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In this paper, we study the asymptotic posterior distribution of
linear functionals of the density. In particular, we give general condi-
tions to obtain a semiparametric version of the Bernstein-Von Mises
theorem. We then apply this general result to nonparametric priors
based on infinite dimensional exponential families. As a byproduct,
we also derive adaptive nonparametric rates of concentration of the
posterior distributions under these families of priors on the class of
Sobolev and Besov spaces.

1. Introduction. The Bernstein-Von Mises property, in Bayesian anal-
ysis, concerns the asymptotic form of the posterior distribution of a quantity
of interest, and more specifically it corresponds to the asymptotic normality
of the posterior distribution centered at some kind of maximum likelihood
estimator with variance being equal to the asymptotic frequentist variance
of the centering point. Such results are well know in parametric frameworks,
see for instance [14] where general conditions are given. This is an impor-
tant property for both practical and theoretical reasons. In particular the
asymptotic normality of the posterior distributions allows us to construct
approximate credible regions and the duality between the behaviour of the
posterior distribution and the frequentist distribution of the asymptotic cen-
tering point of the posterior implies that credible regions will have also good
frequentist properties. These results are given in many Bayesian textbooks
see for instance [17] or [1].

In a frequentist perspective the Bernstein-Von Mises property enables the
construction of confidence regions since under this property a Bayesian credi-

∗This work has been partially supported by the ANR-SP Bayes grant
AMS 2000 subject classifications: Primary 62G20, 62F15
Keywords and phrases: Bayesian nonparametric, Bernstein Von Mises, rates of conver-

gence, adaptive estimation, wavelet

1
imsart-aos ver. 2007/12/10 file: bvm_final.tex date: July 21, 2009



2 V. RIVOIRARD AND J. ROUSSEAU.

ble region will be asymptotically a frequentist confidence region as well. This
is even more important in complex models, since in such models the con-
struction of confidence regions can be difficult whereas, the Markov Chain
Monte Carlo algorithms usually make the construction of a Bayesian credi-
ble region feasible. However the more complex the model the harder it is to
derive Bernstein - Von Mises theorems. In infinite dimensional setups, the
mechanisms are even more complex.

Semi-parametric and non parametric models are widely popular both from
a theoretical and practical perspective and have been used by frequentists
as well as Bayesians although their theoretical asymptotic properties have
been mainly studied in the frequentist literature. The use of Bayesian non
parametric or semi-parametric approaches is more recent and has been made
possible mainly by the development of algorithms such as Markov Chain
Monte-Carlo algorithms but has grown rapidly over the past decade.

However, there is still little work on asymptotic properties of Bayesian
procedures in semi-parametric models or even in nonparametric models.
Most of existing works on the asymptotic posterior distributions deal with
consistency or rates of concentration of the posterior. In other words it con-
sists in controlling objects in the form P

π [Un|Xn] where P
π[.|Xn] denotes

the posterior distribution given a n vector of observationsXn and Un de-
notes either a fixed neighbourhood (consistency) or a sequence of shrinking
neighbourhoods (rates of concentration). As remarked by [6] consistency is
an important condition since it is not possible to construct subjective prior
in a nonparametric framework. Obtaining concentration rates of the poste-
rior helps in understanding the impact of the choice of a specific prior and
allows for a comparison between priors to some extent. However, to obtain a
Bernstein-Von Mises theorem it is necessary not only to bound P

π [Un|Xn]
but to determine an equivalent of P

π [Un|Xn] for some specific types of sets
Un. This difficulty explains that there is up to now very little work on Bern-
stein Von Mises theorems in infinite dimensional models. The most well
known results are negative results and are given in [7]. Some positiv e e
results are provided by [8] on the asymptotic normality of the posterior dis-
tribution of the parameter in an exponential family with increasing number
of parameters. In a discrete setting [2] derive Bernstein-Von Mises results, in
particular satisfied by Dirichlet priors. Nice positive results are obtained in
[12] and [13], however they rely heavily on a conjugacy type of property of
the family of priors they consider and on the fact that their priors put mass
one on discrete probabilities which makes the comparison with the empirical
distribution more tractable.

In a semi-parametric framework, where the parameter can be separated
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BERNSTEIN VON MISES THEOREM FOR FUNCTIONALS OF THE DENSITY 3

into a parametric part, which is the parameter of interest and a non paramet-
ric part, which is the nuisance parameter, [3] obtains interesting conditions
leading to a Bernstein - Von Mises theorem on the parametric part, clarifying
an earlier work of [18].

In this paper we are interested in studying the existence of a Bernstein-
Von Mises property in semi-parametric models where the parameter of in-
terest is a functional of the nuisance parameter, which is the density of
the observations. The estimation of functionals of infinite dimensional pa-
rameters such as the cumulative distribution function at a specific point,
is a widely studied problem both in the frequentist literature and in the
Bayesian literature. There is a vast literature on the rates of convergence
and on the asymptotic distribution of frequentist estimates of functionals of
unknown curves and of finite dimensional functionals of curves in particular,
see for instance [21] for an excellent presentation of a general theory on such
problems.

One of the most common functional considered in the literature is the
cumulative distribution function calculated at a given point, say F (x). The
empirical cumulative distribution function, Fn(x) is a natural frequentist
estimator and its asymptotic distribution is Gaussian with mean F (x) and
variance F (x)(1 − F (x))/n.

The Bayesian counterpart of this estimator is the one derived from a
Dirichlet process prior and it is well known to be asymptotically equivalent
to Fn(x), see for instance [10].This result is obtained using the conjugate
nature of the Dirichlet prior, leading to an explicit posterior distribution.
Other frequentist estimators, based on frequentist estimates of the density
have also been studied in the frequentist literature, in particular estimates
based on kernel estimators. Hence a natural question arises. Can we gener-
alize the Bernstein - Von Mises theorem of the Dirichlet estimator to other
Bayesian estimators? What happens if the prior has support on distributions
absolutely continuous with respect to Lebesgue Measure?

In this paper we provide an answer to these questions by establishing
conditions under which a Bernstein-Von Mises theorem can be obtained for
linear functional of the density of f , such as the cumulative distribution
function F (x), with centering its empirical counterpart, for instance Fn(x)
the empirical cumulative distribution function, when the prior puts positive
mass on absolutely continuous densities with respect to Lebesgue measures.
We also study cases where the asymptotic posterior distribution of the func-
tional is not asymptotically Gaussian but is asymptotically a mixture of
Gaussian distributions with different centering points.
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4 V. RIVOIRARD AND J. ROUSSEAU.

1.1. Notations and aim . In this paper, we assume that given a distribu-
tion P with a compactly supported density f with respect to the Lebesgue
measure, X1, ..., Xn are independent and identically distributed by P. We set
Xn = (X1, ..., Xn) and denote F the cumulative distribution function associ-
ated with f . Without loss of generality we assume that for any i, Xi ∈ [0, 1]
and we set

F =

{

f : [0, 1] → R
+,

∫ 1

0
f(x)dx = 1

}

.

We now define other notations that will be used throughout the paper.
Denote ln(f) the log-likelihood associated with the density f and if it is
parametrized by a finite dimensional parameter θ, ln(θ) = ln(fθ). For an
integrable function g, we sometimes use the notation F (g) =

∫ 1
0 f(u)g(u)du.

We denote by < ., . >f the inner product in

L2(F ) =

{

g :

∫

g2(x)f(x)dx < +∞
}

and by ||.||f the corresponding norm.
We also consider the inner product in L2[0, 1] denoted < ., . >2 and ||.||2

the corresponding norm. When there is no ambiguity we note < ., . >f0 by
< ., . > and ||.||f0 by ||.||.

Let K(f, f ′) and h(f, f ′) respectively the Kullback-Leibler divergence and
the Hellinger distance between two densities f and f ′, where we recall that

K(f, f ′) = F
(

log(f/f ′)
)

, h(f, f ′) =

[

∫ (

√

f(x) −
√

f ′(x)
)2

dx

]1/2

,

and define
V (f, f ′) = F

(

(log(f/f ′))2
)

.

Finally, let P0 the true distribution of the observations Xi. f0 is the asso-
ciated density and F0 the associated cumulative distribution function. We
consider the usual notations on the empirical process, namely

Pn(g) =
1

n

n
∑

i=1

g(Xi), Gn(g) =
1√
n

n
∑

i=1

[g(Xi) − F0(g)],

and Fn the empirical distribution function.
Consider a prior Π on the set F . The aim of this paper is to study the

posterior distribution of Ψ(f), where Ψ is a continuous linear form on L2[0, 1]
(a typical example is Ψ(f) = F (x0) = P[X ≤ x0] for x0 ∈ R) and to derive
conditions under which

P
π [√n(Ψ(f) − Ψ(Pn)) ≤ z|Xn]→ ΦV0(z) in P0 Probability,
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BERNSTEIN VON MISES THEOREM FOR FUNCTIONALS OF THE DENSITY 5

where V0 is the variance of
√
nΨ(Pn) under P0 and for any V , ΦV (z) is the

cumulative distribution function of a Gaussian random variable centered at
0 with variance V .

1.2. Organization of the paper. In Section 2 we present the general Bern-
stein Von Mises theorem, which is given in the formal way in the case where
linear submodels are adapted to the prior. We then apply, in Section 3, this
general theorem to the case where the prior is based on infinite dimensional
exponential families. In this section, we first give general results giving the
asymptotic posterior distribution of Ψ(f) which can be either Gaussian or a
mixture of Gaussian distributions. We also provide a theorem describing the
posterior concentration rate under such priors (see Section 3.2). Finally, in
Section 3.4, using an example, we explain how bad phenomenons can occur.
The proofs are postponed in Section 4.

2. Bernstein Von Mises theorems.

2.1. Some heuristics for proving Bernstein Von Mises theorems. We first
define some notions that are useful in the study of asymptotic properties of
semi-parametric models. These notions can be found for instance in [21].

As in Chapter 25 of [21], to study the asymptotic behaviour of semi-
parametric models we consider 1-dimensional differentiable paths locally
around the true parameter f0, that is submodels of the form: u → fu for
0 < u < u0, for some u0 > 0 such that for each path there exists a measur-
able function g called the score function for the submodel {fu, , 0 < u < u0}
at u = 0 satisfying

lim
u→0

∫

R

(

f
1/2
u (x) − f

1/2
0 (x)

u
− 1

2
g(x)f

1/2
0 (x)

)2

dx = 0.(2.1)

We denote by Ff0 the tangent set, i.e. the collection of score functions g
associated with these differentiable paths. Using (2.1), Ff0 can be identified
with a subset of {g ∈ L2(F0) : F0(g) = 0}. For instance, when considering
all probability laws, the most usual collection of differentiable paths is given
by

(2.2) fu(x) = c(t)f0(x)e
ug(x)

with ||g||∞ <∞ and c such that c(0) = 1 and c′(0) = 0. In this case, g is the
score function. Note that as explained in [21], the collection of differentiable
paths of the form fu(x) = 2c(u)f0(x)(1 + exp(−2ug(x)))−1 (with previous
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6 V. RIVOIRARD AND J. ROUSSEAU.

conditions on c), leads to the tangent space given by {g ∈ L2(F0) : F0(g) =
0}.

Now, consider a continuous linear form Ψ on L2. We can identify such a
functional by a function ψ ∈ L2 such that for all f ∈ L2

(2.3) Ψ(f) =

∫

f(x)ψ(x)dx.

Then for any differentiable path t→ ft with score function g, if the function
ψ is bounded on R (or on the support of fu for all 0 ≤ u < u0),

Ψ(fu) − Ψ(f0)

t
=

∫

ψ(x)g(x)f0(x)dx+

∫

(

f
1/2
u (x) − f

1/2
0 (x)

)2

u
ψ(x)dx

+2

∫

ψ(x)

(

f
1/2
u (x) − f

1/2
0 (x)

u
− 1

2
g(x)f

1/2
0 (x)

)

f
1/2
0 (x)dx

= < ψ, g > +o(1).

Then, we can define the efficient influence function ψ̃ belonging to lin(Ff0)
(the closure of the linear space generated by Ff0) that satisfies for any
g ∈ Ff0 ,

∫

ψ̃(u)g(x)f0(x)dx =

∫

ψ(x)g(x)f0(x)dx.

This implies:

(2.4) lim
u→0

Ψ(fu) − Ψ(f0)

u
=< ψ̃, g > .

The efficient influence function will play an important role for our purpose.
The efficient influence function is also a key notion to characterize asymp-
totically efficient estimators (see Section 25.3 of [21]).

Now, let us provide some examples by specifying different types of con-
tinuous linear forms that can be considered.

Example 2.1. An important example is provided by the cumulative dis-
tribution function. If x0 ∈ R is fixed, consider for any density function
f ∈ L2 whose cdf is F ,

Ψ(f) =

∫

1lx≤x0f(x)dx = F (x0)

so that in this case, ψ(u) = 1lx≤x0, which is a bounded function and if Ff0
is the subspace of L2(F0) of functions g satisfying F0(g) = 0 then ψ̃(x) =
1lx≤x0 − F0(x0).
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BERNSTEIN VON MISES THEOREM FOR FUNCTIONALS OF THE DENSITY 7

Example 2.2. More generally, for any measurable set A consider ψ(x) =
1lx∈A and for any density function f ∈ L2

Ψ(f) =

∫

1lx∈Af(u)du

satisfies the above conditions and ψ̃(x) = 1lx∈A − ∫A f0(x)dx.

Example 2.3. If f0 has bounded support, say on [0, 1] then the functional

Ψ(f) = Ef [X] =

∫ 1

0
xf(x)dx

satisfies the above conditions, ψ(x) = x and ψ̃(x) = x− Ef0 [X].

In this framework, the Bernstein Von Mises theorem could be derived from
the convergence of the following Laplace transform defined for any t ∈ R by

Ln(t) = E
π[exp(t

√
n(Ψ(f) − Ψ(Pn)))|Xn]

=

∫

exp (t
√
n(Ψ(f) − Ψ(Pn)) + ln(f) − ln(f0)) dπ(f)
∫

exp (ln(f) − ln(f0)) dπ(f)
.

Now, let us set fg,n = fu if u = n−
1
2 . We have:

√
n (Ψ(fg,n) − Ψ(Pn)) =

√
n

∫

ψ(x)(fg,n(x) − f0(x))dx−Gn(ψ̃)

= < ψ̃, g > −Gn(ψ̃) + ∆n(g).

Furthermore,

ln(fg,n) − ln(f0) = Rn(g) +Gn(g) −
F0(g

2)

2
,

with

Rn(g) = nPn

(

log

(

fg,n
f0

))

−Gn(g) +
F0(g

2)

2
.

So,

t
√
n (Ψ(fg,n) − Ψ(Pn)) + ln(fg,n) − ln(f0)

= Rn(g) −
F0(g

2)

2
+Gn(g − tψ̃) + t∆n(g) + t < ψ̃, g >

= Rn(g − tψ̃) +Gn(g − tψ̃) − F0((g − tψ̃)2)

2
+
t2F0(ψ̃

2)

2
+ Un,
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8 V. RIVOIRARD AND J. ROUSSEAU.

with
Un = t∆n(g) +Rn(g) −Rn(g − tψ̃).

Lemma 25.14 of [21] shows that under (2.1), Rn(g) = o(1) and (2.4) yields
∆n(g) = o(1) for a fixed g. It is not enough however to derive a Bernstein-
Von Mises theorem. Nonetheless if we can choose a prior distribution π
adapted to the previous framework to obtain uniformly Un = o(1),

√
n (Ψ(fg,n) − Ψ(f)) + ln(fg,n) − ln(f) = o(1)

and the equalities

∫

eRn(g−tψ̃)+Gn(g−tψ̃)−F0((g−tψ̃)2)

2 dπ(f)
∫

eRn(g)+Gn(g)−F0(g2)

2 dπ(f)
=

∫

exp (ln(f) − ln(f0)) dπ(fg+tψ̃)
∫

exp (ln(f) − ln(f0)) dπ(f)

= 1 + o(1),

then

Ln(t) = exp

(

t2F0(ψ̃
2)

2

)

(1 + o(1)).

In this case, our goal is reached. However, it is not obvious that a given prior
π satisfies all these properties. In particular, in a nonparametric framework,
the property Rn(g) = o(1) uniformly over a set whose posterior probability
goes to 1, is usually not satisfied. We thus consider an alternative approach
based on linear submodels.

2.2. Bernstein Von Mises under linear submodels. In this section we
study the case where linear local models are adapted to the prior. More
precisely, we assume that || log(f0)||∞ < ∞ so, for each density function f ,
we define h such that for any x,

h(x) =
√
n log

(

f(x)

f0(x)

)

or equivalently f(x) = f0(x) exp

(

h(x)√
n

)

.

For the sake of clarity, we sometime write fh instead of f and hf instead of
h to underline the relationship between f and h. Note that in this context h
is not the score function since F0(h) 6= 0. It would be equivalent to consider
local models of the form f = f0(1 + h/

√
n), except that we would have to

impose constraints on h for f to be positive. We consider a continuous linear
form Ψ on L2 such that for any f ∈ L2, we consider ψ such that (2.3) is
satisfied and we set for any x,

(2.5) ψc(x) = ψ(x) − F0(ψ).
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BERNSTEIN VON MISES THEOREM FOR FUNCTIONALS OF THE DENSITY 9

Note that ψc coincides with the influence function ψ̃ associated with the
tangent set {g ∈ L2(F0);F0(g) = 0}. Then we consider the following as-
sumptions.

(A1) The posterior distribution concentrates around f0. More precisely,
there exists un = o(1) such that if A1

un =
{

f ∈ F : V (f0, f) ≤ u2
n

}

the posterior distribution of A1
un satisfies

P
π
{

A1
un |Xn

}

= 1 + oP0(1).

(A2) The posterior distribution of the subset An ⊂ A1
un of densities such

that

(2.6)

∫
∣

∣

∣

∣

log

(

f(x)

f0(x)

)∣

∣

∣

∣

3

(f0(x) + f(x)) dx = o(1)

satisfies
P
π [An|Xn] = 1 + oP0(1).

(A3) Let

Rn(h) =
√
nF0(h) +

F0(h
2)

2

and for any x,

ψ̄t,n(x) = ψc(x) +

√
n

t
log

(

F0

[

exp

(

h√
n
− tψc√

n

)])

.

We have

∫

An
exp

(

−F0((hf−tψ̄t,n)2)
2 +Gn(hf − tψ̄t,n) +Rn(hf − tψ̄t,n)

)

dπ(f)

∫

An
exp

(

−F0(h2
f
)

2 +Gn(hf ) +Rn(hf )

)

dπ(f)

= 1 + oP0(1).(2.7)

Before stating our main result, let us discuss these assumptions. Condition
(A1) concerns concentration rates of the posterior distribution and there
exists now a large literature on such results. See for instance [20] or [9] for
general results. The difficulty here comes from the use of V instead of the
Hellinger or the L1-distance. However since un does not need to be optimal,
deriving rates in terms of V from those in terms of the Hellinger distance is
often not a problem (see below).

Condition (A2) is a refinement of (A1) but can often be derived from (A1)
as illustrated below.
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10 V. RIVOIRARD AND J. ROUSSEAU.

The main difficulty comes from condition (A3). To prove it, we need to
be able to construct a transformation T such that Tfh = fh−tψ̄t,n exists and
such that the prior is hardly modified by this transformation. In parametric
setups, continuity of the prior near the true value is enough to ensure that
the prior would hardly be modified by such a transform and this remains true
in semi-parametric setups where we can write the parameter as (θ, η) where
θ is the parameter of interest and is finite dimensional. Indeed as shown
in [3] under certain conditions the transformations can be transferred to
transformations on θ which is finite dimensional. Here this is more complex
since T is a transformation on f which is infinite dimensional so that a
condition of the form dπ(Tf) = dπ(f)(1 + o(1)) does not necessarily make
sense. We study this aspect in more details in Section 3.

Now, we can state the main result of this section.

Theorem 2.1. Let f0 be a density on F such that || log(f0)||∞ <∞ and
||ψ||∞ <∞. Assume that (A1), (A2) and (A3) are true. Then, if

Ψ(Pn) = Pn(ψ) =

∑n
i=1 ψ(Xi)

n

we have for any z, in probability with respect to P0,

P
π {√n(Ψ(f) − Ψ(Pn)) ≤ z|Xn}− ΦF0(ψ2

c )
(z) → 0.

The proof of Theorem 2.1 is given in Section 4.1.
Sieve priors lead to interesting behaviours of the posterior distribution

as illustrated in the following section. Indeed they have a behaviour which
is half way between parametric and non parametric. We illustrate these
features in the following two sections.

3. Bernstein Von Mises theorem under infinite dimensional ex-
ponential families. In this section, we study a specific class of priors
based on infinite dimensional exponential families on the following class of
densities supported by [0, 1]:

F =

{

f ≥ 0 : f is 1-periodic,

∫ 1

0
f(x)dx = 1, log(f) ∈ L2([0, 1])

}

.

We assume that f0 ∈ F and we consider two types of orthonormal bases
defined in the following section, namely the Fourier and wavelet bases.
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BERNSTEIN VON MISES THEOREM FOR FUNCTIONALS OF THE DENSITY11

3.1. Orthonormal bases. Fourier bases constitute unconditional bases of
periodized Sobolev spaces W γ where γ is the smoothness parameter. Our
results are also valid for a wide range of Besov spaces. In this case, we
consider wavelet bases which allow for the following expansions:

f(x) = θ−101l[0,1](x) +
+∞
∑

j=0

2j−1
∑

k=0

θjkΨjk(x), x ∈ [0, 1]

where θ−10 =
∫ 1
0 f(x)dx and θjk =

∫ 1
0 f(x)Ψjk(x)dx. We recall that the

functions Ψjk are obtained by periodizing dilations and translations of a
mother wavelet Ψ that can be assumed to be supported by the compact set
[−A,A]:

Ψjk(x) = 2
j
2

+∞
∑

l=−∞
Ψ(2jx− k + 2jl), x ∈ [0, 1].

If Ψ belongs to the Hölder space Cr and has r vanishing moments then the
wavelet basis constitutes an unconditional basis of the Besov space Bγp,q for

1 ≤ p, q ≤ +∞ and max
(

0, 1
p − 1

2

)

< γ < r. In this case, Bγp,q is the set of

functions f of L2[0, 1] such that ||f ||γ,p,q <∞ where

||f ||γ,p,q =



















|θ−10| +
(

∑+∞
j=0 2

jq(γ+ 1
2
− 1
p
)
(

∑2j−1
k=0 |θjk|p

)
q
p

)
1
q

if q <∞

|θ−10| + supj≥0

{

2
j(γ+ 1

2
− 1
p
)
(

∑2j−1
k=0 |θjk|p

)
1
p

}

if q = ∞.

We refer the reader to [16] for a good review of wavelets and Besov spaces.
We just mention that Besov spaces include in particular Sobolev spaces
(W γ = Bγ2,2) and, when γ is not an integer, Hölder spaces (Cγ = Bγ∞,∞).
To shorten notations, the orthonormal basis will be denoted (φλ)λ∈N, where
φ0 = 1l[0,1] and

- for the Fourier basis, for λ ≥ 1,

φ2λ−1(x) =
√

2 sin(2πλx), φ2λ(x) =
√

2 cos(2πλx).

- for the wavelet basis, if λ = 2j +k, with j ∈ N and k ∈ {0, . . . , 2j−1},

φλ = Ψjk.

Now, the decomposition of each periodized function f ∈ L2[0, 1] on (φλ)λ∈N

is written as follows:

f(x) =
∑

λ∈N

θλφλ(x), x ∈ [0, 1],
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12 V. RIVOIRARD AND J. ROUSSEAU.

where θλ =
∫ 1
0 f(x)φλ(x)dx. Recall that when the Fourier basis is used, f

lies in W γ for γ > 0 if and only if ||f ||γ <∞, where

||f ||γ =



θ2
0 +

∑

λ∈N∗

|λ|2γθ2
λ





1
2

.

We respectively use ||.||γ and ||.||γ,p,q to define the radius of the balls of W γ

and Bγp,q respectively. We now present the general result on posterior con-
centration rates associated with such prior models.

3.2. Posterior rates. Assume that f0 ∈ F and let Φ be one of the or-
thonormal basis introduced in Section 3.1, then

log(f0) −
∫ 1

0
log(f0(x))dx =

∑

λ∈N∗

θ0λφλ.

Set θ0 = (θ0λ)λ∈N∗ and define c(θ0) = − ∫ 1
0 log(f0(x))dx, we have

f0(x) = exp





∑

λ∈N∗

θ0λφλ(x) − c(θ0)



 .

We consider the following family of models: for any k ∈ N
∗, we set

Fk =

{

fθ = exp

(

k
∑

λ=1

θλφλ − c(θ)

)

: θ ∈ R
k

}

,

where

c(θ) = log

(

∫ 1

0
exp

(

k
∑

λ=1

θλφλ(x)

)

dx

)

.(3.1)

So, we define a prior π on the set F = ∪kFk by defining a prior p on
N
∗ and then, once k is chosen, we fix a prior πk on Fk. Such priors are

often considered in the Bayesian non parametric literature. See for instance
[19]. The special case of log-spline priors has been studied by [9] and [11],
whereas the prior considered by [22] is based on Legendre polynomials. For
the wavelet case, [11] considered the special case of the Haar basis.

Since one of the key conditions needed to obtain a Bernstein Von Mises
theorem is a concentration rate of the posterior distribution of order ǫn, we
first give two general results on concentration rates of posterior distributions
based on the two different setups of orthonormal bases: the Fourier basis and
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BERNSTEIN VON MISES THEOREM FOR FUNCTIONALS OF THE DENSITY13

the wavelet basis. These results have their own interest since we obtain in
such contexts optimal adaptive rates of convergence. In a similar spirit [19]
considers infinite dimensional exponential families and derives minimax and
adaptive posterior concentration rates. Her work differs from the following
theorem in two main aspects. Firstly she restricts her attention to the case
of Sobolev spaces and Fourier basis, whereas we consider Besov spaces and
secondly she obtains adaptivity by putting a prior on the smoothness of
the Sobolev class whereas we obtain adaptivity by constructing a prior on
the size k of the parametric spaces, which to our opinion is a more natural
approach. Moreover [19] merely considers Gaussian priors. Also related to
this problem is the work of [11] who derives a general framework to obtain
adaptive posterior concentration rates and apply her results to the Haar
basis case. The limitation in her case, apart from the fact that she considers
the Haar basis and no other wavelet basis is that she constraints the θj ’s in
each k dimensional model to belong to a ball with fixed radius.

Now, we specify the conditions on the prior π:

Definition 3.1. Let 1 > β > 1/2 be fixed and let g be a continuous and
positive density on R bounded (up to a contant) by the function Mp∗(x) =
exp (−c|x|p∗) for positive constants c, p∗ and assume that for all M > 0 there
exists a, b such that

g(y + u) ≥ a exp{−b(|y|p∗ + |u|p∗)}, ∀|y| ≤M, ∀u ∈ R

The prior p on k satisfies one of the following conditions:

[Case (PH)] There exist two positive constants c1 and c2 such that for
any k ∈ N

∗,

(3.2) exp (−c1kL(k)) ≤ p(k) ≤ exp (−c2kL(k)) ,

where L is the function that can be either L(x) = 1 or L(x) = log(x).

[Case (D)] If k∗n = n1/(2β+1),

p(k) = δk∗n(k).

Conditionally on k we define the prior on Fk by assuming that the prior
distribution πk on θ = (θλ)1≤λ≤k is given by

θλ√
τλ

∼ g, τλ = τ0λ
−2β i.i.d.

where β < 1/2 + p∗/2 if p∗ ≤ 2 and β < 1/2 + 1/p∗ if p∗ > 2.
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14 V. RIVOIRARD AND J. ROUSSEAU.

Observe that we do not necessarily consider Gaussian priors since we
allow for densities g to have different tails. The prior on k can be non
random, which corresponds to the Dirac case (D). For the case (PH), L(x) =
log(x) corresponds typically to a Poisson prior on k and the case L(x) =
1 corresponds typically to hypergeometric priors. Now, we have the the
following result.

Theorem 3.1. Assume that || log(f0)||∞ < ∞ and that there exists γ >
1/2 such that log(f0) ∈ Bγp,q, with p ≥ 2 and 1 ≤ q ≤ ∞. Then,

P
π
{

fθ : h(f0, fθ) ≤
log n

L(n)
ǫn|Xn

}

= 1 + oP (1),(3.3)

and

P
π

{

fθ : ||θ0 − θ||2 ≤ (log n)2

L(n)
ǫn|Xn

]

= 1 + oP (1),(3.4)

where in case (PH),

ǫn = ǫ0

(

log n

n

)

γ
2γ+1

,

in case (D),

ǫn = ǫ0 log nn
− β

2β+1 , if γ ≥ β

ǫn = ǫ0n
− γ

2β+1 , if γ < β

and ǫ0 is a constant large enough.

The proof of Theorem 3.1 is given in Section 4.2.

Remark 1. If the density g only satisfies a tail condition of the form

g(x) ≤ Cg|x|−p∗ , |x| large enough

with p∗ > 1, then, in case (PH), if γ > 1 the rates defined by (3.3) and (3.4)
remain valid.

Remark 2. Note that in the case (PH) the posterior concentration is,
up to a log n term, the minimax rate of convergence on the collection of
spaces with smoothness γ > 1/2, whereas in the case (D) the minimax rate
is achieved only when γ = β.
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BERNSTEIN VON MISES THEOREM FOR FUNCTIONALS OF THE DENSITY15

3.3. Bernstein Von Mises under these models. In this section, we apply
Theorem 2.1 of Section 2.2 to establish the following Bernstein Von Mises-
type result. For this purpose, let us expand the function ψc defined in (2.5)
on the basis (φλ)λ∈N:

ψc =
∑

λ∈N

ψc,λφλ.

We denote Πf0,k the projection operator on the vector space generated by
(φλ)0≤λ≤k for the scalar product < f, g >= F0(fg) and ∆ψ = ψc −Πf0,kψc.
So we can write for any x ∈ [0, 1],

Πf0,kψc(x) = ψΠ,c,0 +
k
∑

λ=1

ψΠ,c,λφλ(x),

since φ0(x) = 1. We denote Bn,k the renormalized sequence of coefficients
that appear in the above sum:

Bn,k =
ψΠ,c,[k]√

n
, ψΠ,c,[k] = (ψΠ,c,λ)1≤λ≤k.

Such quantities will play a key role in the sequel. Let l0 > 0 be large enough
so that

P
π

[

k >
l0nǫ

2
n

L(n)
|Xn

]

≤ e−cnǫ
2
n ,

for some positive c > 0, where ǫn is the posterior concentration rate defined
in Theorem 3.1 and define ln = l0nǫ

2
n/L(n). In the case (D) we set ln = k∗n.

In the following, in the case (D), whenever a statement concerns k ≤ ln it
is to be understood as k = ln.

We have the following result.

Theorem 3.2. Let us assume that the prior is defined as in Definition
3.1 and for all t ∈ R, 1 ≤ k ≤ ln (or k∗n in case (D)), assume that

πk(θ)

πk(θ − tBn,k)
= 1 + o(1), if

k
∑

j=1

(θj − θ0j)
2 ≤ (log n)2

L(n)
ǫn(3.5)

uniformly over {θ; ||θ − θ0||2 ≤ 3(log n)2ǫn}. Assume also that

sup
k≤ln

(||
∑

j>k

ψcjφj ||∞ +
√
k||
∑

j>k

ψcjφj ||2) = o

(

(log n)−2

√
nǫ2n

)

.(3.6)

Under assumptions of Theorem 3.1
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16 V. RIVOIRARD AND J. ROUSSEAU.

• for all z ∈ R

P
π [√n(Ψ(f) − Ψ(Pn)) ≤ z|Xn] =

∑

k

p(k|Xn)ΦV0k
(z + µn,k) + oP0(1),

(3.7)

where

– V0k = F0(ψ
2
c ) − F0(∆

2
ψ).

– µn,k = −√
nF0[(ψc − Πf0,kψc)

∑

j≥k+1 θ0jφj ] +Gn(∆ψ)

• In the case (D), if γ ≥ β,

P
π [√n(Ψ(f) − Ψ(Pn)) ≤ z|Xn] = ΦV0 (z) + oP0(1),(3.8)

where V0 = F0(ψ
2
c ).

The Bernstein-Von Mises property obtained in the case (D) is deduced by
proving relation (3.6) in this case. Indeed if γ ≥ β there exists a > 0 such
that

√
nǫ2n ≤ n−a, besides

||
∑

j>k

ψcjφj ||∞ ≤ 1 + ||
∑

j≤k
ψcjφj ||∞

≤ C log n

and
∑

j≥k+1 ψ
2
cj = 0(1/k), so that relation (3.6) is satisfied. Apart from this

argument the proof of Theorem 3.2 is given in Section 4.3. The first part
of Theorem 3.2 shows that the posterior distribution of

√
n(Ψ(f) − Ψ(Pn))

is asymptotically a mixture of Gaussian distributions with variances V0 −
F0(∆

2
ψ) and mean values µn,k with weight p(k|Xn). To obtain an asymptotic

Gaussian distribution with mean zero and variance V0 it is necessary for µn,k
to be small whenever p(k|Xn) is not. The conditions given in the second part
of Theorem 3.2 ensure that this is the case, however they are not necessary
conditions. Nevertheless, in Section 3.4, we give a counter-example for which
the Bernstein-Von Mises property is not satisfied in the cases (PH) and (D)
with γ < β.

We now discuss condition (3.5) in three different examples. Note first that
An ⊂ {θ; ||θ − θ0||2 ≤ 3(log n)2ǫn} with θ ∈ Θk, k ≤ ln.

• Gaussian: If g is Gaussian then for all k ≤ ln (or k∗n in the case of a
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BERNSTEIN VON MISES THEOREM FOR FUNCTIONALS OF THE DENSITY17

type (D) prior) and all j ≤ k, θj ∼ N (0, τ2
0 j

−2β) and for all θ ∈ An∩Fk
∑k
j=1 ψc

2
jj

2β

n
≤ Ck2β

n
≤ O(n2β−1ǫ4βn ) = o(1)

∑k
j=1 θjψcjj

2β

√
n

=

∑k
j=1(θj − θ0j)ψcjj

2β +
∑k
j=1 θ0jψcjj

2β

√
n

≤ C√
n

[

||θ − θ0||k2β + (k2β−γ + 1)
]

= o(1).

This implies that uniformly over An

πk(θ −Bn,k) = πk(θ)(1 + o(1))

• Laplace: If g is Laplace, g(x) ∝ e−|x|,
∣

∣

∣

∣

∣

log

(

g

(

θj − tψcj/
√
n

√
τj

))

− log

(

g

(

θj√
τj

))∣

∣

∣

∣

∣

≤ C
|ψcj |√
n

So that

∣

∣

∣

∣

log

[

πk(θ −Bn)

πk(θ)

]∣

∣

∣

∣

≤ C

∑k
j=1 j

β|ψcj |√
n

≤ C
kβ√
n

= o(1),

for all γ > 1/2, 1 > β > 1/2 in the cases (D) and (PH), and condition
(3.5) is satisfied.

• Student: In the Student case for g we can use the calculations made
in the Gaussian case since

k
∑

j=1

log
(

1 + Cj2βθ2
j

)

− log
(

1 + Cj2β(θj − tψcj/
√
n)2
)

= 0





k
∑

j=1

j2β[(θj − tψcj/
√
n)2 − θ2

j ]





= o(1)

Therefore in all these cases condition (3.5) is satisfied.

Interestingly Theorem 3.2 shows that parametric sieve models (increasing
sequence of models) have a behaviour which is a mix between parametric
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18 V. RIVOIRARD AND J. ROUSSEAU.

and nonparametric models. Indeed if the posterior distribution puts most of
its mass on k’s large enough the posterior distribution has a Bernstein Von
Mises property centered on the empirical (nonparametric MLE) estimator
with the correct variance whereas if it allows for k’s that are not large enough
(corresponding to

∑k
j=1 j

2β[(θj − tψcj/
√
n)2 − θ2

j ] or ∆ψ not small enough)
then the posterior distribution is not asymptotically Gaussian with the right
centering, nor with the right variance. An extreme case corresponds to the
situation where F0(∆

2
ψ) 6= o(1) under the posterior distribution, which is

equivalent to

∃k0, s.t. ∀ǫ > 0 liminfn→∞P
n
0 [Pπ [k0|Xn] > ǫ] > 0.

For each k > 0 fixed, if infθ∈Rk K(f0, fθ) > 0, since the model is reg-
ular, there exists c > 0 such that P

n
0 [Pπ [k|Xn] > e−nc] → 1. Therefore,

F0(∆
2
ψ) 6= o(1) under the posterior distribution if there exists k0 such that

infθ∈Rk0
K(f0, fθ) > 0, i.e. if there exists θ0 ∈ R

k0 such that f0 = fθ0 . In that
case it can be proved that P

π[k0|Xn] = 1 + oP (1), see [4], and the Bernstein
Von Mises theorem to be expected is the parametric one, under the model
Θk0 which is regular. However, even if ∆ψ = oP (1), the posterior distri-
bution might not satisfy the non parametric Bernstein Von Mises property
with the correct centering. We illustrate in the following section this issue
in the special case of the cumulative distribution function.

3.4. An example: the cumulative distribution function. As a special case,
consider the functional on f to be the cumulative distribution function cal-
culated at a given point x0. As seen in Section 2, ψc(x) = 1lx≤x0 − F0(x0).
We have Fn(x0) = Pn(ψ) and recall that the variance of Gn(ψ) under P0 is
equal to V0 = F0(x0)(1 − F0(x0)).

As an illustration, consider the case of the Fourier basis. The case of
wavelet bases is dealt with in the same way. In other words for λ ≥ 1,
φ2λ−1(x) =

√
2 sin(2πλx), φ2λ(x) =

√
2 cos(2πλx) and φ0(x) = 1.

Corollary 3.1. If the prior density g on the coefficients is Gaussian or
Laplace then if f0 ∈ Sγ, with γ ≥ β and if the prior on k is the Dirac mass
on k∗n then the posterior distribution of

√
n(F (x0)−Fn(x0)) is asymptotically

Gaussian with mean 0 and variance V0.
If the prior density g is Student and if γ ≥ β > 1, then the same result

remains valid.

This result is a direct application of Theorem 3.2.
Counter-example: In this remark we illustrate the fact that in the case of

a random k, which leads to an adaptive minimax rate of convergence for the
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posterior distribution we might not have a Bernstein - Von Mises theorem.
Consider a density f0 in the form

f0 = exp





∑

j≥k0
θ0jφj(u)du− c(θ0)





where k0 is fixed but can be large and θ0,2j = 0 and

θ0,2j−1 = sin(2πjx)/[jγ+1/2
√

log j log log j].

Then for J1 > 3

∑

j≥J1

θ2
0jj

2γ ≤
∑

j≥J1

1

j log j log log j2

≤
∫ ∞

j1

1

x log x(log log x)2
dx

=
1

log log J1
,

and similarly

∑

j≥J1

θ2
0j ≤

∑

j≥J1

1

j2γ+1 log j log log j2

≤
∫ ∞

j1

1

x2γ+1 log x(log log x)2
dx

=

[

− 1

2γx2γ log x(log log x)2

]∞

J1

(1 + o(1))

=
1

2γJ2γ
1 log J1(log log J1)2

(1 + o(1))(3.9)

when J1 → ∞.
Consider a Poisson distribution on k with parameter ν > 0 fixed then for

such f0, if kn = n1/(2γ+1)(log n)−2/(2γ+1)(log log n)−2/(2γ+1) and k1 is large
enough

P
π[k ≤ k1kn|Xn] = 1 + o(1).

We now study the mean terms µn,k and we show that if k ≤ k1kn, µn,k 6=
o(1) nor can P

π(k|Xn) be neglected.
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First note that when k → ∞ Gn(∆ψ) = o(1)

µn,k =
√
nF0 [(ψc − Πf0,kψc)(l0 − Πf0,kl0)]

=
√
nF0



(
∞
∑

j=k+1

ψcjφj)(l0 − Πf0,kl0)





=
√
n

∫

[(ψc − Πf0,kψc)(l0 − Πf0,kl0)]

+
√
n

∫

(f0 − 1) [(ψc − Πf0,kψc)(l0 − Πf0,kl0)](3.10)

We first consider the first term of the right hand side of (3.10).

µn,k,1 =
√
n

∫



(
∞
∑

j=k+1

ψcjφj)(l0 − Πf0,kl0)





=
√
n

∞
∑

j=k+1

ψcjθ0j

=
√
n
∑

l≥k/2

sin2(2πxl)

(2l + 1)γ+3/2 log(2l + 1)1/2 log log(2l + 1)

and if x = 1/4 we have

µn,k,1 =
√
n

∑

j≥k/4−1/2

1

(4j + 3)γ+3/2(log 4j + 3)1/2 log log(4j + 3)

≤ C
√
n

k−γ−1/2

√
log k log log k

µn,k,1 ≥ C ′√n k−γ−1/2

√
log k log log k

.

Note that there exists c > 0 such that for all k ≤ kn

µn,k,1 ≥ c
√

log n.

We now consider the second term of (3.10). LetM1,k denote the projection
on (φ0, ..., φk) with respect to the scalar product < f, g >2=

∫

fg(u)du and
note that

Πf0,kl0 = M1,kl0 + Πf0,k[
∞
∑

j=k+1

θ0jφj ]
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|µn,k,2| =

∣

∣

∣

∣

∣

∣

√
n

∫

(f0 − 1)



(
∞
∑

j=k+1

ψjφj)(l0 − Πf0,kl0)





∣

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

∣

√
n

∫

(f0 − 1)



(
∞
∑

j=k+1

ψcjφj)(l0 −M1,kl0)





∣

∣

∣

∣

∣

∣

+

∣

∣

∣

∣

∣

∣

√
n

∫

(f0 − 1)



(
∞
∑

j=k+1

ψjφj)(M1,kl0 − Πf0,kl0)





∣

∣

∣

∣

∣

∣

≤ 2|f0 − 1|∞





∞
∑

j=k+1

ψ2
cj





1/2



∞
∑

j=k+1

θ2
0,j





1/2

≤ C
√
n|f0 − 1|∞

k−γ−1/2

√
log k log log k

By choosing k0 large enough |f0 − 1|∞ can be made as small as need be so
that we finally obtain that there exists c > 0 such that for all k ≤ kn

µn,k ≥ c
√

log n.

Note that in case (D) with γ < β, the same calculations lead to

µn,k∗n ≥ cn
β−γ
4β+2 (log n)−

1
2 (log log n)−1.

Thus in this case the posterior distribution is not asymptotically Gaussian
with mean Fn(x) and variance F0(x)(1 − F0(x))/n. Whether it is asymp-
totically equivalent to a mixture of Gaussians is not clear. It would be a
consequence of the way the posterior distribution of k concentrates as n
goes to infinity. In the case (D), the posterior distribution is asymptotically
Gaussian with mean Fn(x) − µn,k∗n .

4. Proofs. In this section we prove Theorems 2.1, 3.1 and 3.2. In the
sequel, C denotes a generic positive constant whose value is of no impor-
tance.

4.1. Proof of Theorem 2.1. Let Zn =
√
n(Ψ(f) − Ψ(Pn)). We have

(4.1) P
π {An|Xn} = 1 + oP0(1).

So, it is enough to prove that conditionally on An and Xn, the distribution
of Zn converges to the distribution of a Gaussian variable whose variance is
F0(ψ

2
c ). This will be established if for any t ∈ R,

(4.2) lim
n→+∞

Ln(t) = exp

(

t2

2
F0

[

ψ2
c

]

)

,
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where Ln(t) is the Laplace transform of Zn conditionally on An and Xn:

Ln(t) = E
π [exp(t

√
n(Ψ(f) − Ψ(Pn)))|An, Xn]

=
E
π [exp(t

√
n(Ψ(f) − Ψ(Pn)))1lAn(f)|Xn]

Pπ {An|Xn}

=

∫

An
exp (t

√
n(Ψ(f) − Ψ(Pn)) + ln(f) − ln(f0)) dπ(f)
∫

An
exp (ln(f) − ln(f0)) dπ(f)

.

We set for any x,

Bh,n(x) =

∫ 1

0
(1 − u)euh(x)/

√
ndu.(4.3)

so,

exp

(

h(x)√
n

)

= 1 +
h(x)√
n

+
h2(x)

n
Bh,n(x),

which implies that

f(x) − f0(x) = f0(x)

(

h(x)√
n

+
h2(x)

n
Bh,n(x)

)

and

t
√
n(Ψ(f) − Ψ(Pn)) = −tGn(ψc) + t

√
n

(∫

ψc(x)(f(x) − f0(x))dx

)

= −tGn(ψc) + tF0(hψc) +
t√
n
F0(h

2Bh,nψc).

Since

ln(f) − ln(f0) = −F0(h
2)

2
+Gn(h) +Rn(h),

we have

Ln(t) =

∫

An
exp

(

Gn(h− tψc) + tF0(hψc) + t√
n
F0(h

2Bh,nψc) − F0(h2)
2 +Rn(h)

)

dπ(f)
∫

An
exp

(

−F0(h2)
2 +Gn(h) +Rn(h)

)

dπ(f)

=

∫

An
exp

(

−F0((h−tψ̄t,n)2)
2 +Gn(h− tψ̄t,n) +Rn(h− tψ̄t,n) + Un,h

)

dπ(f)
∫

An
exp

(

−F0(h2)
2 +Gn(h) +Rn(h)

)

dπ(f)
,

where straightforward computations show that

Un,h = tF0(h(ψc − ψ̄t,n)) +
t2

2
F0(ψ̄

2
t,n) +Rn(h) −Rn(h− tψ̄t,n) +

t√
n
F0(h

2Bh,nψc)

= tF0(hψc) + t
√
nF0(ψ̄t,n) +

t√
n
F0(h

2Bh,nψc)

= tF0(hψc) + n log

(

F0

[

exp

(

h√
n
− tψc√

n

)])

+
t√
n
F0

(

h2Bh,nψc
)

.
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Now, let us study each term of the last expression. We have

F0

[

exp

(

h√
n
− tψc√

n

)]

= F0

[

e
h√
n

(

1 − tψc√
n

+
t2

2n
ψ2
c

)]

+ 0(n−
3
2 )

= 1 − t√
n
F0

[

e
h√
nψc

]

+
t2

2n
F0

[

e
h√
nψ2

c

]

+ 0(n−
3
2 ).

So,

F0

[

e
h√
nψc

]

=
F0[hψc]√

n
+
F0[h

2Bh,nψc]

n
; F0

[

e
h√
nψ2

c

]

= F0

[

ψ2
c

]

+
F0[hψ

2
c ]√

n
+
F0[h

2Bh,nψ
2
c ]

n
.

Note that, on An, we have F0(h
2) = 0(nu2

n) and F0
(

h2Bh,n
)

= o(n). There-
fore, uniformly on An,

F0

[

exp

(

h√
n
− tψc√

n

)]

= 1 − t√
n

(

F0[hψc]√
n

+
F0[h

2Bh,nψc]

n

)

+
t2

2n

(

F0

[

ψ2
c

]

+
F0[hψ

2
c ]√

n
+
F0[h

2Bh,nψ
2
c ]

n

)

+ o
(

n−1
)

= 1 − t

n

[

F0[hψc] +
F0[h

2Bh,nψc]√
n

− tF0(ψ
2
c )

2
+ o(1)

]

= 1 + o
(

n−1/2
)

and

n log

(

F0

[

exp

(

h√
n
− tψc√

n

)])

= −t
[

F0(hψc) +
F0[h

2Bh,nψc]√
n

− tF0(ψ
2
c )

2

]

+ o(1).

Finally,

Un,h =
t2

2
F0

[

ψ2
c

]

+ o(1)

and up to a multiplicative factor equal to 1 + o(1),

Ln(t) = exp

(

t2

2
F0

[

ψ2
c

]

)

∫

An
exp

(

−F0((h−tψ̄t,n)2)
2 +Gn(h− tψ̄t,n) +Rn(h− tψ̄t,n)

)

dπ(f)
∫

An
exp

(

−F0(h2)
2 +Gn(h) +Rn(h)

)

dπ(f)
.

Finally (A3) implies (4.2) and the theorem is proved.

4.2. Proof of Theorem 3.1. We first give a preliminary lemma which will
be used extensively in the sequel.
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24 V. RIVOIRARD AND J. ROUSSEAU.

4.2.1. Preliminary lemma. Let us first state the following lemma.

Lemma 4.1. Set Kn = {1, 2, . . . , kn} with kn ∈ N
∗. Assume either of the

following two cases:

- γ > 0, p = q = 2 when Φ is the Fourier basis
- 0 < γ < r, 2 ≤ p ≤ ∞, 1 ≤ q ≤ ∞ when Φ is the wavelet basis with r

vanishing moments.

Then the following results hold.

- There exists a constant c1,Φ depending only on Φ such that for any
θ = (θλ)λ ∈ R

kn,

(4.4)

∥

∥

∥

∥

∥

∥

∑

λ∈Kn
θλφλ

∥

∥

∥

∥

∥

∥

∞

≤ c1,Φ
√

kn||θ||ℓ2 .

- If log(f0) ∈ Bγp,q(R), then there exists c2,γ depending on γ only such
that

(4.5)
∑

λ/∈Kn
θ2
0λ ≤ c2,γ R

2k−2γ
n .

- If log(f0) ∈ Bγp,q(R) with γ > 1
2 , then there exists c3,Φ,γ depending on

Φ and γ only such that:

(4.6)

∥

∥

∥

∥

∥

∥

∑

λ/∈Kn
θ0λφλ

∥

∥

∥

∥

∥

∥

∞

≤ c3,Φ,γ R k
1
2
−γ

n .

Proof. Let us first consider the Fourier basis. We have:
∥

∥

∥

∥

∥

∥

∑

λ∈Kn
θλφλ

∥

∥

∥

∥

∥

∥

∞

≤
∑

λ∈Kn
|θλ| × ||φλ||∞

≤ ||φ||∞
∑

λ∈Kn
|θλ|,

which proves (4.4). Inequality (4.5) follows from the definition of Bγ2,2 = W γ .
To prove (4.6), we use the following inequality: for any x,

∣

∣

∣

∣

∣

∣

∑

λ/∈Kn
θ0λφλ(x)

∣

∣

∣

∣

∣

∣

≤ ||φ||∞
∑

λ/∈Kn
|θ0λ|

≤ ||φ||∞





∑

λ/∈Kn
|λ|2γθ2

0λ





1
2




∑

λ/∈Kn
|λ|−2γ





1
2

.
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Now, we consider the wavelet basis. Without loss of generality, we assume
that log2(kn + 1) ∈ N

∗. We have for any x,

∣

∣

∣

∣

∣

∣

∑

λ∈Kn
θλφλ(x)

∣

∣

∣

∣

∣

∣

≤




∑

λ∈Kn
θ2
λ





1
2




∑

λ∈Kn
φ2
λ(x)





1
2

≤ ||θ||ℓ2





∑

0≤j≤log2(kn)

2j−1
∑

k=0

Ψ2
jk(x)





1
2

.

Since Ψ(x) = 0 for x /∈ [−A,A],

card
{

k ∈ {0, . . . , 2j − 1} : Ψjk(x) 6= 0
}

≤ 3(2A+ 1).

(see [15], p. 282 or [16], p. 112). So, there exists cΨ depending only on Ψ
such that

∣

∣

∣

∣

∣

∣

∑

λ∈Kn
θλφλ(x)

∣

∣

∣

∣

∣

∣

≤ ||θ||ℓ2





∑

0≤j≤log2(kn)

3(2A+ 1)2jc2Ψ





1
2

,

which proves (4.4). For the second point, we just use the inclusion Bγp,q(R) ⊂
Bγ2,∞(R) and

∑

λ/∈Kn
θ2
0λ =

∑

j>log2(kn)

2j−1
∑

k=0

θ2
0jk ≤ R2

∑

j>log2(kn)

2−2jγ ≤ R2

1 − 2−2γ
k−2γ
n .

Finally, for the last point, we have for any x:

∣

∣

∣

∣

∣

∣

∑

λ/∈Kn
θ0λφλ(x)

∣

∣

∣

∣

∣

∣

≤
∑

j>log2(kn)





2j−1
∑

k=0

θ2
0jk





1
2




2j−1
∑

k=0

Ψ2
jk(x)





1
2

≤ Ck
1
2
−γ

n ,

where C ≤ R(3(2A+ 1))
1
2 cΨ (1 − 2

1
2
−γ)−1.

4.2.2. Proof of Theorem 3.1. Denote for any n,

Bn(ǫn) = {f ∈ F : K(f0, f) ≤ ǫ2n, V (f0, f) ≤ ǫ2n},

To prove Theorem 3.1, we use the following version of the theorem on pos-
terior convergence rates. Its proof is not given, but it is a slight modification
of Theorem 2.4 of [9].
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26 V. RIVOIRARD AND J. ROUSSEAU.

Theorem 4.1. Let f0 be the true density. We assume that there exists
a constant c such that for any n, there exists F∗

n ⊂ F and a prior π on F
satisfying the following conditions:

- (A)

P
π {F∗

n
c} = o(e−(c+2)nǫ2n).

- (B) For any j ∈ N
∗, let

Sn,j = {f ∈ F∗
n : jǫn < h(f0, f) ≤ (j + 1)ǫn},

and Hn,j the Hellinger metric entropy of Sn,j. There exists J0,n (that
may depend on n) such that for all j ≥ J0,n,

Hn,j ≤ (K − 1)nj2ǫ2n,

where K is an absolute constant.
- (C) Let

Bn(ǫn) = {f ∈ F : K(f0, f) ≤ ǫ2n, V (f0, f) ≤ ǫ2n}.
Then,

P
π {Bn(ǫn)} ≥ e−cnǫ

2
n .

We have:
P
π {f : h(f0, f) ≤ J0,nǫn|Xn} = 1 + oP (1)

To prove Theorem 3.1 it is thus enough to prove that conditions (A), (B)
and (C) of the previous result are satisfied. We consider (Λn)n the increasing
sequence of subsets of N

∗ defined by Λn = {1, 2, . . . , ln} with ln ∈ N
∗. For

any n, we set:

F∗
n =







fθ ∈ Fln : fθ = exp





∑

λ∈Λn

θλφλ − c(θ)



 , ||θ||ℓ2 ≤ wn







,

with
wn = exp(w0n

ρ(log n)q), ρ > 0

Recall that

- ǫn = ǫ0n
− γ

2γ+1 (log n)
γ

2γ+1 in case (PH)

- ǫn = ǫ0n
− β

2β+1 in case (D).

Define ln by

(4.7) ln =
l0nǫ

2
n

L(n)
,

where l0 is some positive constant. When γ, β > 1
2 , we have

(4.8) lnǫ
2
n → 0.
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Proof of condition (A):. We have, since
∑

k τk <∞

π {F∗
n
c} ≤

∑

k>ln

p(k) + P
π







∑

k≤ln
θ2
k > w2

n







≤ C exp (−lnL(ln)) +
∑

k≤ln
P
π

{

θ2
k

τk
> w2

n

}

≤ C exp
(

−l0nǫ2n
)

+
∑

k≤ln
P
π

{

exp

(

|θk|p

2τ
p/2
k

)

> exp

(

wpn
2

)

}

≤ C exp
(

−l0nǫ2n
)

+ Cln exp

(

−w
p
n

2

)

≤ C exp
(

−l0nǫ2n
)

+ C exp
(

−nH
)

for any positive H > 0. Hence,

π {F∗
n
c} ≤ C exp

(

−(l0 − 1)nǫ2n

)

and Condition (A) is proved.

Proof of condition (B):. We apply Lemma 4.1 with Kn = Λn and kn = ln.
For this purpose, we show that the Hellinger distance between two functions
of F∗

n is related to the ℓ2-distance of the associated coefficients. So, let us
consider fθ and fθ′ belonging to F∗

n with

fθ = exp





∑

λ∈Λn

θλφλ − c(θ)



 , fθ′ = exp





∑

λ∈Λn

θ′λφλ − c(θ′)



 .

Let us assume that ||θ′ − θ||ℓ1 ≤ c1ǫnl
−1/2
n with c1 a positive constant, then

using (4.4) and (4.8),
∥

∥

∥

∥

∥

∥

∑

λ∈Λn

(θ′λ − θλ)φλ

∥

∥

∥

∥

∥

∥

∞

≤ C
√

ln||θ′ − θ||ℓ2 ≤ C
√

ln||θ′ − θ||ℓ1 ≤ Cc1ǫn → 0

and

∣

∣c(θ) − c(θ′)
∣

∣ =

∣

∣

∣

∣

∣

∣

log





∫ 1

0
fθ(x) exp





∑

λ∈Λn

(θ′λ − θλ)φλ(x)









∣

∣

∣

∣

∣

∣

≤
∣

∣

∣

∣

∣

∣

log



1 + C||
∑

λ∈Λn

(θ′λ − θλ)φλ||∞





∣

∣

∣

∣

∣

∣

≤ C||
∑

λ∈Λn

(θ′λ − θλ)φλ||∞.
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28 V. RIVOIRARD AND J. ROUSSEAU.

Then,

h2(fθ, fθ′) =

∫

fθ(x)



exp





1

2

∑

λ∈Λn

(θ′λ − θλ)φλ(x) +
1

2

(

c(θ) − c(θ′)
)



− 1





2

dx

≤
∫ 1

0
fθ(x)



exp



C||
∑

λ∈Λn

(θ′λ − θλ)φλ||∞



− 1





2

dx

≤ C||
∑

λ∈Λn

(θλ − θ′λ)φλ||2∞

≤ Cln||θ − θ′||2ℓ1 ≤ Cl2n||θ − θ′||2ℓ2(4.9)

The next lemma establishes a converse inequality.

Lemma 4.2. There exists a constant c ≤ 1/2 depending on γ, β,R and
Φ such that if

(j + 1)2ǫ2nln ≤ c× min
(

c0, (1 − e−1)2
)

then for fθ ∈ Sn,j,

||θ0 − θ||2ℓ2 ≤ 1

c0c
(log n)2h2(f0, fθ).

Proof. Using Theorem 5 of [23], with M1 =
(

∫ 1
0
f2
0 (x)
fθ(x)

dx
)

1
2
, if

h2(f0, fθ) ≤
1

2
(1 − e−1)2,

we have

V (f0, fθ) ≤ 5h2(f0, fθ) (| logM1| − log(h(f0, fθ))
2 .(4.10)

But

M1 =

∫ 1

0
f0(x) exp





∑

λ∈Λn

(θ0λ − θλ)φλ(x) +
∑

λ/∈Λn

θ0λφλ(x) − c(θ0) + c(θ)



 dx

≤
∫ 1

0
f0(x) exp

(

C[
√

ln||θ0 − θ||ℓ2 +Rℓ
1
2
−γ

n ] − c(θ0) + c(θ)

)

dx,

by using (4.4) and (4.6). Furthermore,

|c(θ0) − c(θ)| ≤ C[
√

ln||θ0 − θ||ℓ2 +R l
1
2
−γ

n ].(4.11)
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So,

| logM1| ≤ C[
√

ln||θ0 − θ||ℓ2 +R l
1
2
−γ

n ].

Finally, since fθ ∈ Sn,j for j ≥ 1,

V (f0, fθ) ≤ 5h2(f0, fθ)

(

C[
√

ln||θ0 − θ||ℓ2 +R l
1
2
−γ

n ] − log(ǫn)

)2

≤ Ch2(f0, fθ)
(

ln||θ0 − θ||2ℓ2 + (log n)2
)

.

Since f0(x) ≥ c0 for any x and
∫ 1
0 φλ(x)dx = 0 for any λ ∈ Λ, we have

V (f0, fθ) ≥ c0||θ0 − θ||2ℓ2 .(4.12)

Combining (4.9) and (4.12), we conclude that

||θ0 − θ||2ℓ2 ≤ C(log n)2h2(f0, fθ),

if h2(f0, fθ)ln ≤ (j + 1)2ǫ2nln ≤ 1/(2C). Lemma 4.2 is proved by taking
c = (max(C, 1))−1/2.

Now, under assumptions of Lemma 4.2, using (4.9), we obtain

Hn,j ≤ log
(

(Cln(j + 1) logn)ln
)

≤ ln log
(

Cǫ−1
n

√

ln log n
)

.

Then, since lnL(n) = l0nǫ
2
n, we have

Hn,j ≤ (K − 1)nj2ǫ2n

as soon as

J2
0,n ≥ j0 log n

L(n)
,

where j0 is a constant and condition (B) is satisfied for such j’s. Now, let j
be such that

(4.13) c(j + 1)2ǫ2nln > min

(

c0
2
,
1

2
(1 − e−1)2

)

.

In this case, since for fθ ∈ F∗
n,

||θ||ℓ1 ≤
√

ln||θ||ℓ2 ≤
√

lnwn,

for n large enough,

Hn,j ≤ log

(

(

Clnwnǫ
−1
n

)ln
)

≤ 2ln log(wn) ≤ 2w0lnn
ρ(log n)q.

Then, using (4.13), condition (B) is satisfied if w0 and q are small enough
and if

l2n(log n)q ≤ n1−ρ,

which is true for n large enough, since γ, β > 1
2 , for ρ small enough.
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30 V. RIVOIRARD AND J. ROUSSEAU.

Proof of condition (C). Let kn ∈ N, going to ∞ and Kn = {1, ..., kn}, we
assume that θ belongs to A(un) where
(4.14)

A(un) =







θ : θλ = 0 for every λ /∈ Kn and
∑

λ∈Kn
(θ0λ − θλ)

2 ≤ u2
n







,

where un goes to 0 such that

(4.15)
√

knun → 0.

We define for any λ ∈ Λ,

βλ(f0) =

∫ 1

0
φλ(x)f0(x)dx.

Let us introduce the following notations:

f0Kn = exp





∑

λ∈Kn
θ0λφλ(x) − c(θ0Kn)



 , f0K̄n = exp





∑

λ/∈Kn
θ0λφλ(x) − c(θ0K̄n)



 .

We have

K(f0, f0Kn) =
∑

λ/∈Kn
θ0λβλ(f0) + c(θ0Kn) − c(θ0)

=
∑

λ/∈Kn
θ0λβλ(f0) + log

(∫ 1

0
f0(x)e

−
∑

λ/∈Kn
θ0λφλ(x)

dx

)

.

Using inequality (4.6) of Lemma 4.1 and a Taylor expansion of the function
ex we obtain

∫ 1

0
f0(x)e

−
∑

λ/∈Kn
θ0λφλ(x)

dx

= 1 −
∑

λ/∈Kn
θ0λβλ(f0) +

1

2

∫ 1

0
f0(x)





∑

λ/∈Kn
θ0λφλ(x)





2

dx× (1 + o(1)) .

We have
∣

∣

∣

∣

∣

∣

∑

λ/∈Kn
θ0λβλ(f0)

∣

∣

∣

∣

∣

∣

≤ ‖f0‖2





∑

λ/∈Kn
θ2
0λ





1
2

and

∫ 1

0
f0(x)





∑

λ/∈Kn
θ0λφλ(x)





2

dx ≤ ‖f0‖∞
∑

λ/∈Kn
θ2
0λ
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So,

log

(∫ 1

0
f0(x)e

−
∑

λ/∈Kn
θ0λφλ(x)

dx

)

= −
∑

λ/∈Kn
θ0λβλ(f0) −

1

2





∑

λ/∈Kn
θ0λβλ(f0)





2

+
1

2

∫ 1

0
f0(x)





∑

λ/∈Kn
θ0λφλ(x)





2

dx+ o





∑

λ/∈Kn
θ2
0λ



 .

So, finally,

K(f0, f0Kn) =
1

2

∫ 1

0
f0(x)





∑

λ/∈Kn
θ0λφλ(x)





2

dx− 1

2





∑

λ/∈Kn
θ0λβλ(f0)





2

+ o





∑

λ/∈Kn
θ2
0λ





This implies that for n large enough,

K(f0, f0Kn) ≤ ‖f0‖∞
∑

λ/∈Kn
θ2
0λ ≤ Dk−2γ

n .

Now, if fθ ∈ Fkn with fθ = exp
(
∑

λ∈Kn θλφλ − c(θ)
)

, we have

K(f0, fθ) = K(f0, f0Kn) +
∑

λ∈Kn
(θ0λ − θλ)βλ(f0) − c(θ0Kn) + c(θ)

≤ Dk−2γ
n +

∑

λ∈Kn
(θ0λ − θλ)βλ(f0) − c(θ0Kn) + c(θ).

We set for any x,
T (x) =

∑

λ∈Kn
(θλ − θ0λ)φλ(x).

Using (4.4),
‖T‖∞ ≤ C

√

knun → 0.

So,
∫ 1

0
f0Kn(x) exp(T (x))dx = 1+

∫ 1

0
f0Kn(x)T (x)dx+

∫ 1

0
f0Kn(x)T

2(x)v(n, x)dx,

where v is a bounded function. Since log(1 + u) ≤ u for any u > −1, for
θ ∈ A(un) and n large enough,

| − c(θ0Kn) + c(θ)| =

∣

∣

∣

∣

log

(∫ 1

0
f0Kn(x)e

T (x)dx

)∣

∣

∣

∣

≤
∫ 1

0
f0Kn(x)T (x)dx+

∫ 1

0
f0Kn(x)T

2(x)v(n, x)dx

≤
∑

λ∈Kn
(θλ − θ0λ)βλ(f0Kn) +Dknu

2
n.
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So,

K(f0, fθ) ≤ Dk−2γ
n +

∑

λ∈Kn
(θ0λ − θλ) (βλ(f0) − βλ(f0Kn))

≤ Dk−2γ
n + un‖f0 − f0Kn‖2

Using (4.6), we have

‖f0 − f0Kn‖2
2 ≤ ‖f0‖2

∞

∫ 1

0



1 − exp



−
∑

λ/∈Kn
θ0λφλ(x) − c(θ0Kn) + c(θ0)









2

dx.

and

|c(θ0Kn) − c(θ0)| ≤ ||
∑

λ/∈Kn
θ0λφλ||∞.

Finally,

‖f0 − f0Kn‖2 ≤ D||
∑

λ/∈Kn
θ0λφλ||∞ ≤ Dk

1
2
−γ

n .

and

(4.16) K(f0, fθ) ≤ Dk−2γ
n +Dunk

1
2
−γ

n .

We now bound V (f0, fθ). For this purpose, we refine the control of |c(θ0Kn) − c(θ0)|:

|c(θ0Kn) − c(θ0)| =

∣

∣

∣

∣

∣

∣

log





∫ 1

0
f0(x) exp



−
∑

λ/∈Kn
θ0λφλ(x)



 dx





∣

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

∣

∣

log

∫ 1

0
f0(x)






1 −

∑

λ/∈Kn
θ0λφλ(x) + w(n, x)





∑

λ/∈Kn
θ0λφλ(x)





2





dx

∣

∣

∣

∣

∣

∣

∣

,

where w is a bounded function. So,

|c(θ0Kn) − c(θ0)| ≤ D







∑

λ/∈Kn
|θ0λβλ(f0)| +

∫ 1

0





∑

λ/∈Kn
θ0λφλ(x)





2

dx







≤ D





∑

λ/∈Kn
θ2
0λ





1
2

≤ Dk−γn .
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In addition,

|c(θ0Kn) − c(θ)| ≤
∑

λ∈Kn
|θλ − θ0λ| |βλ(f0Kn)| +Dknu

2
n

≤ un (||f0 − f0Kn ||2 + ||f0||2) +Dknu
2
n

≤ Dun +Dknu
2
n

Finally,

V (f0, fθ) ≤ u2
n +Dk−2γ

n +Dknu
2
n.(4.17)

Now, let us consider the case (PH). We take kn and un such that

(4.18) k−2γ
n ≤ k0ǫ

2
n and un = u0ǫnk

− 1
2

n ,

where k0 and u0 are constants depending on ||f0||∞, γ, R and Φ. If k0 and
u0 are small enough, then, by using (4.16) and (4.17),

K(f0, fθ) ≤ ǫ2n and V (f0, fθ) ≤ ǫ2n.

So, Condition (C) is satisfied if

P
π {A(un)} ≥ e−cnǫ

2
n ,

where, A(un) is defined in (4.14). We have:

P
π {A(un)} ≥ P

π







θ :
∑

λ∈Kn
(θλ − θ0λ)

2 ≤ u2
n







× exp (−c1knL(kn)}

The prior on θ implies that

P1 = P
π







θ :
∑

λ∈Kn
(θλ − θ0λ)

2 ≤ u2
n







≥ P
π







θ :
∑

λ∈Kn

∣

∣

∣

√
τ0λ

−βGλ − θ0λ
∣

∣

∣ ≤ un







= P
π







θ :
∑

λ∈Kn
λ−β

∣

∣

∣

∣

Gλ − τ
− 1

2
0 λβθ0λ

∣

∣

∣

∣

≤ τ
− 1

2
0 un







=

∫

...

∫

1{
∑

λ∈Kn
λ−β
∣

∣

∣
xλ−τ

− 1
2

0 λβθ0λ

∣

∣

∣
≤τ−

1
2

0 un

}

∏

λ∈Kn
g(xλ)dxλ

≥
∫

...

∫

1{
∑

λ∈Kn
λ−β |yλ|≤τ

− 1
2

0 un

}

∏

λ∈Kn
g

(

yλ + τ
− 1

2
0 λβθ0λ

)

dyλ.
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Using (4.5), when γ ≥ β, we have supλ∈Kn

∣

∣

∣

∣

τ
− 1

2
0 λβθ0λ

∣

∣

∣

∣

<∞ and since

(4.19) sup
n

{

τ
− 1

2
0 kβnun

}

<∞

using assumptions on the prior, there exists a constant D3 such that

P1 ≥ Dkn
3

∫

...

∫

1{
∑

λ∈Kn
λ−β |yλ|≤τ

− 1
2

0 un

}

∏

λ∈Kn
dyλ

≥ Dkn
3

∫

...

∫

1{
∑

λ∈Kn
|yλ|≤τ

− 1
2

0 un

}

∏

λ∈Kn
dyλ

≥ exp (−D4kn log n) ,(4.20)

where D4 is a constant. When γ < β, since there exists a, b > 0 such that
∀|y| ≤M for some positive M

g(y + u) ≥ a exp(−b|u|p∗)
using the above calculations we obtain if p∗ ≤ 2

P1 ≥ Dkn
3 exp{−C

∑

λ∈Kn
λp

∗β|θ0λ|p
∗}
∑

∫

...

∫

1{
∑

λ∈Kn
λ−β |yλ|≤τ

− 1
2

0 un

}

∏

λ∈Kn
dyλ

≥ exp
[

−Ck1−p∗/2+β−γ
n

]

exp (−D4kn log n)

≥ exp (−(D4 + 1)kn log n) if β ≤ 1/2 + p∗/2

and if t > 2

P1 ≥ Dkn
3 exp{−C

∑

λ∈Kn
λp

∗β|θ0λ|p
∗} exp (−D4kn log n)

≥ exp (−(D4 + 1)kn log n) if β ≤ 1/2 + 1/p∗

So, Condition (C) is established as soon as D4kn log n ≤ cnǫ2n. Using
(4.18), this can be satisfied if and only if we take kn such that

(4.21) k
− 1

2γ

0 ǫ
− 1
γ

n ≤ kn ≤ cnǫ2n
D4 log n

,

which is possible if and only if ǫ0 is large enough. In particular, this implies
that

sup
n

{

ǫn

(

log n

n

)− γ
2γ+1

}

<∞.

Note that when kn satisfies (4.21), Conditions (4.15) and (4.19) are satisfied
as well.

Similar computations show the result for the case (D).
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4.3. Proof of Theorem 3.2. Our goal is to prove conditions (A1), (A2)
and (A3) of Section 2.2 to apply Theorem 2.1. Let ǫn be the posterior con-
centration rate as obtained in Theorem 3.1.

Let us consider f = fθ ∈ Fk for 1 ≤ k ≤ ln, where ln = l0nǫ
2
n/L(n) in the

case of type (PH) priors and ln = k∗n in the case of type (D) priors. First,
using the same upper bound as in the proof of Lemma 4.2 we have

(4.22) V (f0, f) ≤ 2C(log n)2ǫ2n,

as soon as h(f0, f) ≤ ǫn. Thus, using (3.4), we have

P
π
{

A1
un |Xn

}

= 1 + oP0(1)

with un = u0(log n)2ǫ2n, for a constant u0 large enough. Note that we can
restrict ourselves to A1

un ∩ (∪k≤lnFk), since P
π [(∪k≤lnFk)c] ≤ e−cnǫ

2
n for any

c > 0 by choosing l0 large enough, see the proof of Theorem 3.1.
To establish (A2), we observe that

|| log fθ − log f0||∞ ≤ ||
∑

λ∈N∗

(θ0λ − θλ)φλ||∞ + |c(θ) − c(θ0)|

≤ C

(

√

ln||θ − θ0||ℓ2 + l
1
2
−γ

n

)

= 0(1),

by using Lemma 4.1 and (4.11). So, (A2) is implied by (A1). Now, let us
establish (A3). Denote An the set defined in assumption (A2) and restricted
to (∪k≤lnFk). For any t, we study the term

In =

∫

An
exp

(

−F0((hf−tψ̄t,n)2)
2 +Gn(hf − tψ̄t,n) +Rn(hf − tψ̄t,n)

)

dπ(f)

∫

An
exp

(

−F0(h2
f
)

2 +Gn(hf ) +Rn(hf )

)

dπ(f)

=

∑

1≤k≤ln p(k)
∫

An∩Fk exp
(

−F0((hf−tψ̄t,n)2)
2 +Gn(hf − tψ̄t,n) +Rn(hf − tψ̄t,n)

)

dπk(f)

∑

1≤k≤ln p(k)
∫

An∩Fk exp

(

−F0(h2
f
)

2 +Gn(hf ) +Rn(hf )

)

dπk(f)
.

If we set

bn,k,t =
tΠf0,kψc − tψΠ,c,0√

n
=

t√
n

k
∑

λ=1

ψΠ,c,λφλ,

we have using (4.4) and since k ≤ ln:

||bn,k,t||∞ ≤ t
√
k√

c0
√
n
||Πf0,kψc − ψΠ,c,0||f0

≤ 2t
√
ln√

c0
√
n
||ψc||∞ = O(ǫn).
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for c0 a constant. Recall that for fθ ∈ Fk,

hθ =
√
n





∑

λ∈N∗

(θλ − θ0λ)φλ − c(θ) + c(θ0)



 and Bn,k =
ψΠ,c,[k]√

n

so, for θ′ = θ − tBn,k, with Hn = (hθ − tψc)/
√
n and ∆ψ = ψc − Πf0,kψc

hθ′ = hθ −
√
nbn,k,t +

√
n(c(θ) − c(θ − tBn,k))

= hθ − tψ̄t,n + t(ψc − Πf0,kψc) −
√
n log

[

F0(e
Hn+t∆ψ/

√
n)

F0(eHn)

]

= hθ − tψ̄t,n + t∆ψ − ∆n,

with

∆n =
√
n log

[

F0(e
Hn+t∆ψ/

√
n)

F0(eHn)

]

.

Now, (4.11) implies ||hθ||∞/
√
n ≤

√
kǫn = o(1) and since F (∆2

ψ) = O(1),

||∆ψ||∞ = O(
√
ln) = O(

√
nǫn),

F0(e
Hn+t∆ψ/

√
n) = F0

(

eHn

(

1 +
t∆ψ√
n

+
t2∆2

ψ

2n

))

+ 0

(

F (∆2
ψ)

||∆ψ||∞
n3/2

)

= F0

(

eHn

(

1 +
t∆ψ√
n

+
t2∆2

ψ

2n

))

+ 0

(

ǫn
n

)

= F0

(

eHn
)

+
t√
n
F0(e

Hn∆ψ) +
t2

2n
F0(e

Hn∆2
ψ) + o

(

1

n

)

,

Also, for any function v satisfying F0(|v|) <∞

F0(e
Hnv) = F0

(

vehθ/
√
n
)

− t√
n
F0

(

vehθ/
√
nψc

)

+O

(

1

n

)

.(4.23)

Note that in the case v = 1 since F0(e
hθ/

√
n) = 1 we can be more precise

and obtain

F0(e
Hn) = 1 − t√

n
F0

(

ehθ/
√
nψc

)

+O(1/n)

= 1 − tF0(hθψc)

n
+O

(

ǫ2n√
n

+
1

n

)

= 1 + o

(

1√
n

)

.(4.24)

Moreover

F0

(

vehθ/
√
n
)

= F0(v) + o(F0(|v|)).(4.25)
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Therefore using (4.23) with v = ∆2
ψ leads to

F0(e
Hn+t∆ψ/

√
n)

F0(eHn)
= 1 +

t√
n

F0(e
Hn∆ψ)

F0(eHn)
+
t2

2n
F0(∆

2
ψ) + o

(

1

n

)

,

and using (4.23) with v = ∆ψ together with (4.24) and using (4.25)

t√
n
F0(e

Hn∆ψ) =
t√
n
F0

(

∆ψe
hθ/

√
n
)

− t2

n
F0 (∆ψψc) + o

(

1

n

)

.

Also

F0

(

ehθ/
√
n∆ψ

)

=
1√
n

[

F0 (hθ∆ψ) +
1√
n
F0

(

h2
θBhθ,n∆ψ

)

]

,

where Bh,n is defined by (4.3). Since F0(e
hθ/

√
nψc) = F0(ψc) + o(1) = o(1),

we thus obtain using the fact that F0(e
Hn) = 1 + o

(

1√
n

)

and F0(ψc∆ψ) =

F0(∆
2
ψ)

F0(e
Hn+t∆ψ/

√
n)

F0(eHn)
= 1 +

t√
n
F0

(

ehθ/
√
n∆ψ

)

− t2

2n
F0

(

∆2
ψ

)

+ o

(

1

n

)

and finally,

∆n =
√
n log

[

F0(e
Hn+t∆ψ/

√
n)

F0(eHn)

]

= tF0

(

ehθ/
√
n∆ψ

)

− t2

2
√
n
F0

(

∆2
ψ

)

+ o

(

1√
n

)

=
t√
n

[

F0 (hθ∆ψ) +
F0
(

h2
θBhθ,n∆ψ

)

√
n

− t

2
F0(∆

2
ψ)

]

+ o(n−1/2).(4.26)

Moreover

F0

(

h2
θBhθ,n∆ψ

)

=
1

2
F0

(

h2
θ∆ψ

)

+ o
(

F0

(

h2
θ|∆ψ|

))

and by using (4.22),

F0
(

h2
θ|∆ψ|

)

√
n

≤ ‖∆ψ‖∞
F0
(

h2
θ

)

√
n

≤ C‖∆ψ‖∞
√
n (log n)2 ǫ2n.

To bound ||∆ψ||∞, we write

∆ψ = ψ+k − Πf0,k(ψ+k),
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where ψ+k is a linear function of the φj ’s for j ≥ k+1. Then by using (4.4),

||∆ψ||∞ ≤ ||ψ+k||∞ + ||Πf0,kψ+k||∞
≤ ||ψ+k||∞ + C

√
k||Πf0,kψ+k||f0

≤ ||ψ+k||∞ + C
√
k||ψ+k||f0

≤ ||ψ+k||∞ +
C
√

||f0||∞
√
k√

c0
||ψ+k||2.

Under the assumption that

sup
k≤ln

(||ψ+k||∞ +
√
k||ψ+k||2) = o

(

1√
nǫ2n (log n)2

)

,

we obtain that

∆n =
t√
n

[

F0 (hθ∆ψ) − t

2
F0(∆

2
ψ)

]

+ o(n−1/2).

Note that ∆n = o(1). Finally,

Rn(hθ′) =
√
nF0(hθ′) +

F0(h
2
θ′)

2

= Rn(hθ − tψ̄t,n) −
√
n∆n −

t2

2
F0(∆

2
ψ) + tF0(hθ∆ψ) − ∆nF0(hθ) + o(1)

= Rn(hθ − tψ̄t,n) − ∆nF0(hθ) + o(1)

Recall that hθ′ = hθ − tψ̄t,n + t∆ψ − ∆n, ∆n = o(1) and F0(∆ψ) = 0. Note
also that

ψ̄t,n(x) = ψc(x) +

√
n

t
log

(

F0(e
Hn)

)

= ψc(x) + o(1)

so that F0(∆ψψ̄t,n) = F0(∆
2
ψ) + o(1) and

−F0(h
2
θ′)

2
= −F0((hθ − tψ̄t,n)

2)

2
− F0((t∆ψ − ∆n)

2)

2
− F0((hθ − tψ̄t,n)(t∆ψ − ∆n))

= −F0((hθ − tψ̄t,n)
2)

2
+
t2F0(∆

2
ψ)

2
− tF0(hθ∆ψ) + ∆nF0(hθ) + o(1)

Furthermore,
Gn(hθ′) = Gn(hθ − tψ̄t,n) + tGn(∆ψ).

We set
µn,k = −F0(hθ∆ψ) +Gn(∆ψ)
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and we finally obtain,

−F0((hθ′)
2)

2
+Gn(hθ′) +Rn(hθ′)

= −F0((hθ − tψ̄t,n)
2)

2
+Rn(hθ − tψ̄t,n) +Gn(hθ − tψ̄t,n) + tµn,k

+
t2F0(∆

2
ψ)

2
+ o(1).

Note that by orthogonality F0(hθ∆ψ) =
√
nF0[(ψc−Πf0,kψc)

∑

j≥k+1 θ0jφj ]
so that µn,k does not depend on θ and setting Tkθ = θ − tBn,k for all θ, we
can write

Jk :=

∫

An∩Fk exp
(

−F0((hf−tψ̄t,n)2)
2 +Gn(hf − tψ̄t,n) +Rn(hf − tψ̄t,n)

)

dπk(f)

∫

An∩Fk exp

(

−F0(h2
f
)

2 +Gn(hf ) +Rn(hf )

)

dπk(f)

= e−
t2F0(∆2

ψ
)

2 e−tµn,k
∫

Θk∩A′
n
e−

F0

(

h2
Tkθ

)

2
+Gn(hTkθ)+Rn(hTkθ)dπk(θ)

∫

Θk∩A′
n
e−

F0(h2
θ
)

2
+Gn(hθ)+Rn(hθ)dπk(θ)

(1 + on(1)),

where A′
n = {θ : fθ ∈ An}. Moreover, for k ≤ ln, ||Bn,k||2 ≤ C/

√
n, where

C depends on c0 and ||ψc||∞. So, if we set

Tk(A
′
n) = {θ ∈ Θk ∩A′

n : θ + tBn,k ∈ A′
n}

for all θ ∈ Tk(A
′
n),

||θ − θ0||2ℓ2 ≤ 2(log n)4ǫ2n +
2c2

n
≤ 2ǫ2n(log n)4(1 + on(1))

since nǫ2n → +∞. For all θ ∈ Θk ∩A′
n such that ||θ − θ0||2 ≤ (logn)2ǫn

2

θ + tBn,k ∈ A′
n ∩ Θk

for n large enough and we can write

A′
n,1 =

{

θ ∈ A′
n : ||θ − θ0||ℓ2 ≤ (log n)2ǫn

2

}

, A′
n,2 =

{

θ ∈ A′
n : ||θ − θ0||2 ≤ 3(log n)2ǫn

}

then

Θk ∩A′
n,1 ⊂ Tk(A

′
n) ⊂ Θk ∩A′

n,2(4.27)
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and under assumption (3.5),

Jk ≤ e−t
2
F0(∆2

ψ
)

2 e−tµn,k

∫

Θk∩A′
n,2
e−

F0(h2
θ
)

2
+Gn(hθ)+Rn(hθ)dπk(θ)

∫

Θk∩A′
n
e−

F0(h2
θ
)

2
+Gn(hθ)+Rn(hθ)dπk(θ)

(1 + on(1)),

Jk ≥ e−t
2
F0(∆2

ψ
)

2 e−tµn,k

∫

Θk∩A′
n,1
e−

F0(h2
θ
)

2
+Gn(hθ)+Rn(hθ)dπk(θ)

∫

Θk∩A′
n
e−

F0(h2
θ
)

2
+Gn(hθ)+Rn(hθ)dπk(θ)

(1 + on(1)).

Therefore,

ζn(t) := E [exp(t
√
n(ψ(f) − ψ(P n)))1lAn(f)|Xn]

= e
t2F0(ψ2

c )

2





ln
∑

k=1

p(k|Xn)Jk



 (1 + on(1))

≤




ln
∑

k=1

p(k|Xn)1lΘk∩A′
n 6=∅e

−tµn,ket
2
F0(ψc

2)−F0(∆2
ψ

)

2



 (1 + on(1))

and

ζn(t) ≥ et
2 F0(ψc

2)

2

ln
∑

k=1

p(k|Xn)e−tµn,ke−t
2
F0(∆2

ψ
)

2 π
[

A′
n,1|Xn, k

]

.

Besides under the above conditions on the prior, with probability converging
to 1,

π
[

(A′
n,1)

c|Xn
]

≤ e−ncǫ
2
n ,

for some positive constant c > 0. Then uniformly over k such that Θk ∩
A′
n,1 6= ∅

π
[

(A′
n,1)

c|Xn, k
]

e−tµn,k = o(1)

and

ζn(t) ≥ et
2 F0(ψc

2)

2

ln
∑

k=1

p(k|Xn)1lΘk∩An 6=∅e
−tµn,ke−t

2
F0(∆2

ψ
)

2 (1 + on(1)).

This proves that the posterior distribution of
√
n(Ψ(f) − Ψ(Pn)) is asymp-

totically equal to a mixture of Gaussian distributions with variances V0k =
F0(ψc

2) − F0(∆
2
ψ), means −µn,k and weights p(k|Xn).
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Now if ||∆ψ|| = o(1) (k → +∞) Gn(∆ψ) = oP (1) and with probability
converging to 1,

|µn,k| ≤ ||f0||∞
√
n





+∞
∑

j=k+1

ψ2
c,j





1/2



+∞
∑

j=k+1

θ2
0j





1/2

+ on(1).

Thus if k = k∗n,

|µn,k| = o
(√

n(k∗n)
−γ−1/2

)

+ on(1) = on(1)

and Equality (3.8) is proved.
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