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In this paper, we study the asymptotic posterior distribution of
linear functionals of the density by deriving general conditions to ob-
tain a semi-parametric version of the Bernstein-von Mises theorem.
The special case of the cumulative distributive function evaluated
at a specific point is widely considered. In particular, we show that
for infinite dimensional exponential families, under quite general as-
sumptions, the asymptotic posterior distribution of the functional
can be either Gaussian or a mixture of Gaussian distributions with
different centering points. This illustrates the positive but also the
negative phenomena that can occur for the study of Bernstein-von
Mises results.

1. Introduction. The Bernstein-von Mises property, in Bayesian anal-
ysis, concerns the asymptotic form of the posterior distribution of a quantity
of interest A, and more specifically it corresponds to the asymptotic normal-
ity of the posterior distribution of  with mean 6 and asymptotic variance
o2 and where, if 6 is the true parameter, 6 is asymptotically distributed as a
Gaussian random variable with mean 6 and variance o2. Such results are well
known in regular parametric frameworks, see for instance [16] where general
conditions are given. This is an important property for both practical and
theoretical reasons. In particular the asymptotic normality of the posterior
distributions allows us to construct approximate credible regions and the
duality between the behavior of the posterior distribution and the frequen-
tist distribution of the asymptotic centering point of the posterior implies
that credible regions will also have good frequentist properties. These results
are given in many Bayesian textbooks see for instance [20] or [1].
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2 V. RIVOIRARD AND J. ROUSSEAU.

In a frequentist perspective the Bernstein-von Mises property enables the
construction of confidence regions since under this property a Bayesian credi-
ble region will be asymptotically a frequentist confidence region as well. This
is even more important in complex models, since in such models the con-
struction of confidence regions can be difficult whereas the Markov Chain
Monte Carlo algorithms usually make the construction of a Bayesian cred-
ible region feasible. But of course, the more complex the model the harder
it is to derive Bernstein-von Mises theorems.

Semi-parametric and non-parametric models are widely popular both
from a theoretical and practical perspective and have been used by frequen-
tists as well as Bayesians although their theoretical asymptotic properties
have been mainly studied in the frequentist literature. The use of Bayesian
non-parametric or semi-parametric approaches is more recent and has been
made possible mainly by the development of algorithms such as Markov
Chain Monte-Carlo algorithms but has grown rapidly over the past decade.

However, there is still little work on asymptotic properties of Bayesian
procedures in semi-parametric models or even in non-parametric models.
Most of existing works on the asymptotic posterior distributions deal with
consistency or rates of concentration of the posterior. In other words it con-
sists in controlling objects of the form P7 [U,|X"] where P™[.|X™] denotes
the posterior distribution given a n-vector of observations X™ and U, de-
notes either a fixed neighborhood (consistency) or a sequence of shrinking
neighborhoods (rates of concentration). As remarked by [5] consistency is an
important condition, even from a subjectivist view point. Obtaining concen-
tration rates of the posterior helps to understand the impact of the choice of
a specific prior and allows for a comparison between priors to some extent.
However, to obtain a Bernstein-von Mises theorem it is necessary not only to
bound from above P™ [U,,|X"], as in the studies of consistency and concen-
tration rates of the posterior distribution but also to determine an equivalent
of P™ [U,,|X™] for some specific types of sets U,,. This difficulty explains that
there is up to now hardly any work on Bernstein-von Mises theorems in
infinite dimensional models. The most well known results are negative re-
sults and are given in [6]. Some positive results are provided by [7] on the
asymptotic normality of the posterior distribution of the parameter in an ex-
ponential family with increasing number of parameters. In a discrete setting,
[2] derive Bernstein-von Mises results. Nice positive results are obtained in
[14] and [15], however they rely heavily on a conjugacy property and on the
fact that their priors put mass one on discrete probabilities which makes
the comparison with the empirical distribution more tractable. In a semi-
parametric framework, where the parameter can be separated into a finite
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BVM FOR LINEAR FUNCTIONALS OF THE DENSITY 3

dimensional parameter of interest and an infinite dimensional nuisance pa-
rameter, [3] obtains interesting conditions leading to a Bernstein-von Mises
theorem on the parameter of interest, clarifying an earlier work of [21]. More
precisely, when the parameter of interest is handled in the case of no loss
of information, then some classical parametric tools can be used (such as
the continuity around the true parameter). The framework considered in
the sequel does not make possible such a separation. Other differences with
our paper have to be pointed out: The centering considered by [21] is based
on the sieve maximum likelihood estimate, whereas priors considered by [3]
are merely Gaussian in the information loss case. In Section 2.1 we describe
more precisely results by [3, 21] and compare them with ours.

In this paper we are interested in studying the existence of a Bernstein-von
Mises property in semi-parametric models where the parameter of interest is
a functional of the density of the observations. The estimation of functionals
of infinite dimensional parameters such as the cumulative distribution func-
tion at a specific point is a widely studied problem both in the frequentist
and Bayesian literature. There is a vast literature on the rates of convergence
and on the asymptotic distribution of frequentist estimates of functionals of
unknown curves and of finite dimensional functionals of curves in particular,
see for instance [24] for an excellent presentation of a general theory on such
problems.

One of the most common functionals considered in the literature is the
cumulative distribution function calculated at a given point, say F'(zg). The
empirical cumulative distribution function is a natural frequentist estimator
and its asymptotic distribution is Gaussian with mean F'(xo) and variance
Fla0)(1 — F(ao))/n.

The Bayesian counterpart of this estimator is the one derived from a
Dirichlet process prior and it is well known to be asymptotically equiva-
lent to F,(x¢), see for instance [11]. This result is obtained by using the
conjugate nature of the Dirichlet prior, leading to an explicit posterior dis-
tribution. Other frequentist estimators, based on density estimates such as
kernel estimators have also been studied in the frequentist literature. Hence
a natural question arises. Can we generalize the Bernstein-von Mises theo-
rem of the Dirichlet estimator to other Bayesian estimators? What happens
if the prior has support on distributions absolutely continuous with respect
to the Lebesgue measure?

In this paper we provide an answer to these questions by establishing
conditions under which a Bernstein-von Mises theorem can be obtained for
linear functionals of the density of f such as F(xp). We also study cases
where the asymptotic posterior distribution of the functional is not asymp-
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4 V. RIVOIRARD AND J. ROUSSEAU.

totically Gaussian but is asymptotically a mixture of Gaussian distributions
with different centering points.

1.1. Notation and aim. In this paper, we assume that, given a distribu-
tion P with a compactly supported density f with respect to the Lebesgue
measure, X1i,..., X, are independent and identically distributed according
to P. We set X" = (X7, ..., X,,) and denote F the cumulative distribution
function associated with f. Without loss of generality we assume that for
any i, X; € [0,1] and we set

]-':{f [0,1] = RT s.t. /f x—l}

We denote ¢,,(f) the log—likehhood assomated with the density f. For any
integrable function g, we set F(g fo w)du. We denote by < .,. >
the inner product and by |.|s the assomated norm in

Lo(F) = {g s.t. /92(m)f(x)d:c < +oo}.

We also consider the classical inner product in Lo[0, 1], denoted < .,. >9,
and |.|2, the associated norm. The Kullback-Leibler divergence and the
Hellinger distance between two densities f; and fo will be respectively de-
noted K (f1, f2) and h(f1, f2). We recall that

9 1/2
K(fufa) = Filog(/ ). o) = | [ (VE@ - VE@) @]
In the sequel, we shall also use

V(f1, f2) = F1 ((log(f1/f2))?) -

Let Py be the true distribution of the observations X; whose density and
cumulative distribution function are respectively denoted fo and Fjy. We
consider usual notation on empirical processes, namely for any measurable
function ¢ such that Fy(|g|) < oo,

Pale) = 3 30X, Gulo) = <= D_lal(X) = Fo(o)
] =1

and F;, is the empirical distribution function.
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BVM FOR LINEAR FUNCTIONALS OF THE DENSITY 5

For any given ¢ € [0, 1], we consider ¥ the functional on M, the set
of finite measures on [0, 1], defined by

(1.1) V(0 = [ vdn, e M
In particular, we have

Most of the time, to simplify notation when p is absolutely continuous with
respect to the Lebesgue measure with g = %> we use ¥(g) instead of W(u).
A typical example of such functionals is given by the cumulative distribution

function at a fixed point zq:

1
V.o (f) = F(zo) = /0 Up<ao f(x)dz, 20 € [0,1].

Let m be a prior on F. The aim of this paper is to study the posterior
distribution of ¥(f) and to derive conditions under which, for all z € R

(1.2) P™ [Vn(¥(f) — U(P,)) < 2|X"] = ®y,(Z) in Py-probability,

where V} is the variance of /n¥ (P, ) under Py and Py is the cumulative dis-
tribution function of a centered Gaussian random variable with variance Vj.
Note that under this duality between the Bayesian and the frequentist be-
haviors, credible regions for U(f) (such as highest posterior density regions,
equal tail or one-sided intervals) have also the correct asymptotic frequen-
tist coverage. In Section 2.3, we study in detail the special case of infinite
dimensional exponential families as described in the following section.

1.2. Infinite dimensional exponential families based on Fourier and wavelet
expansions. Fourier and wavelet bases are the dictionaries from which we
build exponential families in the sequel. We recall that Fourier bases con-
stitute unconditional bases of periodized Sobolev spaces W7 where ~ is the
smoothness parameter. Wavelet expansions of any periodized function A take
the following form:

40027 —1

h(z) = 0_101p(x) + > > Opju(z), x€[0,1]
=0 k=0

where 0_19 = fol h(xz)dr and 6, = fol h(x)pji(x)dz. We recall that the
functions ;i are obtained by periodizing dilations and translations of a
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6 V. RIVOIRARD AND J. ROUSSEAU.

mother wavelet ¢ that can be assumed to be compactly supported. Under
standard properties of ¢ involving its regularity and its vanishing moments
(see Lemma D.1), wavelet bases constitute unconditional bases of Besov

spaces By 4 for 1 < p,q < +oo and v > max (0, % — %) We refer the reader

to [12] for a good review of wavelets and Besov spaces. We just mention
that the scale of Besov spaces includes Sobolev spaces: W7 = 83’2. In the
sequel, to shorten notation, the considered orthonormal basis will be denoted

® = (Pa)aen, where ¢g = 1ljg ;) and
- for the Fourier basis, if A > 1,

dor—1(x) = V2sin(2nAz),  on(x) = V2 cos(2mAz),
- for the wavelet basis, if A\ = 2/ + k, with j € Nand k € {0,... 20 — 1},

DA = Qjk-

Here and in the sequel, N denotes the set of non negative integers, and N* the
set of positive integers. Now, the decomposition of each periodized function
h € L2[0,1] on (¢x)ren is written as follows:

h(z) = Oada(z), = €[0,1],

AeN

where 0) = fol h(z)px(x)dx. We denote |.|, and |.|,p,q the norms associated
with W7 and Bj 4 respectively.

We use such expansions to build non-parametric priors on F in the fol-
lowing way: For any k € N*, we set

k
Fip = {f@ = exp (Z Orhy — 0(9)> st. fe Rk} ,

A=1

where

1 k
(1.3) c(6) = log (/0 exp (Z GA(;ﬁ)\(a:)) da:) .
A=1

So, we define a prior 7 on the set Foo = UpFr C F by defining a prior p
on N* and then, once k is chosen, we fix a prior m; on Fi. Such priors are
often considered in the Bayesian non-parametric literature. See for instance
[22]. The special case of log-spline priors has been studied by [8] and [13],
whereas the prior considered by [26] is based on Legendre polynomials. The
wavelet basis is treated in [13] in the special case of the Haar basis.

We now define the class of priors 7 considered for these models, which we
call the class of sieve priors.
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BVM FOR LINEAR FUNCTIONALS OF THE DENSITY 7

DEFINITION 1.1. Given 8 > 1/2, the prior p on k satisfies one of the
following conditions:

[Case (PH)] There exist two positive constants ¢ and cy and r € {0,1}
such that for any k € N*,

(1.4) exp (—c1kL(k)) < p(k) < exp (—c2kL(k)),
where L(z) = (logz)".

[Case (D)] Let ki = [kon'/ Pt |, i.e. the largest integer smaller than
kon/ 2B+ where kg is some fized positive real number, then k is determin-
istic and we set k := k. (p is then the Dirac mass at the point k).

Conditionally on k the prior m, on Fy, is defined by

Ox iid 98
VA

where Ty is a positive constant and g is a continuous density on R such that
for any x,
A exp (—Cla[™) < g(x) < By exp (=),

where py, Ay, By, G« and ¢, are positive constants.

Observe that the prior is not necessarily Gaussian since we allow for
densities g with different tails. In the Dirac case (D), the prior on k is non
random. For the case (PH), L(x) = log(x) typically corresponds to a Poisson
prior on k and the case L(x) =1 typically corresponds to geometric priors.

1.3. Organization of the paper. We first give very general conditions un-
der which we obtain a Bernstein-von Mises Theorem (see Theorem 2.1 in
Section 2.1). Section 2.2 gives a first illustration of Theorem 2.1, based on
random histograms. In Section 2.3, we focus on infinite dimensional expo-
nential families. Theorem 2.3 gives the asymptotic posterior distribution of
U(f) which can be either Gaussian or a mixture of Gaussian distributions.
Corollary 2.2 illustrates positive results with respect to our purpose, but
Proposition 2.1 shows that some bad phenomenons may happen. Finally,
our message is summarized in Section 2.4. Proofs of the results are given in
Section 3. Other technical aspects are given in Appendix.

2. Bernstein-von Mises theorems.
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8 V. RIVOIRARD AND J. ROUSSEAU.

2.1. The general case. In the sequel, we consider a functional ¥ as de-
fined in (1.1) associated with the function ¢ € L[0,1] and we set

(2.1) b(x) = (x) = Fo(¥).
Note that this notation is coherent with the definition of the influence func-
tion associated with the tangent set {s € Lo(Fp) s.t. Fy(s) = 0}, defined
for instance in Chapter 25 of [24] or used by [23].
For each density function f € F, we define h such that for any =z,
h(z)

h(z) = v/nlog < ]{; 8) or equivalently f(z) = fo(z)exp (\/ﬁ> .

For the sake of clarity, we sometime write fj instead of f and hy instead of
h to emphasize the relationship between f and h. Note that in this context
h is not the score function, as defined in Chapter 25 of [24] since Fy(h) # 0.
Then we consider the following assumptions.

(A1) The posterior distribution concentrates around fy. More precisely,
there exists u,, = o(1) such that if A, ={f € F st. V(fo,f) <ul}
the posterior distribution of A} = satisfies

PT{AL | X"} =1+ op,(1).
(A2) There exists @, = o(1) such that if A, is the subset of functions

f € AL such that
(2.2) / log ( J{; ((9;))) ' F(@)dz < i

then

P™{A,| X"} =1+ op,(1).
(A3) Let

2
Ry(hy) = v/nFy(hy) + Folhy)

o (t4-3)])

Fo((hy—tdn )% - n
fAn exp (—OfQ}f + Gn(hf - t"vbhf,n) + Rn(hf - t¢hf,n)> dTr(f)

and for any =,

Ghyon(@) = () + \éﬁ log (Fo

We have for any t,

fAn exp <—F0(2h§) + Gr(hy) + Rn(hf)> dr(f)
(2.3) =1+ op,(1).

imsart-aos ver. 2009/05/21 file: BVM-rev2011l.tex date: September 29, 2011



BVM FOR LINEAR FUNCTIONALS OF THE DENSITY 9
Now, we can state the main result of this section.

THEOREM 2.1. Let fo be a density on F such that |log(fo)|ee < o0.
Assume that (A1), (A2) and (A3) are true. Then, we have for any z € R,
as n goes to infinity,

(24)  PT{VA(U(S) — U(P) < AXT - Dy () 0,
i Po-probability.

The proof of Theorem 2.1 is given in Section 3.1. It is based on the asymp-
totic behavior of the Laplace transform of /n(¥(f)—W(P,))lly, calculated
at the point ¢ which is proved to be equivalent to exp(t2Fp(?)/2) times the
left hand side of (2.3) under (A1) and (A2), so that (A3) implies (2.4).

Now, we discuss assumptions. Condition (A1) concerns concentration
rates of the posterior distribution and there exists now a large literature
on such results, see for instance [23] or [8] for general results. The difficulty
here comes from the use of V instead of the Hellinger or the LL; distances.
However note that w, does not need to be optimal. In our examples, ob-
taining a posterior concentration rate in terms of V' leads us to modify the
prior in the case of random histograms and thus to suboptimal posterior
concentration rates but has no impact in the case of exponential families. It
is also interesting to note that the loss function V' is similar to the |.| -norm
considered in [3] (i.e. the norm induced by the LAN expansion associated
to linear paths on log f) and to the Fisher norm considered in [21]. Indeed,
the proof of Theorem 2.1 gives:

nV(fO? f)

(2'5) gn(f) - fn(fO) = - 2

+ Gn(hf) + Rn(hf)
with R, (hf) = op,(1) pointwise (i.e. for a fixed function hys). Condition
(A1) is thus to be related to Condition C in [3] and to Condition (9) in [21].
However, the formulation of Condition (9) in [21] is not quite as general as
Condition C in [3] or as our conditions since [21] also requires (stated in our
framework):
sup  {lu(f) = tu(fo)} < —cne,.

f:V(fo,f)>e€3,
Indeed, a concern of [21] is to obtain a Bernstein-von Mises theorem with
a centering point which is the maximum likelihood (or a sieve maximum
likelihood estimator), for which such a condition is quite natural. It is known
now, see for instance [9], that weaker conditions can be obtained to derive
the posterior concentration rate.
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10 V. RIVOIRARD AND J. ROUSSEAU.

Condition (A2) could be viewed as a symmetrization of (Al) since if on
A, we also have V (f, fo) < u? then (A2) is true. Actually, (A2) is a weaker
condition since it is only based on the first moment of log(f/ fy) with respect
to the density f.

The main difficulty comes from condition (A3). Roughly speaking, (A3)
means that a change of parameter induced by a transformation T" of the form
T(fn) = fhftzfm,n’ or close enough to it, can be considered and such that
the prior is hardly modified by this transformation. In parametric setups,
continuity of the prior near the true value is enough to ensure that the prior
would hardly be modified by such a transformation. A similar condition can
be found in [21] (see Condition (14)). We emphasize two major differences
between Shen’s condition ([21]) and ours: first Shen’s condition is based on
the sieve MLE of log f, which we do not consider since we re-center on the
empirical ¥(P,). Secondly and more importantly, Condition (14) in [21] is
expressed in terms of the conditional prior distribution of f given 6§ = ¥(f)
which is very difficult to control in most non-parametric models, whereas in
our case the expectation is taken with respect to the prior on f.

However, (A3) still remains a demanding condition (the most demanding
one) to verify in general models, and it is often the condition which is not
verified when the Bernstein-von Mises theorem is not satisfied, as illustrated
in our examples below. Interestingly, this condition can also be found in [3],
but in a less explicit way. Indeed, in [3], the parameter is split into (6, g) say,
where g is a function (so it is infinite dimensional) and 6 is the parameter
of interest and is finite dimensional. Two cases are then considered, namely
the case without loss of information and the case with loss. In the former,
the computations simplify greatly and the change of parameter is only made
on the parametric part 6, which usually is easy to verify. In the latter, the
non-parametric part is more influential and this case is handled merely in
the setup of Gaussian priors for which an interesting discussion on how this
change of parameter is influenced by the respective smoothness of the prior
(see page 14 of [3]) and of the true parameter is lead. In our context, the
smoothness of the functional ¥, of the true density fo and of the prior are
certainly influential, as will be illustrated in the examples below. However,
for non-Gaussian priors, the notion of smoothness of the prior is not so
clearly defined. In particular priors leading to adaptive posterior concen-
tration rates cannot be said to have a smoothness of their own. We rather
view this condition as a no bias condition, which also applies to the Gaus-
sian case. Indeed, choosing a less regular Gaussian prior allows for correct
approximation of rougher curves and thus avoids biases in the estimation
of rough functionals. To make this statement more precise we consider now
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BVM FOR LINEAR FUNCTIONALS OF THE DENSITY 11

the framework of sieve models.

Consider (F)k, a sequence of subsets, such that UpF C F and Fj =
{fo st. 0 € O} with O C R™ and (ry)x is an increasing sequence going
to infinity. A prior on F is then defined as a probability on k, say p(.) and
given k a probability on 0, say 7. This setup is quite general and it includes
in particular the two types of examples considered in the paper, namely
the random histograms (see Section 2.2) and the exponential families (see
Section 2.3). For notational ease, we write hg instead of h s, and &h,n instead
of 9y, foim Assumption (A3) then corresponds to a change of parameter from
hg to hg — tp,. So, a first difficulty comes from expressing this change
in terms of 6. This change of parameter has just to be done locally and
more precisely has to be defined on a set A, closely related to the set A,
introduced in (A2). In other words, we construct A, and for each k, a map
Ty : A, N O} — O and we define Yy such that

hr.0 = hg — t 0

(equivalently fr,o = Jfge*t‘/”vﬂ/ ‘/ﬁ) The aim of this construction is to build
T}, such that vy ¢ =~ 1y, ,. Mathematically, this approximation is expressed
via log-likelihoods and we set

pn(0) = La(f1i6) = Lulfoe™Vmn V).
By using (2.5) or (3.6), note that

Fo(h% )
on(6) = —TTM + Gn(thG) + Rn(th9)

B (_Fo((he — tnn)?)
2

+ Gn(hH - t&h,n) + Rn(hH - t@h,n)) :
Then, Relation (2.3) of assumption (A3) can be reduced to the following
one: for all k such that ©, N A, # ()

Fo(h?
Ji. o, €XD (— i) | G (o) + Rn<the>) e~ O) e (6)d

2
Jaop @50 (=52 + Ga(ho) + Ru(ho) ) mi(8)a0

(2.6) =1+ op,(1).

Proposition A.1 in Appendix gives the rigorous construction of A, and of
the map T},. Proposition A.1 also states that under mild conditions

pn(0) = —tFo[Agghe] +1Gn(Arp)

2
_%FO(('J}h,n — P0)?) + 2 Fo [(Ynn — Yh0)Pnn) + op (1),
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12 V. RIVOIRARD AND J. ROUSSEAU.

uniformly in 0 € A, N Oy, where Ay g is the difference &h,n — Y0 up to an
additive constant, i.e. there exists a constant b, ¢ € R such that

Apo(z) = Ypn(z) — Yro(x) + brg, x € [0;1].

Note that the function ;¢ is related to the approximation -, of the least
favorable direction considered in [3].

As will be illustrated in subsequent examples, under many priors, we can
obtain 7 (Ti0) = mx(0)(1 4 o(1)) uniformly over A, N O and integration
over A, N0y, is hardly modified by Tj. Therefore, the key condition to verify
(A3) is pn(#) = op, (1) uniformly in § € A,,, which is implied by

(2.7) Fo(hoArg) =0(1) & Fo((Ynn — vre)?) = o(1)

uniformly over A,, (see Proposition A.1). Condition (2.7) expresses that the
difference ih,n — Y19 has to be small enough, illustrating in this context
what we mean by a no bias condition.

Before studying in details infinite dimensional exponential families, we
illustrate this general result in the setup of priors based on random his-
tograms with random partitions. Such priors have often been considered in
the Bayesian non-parametric literature, see for instance [11], since they are
both simple to implement and flexible.

2.2. Bernstein-von Mises for random histograms with random partitions.
Let f,, . be the density on [0, 1] defined for any x, by

k
fn, :ZAL 77j207 277]:]-7 kEN*7

where Azj = 2z — zj—1, Ij = (2j-1,%4], 0 = 20 < 21 < ... < 2z = 1. To define
T.x the conditional density of z given k, we consider the parametrization
(Azy,...,Az), which lies in the k-dimensional simplex:

k
Sk: — {(1’17 7-%']@) € [O, 1]k s.t. sz = 1} .
i=1

Given ¢; > 0 and a > 0, we consider the prior on S, whose density with
respect to the Lebesgue measure is

e ‘1 Zf:l AZ;a
b(c1)
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BVM FOR LINEAR FUNCTIONALS OF THE DENSITY 13

with for ¢ > 0,
b(c) = / e~ Xin I R
Sk

Conditionally on k and z, n has a density with respect to the Lebesgue
measure on Sy satisfying

6_62 Zf:l ni_a
bi(c2)

where cg > 0. We finally consider a prior on k& which satisfies the following
property: there exist Cp, C), co, ¢ > 0 such that when k is large,

Tk (1115 -+ ) = U, (1, -5 k)

_ a+1 _ a+1
Coe cok <p(k) < C'(')e ok

We have the following result.

THEOREM 2.2.  We consider ¥(x) = x. Under the above prior, if fy
is y-Holderian with (o +1)/2 < v < 1, strictly positive on [0,1] and al-
most surely differentiable on (0,1) with deriwative fi(x) > co for almost
all z € (0,1) then assumptions (A1), (A2) and (A3) are satisfied and
the conclusion of Theorem 2.1 holds. Moreover, under the above prior, the

rate of concentration of the posterior distribution around fy is of order
O((n/logn) =27/t o n).

The proof is given in Appendix C. The prior is assumed to follow quite
stringent tail conditions, inducing a loss in the concentration rate. This is
due to the need of controlling the posterior concentration rate in terms of
the divergence V. We do not claim that this concentration rate is sharp, and
it is quite possible that it can be improved. However this would not shed
more lights on the Bernstein-von Mises property per se.

As explained before, a key condition for the Bernstein-von Mises theorem
to be satisfied is that for any z and any n such that

V(fo, fyz) = O((n/ logn) =2/ rtatD 160 p)

we have:

(2.8)

k
i [ /1 fo(@) (l0g(fo(x)) — log(n;/A2))) () — F;)dz | = o(1),
j=1"1i

with ¢; = (f;. P(x) fo(x)dx)/Az;, which is a transcription of the first part of
J
relation (2.7). This is satisfied under the condition f}(z) > ¢o. The proof of
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14 V. RIVOIRARD AND J. ROUSSEAU.

Theorem 2.2 shows that the result remains valid if ¢ is any Lipschitz func-
tion. Equation (2.8) shows that we have to approximate conveniently both
fo and ¢ by piecewise constant functions. Since the asymptotic posterior
distribution is driven by the smoothness of fy, it is sometimes necessary to
force the prior to remove the bias due to the shift by 1/; in the approximation
of fe~*¥nn/vV™ in the prior model to validate (2.7). This is illustrated in the
following section.

2.3. Bernstein-von Mises for exponential families. In this section, we
consider the non-parametric models (priors) defined in Section 1.2. Assume
that fp is 1-periodic and log(fp) € L2[0,1]. Let & = (¢))ren be one of the
bases introduced in Section 1.2, then there exists a sequence 6y = (6p») ren=
such that

Jo(z) = exp (Z Oorpa(x) — 0(90)> :
AEN*

We denote Iy, . the projection operator on the vector space generated by
(éx)o<r<k for the scalar product < .,. > and

A =1 =g ) = — g 1),
where 9 is defined in (2.1). We expand the functions ¢ and II fo,ki/; on &:

K
P(a) = dada(x), Mpep(@) =) duada(z), = €[0,1]
A0

AEN

so that (1;)\) aen and (@H A<k denote the sequences of coefficients of the
expansions of the functions 1 and Ily, r1) respectively. We finally note:

72;1[‘];] = (&H,l) ey &H,k)'

Let (en)n be the sequence decreasing to zero defined in Theorem B.1 (see
Appendix B). The sequence L(n) is based on the function L defined in the
case (PH) of Definition 1.1 and, in the sequel, we set L(n) = 1 in the case
(D) by convention. Using Definition 1.1, for all a > 0, there exists a constant

lop > 0 large enough so that PP, (k >

lone%
L(n)
[9] p. 221, it implies that there exists ¢ > 0 and [y large enough such that

l0n62
P Pﬂ' n
0 [ (k ” L(n)

Define I, = lpne2/L(n) in the case (PH). In the case (D) we set I, = ki,
where k7 is defined in Definition 1.1 . We have the following result.

) < emanen, Following for instance

2

Xn) S e—c?’LEn:| =1 +O(1)
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BVM FOR LINEAR FUNCTIONALS OF THE DENSITY 15

THEOREM 2.3. We consider the prior defined in Definition 1.1. We as-
sume that |1og(fo)]ee < oo and log(fo) € Bpq withp > 2,1 < g < co and
v > 1/2 is such that

B<1/24+~ if p<2 and  B<y+1/p. if p.>2,

where py is defined in Definition 1.1. For any k € N*, set

k ¢ 2 4(108;”)3 2
Bk = {0 eR S.t. )\2221(9)\ - 90)\) S I,Q(n)En} 5

and assume that for any t € R,

(2.9) lim max sup LQ =1
n=s+00 k<ln gc B, (9 twﬁ“)
TR \Y ™ Um
and
210) sup {15 daonlue + VALY drinll | = o (1520
L )\>k>\>\oo )\>k/\>\2 e

(replace k < 1, with k =1, in the case (D)). Then, for all z € R,

(211) BT [Vi(¥(f) = U(Pa)) < 21X =D p(k|X™) vy, (2 + pn,k) + 0, (1),
k

where

- Vo = Fo(4?) — Fo(A7),

- [k = /1l <Ak D oasktl 90>\¢>\) + Gn(Ay).
In the case (D), if

(2.12) S gE=o(nmi )

Ak

then, for any z € R,
(2.13)  PT[VA(U(f) - U(P)) < 2|X"] = @y (2) + opy (1),

where Vo = Fo(¢?).
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16 V. RIVOIRARD AND J. ROUSSEAU.

The proof of Theorem 2.3 is given in Section 3.2. This result is a conse-
quence of Theorem 2.1. Conditions (A1) and (A2) are verified using Theorem
B.1. Conditions (2.9) and (2.10) are needed to study the asymptotic behav-
ior of the ratio defined in equation (2.3) which must go to 1 for condition
(A3) to be satisfied. As explained in Section 2.1, to control the ratio defined
in (2.3) we need to express the change of parameter h to h—t@h,n in terms of

a change of parameter from 6 € By, to 6 — t&ﬁd /+/n. Condition (2.9) ensures
that the prior is not dramatically modified by this change of parameter. The
following three examples of priors illustrate this condition. For the sake of
simplicity, we only consider the case p = ¢ = 2.

COROLLARY 2.1.  Assume that log(fo) € W?. We still assume that [ >
1/2 and v > 1/2. Condition (2.9) is satisfied in the following cases:

- g is the standard Gaussian density and v > 3 — 1/4 for the case
(PH), v > 8 —1/2 for the case (D).

- g is the Laplace density g(z) o< e 1l and v > 5 — 1/2 for the case
(PH) (no further condition for the case (D)).

- g is a Student density g(z) o« (1 4 x2/d)~4*tV/2 under the same
conditions as for the Gaussian density.

Corollary 2.1 holds for any bounded function . For the special case
Y(z) = lly<gq,, conditions on v and S can be relaxed. In particular, in the
case (PH), if g is the Laplace density, (2.9) is satisfied as soon as vy > f—1/2.
By choosing 1/2 < 8 < 1, this is satisfied for any v > 1/2 as imposed by
Theorem 2.3. Note that in the case (PH), Theorem B.1 implies that the
posterior distribution concentrates with the adaptive minimax rate up to a
logarithmic term, so that choosing 3 close to 1/2 is not restrictive.

Condition (2.10) is needed to obtain |Ag|e = o(y/nu2)™t) for all k < 1,
as required by Proposition A.1, which is the first step used to establish
Theorem 2.3. Indeed, (3.13) gives \/nu2 = /ne2(logn)? which goes to 0
with n, so that Condition (2.10) is quite mild. It requires some minimal
smoothness on 1 through the decay to zero of its coefficients. Note that we
require €, = o(n_l/ 4), which is a consequence of the conditions imposed
on f,7v and p,, but which is necessary in various parts of the proof. The
threshold n=/4 is often encountered in semi-parametric analysis as the no
bias condition (see for instance [25], Section 25.8) and is also required in [3]
in the Cox model example (i.e. with information loss).

Conditions (2.9) and (2.10) are rather mild, so that quite generally, the
posterior distribution of /n(¥(f) — ¥(P,)) is asymptotically a mixture of
Gaussian distributions with variances Vi — FO(Ai) and mean values — iy, i
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BVM FOR LINEAR FUNCTIONALS OF THE DENSITY 17

with weights p(k|X™). To obtain an asymptotic Gaussian distribution with
mean zero and variance Vj it is necessary for p, ; and Fo(Ai) to be small
whenever p(k|X™) is not. The situation where Fy(A?) # o(1) under the pos-
terior distribution corresponds to the case where there exists kg such that
fo € Fi,- In that case, it can be proved that P™[ko|X"] = 1 + op,(1), see
[4], and the posterior distribution of ¥(f) is asymptotically Gaussian with
mean W( féko), where 6y, is the maximum likelihood estimator in Fy,, and

the variance is the asymptotic variance of W( fék ). The posterior distribution
0

therefore satisfies a Bernstein-von Mises theorem, but it is a parametric re-
sult and not a non-parametric Bernstein-von Mises Theorem. However, even
if Fo(Az) = o(1), in the setup of exponential families, it may happen that

VnEy (Ak D oaskil 90,\@\) # 0(1) 80 pin i 7 op,(1) and the posterior distri-
bution would not satisfy the non-parametric Bernstein-von Mises property.
The term p,, , is a bias term in the posterior distribution. It is related to the
term 7y, —+ in [3] in the case of information loss, since II fo,l#[’ plays the same
role as y,. In the case of Gaussian priors the control of ~, — 7 is induced
by a smoothness assumption on the prior. Here the notion of smoothness is
not so clearly defined and the control of i, ; strongly depends on a lower
bound on the set of k’s such that 3y~ 14 62, < €2, which can be interpreted

o\ 1/2
as a no bias condition. Indeed |u, x| < Cv/n (2/\>k 1[1?\) (X sar02)) 12,

Therefore for the Bernstein-von Mises property to be satisfied over a class
of functions fy, the posterior on k£ needs to be almost 0 for k’s such that

_N1/2
(Z,\>k ¢§) is larger than [v/n (3,5 9(2)/\)1/2]_1. In general we cannot

assess a lower bound on & for which >y, 62, < €2 unless we assume some
extra conditions on the behavior of the 6p)’s. Thus in the case (PH), the
Bernstein-von Mises theorem will often not be satisfied, even for regular
functional 1; unless strong assumptions are put on the behavior of the coef-
ficients (fpy ). This remark is illustrated in Proposition 2.1, where we prove
the non validity of the Bernstein-von Mises theorem for a given family of
functions fp (with various smoothness parameters).

The Bernstein-von Mises theorem is however satisfied in the case of a
prior of type (D), under condition (2.12). The latter is verified if either
v > p+1/20rif v > f and ¢ is a smooth function like a continuously
differentiable function in the case of the Fourier basis or a piecewise constant
function (as in the case of the cumulative distribution function). Therefore
to obtain a BVM theorem, the true density fo and the functional ¢ are
required to have a minimal smoothness (v > 1/2 for f; and condition (2.10)
on ). Conditions (2.12), k = k* and the constraints on 3, force the prior
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18 V. RIVOIRARD AND J. ROUSSEAU.

to approximate correctly functions that are potentially less regular than fj.
We illustrate this issue in the special case of the cumulative distribution
function calculated at a given point zg: (x) = lly<4,. We recall that the
variance of G, (¢) under Py is equal to Vy = Fy(xo)(1— Fy(zg)). We consider
the case of the Fourier basis (the case of wavelet bases can be handled in
the same way). Straightforward computations lead to the following result.

COROLLARY 2.2.  Let zg € [0;1]. Assume that ¢ is a piecewise constant
function. Consider the class of sieve priors defined in Definition 1.1 in the
case (D) with g is either the Gaussian or the Laplace density. Then if fo €
W7, with v > 8 > 1/2, the posterior distribution of \/n(F(x¢) — Fp(x0))
s asymptotically Gaussian with mean 0 and variance Vy. If g is a Student
density and if v > 8 > 1, the same result holds.

We now illustrate the fact that for the case (PH), the Bernstein-von Mises
property may be not valid.

PROPOSITION 2.1. Let us consider the Fourier basis and let
fo(z) =exp | > Ooroa(x) — c(6o)
A>ko
where ko is fived and for any A, 0p2x4+1 = 0 and

O o — sin(27Axp)
0.2 = A +1/2, /log Xloglog A

Consider the prior defined in Section 1.2 with g being the Gaussian or the
Laplace density but the prior p is now the Poisson distribution with param-
eter v > 0. If kg is large enough, fo € W7 and there exists xo such that the
posterior distribution of \/n(F (xo) — Fy(x0)) is not asymptotically Gaussian
with mean 0 and variance Fy(zg)(1 — Fy(xp)).

Actually, we prove that the asymptotic posterior distribution of F'(z¢) —
F,(x0) is a mixture of Gaussian distributions with means p,, ;, and variance
Fo(z0)(1 — Fy(zp))/n and the support of the posterior distribution of k is
included in {m € N* s.t. m < ck,} where c is a constant and k,, is defined
in (3.23).

2.4. A conclusion. As a conclusion on the existence of Bernstein von
Mises theorem for linear functionals of the density, we see that apart from the
usual concentration results of the posterior distribution, the key condition is
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to be able to define a change of parameter from f to fe t¥nn/V7 which does
not significantly modify the prior. Such a construction differs, depending on
the family of priors considered. In this paper we have called this a no bias
condition since it means that not only fy needs to be well approximated
with such a prior but also fe~®™nra/vV7 for all f in a neighborhood of fo.
Remember that '&h,n is equal to the functional v up to a constant, so the
influence of 1 is of course non-negligible. This no bias condition can be
problematic since the posterior (being driven by the likelihood) is targeted to
approximate correctly fy and in the case of adaptive posterior distributions
such as (PH), it is thus adapted to the smoothness of fy, which might not be
the same as the smoothness of fe ™¥rn/V In the case of Gaussian priors,
as considered in [3], this implies that the prior is not too smooth so that
fe tnn/ v can be correctly approximated by sequences in the associated
RKHS. In the family of sieve priors it means that the posterior distribution
concentrates on k’s that are large enough.

3. Proofs. This section contains the proofs of all the results except
Theorem 2.2 for which we need to establish rates of posterior distributions.
So, its proof is deferred in Appendix which contains all the aspects about
concentration rates.

In the sequel, C' denotes a generic positive constant whose value is of no
importance and may change from line to line. To simplify some expressions,
we omit at some places the integer part [-].

3.1. Proof of Theorem 2.1. Let Z, = /n(¥(f) — ¥(P,)). We have
(3.1) BT {A,]X"} = 1+ 0p, (1),

So, it is enough to prove that conditionally on A, and X", the distribution
of Z,, converges to the distribution of a Gaussian variable whose variance is
Fo(1?). This will be established if for any t € R,

(3.2) lim Ly(t) = exp (tQFo [JPD :

n—-—+o0o 2

where L, (t) is the Laplace transform of Z,, conditionally on A,, and X™:

(3:3) Lu(t) = E7 [exp(tv/n(T(f) — U(Pn)))|An, X"]
E™ [exp(ty/n(¥(f) — ¥(Fn)))la, (f)[X"]
P {An[ X7}
Ja, exp (tVn(U(f) = U(Pn)) + ln(f) — Ln(fo)) dr(f)
fAn exp (bn(f) — €n(fo)) dm(f) .
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20 V. RIVOIRARD AND J. ROUSSEAU.

We first deal with t/n(¥(f) — W(P,)). For this purpose, we introduce for
any .,

1
(3.4) Bpn(z) = / (1 — w)e M@ /gy,
0

Note that, with h = hy = /n(log f — log fo),

1
Bpn(z) < 0.5><1{]c(gc)<fo(x)}+1{f(m)>fo(m)}/D Julog f(z)—log folx)) g,

(3.5) < Yp@<folo)} + L{r@)> foy 108 f(2) —log fo(x)) ™! @)’

So, using (3.4), a Taylor expansion gives

M)\ | b | W)
exp(\/ﬁ)—l—i—\/ﬁ—f- - Bpn(z),

which implies that

tr((f) —U(P)) = —tGu(v) +tf</z/»a: = fo(x))d )

= —tGn(¢) + tFo(h) + ﬁFo(h ?Bhnth).
Since we have
3.6) )~ () = =20 4 ) 4 ),
we can write Ly (t) as
L4, ex0 (Gulh = t) + tFo (W) + L Fo(h2 Byth) — 220° + Ry (h) ) dr(f)

Ln(t) =

L, exp (124 >+G (h)+Rn(h)>d7r(f)
S, exp (—E0=20) 4 G (h — i) + Rl = ) + Unn ) die(f)
Ja e (=242 + Gu(h) + Ru(h) ) dn(f)
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where straightforward computations show that

~ — 2 — — ~
Uppn = tFo(h( —nn)) + %Fo(wﬁ,n) + Rn(h) — Ry (h — tn,5) + %Fo(thh,nl/J)

3

= R (WD) + Vi Fo(dnn) + —= Fol By )

f ~
o (= 25| ) + o ()

Now, let us study each term of the last expression. Using

tFy(hi)) + nlog (Fg

(3.7) [¥]o0 < 2]¥]o0 < o0,

the Taylor expansion of exp (—t@ZNJ / \/ﬁ) and the formula

F(@) = folx)exp (h(fjfj) |
we obtain:

Fo exp (%—%)] = F(]

= 1- \/tﬁFo [e%ﬂ + ;Fo [e\%&z} + O(n_f).
Also,
Fo {e% 7 - F%¢]+Fo[h2§h,n¢]; 7 [e% 7 =] 1/;2}+F055%[)2]+F0[h2 ih,yﬂzﬂ'

Note that, on A,, we have Fy(h?) = O(nu2) and, by using (3.5),

(oe (5)) oo s ()]

< nui + nuy,

Fy (h*Bp,) < nky —i—nF[
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22 V. RIVOIRARD AND J. ROUSSEAU.
s0, Fy (h?Bp,n) = o(n). So, uniformly on A, since ¢ is bounded (see (3.7))

o w\| .t (R[] F[h*Buayl
F”“"(ﬁ ﬁ)] - ﬁ(ﬁ+ . )

+i (Fo [122} + FO\[%LQ] + FO[hQih’n¢2]> +o(nt)
-1 _% Fo[hd)] + Fo[hi/%z,nw] tRy(4?) +O(1)]
(3.8) = 1+oofuﬁ
and
hoth _ = Folh?Buadl]  tFy(4?) o
nlog (Fo exp <\/ﬁ ﬁ)]) = —t|Fo(hy) + T +o(1).
Finally,

Unn = t;Fo [1/;2} +o(1)

and up to the multiplicative factor 1+ o(1), L, () is equal to
4ol 2 — —
<t2F [ ~2}> fAn exp <_M + Gn(h - twh,n) + Rn(h - twh,n)) dﬂ(f)
exp { = I 3 .
2 Ja, 50 (282 4 Go(h) + Ra(h) ) dn(f)

Finally (A3) implies (3.2) and the theorem is proved.

3.2. Proof of Theorem 2.3. We use the same approach as in Theorem
2.1. We first prove that conditions (A1) and (A2) are satisfied. Let €, be the
posterior concentration rate obtained in Theorem B.1. Recall that

- € = eon_ﬁ(log n)ﬁ and [, = lz?:jl in the case (PH),
BA 1
- €, = €p(log n)thﬂMngl and [,, = k} = kon?2+T in the case (D).
Note that for any a > 0, since v > 1/2 and 5 > 1/2, we have:
(3.9) (logn)%,e2 = o(1).

Note also that in the sequel we can restrict ourselves to U<y, Fi. Indeed, in
the case of the prior (PH)

Pr[(Uk<t, Fr)] = ) p(N)

A>ly
2

(3.10) < Cexp(—clnL(ln)) = o(e” ™),
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for some positive constant ¢ and in the case of the prior (D) Py [(Ug<i, Fr)¢] =
0 by definition.

In the sequel, for any k < ,, and any # € R¥, we still denote 6 the sequence
whose A-th component is equal to 8y for A < k& and whose A-th component
is equal to 0 for A > k. Then we can define

B 2(log n)*/%¢,
k
_ _ <o
A, {9 € UkSZnR s.t. ||9 00”(2 > L(n)1/2 :

In the same spirit as for Proposition A.1, with a slight abuse of notation,
we also denote . .
Ap ={fyp st. € A,}.

Note that from Theorem B.1,
i {Anyxn} =1+ op, (1).

To prove (A1) and (A2) we control V(fy, fo) and Fy[|log(fa/fo)l] for fo €
A,. For any 0 € A, we have:

V(fo.fo) < 2lfolleolld — bol7, +2(c(6) - c(bo))*.

We show that the second term of the right hand side is smaller than the
first one up to a constant. For this purpose, note that for # € A,, by using
(D.1), (D.3) and (3.9),

(3.11) || Z (Oox — 0)érloo < CVITall0 — ol + CI2 T = o(1).
A=1

Therefore for 6 € fln,

c(0) —c(6o) = log </ fo(z e~ 21 (Bor—0:)9 (@ )dx>

400 2
= log 1—2(00,\—9)\)F0(¢)\)+2F0 <Z(90A—9A)¢A> (1+0(1))

=1 =1
+o00

= = (Box — ) Fo(6a) (1 +0(1)) + O(10 — bol7,)
=1

and for n large enough,
(3.12) |c(0) = c(6o)] < 2] fol 210 — Golle-
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24 V. RIVOIRARD AND J. ROUSSEAU.

Using Theorem B.1, this implies that on A,

(3.13) V(fo.fo) = Ole;(logn)’/L(n)).

Thus (A1) is verified with u2 = u3e2(logn)3/L(n) and ug large enough. To
establish (A2), we observe that we have:

log fo —1og foloe < 1 D (Box — 0x)éalo + [c(6) — c(6p)]
AEN*

2] ) (Box — 03)palee = o(1)

AEN*

IN

by using (3.11). So, on A,

V(f@v fO) < CV(fo, f@)

and (A2) is implied by (A1). Conditions 1 and 2 of Proposition A.1 are also
true with w,, = 1 for any n. Now, let us study the validity of (A3): For any
t, we study the term

_tb 2 _ _
Ja, exp (‘M + Gu(hy — tihnn) + Ru(hy — twhm)) dr(f)

I, = .
fAn exp <— FO(th) + Gn(hy) + Rn(hf)> dr(f)

We introduce

—_+b 2 — _
_ fAnm]:k €xp (_M + Gn(hf - twh,n) + Rn(hf - twh,n)) dﬂ'k(f)

Jk}vn = Fo(hz) 7
Ji,nF, exp (— 5+ Gu(hy) + Rn(hf)) dmi(f)

so that

(3.14) 1 e JenPT[An 0 F X7

S PT[A, N Fi| X7

We now study Jj, ,, using the approach described in Section 2.1 and Proposi-
tion A.1. At this stage, we have only to focus on Condition 3. of Proposition
A.1. To define 9, 9 and T}0 for all 0 € A, N Rk, first define

L5, k9 — tibri _ LN
NG NG ;1/111,\(?,\-

Dn,k,t =
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We have, using (D.1) and since k < [,

IDniloe < t\fnwn I, < tfunfo,kzzu? < %nnfo,ku?rfo
< i < gl = e,
NN NN
where ¢q is a lower bound for fy. Now, we can set
7. (K]
T.0 =6 — t%

and

n n 7 [k]
VYo = \n:nkt — \tr <c(0) —c (9—75\/1%)) .

So, fr.o = foe VR0V and Py, — g = App — big with Ay g = — T, 1)

and straightforward computations show that:
~ k:] ~
- \/ﬁ 1['1 \/ﬁ h@ tw
_ _ v _ I _ vV Jy LA
bi.0 mo— = c(f) —c|0—t o .~ log | Fo fexp N AN

vn | FO(eHn—i-tAk,e/\/ﬁ)
t Fo(eH") ’

with H,, = (hg — t))//n.
- To emphasize the fact that Ay ¢ does not degend
on 0, we write hereafter Ay := Ay g. Since oo = O(1) and since on A,,

n gl < | Z (Box = Ox)da(x) — c(bo) + ¢(0)] oo

< C\fH% Ole, + Clbo = ble, = o(1),

| Hy oo = 0(1). To bound |Ag oo, We set ¢k = > 5o ) ¥ada, 50 A = thyp, —
4, k(¢4%). Then by using (D.1),

[Akloo < [¥1klo0 + Mg 84 k]oo
< [srloo + OVELp bl o
<

[kl + CVEIY k] £,

1
[ossloe + OVl =0 ( 2y ).
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26 V. RIVOIRARD AND J. ROUSSEAU.

where the last inequality comes from condition (2.10).
We now bound by, 9. Since Fy(A?) = O(1) and [Agfoo = o(v/n),

e, = g (o (1428)) 4o (BD)

jﬁmeHmk) + o(1//m).

Note also that from (3.8), Fo(ef'") = 1 + o(1/4/n). Furthermore, since
Fo(|Ag]) < 00, |[¥]ee < 00 and since n~1/2|hg|oe = o(1),

s = (a0 s 5) 0 ()
= Fo(Ag) +o(1) = o(1).

We thus obtain that

n
3.15 b = —1
( ) k,0 t 0og FO((?H”)

FO(eHn"rtAk/\/ﬁ)] 1
=0 .

Note that FO((Q;Z)h,n — wk,0)2) = Fo((Ax — bk79)2) = Fo(A%) +o(1) = 0(1)
uniformly over A,, and condition 3 of Proposition A.1 is satisfied with w, = 1
for any n, which implies that

pn(a) = —tFo[Akhg] + th(Ak)
2
_%FO(@Z}h,n — U0)?) + CFy [(Ynn — Yro) U] + o(1).

We can simplify this last expression. Indeed, since Ay is orthogonal to any
o, A < k including ¢g = 1, we obtain, using the expression of hg in expo-
nential families,

Fo(heAr) = —vnFo((D_ foréa)Ar),

A>Ek

which is independent of 6. Also,

Fo((Unm — Yrp)nn) = FolAR) + Fo(ihreAr) + o(1) = Fo(AF) + o(1),

where the last equality comes from the orthogonality between Ay and 1y g.
Therefore, uniformly in 6,

t2
pn(e) = t,un,k + §F0(Az) + 0(1)
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BVM FOR LINEAR FUNCTIONALS OF THE DENSITY 27

and for all k such that F, N A, # 0, by using the definition of p,(6) in
Section 2.1, we obtain finally:

70 (ty0) Gn(h R (h
J T O O A R ()
kn — € € ™

’ _ Fy(h)
flemAn e 2

—tzFo(A%)
2

(1+ o(1)).

+G"(h9)+Rn(h9)d7{'k (0)

We now prove that the prior 7 is not affected by the change of parameter
0 — T0. For k < [, le[f] le, < C, where C' does not depend on k and n.
So, if we set

§ plEl ;
Ti(Ay) = {0—1—75\/% st. Be kaAn},

for all # € Tj(A,), using Theorem B.1 and (a + b)? < 2a® + 2b%,

< 4¢2 log® n n 202C? _ 4e2 log®n
~  L(n) n —  L(n)

16 — 607, (1+0(1))

since ne2 — +oo. Conversely, for all § € RF N A, such that |0 — 6p]s, <

n

1.5(logn)3/2L(n)~12¢,

0 — t\/l[T: e A, NR"
for n large enough and we can write (still for n large enough)
(3.16) RF N Ay C Ti(A,) CRFN A,
with
Apy = {9 € A, st |0 — 0o, < 1.5(logn)3/2L(n)_1/26n},

Az ={0 st 16— ble, < V5llogn)/2L(m) 26, }.

Therefore,
_ Fo(h)
_t2LA%) —t .kamAnge ’ +Gn(h9)+Rn(h9)d7rk(9)
ka < 3 e Hn, k F(h2) <1+0<1))7
_Folhg
Jrrna, €2 FCnho) (o) g (9)
2
Fo(A3) Jrrni e_MJFG”(h"HR"(h”)de(H)
Jkn 7252Tk€7t,un,k R mAn’l (1+0(1))

’ - Fo(h
kamAn e 2

2
0)+Gn(h9)+Rn(h9)dﬂ—k(9)
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28 V. RIVOIRARD AND J. ROUSSEAU.

Therefore, using (3.3) and the last equality of the proof of Theorem 2.1 and
combining the above inequalities with (3.14) we obtain

Calt) = E7fexp(tv/n(¥(f) — TP )15 ()X
= L(t) x P"{A|X"} = Lo())(1 + 0(1))

12 Fo (92)
— e L(1+o(1)).
Therefore,
Fo(Aa2) B
PRy Zénzl e_t2¥e—tun,k]pﬁ [A”%? ) Rk’Xn:|
W) < e - (1 +0(1))
kn:]. Pr [An,l N RHX”}
ol
2Ry (%) Fo(A)
B17) < TET S et e XL o),
k=1

We now have to provide a lower bound of (,(t). Using the exponential rate
pointed out in Theorem B.1, We first observe that with Pyp-probability tend-

ing to 1, P~7 {AMIX”} >1- e‘”ce%, for some positive ¢ > 0 and ¢ = 1,2.
We also have that for 0 < a < 1/(2max(8;v) + 1),

l
N RylA7]
—-a,, 2 012k
Py [ll?ng"(Ak” >n nen} E -

< — —2a(n€%)2
FO[YP]ZH _
< 77%72&(”6%)2 =o(1).

Define the event
Q, = {gglen@k)\ <nned, P AylX"] 21— e = 1,2} ,

so that Py[Q25] = o(1) and on Q,, we have

In —t2 Fo(ag) —tu T | A k| yn
Rt k=€ 2 e P Ay NRYX
2

Clt) > e (1+0(1))

b pr [Ang N RHXn]

o
250 (92) Fp(A2) ~
et E e T et [IP’“[HXn] - P" [(An,l)c ﬂRk|4(n}} '
k=1
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BVM FOR LINEAR FUNCTIONALS OF THE DENSITY 29
Now, we introduce

Iy = {k <l st PTIE[X"] > ' PT [([1”’1)‘3 mRk’Xn”

I = {k <l st. PTEX"] <7, 'P" [(Anvl)c mRk’Xn] }’

2
ncey

with r, = e~ "2 . We have

72 Fo(A2)
Glt) = (1=r)el 57 3 etk P P X7
kelp
and
~ nce%
(3.18) S PRIXT] < 1 BT [(An,l)ﬂxn} < et

kel

Moreover, on 2,

IN

oo 12 / oo 1/2

it = 0 |va( ) (3 o) s
A=k+1 A=k+1

< 2n %l

n?

for n large enough. This yields
Z e_tun,ke_t2
kel

Using (3.10) and (3.18), for n large enough,

FU( 2 nce%

AZ) ﬂl
- k ]P)ﬂ'[k,‘X’rL] < Cthn ne;, 5

Fo(AF)

Z e_t“"”“e_ﬁ 5 ]P)T(‘[k‘Xn] > €—3tn*ane%
kelp
nce% QFO(Az)
> e a Y e ke T PTE|IXT.
kel
This yields
_ In 2
Fo (%) Fo(AR)
(3.19) Calt) > "2 Ze—tﬂwke—t? STEPTR|IXT)(1 4 o(1)).

k=1

Inequalities (3.17) and (3.19) prove that the posterior distribution of v/n(¥(f)—
U(P,)) is asymptotically equal to a mixture of Gaussian distributions with
variance Vo, = F0(152)—F0(Ai), means — fi, , and weights P (k| X™). Straight-
forward computations prove the last part of the theorem.
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30 V. RIVOIRARD AND J. ROUSSEAU.

3.3. Proof of Corollary 2.1. Condition (2.9) is satisfied if

l%g< >—k%g<j; V;iﬁ)‘—qn.

So, if we introduce the conditions

(3.20) max sup Z

1<k<In ge By, £

In
(3.21) ZJJ%MM =o(n)
A=1
and
k
o
(3.22) @%n;ewn,m o(v/n),
then:

- if g is the Laplace density, (3.20) is satisfied if (3.21) is satisfied,
- if g is the Gaussian or the Student density, (3.20) is satisfied if (3.21)
and (3.22) are satisfied.

Now

since Zl,\n:1 1/;121 y < C (see the arguments in the proof of Theorem 2.3),

In
32, < Cl = o(n)
A=1

under the assumptions of Corollary 2.1. Furthermore, for 1 < k <1,

k k ln
D 0bnan® < 2P0y — oalldmal + > AN |6oxl [l
=1

A=1 A=1

3/2
< o2, 18T | s )
L(n)

The expressions of ,, and €, in the cases (PH) and (D) and straightforward
computations allow to finish the proof.

3.4. Proof of Proposition 2.1. We first prove that fo € W7 for any kq.
Indeed, for any J; > 3,

1
Z O\ < Z 2
= et Alog A(loglog \)

/OO 1 dr— L
5 zlogz(loglogz)?™™  loglogJi'
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BVM FOR LINEAR FUNCTIONALS OF THE DENSITY 31

In the same spirit, observe that for J; > 3,

1 s 1
bor < < / dz
/\;1 oA Agl A\27v+1 log )\(log ]Og )\)2 7 27+1 log :c(log 1Og CC)2
1 o
[ 2y logac(loglogar,’ﬁ]J1 (1+0(1))
1

= 14+ 0(1)),
2vJ77" log Ji (log log J1)2( )

and if zg = 1/4

2711 2
vt =3 (22 + 1)27*1log(2A 4 1)(loglog(2A + 1))

&0 1
> d
= Lﬁlmx+nwﬂmawﬂ4xby%@x+mvx

9—(27+1) °° X ,
| 2va¥log z(loglog x)? J( +o(1)
9—(2y+1)
= (1+0(1)),

27J127 log Ji (log log J1)?

when J; — oo. Set €2 = n~=27/ 7+ (log n)27=1/2v+1) (loglog n) ~2/(27+1)
and

(3.23) o = !/ (log n) =/ 74 (log log n) ~/ 27+,
Previous computations lead to the existence of 0 < ¢1 < ¢ < 400 such that

(3.24) cre < Z 02, < coe?.
A>kn
Furthermore, ne2 is of the same order as k,logn and it is straightforward

to prove that there exists ¢ > 0 such that

2

P" {K(f07f9) < 6721, V(fO,fe) < Ei} > e~Cnen

which implies, using Lemma 8.1 of [8], that

/ een(f)_(n(fo)dﬂ-(f) 2 e_an%
F
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32 V. RIVOIRARD AND J. ROUSSEAU.

for some constant ¢ > 0 with probability going to 1. If k; is large enough,
then P™[k > kik,] < 2<% and the computation of [8] p. 525 implies

P [k < kikn|X™] = 1 + o, (1).

This also implies from Theorem B.1 that the posterior concentration rate
(for the #5-loss) is less than Mye, logn for some positive M.

Moreover, inequality (3.23) implies that there exists ko such that for all
k < kokn(logn)=/(7) and all § € R*, |0 — 6|, > Moe,logn, so we can
restrict ourselves to k > kok, (log n)_l/(%). So, there exist k1 > 0 and kg > 0
such that

P {kan(logn)*”(”) <k< klkan”} =1+ o0p,(1).
We now show that

(3.25)

min P e > c\/logn] — 1.

Py
kokn (log )~ 1/ (%) <k<k1 kn,

First, by using the same arguments as in the proof of Theorem 2.3, we note
that when k € [koky, (logn)~Y @0 kik,] Gp(Ag) = op, (1) and also that

max Gn(AR)| = Op, (1).
kzkn(logn)*l/(%)gkgklkn’ n(At)] IPO()

Now, we have:

png = VnFy | Ag Z Oordx | + Gn(Ak)
A>k+1
= \/E/Ak > 90A¢>A—\/ﬁ/(1—f0)Ak > Ooada + Gu(A)
Akt Akt

= Unklt Unk2t Gn(Ak)
We first consider fi, k. 1:
fnk1 = \/ﬁ/@ > boga=vn > 90A/1ugxo¢,\(u)du

A>k+1 A>k+1

in(2mlzg) _ v/n sin?(2mlxg)
= Von > o 22T L0) 3 '
' +3/2
1>(k+1)/2 2ml V2 i 12V TogTloglogl

With z¢ = 1/4, we finally obtain:

Vn 1
k1l = ’
Hnk,1 NG (2m + 1)7+3/210g"2(2m + 1) log log(2m + 1)

m>(k+1)/4—1/2
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BVM FOR LINEAR FUNCTIONALS OF THE DENSITY

so that there exist two constants ¢j and ¢, such that for all k < kiky,

fin g1 > /mk™ Y2 (log k)2 (loglog k)~ > ¢yy/log n.

Now, let us deal with p, ;2. We have

Ap= Y daoa—Ty, [ D daen

A>k+1 A>k+1

and

2

O, | Y Unén < C 4R

A>k+1 9 A>k+1
So, for any k € [kok,(logn) =Y kyk,],
1/2 1/2
k2l < CVAllfo—1leo | Y. 43 S 6
A>k+1 A>k+1
cvallfo —1 Rl
< e 1
N nllfo =1l Vlog kloglog k

= O(llfo = Hlooptn k.1)-

33

By choosing ko large enough || fo — 1[|oc can be made as small as needed, so

that we finally obtain that there exists ¢ > 0 such that (3.25) is true.

APPENDIX A: PRELIMINARY RESULT TO PROVE (A3)

We state the following technical result that constitutes the first step to
prove the condition (A3) which expresses the change of parameter. We use

notations of Section 2.1.

PROPOSITION A.1. For a sequence (uy)n such that \/nu, — +oo, we

assume that the following three conditions are satisfied.

1. Assumption (A1) is satisfied with (uy), and there exists a sequence

(In)n of integers such that P [k > 1,| X™] = op,(1).

2. There exists a sequence (wy)y lower bounded by a positive constant

such that wy/nu = o(1) and

An - A%Ln N (nglnfk) N {f@ s.t. V(fg, fo) < wnu%},

imsart-aos ver. 2009/05/21 file: BVM-rev2011l.tex date: September 29, 2011



34 V. RIVOIRARD AND J. ROUSSEAU.

satisfies
P™[A,|X"] = 1+ op,(1).
To simplify notations, in the sequel, A, will also denote the set of
sequences 6 such that fg € A,.
3. For each k such that F,N A, # (), there exists a map : Ty, : A,NO; —
Oy and a function Py g such that for all 6 € A, N Oy

(a) froo = foe t¥re/Vn
) _ 2
max  sup  Fy [($nn — Yrp)’] = O1)
=" 0cOLNA,
(¢) for all € Oy such that fo € Ay, Ppn(2) —Pre(z) can be decom-
posed as B
V(@) = Yro(x) = App(x) — biyp,

where by g is a constant such that

max sup \bk,9|:0(u;1w;1/2)

k<l geo,nA,
and Agp(x) is a function satisfying

max  sup  [Apoloo = o(wy T 2u? Antl?).
k<in feEFLNA,

Then, we have uniformly over Uy<, Fi, N A,

pn(0) = —tFo[Akphg) +tGr(Akp)

2
—%FO((%W — Pr0)?) + P Fo [(Ynn — Yn0)nn] + o(1).

The conditions considered in Proposition A.1 are mild and, apart from
condition 3, are slightly stronger versions of assumptions (A1) and (A2). In
the two types of examples considered in this paper w, = 1 and in many
cases wy, increases to infinity at most as a power of logn. The constraints
on by g and Ay g are mild since the right hand terms go to infinity.

Proof of Proposition A.1: We consider the change of parameter 6 +— Tj60
for all 8 such that fy € A, N Fi and we study
Fo(hZ,9)

B <_F0((h9 — tYnn)?)

5 + Gn(hg — t?th) + Rn(he - t&h,n)) )
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BVM FOR LINEAR FUNCTIONALS OF THE DENSITY 35

with hr,¢ = v/nlog(fr.e/fo). Recall that

EE)

he 0\ _
eXp(\/ﬁ \/ﬁ>]> (1),

50 that [pnlee < +00. Writing hro = ho — thnn + t(Ynn — Yre) and
combining the above upper bound with Condition 3 of Proposition A.1, we
obtain

Vhn =+ \/f log (Fo

and ] < co. From (3.8)

vn log (Fg

t

Fo(hg) = Fol(hg — thnn)?) + P Fo(Phm — Yr)®) + 2tFo(ho(Vhm — Vo))
=262 By (Y (Vhn — Yip)),

Gn(hre) = Gnlhog — tdnn) + tGn(Ynn — Yre) = Gnlhg — tnn) + tGr(Akp)
and

2
Ru(hre) = Ru(hg —tdnn) + tVnEFy(Yhn — Vrp) + iFo((z/?h,n —Yr0)?)

2
+tFo(Ynp — Vi) (ho — thnn))

so that B
pu(0) = tv/nFo(nn — Ure) + tGn(Arp)-

To give the final expression of p,(#), we use following computations. Recall
that ¥p , — Yr9 = Ake — br g Where by, g is a constant with respect to x and
note that by definition of 1y g, Fo(e(h"_w’“ﬂ)/\/ﬁ) =1 so that since

|ohn = Vkolloo = [Ake — brglloe = o(v/1),
we have:
1 = Fo(e(hﬂ_t";h,n)/\/ﬁ""t('&h,n_"/)lc,e)/\/ﬁ)
= Fp(eho—t¥nn)/ vy 4 \/tﬁFo(e(hQ—twh,n)/\/ﬁ(qz)mn — Pro))
t? Gy T
+EFO(e(h6 tlﬁh,n)/\f(wh’n _ wkﬂ)ZB(J)’ML_wkﬂ)m)7
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36 V. RIVOIRARD AND J. ROUSSEAU.

where By, ,, is defined in (3.4). Note that Fy(elho=t¥n.n)/Vy = 1 and multi-
plying the previous expression by n, we obtain: 2?21 S; = 0, with

Sy = tvnFo(Ynn — Vre), So=tFo[(¥nn — Vo) (ho — t¥nn)],

S3 = \/tﬁFo[(ih,n—@bkﬂ)(ha—td_}h,n)QBhg—twh,n,n]» St = 2 Fo[($nn—1k.0)" By — )l
2 - 5
S5 = = Fol(nn = ¥10)*(ho = t¥nn) By iy )
and
S¢ = t;FO[(wh,n — ¢k,9)2(h9 - t@h,n)zB(ih,n—wk,e),the—t@hmv”]'

We successively study each term except the first one.

Sy = tFo(Akphg) — th o Fo(hg) — t*Fo[(Ynn — V) Vhn)-

Since [Ynnlloo < Cy Bhy 14y .n = Bhgn(1+ O(1/+/n)) uniformly over A,.
Then,
tb
Sy = - j;f Folh3 By, 1, ) + 0(ur w202 i ?)
+0(n~ 2| A gl Fo (5 Bryn))) + O(n ™2 (Jbrg| + | Mg

o) Fo(|ho| Bhyn))

since from condition (3c) of Proposition A.1, we have |by 9| = o(uglwﬁlm)

and |Ag gl = o(w;; 'n~?u;2). We have also used that

1
2fol(2) By () = 2 / (1 — ) fi() £ (2)du < fo(w) + folw),
0
This inequality implies
2Fy (hgBhyn) < Fo(hg) + Fo(hg) < 2nuiw,, 2F) (|he|Bhyn) < 2upy/nwy,

therefore,

tbkﬂ
S3 = — \/ﬁ FO[thheyn] + O(1>'

Using |9n.n — Ykoloo = 0(v/n) (see previously), we have:

1 ]
1B —tr.g)n = 0-9llc0 = | / (1 — u)e"Whn=¥ro)/Vigy — 0.5, = o(1),
’ ’ 0
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BVM FOR LINEAR FUNCTIONALS OF THE DENSITY 37

and - )
t Y —
S4 _ 0((71Z)h,2 ¢k,9) )(1 + 0(1))
The fifth term is controlled as follows:
2|hnn — o _
S5 < 191 ~ Vo] (FO(hg))l/2 (Fo((nm — ¢k,9)2)1/2 +o(1)
vn
Vg Vg
O<\/ﬁun o + ez, +0o(1) =0(1)
Finally,
[ 2 Fo(h2By,, »
’56’ S ||11Z)h,n wkﬂﬂ;o 0( 0LPhg, ) + 0(1) _ 0(1>
So, we finally obtain
_ tb
0 = tv/nFo(Vnn — r0) + tFo(Arohe) — thrgFo(hg) — \/k’ﬁeFo[thhe,n]
2 Fy((Ypn — 2 _ _
4 DO 2000V 2 4y — ]+ 0(0).
Using the relation
Fy(hiB
Fulhg) + 225 Bhan) _

NG

which comes from a Taylor expansion of 1 = Fy(e"#/V™), we obtain

2Fo(Yhn — ¥Yr0)?)

0 = tv/nFy(Vnn — Vi) + tFo(Agohg) + — 2 Fo[(Yhn — Yr0)Yhn) + o(1).

2
We finally obtain that uniformly on A,
12 - - -
pn(0) = —tFo[Ak,ehe}-H‘Gn(Ak,e)—EFO((%ﬁh,n—wk,e)Q)HQFo[(¢h,n—¢k,9)¢h,n]+0(1)

and Proposition A.1 is proved.

APPENDIX B: POSTERIOR RATES FOR INFINITE DIMENSIONAL
EXPONENTIAL FAMILIES

Since one of the key conditions needed to obtain a Bernstein-von Mises
theorem is a concentration rate of the posterior distribution, we now state
the following result established in [19]. We use notations of Section 1.2.
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38 V. RIVOIRARD AND J. ROUSSEAU.

THEOREM B.1.  We assume that |log(fo)|e < o0 and log(fo) € By 4(R)
withp>2,1<q <00 andy > 1/2 is such that

B<1/24+~ if p.<2 and B<~y+1/pe if pe>2.

Then, there exists ¢ > 0 such that if

1 1 3
= {9 st hlfo. fo) < \/% and [0y — 0l < (ﬁ:)) }

. - 9
ngr}rnoo Py {]P {Q,| X"} >1- exp(—cnen)} =1,

0
logn \ 27+1
€n = €0 )
n

in the case (D), L(n) =1,

where in the case (PH),

__B
en = eo(logn)n™ 23+ if vy > 8

0 .
€n = €ON 25+17 Zf7</8

and €y 1s a given constant. We also have that there exists a > 0 such that

PT {fg s.t. K(f(),fg) < ei;V(fojfe) < 6%} > efane%.

APPENDIX C: PROOF OF THEOREM 2.2

To prove Theorem 2.2, we need to prove that assumptions (Al), (A2)
and (A3) are satisfied. Obtaining a posterior concentration rate in terms of
the Hellinger distance, for such a prior is quite straightforward following [8],
however some technical details are required to obtain a posterior concentra-
tion rate in terms of the divergence V' and to check condition (A2). We first
give the main arguments to check assumptions (A1) and (A2). Recall that
fo is Holderian with smoothness v < 1:

* N - * * * * Z)'j
o Let 25 = j/k,j =0,...k 2" = (2§,...., ) and 7} = fz;g,l fo(z)dz,
j > 1 then using the fact that for some positive constants a < b, we
have a < fo(z) < b for all z, so that f,« .«(x) € [a,b] for all z and

k 2* k
J * * *
| fe2n — fO“% = Z/* (fo(z) — k’"?j)Q < CZ(ZJ‘ - Zj—1)27+1
j=1"%j-1 j=1
< Ck™,
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BVM FOR LINEAR FUNCTIONALS OF THE DENSITY 39

we deduce that | log fo—log fi« . }0 < Ca k=2, |fo/ [y (x)] < b/a
and h( fo, fy+ 2+) < Ca™'/2k~7/2. Then, using Lemma 8.2 of [8] and the
above bounds, we have:

K(fo, fyezr) < Ok V(fo, fyrzr) < Ok
Consider z = (2;)j=0,...k» 1 = (1j)j=1,..k With
g — 2| <k gy -y <k je{l . k—1}

with Hy > 1 large enough, then it is easy to prove that V(fy, fy,.) <
20k~ and K (fo, fy.2) < 20k™7. Set €, > eon~V/2rtatl) and k =
| kon'/v+at1) | for some positive constants ko and €. Remember that
both n and (Azy, ..., Azx) have a density with respect to the Lebesgue
measure on Sy that has the following form:

k —
e CXim1 T

br(c) 7

where by (c) is the normalization constant. We have for all 7 < 1

7rk(ac1, veey ack) =

k —« 1
bk(C) = / e_CZi:I T dx S
Sk (k—1)!

k-1
be(c) > e T KT / TT 2w (i) = =77 (1 = ryp == (D),
=1

Therefore,

P*({f st. K(fo,f) <e2, V(fo,f) <er})

— k g
fskmﬂmfnﬂgk*Hl e =17 dr fskm{mﬁAz;lSk*m i} €
br(c2) bi(c1)

k —
—e Y 2 gy
>

and since nf > k7'a and Azl = 2 —zF | = 1/k, |nf — x| < n~D
implies that z; > a/(2k) for n large enough and |z; — Az}| < k~H1
implies that x; > 1/(2k). This leads to

P™({f st. K(fo,f) <2, V(fo,f) <e2}) > C((k— 1)!)26—(co+2a(cl+a-%2))ka+1

2
—ne
e n,

v

if € is large enough.
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e For k; a constant, let k, = kyn*/27tetl) A H > 0 and

k
Fo={fnz st k<kpn T <Az Vi=1,.,k=1, 0% < Anca},
j=1

H > (a+1)/[a(2y + a + 1)]. Note that for all k if there exists j such
that Az; < n~ then > A > n® > Ane? for any A > 0 if n is

large enough, and vice-versa 1f Z =17 7% < Ane? thenn; > (Ane? )

for all 7 =1, ..., k. Therefore

]P)’/l'(fg) < (k‘ > k —Aczne Z bk —Aclns Z bk

k<kn k<kn,

< e—C’ne%

9

for any C' > 0, by choosing k1 and A large enough.
e For all k < k, and all (f,., fiy,») € Fn2, we have: h2(fn/7z/,fn7z) <

€2 as soon as |Azj — Azi| < n~H=H for all j = 1,...k — 1 and
|77J n§| < n~H1 for some positive value H; large enough, where Azg

2l — 2 _,. Indeed, note that under the above conditions |z; — Z; L <

J g1
1|Azl A < kn~Hi=H for all j and also that I; N (IJ’) =

(I NI;_)U(I; NI ,) for all j, with I = (27_;, 27], and vice-versa,
so that

2

k 02 )
(f ,zaf 2! < AZ NAz ) . - :
n.z Juy', Jzz:l J AZ;/2 (Azj)yz

Zj—1VZ;~,1 n; 77(

J J

+4/ <Az- + A7
Zj—l/\Z;—1 J J

< 2kn2H1HH 4 3, —2H1 < e%,

for H; large enough. We conclude that the covering number of F,, is
bounded by exp(Cklogn) = o(exp(ne2)).

This implies that the posterior distribution satisfies : if M is large enough,

PT({f st h(fo, f) < Men}[X"] = op, (1),
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To obtain the posterior concentration rate in terms of V', note that, if
fn,z € Fp, with h2(f07f77,z) < 61217

My = [ Ji;fz((gj)dm} < ol / Azjlz (2)da

D=

A

Az 1/2
< ol (mx 52 ) < Paloon®?

J

and using Theorem 5 of [27],

V(f07fn,z) < 5h2(f07 fn,z) (‘ log Ml’ + HOgh(vafn,z)’)Q < CG%(IOgn>2

and K(fo, fn.) < Ce2logn, which achieves the proof of condition (Al).
Assumption(A2) is proved along the same lines. Indeed whenever f, . € Fy,

! fﬁ,z(w) : —1y1/2,, H/2

so that using Theorem 5 of [27], when h%(f, ., fo) < €2
V(fyz fo) < Cex(logn)?,

which together with the inequality

/ Foe(@)|10g £ — log fol(@)da < V(fiyzr fo)

proves Assumption (A2) with u, < @, = O(e,logn). We now validate As-
sumption (A3) using Proposition A.1. Set A, = F,N{fy . s.t. V(fo, f:) <
2 V(fner fo) < ul} with u?2 = Ce2(logn)?, the above results imply

P~ [AnyX"} =1+ op,(1),
which proves that conditions 1 and 2 of Proposition A.1 are satisfied with
w, = 1. Note that u2 = o(n~'/*) and nu2 — 4o00. We prove that condition 3

of Proposition A.1 is satisfied. Let A, = {(k,n,2) s.t. f,. € A}, 0= (n,2)
and for any =,

k )
- ~ = Fo(]lljw)
_ ;@z}jﬂzj(x)’ Y= TRy
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42 V. RIVOIRARD AND J. ROUSSEAU.

Denote also
wke—Zwﬂl] + flog Zn eIV

and note that Q/Gh,n — Yo = Ak,g — bkﬁ with

2} (ehe/\/ﬁe—tf/x/ﬁ)

- . \/ﬁ
Apg=1—f, brg=—1log -
t 2 (eho/\/ﬁe—tw/\/ﬁ)

For every 0 = (n, z) we set Tx0 = (', 2’) with

(C.1) 0, = 773'7
Z nie

then by construction hr, g = fgetro/Vn_ For all partition z of [0, 1], if
u* = (UT,...,U}Z), u;" :Fo(]lj logf(])/Fo(Ij),

then u* minimizes in u € R*

k
jgl /Ij folx) (uj —log f0($))2 dx.

Note also that, since fj(z) > ¢o > 0 (or equivalently fj(z) < —cp) for all
€ (0, 1), there exists ¢, > 0 such that (log fo(x))" > ¢ for all z € (0,1) (or
< —c¢j) and

k
Z/ Jo(x) (uj —log fo(x) > dr > o ZAZ],
j=1"1i
so that for all 8 = (n, 2),

(C.2) V(fo, fnz) > ZAZ

Therefore,

k
Z Az? < Co(en logn)?,

J=1
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for some positive constant Cy on A,,. Since ¥ (x) = z,
If =413 =0} Az}) = O((en logn)?)
J

QtAZj
Vo

and since for any z € I}, |e—t(f(f¢)—15(x))/\/ﬁ —1 <

A 2 (ehe/ﬁe—tzﬁ/ﬁe—t(f—@/ﬁ>

bpy = - log -
t 2 (ehe/x/ﬁe—tw/«/ﬁ)
vn t 2
S Tlog 1+C%ZAZJ77]
< C) AN
J
We deduce:
(C3)  sup Fo((vey —¥nn)?) = OO Az}) =0((enlogn)?),
(k,0)€An ;i
sup  [|Akglo + [bral] = O((enlogn)®?).
(k,0)€An

So Condition 3 of Proposition A.1 is verified and

pn(‘g) = _tFO(hO('@Z - f)) + th("L - ]E) + OPo(l)'

We have |Fo(he(¢ — f))| < V/nun|th — fl, which from (C.3) is of order
O(v/nu?) = o(1) uniformly over A,. We now prove that Gy, (¢nn — Yrg) =

op, (1) uniformly. Note that 1)y, ¢ is monotone, so that [y, 9 — &]652/3 belongs
to the class G of functions that are of variation bounded by 1, with values
n [—1,1]. Hence from [25] p 273, since sup gjca, [Vkoloc = O(1), the
bracketing entropy of G is bounded as follows

IOgN[](E,g,LQ(Po)) < Kel Ye>0
for some positive constant K and Theorem 19.5 of [25] leads to

sup |Gin(g) — G(g)| = 0p(1)
9€eg

where G is a tight centered Gaussian process in [°°(G), the set of bounded
functions on G, with covariance matrix given by Ey, (G(f1)G(f2)) = Fo(f1f2)—
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Fo(f1)Fo(f2). Thus P[supyeg |G(g)| < +o0] = 1. Moreover note that for all
n and all (k,0) € A, 6772/3(1#;6,9 — 1)) € G, therefore

lim limsup,P[ sup |G(6;2/3(¢k,9 - T/;))| >a] =0,
a——+00 (k,0)€A,

and sup(y, gyc, |Gn (Vo — ¥)| = op,(1). We finally obtain that

Fo((hy=t¥n  n)?) — _
fAn exp <—Of2hf + Gn(hf — tl/)hf,n) + Rn(hf — twhf,n)> dﬂ'(f)

I, =

fAn exp (—Fogh?) + Gn(hy) + Rn(hf)> dr(f)

Fo(hZ )
Jinsy exp <_ 5+ Gulhy) + Rn(th9)> dmy,(6)

= Z p(k|X™) 5
= Jinge exp (=282 4 G, (hg) + Ro(ho) ) dmi(6)
n k

Using (C.3) we obtain that for all k¥ < I,, ThA, C {0 € S%V (fo, fo) <
2u2,V(fo, fo) < 2u2} = Ap2 N S? and vice-versa A,1 NS = {0 €
S}%? V(fo, fo) < u2/2,V(fo, fo) < u/2} C T A, and also under the prior on
0 = (n,z), using Tr6 = (', 2)

s ()| < e E
Cv/ne, = o(1)

as soon as a + 1 < 27 on F,,. Hence using (3.3) and the last equality of the
proof of Theorem 2.1 we finally obtain

Gu(t) = ET[exp(tv/n(¥(f) — ¥ (Py)))1;, (f)IX"]
—  L(t) xP" {An|X"} = L()(1 + o(1))

IN

2 72
_ et FOQ(w)In(l—I-O(l)).
Therefore,
25 (@2) ln_ P~ An ﬂ82 xn
Galt) < €+an*1 W[ = ’;' n]( +o(1))
e P [An,lmsk‘X]
2o ()
< ¢ (1 4o(1)
2R S P (A1 NSEXT
Gt) > G%Zk_l [ i1 i ]( o(1))

I P [Ap2 N SP XN

2 Fy (42)

e =5 (L4 o(1)),
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which achieves the proof of Theorem 2.2.

APPENDIX D: TECHNICAL LEMMA

In Section 3, we use at many places results of the following lemma. We
use notations of Section 1.2.

LEmMMA D.1. Set K,, = {1,2,...,k,} with k, € N*. Assume one of the
following two cases:

-v>0, p=q=2 when @ is the Fourier basis
-0<y<r,2<p< 0, 1< q< o0 when @ is the wavelet basis with v
vanishing moments (see [12]).

Then the following results hold.

- There exists a constant c1¢ depending only on ® such that for any

0= (0))\ € RF,

(D.1) > 0adn|| < croVEnl0le,
AeKy
o
- If log(fo) € Bpq(R), then there exists ca~ depending only on v such
that
(D.2) D05, < oy R7E,.

A Kn

- Iflog(fo) € By g(R) withy > 1, then there exists c3 -, depending only
on @ and v such that:

1_
(DS) Z 00)\(;5)\ < C3,8,~ R an ’Y.

MK, -

PRrROOF. Let us first consider the Fourier basis. We have:

> 0xéa < > 10 X [paloo
NEE, . Ry,
< V2 )10,
Ry,
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which proves (D.1). Inequality (D.2) follows from the definition of B;, =
W7. To prove (D.3), we use the following inequality: for any x,

D ondn(@)| < V2 |60l

K, K,

=
D=

< V2D IAP6], >

AEKn AEKn

Now, we consider the wavelet basis. Without loss of generality, we assume
that logy(ky, + 1) € N*. We have for any =,

2 2

i) < | D6 > @)

AeKy AeKy AeKy

< [le, DR DR CN I

—1<j<log, (kn) k<27

with ¢_19 = 1jg1]. Since for some constant A > 0, ¢(x) = 0 for z ¢ [ A4, A],
for j > 0,

card {k € {0,...,27 — 1} s.t. pj(z) #0} <3(24+1).

(see [17], p. 282 or [18], p. 112). So, there exists ¢, depending only on ¢
such that

N[

S @) < ol | Y @A+

\eKoy, 0<j<logy (kn)

which proves (D.1). For the second point, we just use the inclusion B, ,(R) C
B; . (R) and

271
. R2
2 2 2 -2 —2v
Y= Y Y Ga<E Y <k
MK, j>logy(kn) k=0 j>logs (kn)

Finally, for the last point, we have for any z:

27 -1 3 271 2
> badal@)| < > > 03 > ()
MK, j>logy(kn) \ k=0 k=0

1
< Cki7,
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where C' < R(3(2A + 1))%%(1 _ 2%*7)—1. B
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