fo (B3 BrymAy) = %Fo (r3Ay) +o (B (h3lAy]))

and by using (4.22),

Vo T I
< Ol Ayllsv/n (logn)? €.

To bound |Ay|se, we write
Ay =ty — gy (1),
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38 V. RIVOIRARD AND J. ROUSSEAU.

where 14, is a linear function of the ¢;’s for j > k+ 1. Then by using (4.4),

[Aploo < [¥4kloo + Mg 84 k]oo
< |snloo + OVETLy gt o
< [rloo + CVEIkl g,

C\/ ‘fO”oo\f

A

< Yrrloo + [ ]2-

Under the assumption that

1
:lglg(”l/urk”oo + VE[¢1k]2) =0 (W) 7

we obtain that

t t _
A, = % Fy (thw) - 2F0(Ai)] + O(TL 1/2).
Note that A, = o(1). Finally,
Fo(h%,
Ru(hy) = ViFy(hy) + 200)
= Ru(hg — tdry) — Vnln — —Fo(AL) + tFy(hgAy) — AnFy(hg) + o(1)

= Ry(hg — thrn) — AnFy(hy) + o(1)

Recall that hgr = hg — tg@t,n +tAy — Ay, Ay =o0(1) and Fy(Ay) = 0. Note
also that

bin (@) = be(x) + \éﬁ log (Fo(e"™™)) = ve(x) + 0(1)

so that FO(Aw@Zt,n) = F()(Ai) + 0(1) and

Fh2/ F h_in2 F A_AWQ 7
olhy) __Lollho W) _ Bl Z 801D _ 1, - 5,080 — A)
e )2 2Fy (A2
- Dl ) ! 0; Y) By(hory) + AnFo(he) + o(1)
Furthermore,

Gn(hgl) = Gn(hg — t?,/_Jt,n) + tG”(Adﬂ)'

We set
ping = —Fo(hoAy) + Gn(Ay)
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and we finally obtain,

_FO((ZM + Gn(he) + Ru(he)

F — ta) n 2 7 /)
S 0((ho 2t¢t’ )) + Ry(hg — tin) + Gn(hg — then) + thin i
t2Fy(A2

Note that by orthogonality Fo(hgAy) = /nEy[(Ye — I, ktc) > ikt ojd5]
so that fi,, 1 does not depend on 6 and setting T3,0 = ¢ — tB,, ;, for all 0, we
can write

—t 2 — _
Janer, e (=) 4 Gy — ) + Ra(hy — tihyn) ) dri(f)

Jp = T

a0 (=252 4 Gallg) + Rlhg)) i)
0( sz9> +Gn(thg)+Rn(th9)d7rk(9)

W2
A G (o) + R (ha) g (9)

7t2FO(A121])
= e

;e
eft“n,k: f@kﬁAn (1 + On<1)),

Jounar, €

where A, = {6 : fy € A,}. Moreover, for k < l,,, |Bp |2 < C/y/n, where
C' depends on ¢y and [¢¢|oo- So, if we set

Ti(A))={0€OrNA: 0+tB,r€ AL}
for all 0 € Ty (A)),

2c2
16— B0l < 2008 n)'e2 + =~ < 262 (logn)*(1+ on(1))

since ne2 — +oo. For all § € O, N A’ such that [0 — Oy < (logn)*en
n n 2
0+tB, € A;L N O

for n large enough and we can write
/ / (log n)2€n ’ ’ 2
=0 €A 10— bolle, < S Ay = {0 A : |00l < 3(log )’ |

then

(4.27) O, N A;z,l C Tk(A;l) C 0N A;l72
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40 V. RIVOIRARD AND J. ROUSSEAU.

and under assumption (3.5),

2
4G (ho)+Rn(ho) g, (9)

Fo(a2) ;e
—t2% _t,u*n,k f@kﬂAn72

e (1+on(1)),

Je < e Fo(h2)
3 +Gn(ho)+Bn(ho) g, (0)

Jounar €

Fo(h})
——5%+Gn(hg)+Rn(hg)
o2, Joun, € i 0)

J, > etz et (14 0,(1)).

2
F0(2h9)+Gn(h9)+Rn(h0)dﬂ.k(0)

Joynar €
Therefore,

Gu(t) = Elexp(tvn((f) = ¥(Pp)))la, ()1 X"]

2rowd) | &
= et % [Zp(k|X”)Jk

k=1

(14 0n(1))

(14 0n(1))

IN

> p(k|X™) gy, zoe ke 2

ln 2y_ 2
Fo($e™)=Fo(AY)
k=1

and

2y In (a2)
Calt) > etQL(fﬁ)Zp(k‘X”)e*t#n,keftQF L
k=1

m | AL X" k]

Besides under the above conditions on the prior, with probability converging
to 1,
m [ (4 )X ] < e,

for some positive constant ¢ > 0. Then uniformly over k such that ©5; N
A, #0
7 [(A5 )X K] e = o(1)

l 2

2 Fo(we?) _ _pfoay)

Ca(t) > €772 Zp(k|X")]l9kmAn¢@e tnk e 37 (1 + 0,(1)).
k=1

This proves that the posterior distribution of /n(¥(f) — W(P,)) is asymp-
totically equal to a mixture of Gaussian distributions with variances Vo =
Fo(vpe?) — FO(Ai}), means —fi, j, and weights p(k|X™).
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BERNSTEIN VON MISES THEOREM FOR FUNCTIONALS OF THE DENSITY41
Now if |Ay| = o(1) (k — +00) Gn(Ay) = op(1l) and with probability
converging to 1,
1/2 1/2

+oo +0o0o
< Jfolsevn Z ¢§,j Z 98;‘ + on(1).

|:U’n,k

Thus if & =k,

sl = o (V) T72) + 0n(1) = 0n(1)
and Equality (3.8) is proved.
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