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Abstract

This paper describes a real time face detection and tracking

system. The method consists in modelling the skin face by

a pixel fusion process of three colour sources within the

framework of the Demster-Shafer theory.The algorithm is

composed of two phases. In a simple and fast initialising

stage, the user selects successively in an image, a shadowy,

an overexposed and a zone of mean intensity of the face.

Then the fusion process models the face skin colour.

Next, on the video sequence, a tracking phase uses the key

idea that the face exterior edges are well approximated as

an ellipse including the skin colour blob resulting from the

fusion process. As ellipse detection gets easily disturbed

in cluttered environnements by edges caused by non-face

objects, a simple and fast efficient least squares method for

ellipse fitting is used. The ellipse parameters are taken into

account by a stochastic algorithm using a particle filter in

order to realise a robust face tracking in position, size and

pose.

The originality of the method consists in modelling the face

skin by a pixel fusion process of three independant cogni-

tive colour sources. Moreover, mass sets are determined

from a priori models taking into account contextual vari-

ables specific to the face under study. Hence, the face speci-

ficity which is to present shadowy (neck) and overexposed

zones (nose, front) is considered, so that sensitivity to light-

ing conditions decreases.

Results of face skin modelling, fusion, ellipse fitting and

tracking are illustrated and discussed in this paper. The

limits of the method and future work are also commented in

conclusion.
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1 Introduction

Face detection and tracking in a video sequence is use-

ful in many applications such as videoconference, HMI,

telesurveillance or robotics.

Above 150 detection methods [1, 2], as low level methods

using cues such as texture, color [3, 4], edges, up to high

level methods such as appearance models, neural networks

or Support Vector Machines are proposed in the literature

[5, 6, 7, 8].

In these approaches, skin color is often used as a first local-

isation and segmentation primitive in order to decrease the

research zone. Because of its specificity, skin colour cue

is very pertinent [9] and allows rapid size and orientation

invariant algorithms.

However it remains an important difficulty to accommo-

date unsupervised varying lighting conditions. Normalised

RGB, HLS colour spaces are the most used. But these

colour transforms remain quite sensitive to lighting condi-

tions and very noisy in shadowy zones. In order to over-

come these drawbacks, increase robustness and contrast,

skin colour cues are mapped into the logarithmic colour

space LUX [10]. Moreover, face is a non-rigid object which

pecularity is to present shadowy (neck) and overexposed

zones (nose, front). Their time varying localisation because

of movement in the video sequence yields complex modeli-

sation. So contextual variables are included in the process

to deal with this aspect.

Pixel-based skin colour detection techniques can be gath-

ered in explicit methods, which use empirical rules of de-

cision, and statistics [11]. However, information to model

is never perfect because of image acquisition principle (3D

space towards 2D plan transformation). There exists dif-

ferent forms of artefact including ambiguity, imprecision or

inadequacy. We ought to take into account these difficulties

to improve modelisation. Classical probabilistic methods

(Bayesian inference rule) loose performance when early vi-

sion learning stage is not representative of real measure-

ments. That is the reason why a pixel fusion process of skin

colour cues within the framework of the Dempster Shafer

theory is used in this paper [12, 13].

A simple and fast initialising stage takes into account

ground truth as the user selects successively on one image, a

shadowy, an overexposed and a zone of mean intensity. For

each zone, mass sets are determined from a priori models of

three colour sources (in the LUX colour space), contextual

variables and source confidence degrees. Then mass sets

are fused and blobs are computed.

Next, on the video sequence, a tracking phase uses the key

idea that the face exterior edges are well approximated as

an ellipse including the skin colour blob resulting from the

fusion process [14, 15]. As ellipse detection gets easily dis-

turbed in cluttered environments by edges caused by non

face objects, a simple and fast efficient least squares method

for ellipse fitting is used [16]. The ellipse parameters (cen-

ter, minor axis, major axis and orientation) are taken into

account by a stochastic algorithm using a particle filter in

order to realise a robust face tracking in position, size and

pose.

The remainder of the paper is organised as follows. Section

2 develops the modelisation and fusion processes. Mod-

elisation results are illustrated and commented in section



3. Section 4 explains the tracking algorithm and shows re-

sults. Finally, section 5 summarises the contribution and

opens the suggestions for future work.

2 Method description

2.1 Sources and discernment field

Skin colour cues are mapped into the logarithmic colour

space LUX [10]. The expression of the LUX components

from the RGB colour space coded on 3 × 8 bits are :

L = (R + 1)0.3(G + 1)0.6(B + 1)0.1 − 1

U =







128
(

L+1
R+1

)

forR > L

256 − 128
(

R+1
L+1

)

otherwise

X =
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(

L+1
B+1

)

forB > L

256 − 128
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B+1
L+1

)

otherwise

The fusion process uses 3 sources (colour “sensors”) called

Sj , (j = 1, 2, 3) such as :

S1 = U, S2 = X et S3 = 0.5(L + U) = W (1)

For the source S3, instead of L we add to S1 the luminance

component L, very rich from the semantic point of view,

in order to better characterise the skin colour variations due

to lighting conditions. Each source Sj provides a measure-

ment noted Mj .

The discernment field Ω is defined by 2 assumptions such

as : Ω = {ω1, ω2}, where ω1 represents the face assump-

tion and ω2, complement of ω1, symbolises the background

(ω2 = ω̄1).

2.2 A priori model

In order to determine the a priori model, in an initialising

stage, the user selects successively on an image three char-

acteristic zones of the face : a shadowy zone, a zone of

mean intensity and an overexposed zone. Three contextual

variables zi , (i = 1, 2, 3) are taken into account : shadowy

zone z1 ; mean zone z2 ; overexposed zone z3.

The histograms calculated on each selected zone and for

each measurement Mj allows to determine the condi-

tional probability densities p(Mj/ω1, zi). These are ap-

proximated by Gaussian distributions Nij(µij , σij) (Fig. 3)

where µij and σij are respectively the mean and the stan-

dard deviation of the measurement Mj on the zone zi. In

addition to statistical information on the zone, spatial data

distribution ( M1,M2,M3 ) in the colour space ( U,X, W
)(Eq. 1), that is to say the colour domain Di contributes

to modelisation. For each context zi, 3 pairs of coeffi-

cients αij and βij maps 6 straight-line segments (Minij =
µij + βij − αijσij ;Maxij = µij + βij + αijσij) which

synthesise a parallelepiped. These coefficients are adjusted

such as the parallelepiped encompasses at best the colour

domain Di (Fig. 4). Then, the function skinij defines the a

priori model such as :

skinij =

{

Nij(µij ,σij)
max(Nij(µij ,σij))

if Minij ≤ Mj ≤ Maxij

0 else

(2)

2.3 Mass sets

Appriou [17] suggested to introduce each a priori density of

probability p(Mj/ω1, zi) and its corresponding confidence

degree dij in a mass set mij(.). This set is defined by an ax-

iomatic approach in the discernment field Ω. In the method

developed here the densities of probability are replaced by

the functions skinij which implicitly take into account the

spatial data distribution in the colour space (U,X, W ).

Focal elements associated to mij(.) are ω1, ω2 and Ω.

Mass sets are defined by :

mij(ω1) =
dijRiskinij

1 + Riskinij

(3)

mij(ω2) =
dij

1 + Riskinij

mij(Ω) = 1 − dij

The weighting coefficients Ri take into account the data

skinij for each zone i.

2.4 Confidence degrees

For S1 = U and S2 = X sources, the ambiguity between

classes is weak. Consequently a probabilistic modelling is

used di1 = di2 ≈ 1 (m(Ω) = 0). On the other hand the S3

source depends on brightness. The reliability of this source

for the face class is maximum (di3 = 1) only for the average

grey level (µi3) of the modelled zone. Ambiguity between

classes grows (m(Ω) > 0) when M3 deviates from µi3.

Therefore a fuzzy function (Eq. 4) is used to characterise

the reliability of the S3 source in the context zi (Fig. 1).

As µ13 ≤ µ23 ≤ µ33 we obtain :

for i = 1 :

d13 =























M3+2µ23−3µ13

2µ23−2µ13

if 3µ13 − 2µ23 ≤ M3 ≤ µ13

−(M3−µ23)
µ23−µ13

if µ13 ≤ M3 ≤ µ23

0 else

for i = 2 :

d23 =























M3−µ13

µ23−µ13

if µ13 ≤ M3 ≤ µ23

−(M3−µ33)
µ33−µ23

if µ23 ≤ M3 ≤ µ33

0 else

for i = 3 :

d33 =























M3−µ23

µ33−µ23

if µ23 ≤ M3 ≤ µ33

−(M3+2µ23−3µ33)
2µ33−2µ23

if µ33 ≤ M3 ≤ 3µ33 − 2µ23

0 else
(4)

2.5 Decision

Three contextual masses mi(s) are associated at each pixel

s(x, y) of colour components (M1; M2; M3) by the orthog-

onal normalised combination of Dempster-Shafer :

mi(s) = ⊕mij(s) (5)



Figure 1: Confidence degrees di3 according to M3

The disjunctive fusion rule combines the contextual masses

mi(s) in order to associate a single mass m(s) to each

pixel.

We obtain :

m(s) = m1(s) ⊕∪ m2(s) ⊕∪ m3(s) (6)

3 Modelisation results

3.1 Shadowed zone a priori model

As the initialisation stage is the same for each zone, only

the modelling of the shadowed zone z1 is presented in de-

tail hereafter. First, the user selects on an image a shad-

owed zone of the face (Fig. 2). The probability densities

Figure 2: Phase of training shadowy face zone

are approximated for each measurement Mj by a Gaussian

distribution N1j(µ1j , σ1j) (Fig. 3).

a) b) c)

Figure 3: Probability densities for the shadowy zone z1: a)

p(M1/ω1, z1); b) p(M2/ω1, z1) ; c) p(M3/ω1, z1).

Straight line segments (Min1j = µ1j + β1j − α1jσ1j ;

Max1j = µ1j + β1j + α1jσ1j) given by varying manually

α1j and β1j , generate a parallelepiped which encompasses

the colour field D1. Here α11 = α12 = 2; α13 = 1.7;

β11 = β12 = β13 = 0; and σ11 = 2.3; σ12 = 2.55;

σ13 = 6.5.

Figure 4: Colour pixel components in the colour space

(U,X, W ) (domain D1) and parallelepipedic envelop as-

sociated.

These coefficients α1j and β1j limit the probability densi-

ties and determine the functions skin1j (Fig. 5).

a) b) c)

Figure 5: Functions skin1j : a) skin11 ; b) skin12 ; c)

skin13

3.2 Shadowed zone detection

The mass sets m1j(ω1) =
d1jR1skin1j

1+R1skin1j
(Eq. 3) depend on

the parameter R1 which weights the data importance of

skin1j characterising the face class.

Then, three masses (m11(s),m12(s),m13(s)) are associ-

ated with each pixel in the site s(x, y) in function of its

colour components (M1, M2, M3).

Finally a single mass m1(s) is affected to each pixel by the

conjunctive fusion rule (Eq. 5).

The 3 top images of Fig. 6 show the experimental results for

various values of R1. For R1 = 1 modelling is satisfactory

as the shadowed skin colour (in white) present under the

chin, the eyes contours and under the hair is detected. For

R1 = 5 or R1 = 10 the modelling zone widens and false

detections appear.

3.3 Modelisation synthesis

Fig. 6 (middle and bottom) shows the results of the conjunc-

tive fusion for the mean intensity and overexposed zones,

whose process is similar to those presented in sections 3.1

and 3.2 for the shadowed zone. Modelling detects ac-

curately the shadowed and overexposed skin face zones

(Fig. 6 top and bottom). Although more representative of

the face, the average model (Fig. 6 middle), presents arte-

facts in the shadowy or overexposed zones. This is the rea-

son why the disjunctive fusion (Eq. 6) is used to combine

the various models and optimise the detection result ( Fig. 7

left and center).

When two masses are combined, modelling is insufficient

and presents defaults on mean intensity parts of the face

(Fig. 7 a, b), on the shadowy parts of the face (Fig. 7 d, e)

or on the overexposed parts of the face (Fig. 7 g, h).



a) b) c)

Figure 6: Detection realised from the mass sets mi, (i =
1, 2, 3) for various values of Ri : a) Ri = 1; b) Ri = 5;

c) Ri = 10. Top: shadowy zone (i = 1); Middle: average

zone (i = 2); Bottom: overexposed zone (i = 3)

a) b) c)

d) e) f)

g) h) i)

j) k) l)

Figure 7: Fusion results for different combinations of

masses in the framework of DS evidence theory (left and

center) and probabilistic (right): a) R1 = 1, R2 = 0,

R3 = 1 ; b)c) R1 = 5, R2 = 0, R3 = 5 ; d) R1 = 0,

R2 = 1, R3 = 1 ; e)f) R1 = 0, R2 = 5, R3 = 5; g)

R1 = 1, R2 = 1, R3 = 0 ; h)i) R1 = 5, R2 = 5, R3 = 0;

j) R1 = 1, R2 = 1, R3 = 1; k)l) R1 = 5, R2 = 5, R3 = 5;

Modelling is optimal when the 3 masses are combined

(R1 = 1, R2 = 1, R3 = 1) (Fig. 7 j). However a too

important weighting of parameter Ri deteriorates slightly

the modelling quality (Fig. 7 k).

Within the framework of the Dempster-Shafer theory, in

spite of a complex background made up of colour elements

close to skin colour (table, sweater, poster), the fusion pro-

cess ensures a good detection and proves to be robust to

occlusions and pose variations (Fig. 8 bottom).

On the other hand, Fig. 7 right and Fig. 8 middle represent

the result of modelling when (dij = 1) i.e. when the re-

liability of the sensors is not taken into account any more.

Consequently, mij(Ω) = 0 (cf Eq. 3) and only the face (ω1)

and non-face (ω2) classes are considered. Within this prob-

abilistic framework, the detection result is of worse quality

in the zones where the data inaccuracy is not negligible be-

cause of the less reliable learning stage model.

a) b) c) d) e)

Figure 8: a) image 10 ; b) image 14 ; c) image 18 ; d) image

24 ; e) image 30

4 Tracking by condensation algo-

rithm

4.1 Particle filter formalism

The particle filter algorithm initially designed for signal

processing problems [18], was applied in computer vision

under the name of ”condensation ” algorithm [19]. In the

case of a single object, the vector Xt representing the hid-

den state of the object of interest follows the law of evo-

lution (Eq. 7) and is observed by the vector Yt at discrete

times according to Eq. 8 :

Xt = Ft(Xt−1, Vt) (7)

Yt = Ht(Xt,Wt) (8)

No assumption is made on Ft and Ht functions and the

processes Vt and Wt are two white noises not necessarily

Gaussian, mutually independent and independent of the ini-

tial condition X0.

4.2 Application to face tracking

In the framework of face tracking, where movement is not

foreseeable and frequently changes in direction, particle fil-

tering finds all its justification.

Moreover, the key idea that the face exterior edges are well

approximated as an ellipse of center noted (xct
, yct

), of mi-



nor axis ℓt, large axis Lt and of orientation θt including the

skin colour blob resulting from the fusion process is used.

These parameters are gathered in the state vector Xt =
[X1t

, X2t
] where X1t

= [xct
, yct

] and X2t
= [ℓt, Lt, θt].

After a phase of initialisation, the tracking method proceeds

in two stages. First the algorithm determines the center then

estimates the size and the orientation of the ellipse.

Initialisation. In order to select the face whatever its ini-

tial position in the image, the particles are distributed in po-

sition according to a uniform probability law whereas the

parameters of size and orientation are fixed at a constant

value (ℓ0 = 20; L0 = 25; θ0 = 0) (Fig. 9). The weight of

the particles is qn
0 = 1/N where N is the number of parti-

cles (typ. N = 150).

Figure 9: Particle initialisation

Model center estimation. In this stage, in order to deter-

mine the state vector position at time t size and orientation

parameters are fixed. They are the components of X2t
esti-

mated at time t − 1.

The dynamics of the vector X1t
is described by the follow-

ing model [20] :

[p(X1t
/X1t−1

) = (1 − βu)N(X1t
/X1t−1

,Σ) +
βuUχ(Xt) ] where N(./µ,Σ) represents the Gaussian dis-

tribution of average µ and of covariance Σ.

Uχ(.) represents the uniform distribution on the unit χ.

The coefficient βU , 0 ≤ βU ≤ 1 weights the uniform dis-

tribution and Σ = diag(σ2
xct

, yct

2) is the diagonal matrix

made up of the variances of the X1t
state vector compo-

nents.

The introduction of an uniform component (βu = 0.1)

manages the rare erratic movements like jumps in the video

sequence. It helps also the algorithm to be locked after one

period of partial or total occlusion.

The model of measurement Y1n,t weights more or less

strongly a particle n in function of the squared sum of

masses inside the particle n. The probability of observa-

tion is consequently defined by :

p(Y1t
/X1t

) =
∏

n

p(Y1n,t/X1n,t) whereY1n,t ∝
∑

m(s)2

The maximum of plausibility criterion allows selecting the

most significant ellipse and its center defines the state vec-

tor position components. At the end of the initialisation

a) b)

c) d)

Figure 10: a) particles initialisation ; b) position image 1 ;

c) particles image 13 ; d) position image 13

stage, the estimated position (Fig. 10 b) does not correspond

to face center because of incorrect face and orientation el-

lipse dimensioning. After some steps, these parameters be-

ing corrected (see hereafter), the algorithm estimates with a

better accuracy the ellipse center (Fig. 10 d).

Size and pose estimation. From the ellipse center de-

fined at the previous stage, a filling step then a binarisation

is realised.

Moreover, the dynamics of the vector X2t
is de-

scribed by the following model : [p(X2t
/X2t−1

) =

N(X2t
/X2t−1

,Σ)] where Σ = diag(ℓt
2, Lt

2, θt
2) is the

diagonal matrix made up of the variances of the X2t
vector

components.

Then face edges are extracted then approximated by an el-

lipse called measurement ellipse (Fig. 11 c,d). The Fitzgib-

bon al. [16] algorithm for ellipse fitting realises a com-

promise between speed and accuracy and is very robust

to noise. It provides a measurement of ellipse parameters

X̂t =
[

x̂ct
, ŷct

, ℓ̂t, L̂t, θ̂t

]

.

Consequently the probability density is :

p(Y2t
/X2t

) =
∏

n

p(Y2n,t/X2n,t) whereY2n,t ∝ d2

d is the eucledian distance between the predicted ellipse

X2n,t
and the measured ellipse noted X̂2t

=
[

ℓ̂t, L̂t, θ̂t

]

.

The minimum of plausibility criterium enables to isolate

the particle having the most probable form.

The results on the sequence (Fig. 12) exhibit the behaviour

of the algorithm in the context of face viewed from aside

(image 15) or partial occlusion (image 27).

5 Conclusion

The originality of the method consists in modelling the face

skin by a Dempster-Shafer pixel fusion of three cognitive

independant colour sources. Moreover, mass sets are deter-

mined from a priori models taking into account contextual



a) c) e)

b) d) f)

Figure 11: a,b) particles images 1 et 13 ; c,d) ellipse mea-

surements images 1 et 13; e,f) results images 1 et 13.

a) b) c)

d) e) f)

g) h) i)

j) k) l)

Figure 12: a,b,c) particles for position images 15,18,27 ;

d,e,f) position images 15,18,27 ; g,h,i) particles for size and

pose images 15,18,27; j,k,l) results images 15,18,27.

variables specific to the face under study. The shape crite-

rion (ellipse) used in the particle filter algorithm removes

modelisation artefacts and so improves segmentation and

tracking.

However the fusion of only colour information is some-

times insufficient. The use of other independent cues such

as the movement, texture or edges should improve detec-

tion. A feedback loop will be integrated in order to dy-

namically adapt the fusion process parameters and thus to

optimise the information reliability (precision, uncertainty

. . . ).

Finally, the objective will be to elaborate an active vision

system where the dynamic collaboration of information and

a feedback loop should contribute to increase segmentation

and tracking robustness.
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