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Using a cold atomic gas exposed to laser pulses – a realization of the chaotic quasiperiodic kicked
rotor with three incommensurate frequencies – we study experimentally and theoretically the An-
derson metal-insulator transition in three dimensions. Sensitive measurements of the atomic wave-
function and the use of finite-size scaling techniques make it possible to unambiguously demonstrate
the existence of a quantum phase transition and to measure its critical exponents. By taking proper
account of systematic corrections to one-parameter scaling, we show the universality of the criti-
cal exponent ν = 1.59 ± 0.01, which is found to be equal to the one previously computed for the
Anderson model.

PACS numbers: 03.75.-b, 72.15.Rn, 64.70.Tg, 05.45.Mt

I. INTRODUCTION

The interplay between quantum effects and disorder is
a subject actively studied for many decades, both theo-
retically and experimentally. It plays a particularly im-
portant role in condensed matter physics, where, in a first
approximation, a crystal is modeled as independent elec-
trons interacting with a perfectly periodic lattice. The pi-
oneering works of Bloch and Zener [1, 2] showed however
that most predictions based on this model are not verified
in real crystals. For example, the Bloch theory predicts
fully delocalized wavefunctions implying a ballistic trans-
port of the electrons through the crystal. Moreover, in
the presence of a constant bias potential, Zener predicted
an oscillatory motion (the Bloch-Zener oscillations) due
to quantum interference effects. This contradicts well-
known experimental facts at least in usual conditions.

An obvious possible explanation of these contradic-
tions is the fact that there are no perfect crystals: In
a real crystal some sites may be randomly occupied by
ions of a different nature, thus breaking the periodicity of
the lattice. In 1958, Anderson considered this approach
and postulated that the dominant effect of the disorder
is to change randomly the on-site energy. Starting from
this assumption, he constructed a simple model [3] of
a single-electron interacting with a lattice in the tight-
binding approximation:

Htb =
∑

jn

ǫjn|jn〉〈jn| +
∑

jn,kµ

Vjn,kµ|jn〉〈kµ| . (1)

Here ǫjn are the energies associated with the states la-
beled by n at the sites j of the lattice, and the non-
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diagonal elements Vjn,kµ denote the matrix elements be-
tween these states. The diagonal part of the Hamiltonian
corresponds to the potential energy and the non-diagonal
part to the kinetic energy in a continuous space descrip-
tion. Disorder is introduced by giving the site energies
ǫjn a random distribution. Anderson thus showed that
the electron wavefunctions can be localized by the disor-
der. This is naturally in sharp contrast with the predic-
tion of the Bloch model.

The phenomenon of localization has its most striking
manifestation in the transport properties of random me-
dia. If particle-particle interactions are negligible, expo-
nentially localized states cannot contribute to transport
at zero temperature since the coupling to phonons is neg-
ligible. Anderson localization as a consequence of the
presence of disorder is one of the fundamental ingredi-
ents for the understanding of the existence of insulators
and metals, and, in particular, the transition between the
insulating and the metallic states of matter. An insula-
tor is associated with localized states of the system while
a metal generally displays diffusive transport associated
with delocalized states.

It was later shown that the 3D Anderson model dis-
played a phase transition between a localized and a
diffusive phase, the so-called Anderson metal-insulator
transition: If the disorder is below a critical level,
the localization disappears and one recovers a metal-
lic (conductor) behavior [4]. The link between the
disorder-induced metal-insulator transition and second-
order phase-transitions was established by reformulating
the problem in terms of the renormalization group [5, 6].
Based on Wegner’s work and the ideas of Thouless and
Landauer [5, 6, 7], it was possible to formulate the so-
called one-parameter scaling theory of localization [8], one
of the most fruitful approaches to the disorder-induced
metal-insulator transition. The essential hypothesis of
the scaling theory is that, close to the transition, a single
relevant scaling variable describes the critical behavior.
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An essential result of the one-parameter scaling theory
is that the Anderson transition exists only in dimensions
larger than two. In one dimension, all electronic states
are localized, whatever the degree of randomness. In two
dimensions, they are all localized, but only marginally,
i.e. with a localization length exponentially large (thus
possibly much larger than the sample size) for weak dis-
order.

In analogy to standard second-order phase-transitions,
the localization length ℓ is assumed to diverge at critical-
ity according to a power law:

ℓ ∼ (W −Wc)
−ν

, (2)

with ν the localization length critical exponent, W the
disorder strength and Wc the critical disorder strength.
The most important assumption of the theory, the one-
parameter scaling hypothesis, was numerically validated
using a finite-size scaling method developed in [9, 10].
This technique, which implements a real space renormal-
ization, allowed to establish numerically the existence
of a scaling function for the localization length. How-
ever, the critical exponents measured using this method,
ν ≃ 1.57 [11, 12], were not compatible with the result
ν = 1 obtained from a self-consistent approach of local-
ization based on diagrammatic techniques, as developed
in Ref. [13].

In the half-century since its birth, the Anderson model
has become a paradigm for the studies of the interplay
of quantum effects and disorder. Despite that, relatively
few experimental results are available, for the following
reasons: i) It is experimentally hard to finely tune the
disorder in a real crystal; ii) the decoherence sources (col-
lision with phonons, etc.) are difficult to master [14]; iii)
electrons in a crystal present strong mutual interactions
[14, 15] and iv) the wavefunction of the electrons in the
crystal is not directly accessible, only transport proper-
ties can be directly measured [16].

It is thus interesting to search for other systems that
display the Anderson transition, but are more favorable
for experimental studies. Indeed, the concept of Ander-
son localization has progressively been extended from its
original solid-state physics scope to a variety of systems
where a wave propagates in a disordered medium for ex-
ample electromagnetic radiation [17, 18] and sound waves
[19, 20, 21]. Photons propagating in disordered materials
revealed to be an excellent system to observe the effects
of localization [17]. However, in such systems, there is al-
ways some absorption, whose signature can be quite sim-
ilar to the signature of localization. Also, the measured
quantity is the transmission, and the wavefunction itself
is not accessible. The recent experimental observation of
Anderson localization [22] using ultra-cold atomic matter
waves has been done in a 1D situation where states are
always localized and no metal-insulator transition exists.

A very interesting Anderson-type system is obtained
by combining the Anderson model with another paradig-
matic system, the kicked rotor (KR), which has been
theoretically studied for almost three decades. This sys-

tem is well known to be classically chaotic [23], and
chaos plays here the role of a “dynamical” disorder. In
the quantum case, the KR displays a localization phe-
nomenon, called “dynamical localization” [24] which is
analogous to the 1D-Anderson localization [25]. More-
over, a quasi-periodic generalization of the kicked ro-
tor, substantially equivalent to the 3D Anderson model,
was numerically shown to display an Anderson-like phase
transition [26]. Experimental studies of the quantum
kicked rotor were boosted by the realization of such a sys-
tem with laser-cooled atoms interacting with a standing
wave by Raizen and co-workers, which observed, for the
first time, the Anderson localization with matter waves
[27].

In the present paper we describe in detail a realiza-
tion of an atomic matter-wave system that allows us
to observe the Anderson metal-insulator transition [28].
We report a full characterization of this phase transition
which includes an experimental validation of the one pa-
rameter scaling hypothesis and the first non ambiguous
experimental determination of the critical exponent ν.
Last but not least, we show numerically that the quan-
tum chaotic system we consider has the same critical
behavior as the true random 3D Anderson model. In
particular, we show that the two models belong to the
same universality class. Sec. II introduces the cold-atom
realization of the periodic (standard) KR and its equiva-
lence with the 1D Anderson model, as well as the quasi-
periodic generalization of this system that is equivalent
of the 3D-Anderson model. Sec. III describes the cor-
responding experimental setup, paying attention to its
experimental limits (decoherence, stray effects, limited
observation time). In sec. IV we report our direct exper-
imental observation of the metal-insulator transition. In
sec. V a scaling procedure is introduced that allows us
to overcome experimental limitations and determine the
critical exponent corresponding to the Anderson transi-
tion. Sec. VI is devoted to the universality of the critical
behavior. Sec. VII concludes the paper.

II. THE ATOMIC KICKED ROTOR AND ITS

RELATION TO THE ANDERSON MODEL

A. The atomic kicked rotor

Consider a two level atom interacting with a laser
standing wave of frequency ωL = kLc detuned by ∆L =
ωL − ω0 from the atomic transition of frequency ω0. It
is well known that there are two kinds of interactions
between the atom and the radiation: Firstly, the atom
can absorb a photon from the laser and re-emit it spon-
taneously in a random direction. This is a dissipative
process giving rise to radiation pressure force, whose rate
is ΓΩ2/4∆2

L where Γ is the natural width and Ω the res-
onant Rabi frequency (we assume |∆L| ≫ Γ). Secondly,
the atom can pick a photon in a laser mode and emit it in
the same (or another) laser mode by stimulated emission.
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This conservative process is associated with a potential
acting on the atom’s center of mass motion, called the
optical or dipole potential. For a standing wave this po-
tential is:

Vopt =
~Ω2

8∆L
cos (2kLX) (3)

where X is the atom center of mass position along the
standing wave. Clearly, this interaction is one dimen-
sional, as momentum exchanges between the atom and
the radiation are always along the standing wave: The
atom absorbs a photon in one of the propagating beams
and emits it in the counterpropagating beam, leading
to a quantized momentum exchange of 2~kL along the
X axis. An important point is that the optical poten-
tial amplitude scales as Ω2/∆L whereas the spontaneous
emission rate scales as ΓΩ2/∆2

L. In the regime |∆L| ≫Γ,
the optical potential is the dominant contribution to the
dynamics, with spontaneous emission events being rare.
Moreover, one can reduce the spontaneous emission rate
by increasing the detuning ∆L, provided that the laser
has enough power to keep the potential amplitude at the
required level.

Suppose now that, instead of having the atom interact-
ing continuously with the standing wave, one modulates
the radiation intensity periodically (with period T1) so
that it is on for a short time τ (as compared to the atom
dynamics) and off the rest of the period. One then ob-
tains the Hamiltonian:

H =
P 2

2M
+

~Ω2τ

8∆L
cos (2kLX)

∑

n

δτ (t′ − nT1) (4)

where δτ (t) = 1/τ if |t| ≤ τ/2 and zero otherwise. This
functions tends to the Dirac δ-function as τ → 0.

It is useful to introduce a set of scaled, dimensionless
units:

x = 2kLX

p = 2kLT1P/M

t = t′/T1

K =
~Ω2T1τk

2
L

2M∆L
(5)

k̄ = 4~k2
LT1/M

H =
4k2

LT
2
1

M
H

In the limit of short pulses τ ≪ T1, one then has:

H =
p2

2
+K cosx

∑

n

δ(t− n) (6)

which is precisely the Hamiltonian of the kicked rotor
[23, 29]. One has thus realized an atomic kicked ro-
tor [27]. The above Hamiltonian is associated with the
Schrödinger equation:

ik̄
∂ψ

∂t
= Hψ. (7)

k̄ plays the crucial role of an effective Planck constant,
which can be adjusted at will by modifying e.g. the pe-
riod T1. As shown in the following, the most interest-
ing physics takes place in the momentum. The scaling
Eqs. (5) is such that P = 2~kL corresponds to p = k̄.
If the atom is cold enough that its typical momentum is
comparable to 2~kL (the “quantum” of momentum ex-
change), quantum effects can be observed in the system.
Fortunately, magneto-optical traps produce atoms with
a typical momentum of a few ~kL. It is customary to
measure the atomic momentum P in units of 2~kL, i.e.
measure p in units of k̄. We thus will use:

p =
p

k̄
=

P

2~kL
. (8)

For K & 5, the classical KR is fully chaotic, and the
dynamics, although perfectly deterministic, behaves like
a pseudo-random diffusive process known as “chaotic dif-
fusion”. For this reason, K is usually called “stochastic-
ity parameter”. The existence of classical chaos can be
seen by integrating the classical equations of motion cor-
responding to Eq. (6) over a period, which leads to the
so-called “Standard Map”:

xt+1 − xt = pt (9)

pt+1 − pt = K sinxt+1. (10)

If the stochasticity parameter K is large enough, sinxt

generates random numbers for successive t values. The
momentum then performs a random (though determin-
istic) walk and the kinetic energy (averaged over the ini-
tial conditions) increases linearly with time. If – as we
assume in the following – the initial state is a narrow mo-
mentum distribution centered around the origin p = 0,
one obtains:

〈p2〉(t) = Dt , (11)

with D ≈ K2/2k̄2 being the diffusion constant.

In the quantum case, a chaotic diffusion is observed for
times shorter than a characteristic “localization time”
τloc = D/2, after which quantum interferences build-
up in the system that eventually “freeze” the dynam-
ics, suppressing the diffusion. The mean kinetic en-
ergy then tends to a constant 〈p2〉(t → ∞) → 2ℓ2 with
ℓ ≈ K2/4k̄2 [30]. At the same time, the momentum dis-
tribution changes from a Gaussian shape characteristic
of a diffusive process to a localized, exponential shape
≈ exp (−|p|/ℓ). This phenomenon is called “dynamical
localization” (DL), “dynamical” meaning that the local-
ization takes place in momentum space. In fact, as shown
below, DL is intimately related to the Anderson localiza-
tion, with, however, an important difference: DL takes
place in momentum space, whereas Anderson localization
is in real space.
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B. Equivalence with the 1D-Anderson model

Let us consider the KR quantum dynamics. From a
stroboscopic point of view, the motion is determined by
the evolution operator over one period:

U = e−iK cos x/k̄e−ip2/2k̄ , (12)

whose eigenstates form a basis set allowing to calculate
the temporal evolution. These Floquet states |φ〉 are fully
characterized by their quasienergy ω, defined modulo 2π:

U |φω〉 = e−iω|φω〉 . (13)

The Hamiltonian, Eq. (6), is 2π-periodic in position x,
and so is the evolution operator, Eq. (12). The Bloch
theorem tells us that a Floquet eigenstate is a product of
a periodic function of x by a plane wave exp iβx with 0 ≤
β < 1, is a constant, βk̄ being usually called the “quasi-
momentum”. A trivial transformation shows that one
can equivalently consider periodic functions of x governed
by the Hamiltonian, Eq. (6), where p is replaced by p+βk̄.
In the following discussion, we will omit for simplicity the
quasi-momentum, although it is straightforward to take
it into account. Note that in all numerical simulations
shown hereafter, we perform an averaging over the quasi-
momentum, to follow the experimental conditions where
an incoherent sum of all quasi-momenta is prepared.

At this point, contact with a 1D Anderson tight-
binding model can be made by reformulating Eq. (13)
for the Floquet states [25]. Firstly, we rewrite the (uni-
tary) kick operator:

e−iK cos x/k̄ =
1 + iW (x)

1 − iW (x)
, (14)

with

W (x) = tan(K cosx/2k̄) . (15)

The periodic function W (x) can be expanded in a Fourier
series:

W (x) =
∑

r

Wre
irx. (16)

Similarly, for the kinetic part, one gets:

e−i(p2/2k̄−ω) =
1 + iV

1 − iV
, (17)

with V diagonal in the momentum eigenbasis |m〉 ≡ |p =
k̄m〉. Secondly, we make the following expansion in the
momentum eigenbasis:

1

1 − iW (x)
|φω〉 =

∑

m

Φm|m〉 . (18)

Then, the eigen-equation for the Floquet state can be
rewritten:

ǫmΦm +
∑

r 6=0

WrΦm−r = −W0Φm , (19)

with ǫm = tan
[

1
2 (ω −m2k̄/2)

]

[31].
This is the equation for a tight-binding model with

hopping elements Wr to the rth neighbor, with eigen-
energy W0, and with on-site energy ǫm. The hopping el-
ements are not restricted to nearest-neighbors, but they
decrease exponentially with r [32]. In the original An-
derson model, a random distribution is assigned to ǫm.
Here, the sequence ǫm, although not satisfying the most
stringent mathematical tests of randomness, is neverthe-
less pseudo-random. These two conditions are sufficient
for the Anderson localization to take place. The hopping
integrals Wr increase with the kick strength K, which
thus plays the role of a control parameter in the Ander-
son model (19). Note that if k̄ is a rational multiple of
2π, the ǫm are periodic in m. This leads to the quan-
tum resonances of the kicked rotor, where the states are
extended.

When k̄ is incommensurate with 2π, the Floquet states
are found to be exponentially localized, and this prop-
erty accounts for dynamical localization. As shown
in [33], the localization length observed at long times for
a wavepacket is essentially identical to the localization
length of individual Floquet states.

Many references discuss the detailed correspondence
between quantum behavior of this dynamical system and
Anderson localization: In Ref. [34] an analogy between
the KR and band random matrices was pointed out; the
latter have been reduced to a 1D nonlinear σ model [35]
similar to those employed in the localization theory [36].
In Ref. [37] the direct correspondence between the KR
and the diffusive supersymmetric nonlinear σ model was
demonstrated. A diagrammatic approach [38] to the dy-
namical localization in the Kicked Rotor was reported in
[39].

C. The quasi-periodic Kicked Rotor and its

analogy to the 3D-Anderson model

As the Anderson transition exists only in three (or
more) dimensions, one must generalize the KR to obtain
a system analogous to a 3D Anderson model.

Different generalizations of the KR have been the-
oretically considered as analogs of the 3D-Anderson
model [40, 41]. Here we use the convenient three-
incommensurate-frequencies generalization introduced in
Refs. [42, 43]:

Hqp =
p2

2
+ K(t) cos x

∑

n

δ(t− n) , (20)

obtained simply by modulating the amplitude of the
standing wave pulses with two new frequencies ω2 and
ω3:

K(t) = K [1 + ε cos (ω2t+ ϕ2) cos (ω3t+ ϕ3)] . (21)

One can legitimately ask: where is the three dimensional
aspect in the latter Hamiltonian? An answer can be given
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by drawing a formal analogy between the quasiperiodic
kicked rotor and a 3D kicked rotor with an initial condi-
tion taken as “plane source” (see below).

We start from the Hamiltonian of a 3D periodically
kicked rotor:

H =
p2
1

2
+ ω2p2 + ω3p3

+K cosx1 [1 + ε cosx2 cosx3]
∑

n

δ(t− n) , (22)

let us consider the evolution of a wavefunction Ψ with
the initial condition:

Ψ(x1, x2, x3, t = 0) ≡ Ξ(x1, t = 0)δ(x2 − ϕ2)δ(x3 − ϕ3)
(23)

The initial state being perfectly localized in x2 and
x3, it is entirely delocalized in the conjugate momenta p2

and p3, and can thus be seen as a “plane source” [44] in
momentum space.

From a stroboscopic point of view, the time-evolution
of Ψ is determined by the evolution operator over one
period:

U = e−iK cos x1(1+ε cos x2 cos x3)/k̄ × e−i(p2

1
/2+ω2p2+ω3p3)/k̄.

(24)
It is then straightforward to see that the 3D-wave func-
tion Ψ at time t is related to its initial condition as:

Ψ(x1, x2, x3, t) = U tΨ(x1, x2, x3, t = 0)

= Ξ(x1, t)δ(x2 − ϕ2 − ω2t)δ(x3 − ϕ3 − ω3t) , (25)

with:

Ξ(x1, t) ≡
t

∏

t′=1

e−iK cos x1[1+ε cos(ϕ2+ω2t′) cos(ϕ3+ω3t′)]/k̄e−ip2

1
/2k̄ Ξ(x1, t = 0) . (26)

On the other hand, consider now the evolution of an
initial wave function ψ(x, t = 0) with the Hamiltonian
Hqp of the quasiperiodic kicked rotor. It is also deter-
mined by an evolution operator from kick to kick, but
now this evolution operator Uqp(t; t−1) depends on time,
since the HamiltonianHqp, Eq. (20), is not time-periodic:

Uqp(t; t− 1) =

e−iK cos x[1+ε cos(ϕ2+ω2t) cos(ϕ3+ω3t)]/k̄e−ip2/2k̄ .(27)

The wave-function ψ(t) at time t is obtained by applying
successively Uqp(t

′; t′ − 1) for t′ from 1 to t:

ψ(x, t) =
t

∏

t′=1

Uqp(t′; t′ − 1)ψ(x, t = 0) . (28)

From Eqs. (25), (27), (26) and (28), it follows that
ψ(x, t) and Ξ(x1, t) follow exactly the same evolution.
Consequently, the dynamics of the quasiperiodic kicked
rotor is strictly equivalent to that of a 3D kicked rotor
with a plane source. Our experiment with the quasiperi-
odic kicked rotor can be seen as a localization experi-
ment in a 3D disordered system, where localization is
actually observed in the direction perpendicular to the
plane source [21]. In other words, the situation is thus
comparable to a transmission experiment where the sam-
ple is illuminated by a plane wave and the exponential
localization is only measured along the wave vector di-
rection. Therefore, the behavior of the wave function ψ
subjected to the quasiperiodic kicked rotor Hamiltonian
Hqp, Eq. (20), depicts all the properties of the dynamics
of the quantum 3D kicked rotor, Eq. (22).

The Hamiltonian H, Eq. (22), is invariant under the
following transformation, product of time-reversal with
parity:

T : t→ −t,x → −x,p → p , (29)

which is relevant for dynamical localization [45, 46].
The evolution of the states according to the Hamilto-
nian, Eq. (20), is governed by the operator U , Eq. (24),
which belongs to the Circular Orthogonal Ensemble class
[47, 48], with the additional constraint at t = 0 Eq. (23).
Of course, the transformation (29) amounts to chang-
ing (ϕ2, ϕ3) to (−ϕ2,−ϕ3) into the constraint (23), i.e.
to starting from a different wavefunction. On the other
hand, from Eq. (25), one clearly sees that after t steps,
the constraint reads δ(x2 − ϕ̃2)δ(x3 − ϕ̃3), with

ϕ̃2 = ϕ2 + ω2t ϕ̃3 = ϕ3 + ω3t. (30)

Since the frequencies ω2 and ω3 are incommensurate, the
preceding equation immediately tells us that, along the
time evolution, the constraint on the wavefunction can
be arbitrary close to any phases (ϕ′

2, ϕ
′
3) [49]. This way,

the time evolution results in an average over (almost) all
possible phases, showing thus that the localization prop-
erties are independent of a particular choice (ϕ2, ϕ3), but
only depend on the operator U . Therefore, the dynam-
ical properties of the present quasiperiodic kicked rotor
also belong to the orthogonal ensemble.

It should be noted that the 3D aspect comes from the
presence of 3 frequencies in the dynamical system: the
usual “momentum frequency” k̄ present in the standard
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kicked rotor Eq. (6), and two additional time-frequencies
ω2 and ω3. Thus, increasing the number of incommensu-
rate frequencies allows one to tune the effective dimen-
sionality of the system.

Let us now consider the conditions for the observation
of Anderson localization with the quasiperiodic kicked ro-
tor. As for the standard kicked rotor, the Floquet states
of the time-periodic 3D Hamiltonian H, Eq. (22), can be
mapped onto a 3D Anderson-like model:

ǫmΦm +
∑

r6=0

WrΦm−r = −W0Φm , (31)

where m ≡ (m1,m2,m3) and r label sites in a 3D cubic
lattice, the on-site energy ǫm is

ǫm = tan

{

1

2

[

ω −
(

k̄
m1

2

2
+ ω2m2 + ω3m3

)]}

, (32)

and the hopping amplitudesWr are coefficients of a three-
fold Fourier expansion of

W (x1, x2, x3) = tan [K cosx1(1 + ε cosx2 cosx3)/ 2k̄] .
(33)

An obvious necessary condition for the observation of
localization effects is that ǫm is not periodic. This is
achieved if (k̄, ω2, ω3, π) are incommensurate. Of course,
the presence of disorder in the diagonal energy ǫm is
crucial to observe Anderson localization. When k̄ is in-
commensurate with 2π, due to the presence of a non-
linear dispersion in the m1 direction, the classical dy-
namics can become chaotic with diffusive spreading in
all m directions [42, 50]. A typical numerical simula-
tion is shown in Fig. 1: the classical motion is almost
perfectly diffusive along the three pi coordinates with a
characteristic Gaussian shape in each direction. From
Eq. (33, it is clear that hopping along the directions
”2” and ”3” is diminished by a factor ε compared to
hopping along direction ”1”. Not surprisingly, diffusion
along p1 is slightly faster than along p2 and p3. The
quasi-periodically kicked rotor is thus analogous to an
anisotropic Anderson model [51, 52, 53].

When those conditions are verified, localization effects
as predicted for the 3D Anderson model are expected,
namely either a diffusive or a localized regime. Localized
states would be observed if the disorder strength is large
as compared to the hopping. In the case of the model
Eq. (31), the amplitude of the disorder is fixed, but the
hopping amplitudes can be controlled by changing the
stochasticity parameter K (and/or the modulation am-
plitude ε): Wr is easily seen to increase with K. In other
words, the larger K, the smaller the disorder. One thus
expects to observe diffusive regime for large stochastic-
ity or/and modulation amplitude (small disorder) and
localized regime for small K or/and ε (large disorder).
It should be emphasized that there is no stricto sensu
mobility edge in our system. Depending on the values of
the parameters K, k̄, ε, ω2, ω3, all Floquet states are lo-
calized or all are delocalized. The boundary of the metal-
insulator transition is in the K, k̄, ε, ω2, ω3 space. As seen
below, K and ε are the primarily important parameters.

-500 0 500
0

0.001

0.002

0.003

0.004

0.005

0.006

M
om

en
tu

m
 D

is
tr

ib
ut

io
n

Momentum p

Figure 1: (Color on line) Classical diffusive motion for the 3D
kicked rotor Eq. 22. The initial state is localized around the
origin. After 1000 kicks, the classical momentum distribution
(black and red curves) has the Gaussian shape characteris-
tic of a diffusive motion. The blue and green curves are fits
by a Gaussian which do not show any statistically significant
deviation. The black (resp. red) curve is the momentum
distribution along p1 (resp. p2). The distribution along p3

is identical that along p2. The anisotropic diffusion happens
because the hopping along the directions ”2” and ”3” is di-
minished by a factor ε compared to hopping along direction
”1”. Parameters are K = 10, k̄ = 2.85, ε = 0.8, ω2/2π =

√
5,

ω3/2π =
√

13.

In an analytical work on a similar problem [49] Basko et

al. showed that the weak dynamical localization regime
of a d-frequency quantum dot system is similar to the
weak localization in a d-dimensional Anderson model.
This work confirms the equivalence between our system
and the 3D-Anderson model. The above arguments were
also validated numerically [42, 50].

Numerical simulations of the evolution of the quasi-
periodically kicked rotor are straightforward. The free
evolution between consecutive pulses is diagonal in mo-
mentum representation, while the kick operator is di-
agonal in position representation (whatever the kick
strength, constant or quasi-periodic). Switching between
momentum and position representation is easily done
through a Fast Fourier Transform. We are thus able to
compute the evolution of a large number of initial states
(typically one thousand) over a very long time (typically
up to one million kicks, much more than in the exper-
iment). All numerical results shown below have been
carefully checked for convergence. Except when explic-
itly stated, averaging over the quasi-momentum β has
been performed, in accordance with the experimental re-
alization.

III. EXPERIMENTAL REALIZATION WITH

ATOMIC MATTER-WAVES

A. Experimental setup

Our experimental setup has been described in detail
in previous publications [54, 55, 56, 57] and was used in
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various investigations on the quasiperiodic kicked rotor
[58, 59, 60, 61]. Briefly, our experiments are performed
with cesium atoms produced in a standard magneto-
optical trap (MOT). A long Sisyphus-molasses phase (25
ms) allows us to obtain 107 atoms at a measured temper-
ature of 3.2 µK. The velocity distribution of the atoms is
well modeled by an incoherent sum of plane waves form-
ing a Gaussian of full width at half maximum (FWHM)
equal to 8~kL, which is much narrower than the ex-
pected localization length. The MOT beams and mag-
netic field are turned off and the sequence of kicks is
applied to the atoms. The beam forming the standing
wave passes through an acousto-optical modulator driven
by RF pulse synthesizers, which generates the kicks at a
typical frequency of 1/T1 = 36 kHz (which corresponds
to k̄ = 2.89), of duration τ =900 ns and with a raising
time of 50 ns. The modulation is thus an almost perfect
square, at the time scale of the atomic motion, and its
duration and period can be set by a microcomputer. The
beam is then injected in an optical fiber that brings it to
the interaction region, and the standing wave is obtained
simply by back-reflection of this beam. The standing
wave has a typical power 160 mW, its profile intensity
has a FWHM of 1.5 mm, and it is far off-resonant (7.3
GHz to red, or 1.4×103Γ), in order to reduce spontaneous
emission. The corresponding stochasticity parameter is
K ≈ 15.

A very interesting property of our system (as com-
pared to solid-state systems) is that the wave function
is accessible (or at least its square modulus). We mea-
sure the atomic velocity distribution by velocity-selective
Raman stimulated transitions, which are sensitive to the
atomic velocity via Doppler effect, allowing an optimal
velocity resolution of about 2 mm/s. A Raman pulse de-
tuned of δR with respect to the Raman resonance trans-
fers the atoms in the velocity class v = δR/(2kR) − vR

with vR = ~kR/M (kR is the wave number of the Ra-
man beams) from the Fg = 4 to the Fg = 3 ground-
state hyperfine sublevel. A beam resonant with the
Fg = 4 → Fe = 5 transition is then applied to push
the remaining atoms out of the interaction region. The
Fg = 3 atoms are then optically pumped to the Fg = 4
sublevel and interact with a resonant probe beam: The
absorption signal is thus proportional to the population
of the Fg = 4 level, thus to the population of the selected
velocity class. The whole sequence then starts again with
a different value of the Raman detuning to probe a new
velocity class, allowing a reconstruction of the velocity
distribution [55, 57].

B. Decoherence sources

Any quantum experiment must consider decoherence
sources that destroy quantum interference effects (in our
case, localization) reestablishing a diffusive dynamics.
The most important sources of decoherence in our exper-
iment are (i) atomic collisions, (ii) spontaneous emission,

and (iii) the deviation of the standing wave from strict
horizontality.

For an isolated system described by a single wavefunc-
tion, phase coherence between different positions is “per-
fect”. When the system is weakly coupled to an exter-
nal bath, it cannot be any longer described by a single
wavefunction; the most convenient description usually in-
volves a density matrix ρ. Non-diagonal matrix elements
of the type 〈x|ρ|x′〉 quantify the degree of coherence of
the system between position x and x′. As a general rule,
the effect of the external bath is to make the non-diagonal
elements of the density matrix to decay relatively rapidly,
more rapidly than the diagonal elements: this is decoher-
ence (not to be confused with dissipation) [62]. Effects
like Anderson localization are due to subtle destructive
interference amongst various components of the wave-
function, which inhibit the classically allowed transport:
they are thus very sensitive to decoherence. One usually
quantify the strength of decoherence effects by defining a
phase coherence time, the characteristic time over which
the non-diagonal elements of the density matrix decay be-
cause of coupling to the external bath. In our case, the
non-diagonal element of interest are between eigenstates
|p〉 and |p′〉 located at a typical distance |p− p′| compa-
rable to the localization length in momentum space.

Localization effects can be observed only for times
shorter than the phase coherence time [63]. Beyond the
phase coherence time, interference effects are killed and
classical-like diffusive dynamics sets in. In the following,
we shall express the characteristic times of the decoher-
ence processes (i), (ii) and (iii), as functions of the ex-
perimental parameters to show that they can be set large
enough for localization effects to be observable.

In atom-atom collisions, the dominant effect is that of
collisions between cold atoms, the density of the cloud
being around 8 orders of magnitude larger than the den-
sity of the background hot gas. A cloud density of 1012

cm−3 with a mean velocity 1 cm/s and a collision cross-
section of 6 × 10−11 cm2 gives a collision rate of ≈ 60
s−1, or 1.6× 10−3 per kick; the collision phase coherence
time is thus ∼ 600 kicks.

In order to have a better idea of the decoherence ef-
fect induced by spontaneous emission, let us consider
the temporal evolution of an initial plane-wave function:
ψ(p, t = 0) = δ(p − p0) evolving with the KR Hamilto-
nian Eq. (6). After dynamical localization sets in, the
momentum distribution ceases to expand because of de-
structive interference between the various components of
the wavefunction. Spontaneous emission brings a random
recoil to the atomic momentum which is not an integer
multiple of 2~kL. Thus, the quasi-momentum β performs
a random jump. As the phase factors involved in the free
evolution depend on the quasi-momentum, the relative
phases between interfering paths are scrambled, result-
ing in a new transient diffusive behavior for another du-
ration of τloc. DL is thus expected to be destroyed if
spontaneous emission is regularly repeated. Note that a
single spontaneous emission event completely breaks the
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Figure 2: (Color online) Gravity effects on a slightly inclined
kicked rotor Eq. (34). The deviation of the standing wave
from horizontality is α = 0◦ (black lower curve), α = 0.1◦ (red
lower middle curve), α = 0.4◦ (green upper middle curve) and
α = 1◦ (blue upper curve). The stochasticity parameter is
taken as K = 5 and the effective Planck constant is k̄ = 2.85.
The dynamics of an initial thermal state is simulated and the
corresponding mean kinetic energy is plotted versus time. For
angles larger than 0.1◦, the slow drift of momentum induces
a diffusive behavior clearly visible on the time-scale of the
experiment.

phase coherence, implying that the phase coherence time
is simply the inverse of the spontaneous emission rate.

Spontaneous emission tends to reestablish a diffusive
evolution with a diffusion constant that is roughly ηk̄2

where η = ΓΩ2τ/8∆2
L, is the spontaneous emission rate

expressed in photons per kick, which can be cast in the
more useful form η = (Γτ/8) (I/Is) (Γ/∆L)2, where I
is the intensity and Is ≈ 2.2 mW/cm2 is the transition
saturation intensity. Around the transition (K ≈ 6), the
experimental values indicated above give η ≈ 2.1 × 10−3

s−1, or a typical phase coherence time of ∼500 kicks.
Another effect leading to the destruction of localization

is the standing wave deviation from horizontality. In this
case, a gravity term must be added in the Hamiltonian
(6):

Hg =
p2

2
− ηgx+K cosx

∑

n

δ(t− n) , (34)

The dimensionless gravity term ηg is:

ηg =
mgT1

2~kL
k̄ sinα , (35)

with g the gravity acceleration and α the angle between
the horizontal direction and the standing wave. The
physical interpretation is quite clear: mgT1 sinα is the
additional momentum transferred to the atoms between
two consecutive kicks, which must be compared to the
width of the Brillouin zone 2~kL.

The gravity term −ηgx breaks the spatial periodic-
ity of the Hamiltonian, and consequently the conserva-
tion of the quasi-momentum βk̄. It actually produces a

drift of the quasi-momentum at constant rate −ηg, whose
effect is to break dynamical localization. Indeed, the
destructive interference between various components of
the momentum wavefunction – responsible for dynam-
ical localization – is partially destroyed by the quasi-
momentum drift, as the various phase factors accumu-
lated during the free evolution between two consecutive
kicks, exp

[

−i(m+ βk̄)2/2k̄
]

also drift. The net result is
a residual diffusion constant, depending on ηg. Although
this is not strictly a decoherence effect (the whole evo-
lution is fully phase coherent), it similarly destroys dy-
namical localization. We thus define the phase coherence
time τg as the time needed to double 〈p2〉 compared to
the dynamically localized situation. Numerical simula-
tions taking into account the gravity effect confirm the
discussion above, see Fig. 2. If the standing wave devi-
ates from horizontality by an angle α = 1◦, then τg ≈ 120
kicks whereas when the angle α = 0.1◦, τg ≈ 350 kicks.
In the timescale of the experiment (150 kicks), the de-
viation from horizontality must be less than 0.1◦. This
decoherence effect is rather important. To the best of
our knowledge, its importance was not fully appreciated
in previous experiments. A detailed discussion of this
effect will be presented elsewhere [64].

C. Conditions for the observation of localization

effects

We now discuss the conditions that must be satisfied
in order to observe localization effects experimentally.

Firstly, the system must present some kind of disorder:
As discussed in section II C, this means that k̄, ω2 and
ω3 and π must be incommensurate. This is achieved if
we take k̄ = 2.89, ω2 = 2π

√
5 and ω3 = 2π

√
13. A

more detailed discussion concerning the choice of these
parameters will be given in section VI B.

Secondly, in order to observe dynamical localization
effects instead of trivial classical localization, we must be
in a regime where the classical system has no KAM bar-
riers which can prevent the classical diffusive transport.
For the standard, periodic KR, full chaos is obtained for
K & 4. In order to determine the corresponding thresh-
old for the quasiperiodic system, we performed numer-
ical simulations of the classical dynamics corresponding
to Eq. (22), for various values of the stochasticity pa-
rameter. The dynamics is found to be fully diffusive for
K & 2, a considerably smaller value than for the stan-
dard KR. In particular, no classical localization effects
due to KAM barriers are observed for K & 2. In any
case, the experiments and the numerical simulations in
the following are all performed for K > 4, where the
classical dynamics is diffusive, see Fig. 3.

Thirdly, short enough pulses must be used that they
can be considered as delta pulses [65]. Numerical sim-
ulations of the quasiperiodic kicked rotor with a finite
pulse duration τ = 0.9µs and a thermal initial momen-
tum distribution show that less than 1% of the atoms are
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Figure 3: Classical chaotic diffusion for the quasiperiodic
kicked rotor Eq. (22). The dynamics of an initial thermal
distribution of classical particles is simulated and the corre-
sponding mean kinetic energy is plotted versus time (number
of kicks). The stochasticity parameter K (the modulation
amplitude ǫ) varies linearly between 4 and 9 (0.1 and 0.8),
following the experimental path, Fig. 6. The dashed line of
slope 1 demonstrates the linear increase of 〈p2〉 vs. time t. No
classical localization effects are observed. The chaotic diffu-
sion is characteristic of the presence of pseudo-disorder in the
quasiperiodic kicked rotor, leading to a pseudo-random walk
in momentum space.

sensitive to the duration of the pulses. Only atoms in
the tails of the momentum distribution have sufficiently
large atomic velocity to move by a significant fraction of
λL during the pulse, thus feeling a smaller effective kick.

Fourthly, a sufficiently narrow initial state must be pre-
pared in order to observe dynamical localization, i.e. the
freezing of the initial diffusive expansion of the wave-
function into an exponentially localized state. A suffi-
cient condition is that the initial width of the momentum
distribution be smaller than the localization length. In
our system, we have an initial momentum distribution of
half-width 2k̄. This is comparable to the shortest localiza-
tion length at the lowest K = 4 value, as experimentally
proved, see inset of Fig. 5. A consequence is that, in this
regime, the exponential shape of the wavefunction after
dynamical localization is established is slightly rounded
at the tip. For higher values – say K > 5, – the initial
width of the atomic wavefunction can be safely neglected.

Finally, decoherence processes must be kept small dur-
ing the experiment. The large detuning of the standing
wave allows to keep the spontaneous emission rate very
small, i.e. the corresponding phase-coherence large as
compared to the duration of the experiment. A good
control on the horizontality of the standing wave insures
that gravity do not lead to a destruction of localization
effects on the time-scale of the experiment.
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Figure 4: (Color online) Experimentally measured momen-
tum distributions after 150 kicks, exponentially localized in
the insulator region (blue) and Gaussian in the diffusive
(metallic) region (red). (a) linear scale, (b) log scale. For
both curves k̄ = 2.89, for the localized distribution (blue)
K = 5.0 and ǫ = 0.24, for the Gaussian distribution (red)
K = 9.0 and ǫ = 0.8.

IV. EXPERIMENTAL OBSERVATION OF THE

DISORDER INDUCED METAL-INSULATOR

TRANSITION

In a typical experimental run, we apply a sequence
of kicks to the atomic cloud and measure its dynamics.
In the localized regime, the evolution of its momentum
distribution is “frozen” after the localization time (typ-
ically of the order of 12 kicks at low K) into an expo-
nential curve exp (−|p|/ℓ). In the diffusive regime, the
initial Gaussian shape is preserved and the distribution
gets broader as kicks are applied, corresponding to a lin-
ear increase of the average kinetic energy. Figure 4 shows
the experimentally observed momentum distributions, an
exponentially localized distribution for small K and ǫ
(blue curve), characteristic of dynamical localization, and
a broad, Gaussian-shaped distribution for large K and ǫ
(red curve), characteristic of the diffusive regime.

Measuring the whole momentum distribution takes too
much time: one must repeat the whole sequence (from
the preparation of a new atom cloud up to the Raman
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Figure 5: (Color online) Temporal dynamics of the quasi-
periodic kicked rotor. We experimentally measure the popu-
lation Π0(t) of the zero-momentum class as a function of time
(number of kicks) and plot the quantity Π−2

0
(t) ∝ 〈p2〉(t).

Clearly, it tends to a constant in the localized regime (blue
lower curve corresponding to K = 4 and ε = 0.1) and in-
creases linearly with time in the diffusive regime (red upper
curve corresponding to K = 9 and ε = 0.8). The inset shows
the behavior close to the localization time. k̄ = 2.89.

measurement of the velocity distribution) for each ve-
locity class. Moreover, for each time step, a complete
momentum distribution must be measured. Fortunately,
it is sufficient, and much easier, to measure the popula-
tion Π0(t) of the zero velocity class, as Π−2

0 (t) is propor-
tional to 〈p2〉(t) (the total number of atoms is constant).
The proportionality factor between Π−2

0 (t) and 〈p2〉(t)
depends on the detailed shape of the momentum distri-
bution and is thus different in the localized and diffu-
sive regime, but this small difference is a small correction
to the main phenomenon: divergence of the localization
length near the transition.

Note that, strictly speaking, the proportionality be-
tween Π−2

0 (t) and 〈p2〉(t) breaks at criticality due to the
multifractal character of critical states [66]. However, on
the time scale of the experiment (t = 150 kicks), the de-
viation from strict proportionality is seen (numerically)
to be negligible. At longer times (thousands or millions
of kicks), the effect of multifractality is visible and quan-
titatively measurable. This is beyond the scope of this
paper and will be analyzed elsewhere [67].

For each run, a value of Π0(t) is recorded after a given
number of kicks is applied, then the measurement se-
quence starts again with the next number of kicks. We
also record the background signal obtained by not apply-
ing the Raman detection sequence, and the total number
of atoms in the cold-atom cloud. These signals are used
to correct the experimental data from background signals
and long-term drifts of the cloud population.

Figure 5 shows the experimentally measured Π−2
0 (t) in

the localized and diffusive regimes. It clearly shows the
initial diffusive phase and the freezing of the quantum
dynamics in the localized regime (blue curve in Fig. 5).
Along with the observation of an exponential localization

Figure 6: (Color online) Phase diagram of the quasiperiodic
kicked rotor, from numerical simulations. The localized (insu-
lator) region is shown in blue, the diffusive (metallic) region is
shown in red. The experimental parameters are swept along
the diagonal dash-dotted line.

of the wave-function in Fig. 4, this constitutes a clear-cut
proof of the observation of dynamical localization. In the
diffusive regime, Π−2

0 (t) is seen to increase linearly with
time (red curve in Fig. 5), corresponding to the Gaussian
red curve in Fig. 4.

After having observed Anderson localization for strong
effective disorder strength and diffusive transport for
small effective disorder, the next step is to walk the way
between these two regimes, and explore the phase transi-
tion expected (numerically) to take place along a critical
line in the plane (K, ǫ > 0) (Fig. 6). In order to con-
fine the transition to a narrow range of parameters, we
choose a path that cross the critical curve (Fig. 6) “at a
right angle”; we thus vary simultaneously K and ε along
a line going from K = 4, ε = 0.1 in the localized region
to K = 9, ε = 0.8 in the diffusive region; the critical line
is then crossed at K = Kc = 6.6.

A simple way to investigate the phase transition is
the following [42]. In the localized regime, wait for a
time longer than the localization time so that a local-
ized frozen wave-function is observed, then measure its
localization length. One can in such a way study the
behavior of the localization length vs. disorder: at criti-
cality, it should diverge as ℓ ∼ (K −Kc)

−ν . This would
give the critical stochasticity parameter Kc and the criti-
cal exponent ν. However, we cannot proceed that way in
our case, because when one approaches the critical point
from the insulator side, the localization time diverges as
τℓ ∼ ℓ3 ∼ (K −Kc)

−3ν in three dimensions (see below).
In our system, a localized momentum distribution would
be observable in the vicinity of the transition only for
prohibitively large numbers of kicks, which are, in prac-
tice, limited to 150, essentially because of decoherence
effects and because the free fall of the atom cloud takes
it out of the standing wave. Consequently, it is vain to
investigate experimentally the Anderson transition only
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from static properties such as the divergence of the lo-
calization length at criticality, which could be obtained
only for t ≫ τloc. Fortunately, there is another way to
observe the Anderson transition, which we shall present
in the following sections.

V. CHARACTERIZATION OF THE

ANDERSON PHASE-TRANSITION

Finite-time effects act as finite-size effects do on finite-
size samples subjected to phase-transitions. Numerical
simulations of the Anderson transition on the standard
3D-Anderson model are necessarily performed on finite-
size samples of finite size L. In the vicinity of the transi-
tion, the localization length ℓ [see Eq. (2)] diverges and
thus can greatly exceed L. In this regime, L acts as an up-
per bound for the effectively observed localization length
ℓL. This smooths the transition, no divergence of the lo-
calization length can be directly observed on a finite-size
sample. In order to overcome this limitation, a power-
ful real-space renormalization method, called finite-size
scaling [9, 10], was introduced. This method is based on
a single parameter scaling hypothesis [8] and allows to
extrapolate from the scaling behavior of ℓL versus L the
asymptotic value of the localization length ℓ correspond-
ing to L → ∞. We can generalize static scaling laws to
cover our time-dependent problem (see [68] for a similar
approach in percolation theory). The single parameter
scaling theory [8], successfully used for the standard 3D
Anderson model [9, 10], can be applied to analyze our
experimental and numerical data, and especially to de-
termine the critical properties of the Anderson transition
that we observe, i.e. the critical exponents.

A. Scaling law at finite time

Knowing the asymptotic behavior when t → ∞ is
not enough, an additional time-dependent property is
needed, too, which we shall investigate now. For K
far above Kc one observes normal diffusion, 〈p2〉 ∝ t,
whereas for K far below Kc, the quantum dynamics
freezes, at sufficiently long times. Following the stan-
dard analysis of the Anderson transition, we make the
hypothesis that the transition that we observe for the
quasi-periodically kicked rotor follows a one-parameter
scaling law [69] (the validity of this scaling hypothesis will
of course be checked at the end of the analysis). At the
critical point, a third kind of dynamics, namely anoma-
lous diffusion, with 〈p2〉 ∼ tk k 6= 1, is expected. Let us
consider in greater detail the behavior very close to Kc

where these three different laws merge.
In the localized regime, for sufficiently long times, the

behavior depends only on the localization length which
diverges as K goes to Kc:

〈p2〉 ∼ ℓ2 ∼ (Kc −K)−2ν (for K < Kc) , (36)

with ν the localization length critical exponent.
For K > Kc, the mean kinetic energy increases lin-

early with time, and the proportionality constant is the
diffusion coefficient D(K). For K < Kc, 〈p2〉 is bounded
by Eq. (36) and there is no diffusion. Thus D(K) van-
ishes below Kc. A different critical exponent s is used to
describe how D(K) goes to zero above threshold:

D(K) ∼ (K −Kc)
s (for K > Kc). (37)

We shall now find a single expression presenting these
two limit behaviors and also displaying anomalous diffu-
sion at the critical point. We note that, according to the
theory of phase-transitions in finite-size samples, a scal-
ing can be applied to 〈p2〉 depending on the two variables
1/t and (K −Kc), both going to zero. We thus use the
general scaling law:

〈p2〉 = tk1F
[

(K −Kc) t
k2

]

, (38)

with F (x) an unknown scaling function. The exponents
k1 and k2 can be determined as follows.

In the diffusive regime, for long enough times, we must
recover the diffusion law with D ∼ (K −Kc)

s [Eq.(37)];
hence, for x ≫ 1, the scaling function F (x) should scale
as xs:

〈p2〉 ∼ tk1+sk2 (K −Kc)
s
. (39)

As in the diffusive regime, 〈p2〉 ∼ t, we must have k1 +
sk2 = 1.

In the localized regime, on the other hand, one must
recover 〈p2〉 ∼ (Kc−K)−2ν [Eq. (36)] for sufficiently long
times. Thus, for x→ −∞, F (x) → (−x)−2ν , giving:

〈p2〉 = tk1−2νk2(Kc −K)−2ν (40)

which is compatible with Eq. (36) only if k1 = 2νk2.
These two relations determine k1 and k2 in terms of the
physically more meaningful critical exponents s and ν.

k1 =
2ν

s+ 2ν

k2 =
1

s+ 2ν
.

In the standard Anderson model, the critical exponents
are related by Wegner’s scaling law [6]:

s = (d− 2)ν , (41)

with d being the dimensionality of the system. For our
system, one obtains:

k1 = 2/3; k2 = 1/3ν. (42)

We therefore expect at the critical point anomalous diffu-
sion with 〈p2〉 = tk1F (0) ∼ t2/3. We present in the next
sub-section a numerical and experimental validation of
this prediction.
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Figure 7: (Color online) Numerically simulated time-
evolution of 〈p2〉 for the quasiperiodic kicked rotor. At the
critical point K = Kc ≈ 6.4 (purple middle curve), anomalous

diffusion 〈p2〉 ∼ t2/3 is clearly observed, as expected from the-
oretical arguments (cf. text). The log-log plot of the critical
curve is very well fitted by a straight line of slope 0.664 (black
dashed line). In the vicinity of the transition, the dynamics
departs from the anomalous diffusion to tend gradually ei-
ther to a diffusive dynamics (red upper curves corresponding
to K => Kc bending upwards for large t) or to a localized
dynamics (blue lower curves corresponding to K < Kc bend-
ing downwards for large t). Other parameters are k̄ = 2.85,
ω2 = 2π

√
5 and ω3 = 2π

√
13.

B. Critical anomalous diffusion

We verified numerically that the critical behavior, cor-
responding to the anomalous diffusion in t2/3 is observed
up to a very large number of kicks (t = 106). The (pur-
ple) middle curve of Fig. 7 displays the time-evolution
of 〈p2〉 from numerical simulations for the stochasticity
parameter K = 6.4. Anomalous diffusion 〈p2〉 ∼ t2/3 is
clearly seen from the log-log plot over 4 orders of magni-
tude, which is very well fitted by a straight line of slope
0.664. Other curves, for different K, tend at long times
to bend either horizontally (below Kc) or towards slope
unity (aboveKc). This is a clear proof that we face here a
true phase transition and not a smooth cross-over. Note
also that the fact that the numerically measured critical
slope is very close to the theoretical prediction 2/3 im-
plies that the Wegner’s scaling law s = ν is valid at an
accuracy better than 1%.

Fig. 8 displays the experimental evolution of Π−2
0 (t) ∼

〈p2〉 versus time. The critical curve (middle curve corre-
sponding to K ≈ 6.4) in purple is well fitted by the rela-
tion Π−2

0 (t) = A+Bt2/3, see Fig. 8a. Fig. 8b displays in
log-log scale the experimental data Π−2

0 (t) vs t. The alge-
braic dependence (with exponent 2/3) of the critical dy-
namics is again clearly visible. In all plots in Figs. 8 the
red upper curves evidence the above-criticality diffusive
behavior and the blue lower curves the below-criticality
localized behavior.

From renormalization theory, we know that the crit-

0 50 1000

200

400

600

800

1000

(a)

Π
−

2

0
20 100

100

1000

(b)

t

Π
−

2

0

Figure 8: (Color online) Experimentally observed time-
evolution of Π−2

0
∼

˙

p
2
¸

for the quasiperiodic kicked ro-
tor. Close to the critical point K = Kc ≈ 6.4 (purple mid-

dle curve), anomalous diffusion Π−2

0
(t) ∼ t2/3 is clearly ob-

served. (a) The critical anomalous curve is well fitted by

Π−2

0
(t) = A+Bt2/3 (black dashed line). The red upper curve

evidence the far-above-criticality diffusive behavior (K = 9.0)
and the blue lower curve the far-below-criticality (K = 4.0)
localized behavior. (b) These experimental results show a
clear algebraic behavior, with exponent ≈ 0 (blue lower curve,
localized regime), 2/3 (purple middle curve, critical regime)
and 1 (red upper curve, diffusive regime), slightly perturbed
by decoherence processes responsible for the residual increase
in the localized regime. Other parameters are the same as in
Fig. 7.

ical behavior shows the existence of a fixed hyperbolic
point [16]. It is a fixed point because the critical behav-
ior remains the same at all times (opposite to the local-
ized case for example, for which a characteristic time can
be defined, the localization time), and it is a hyperbolic
point since the localized dynamics close to criticality will
follow only for a finite time the anomalous diffusion with
exponent 2/3 and will progressively tend to a localized
behavior for large enough time. The rate at which the
behavior changes is related to the critical exponent of the
phase transition ν.

An efficient way to observe the departing of the dynam-
ics from the critical anomalous diffusion is to consider the
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Figure 9: (Color online) Numerical simulation showing the
evolution of the dynamics from the critical behavior towards
either a diffusive dynamics or a localized state. Plotting the
quantity ln Λ = ln(〈p2〉t−2/3) vs. ln t allows to easily distin-
guish the critical behavior from diffusive or localized behavior:
The critical curve (corresponding to K = KC ≈ 6.4) has a
zero slope; whereas the far localized (K = 4.0) one has a slope
−2/3 and the far diffusive (K = 9.0) one a slope 1/3. Other
parameters are the same as in Fig. 7.

quantity

Λ =
〈p2〉
t2/3

, (43)

or, equivalently, in the case of the experimental data:

Λ0 =
1

Π2
0(t)t

2/3
, (44)

as a function of time. This is illustrated in Fig. 9, which
displays ln Λ vs. t. The critical behavior can be eas-
ily pin-pointed: The corresponding (purple) curve has
a zero slope, as the quantity Λ is (asymptotically) con-
stant at criticality. In the diffusive regime, the quantity
Λ increases with time (red curves), whereas it decreases
in the localized regime (blue curves). In the far localized
regime, we observe an algebraic dependence Λ(t) ∼ t−2/3

as 〈p2〉(t) = 2ℓ2 for t > τloc. In the far diffusive regime,
the algebraic dependence is Λ(t) ∼ t1/3 as 〈p2〉(t) ∼ t.

The above numerical and experimental observations
validate the theoretical prediction for the critical behav-
ior: 〈p2〉 ∼ t2/3. Such critical behavior for the quasi-
periodic kicked rotor was predicted using another scaling
approach and numerically verified in [50]. It was also
numerically observed for a spatially-3D kicked rotor [41]
and in the standard 3D Anderson model [69], and put on
firm theoretical grounds in [70].

C. Finite-time scaling

We shall now explain the procedure used to verify the
scaling of our numerical and experimental data according
to the law deduced above:

〈p2〉 = t2/3F
[

(K −Kc)t
1/3ν

]

. (45)
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 ln(1/t1/3)           ln(ξ/t1/3)
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Figure 10: (Color online) Raw numerical data, displayed in

the form ln Λ = ln〈(p2〉t−2/3) vs. ln t−1/3 (on the left). Each
curve corresponds to a different stochasticity parameter K.
The finite-time scaling procedure consists in shifting horizon-
tally each curve by a quantity ln ξ(K) so that the curves over-
lap. This allows one to determine both the scaling function f
(on the right) and the scaling parameter ξ(K).

Our method is similar to the finite-size scaling procedure
used by MacKinnon and Kramer [9, 71], and Pichard and
Sarma [10] to numerically study the Anderson transition
on finite-samples of the 3D Anderson model, but we ap-
ply it here to the temporal behavior of the data, thus the
name “finite-time scaling”.

We assume the quantity Λ(K, t) = 〈p2〉t−2/3 to be an
arbitrary function

Λ(K, t) = f
(

ξ(K)t−1/3
)

, (46)

where the scaling parameter ξ(K) depends only on K,
which is the parameter appearing in the one-parameter
scaling hypothesis. This scaling assumption is less re-
strictive than Eq. (45) since no assumption on the de-
pendence of ξ on K is made. We must thus show that
the resulting scaling parameter ξ(K) is compatible with
Eq. (45).

In the left part of Fig. 10 we display plots of ln Λ(K, t)
vs. ln t−1/3 for different values of K. For most values of
ln Λ, several values of ln t−1/3 correspond to the same K
value. The only way to conform with the condition (46)
is to shift each curve horizontally by a different quantity
ln ξ(K) such that curves corresponding to different values
of K overlap. This can be achieved by minimizing the
variance of the values ln ξ(K)t−1/3 corresponding to each
value of ln Λ. The function ξ(K) can be determined by
applying a least square fit to the data.

This minimization procedure does not allow one to
compute the absolute scale of ξ(K), as the shifting proce-
dure (see Fig. 10) is invariant under a global shift of the
origin. We can thus set the scaling parameter ξ(K) to
be equal to the localization length in the strongly local-
ized regime where the duration of the experiment is much
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Figure 11: (Color online) Finite-time scaling applied to the
results of numerical simulations of the quasiperiodic kicked
rotor. The time-evolution of 〈p2〉 is computed as a function
of time, from 30 to 104 kicks, for several values of K between
K = 4 and K = 9. The finite-time scaling procedure al-
lows us to determine both the scaling function f (a), clearly
displaying an upper branch (red) associated with the diffu-
sive regime, and a lower branch (blue) associated with the
localized regime. The dependence of the scaling parameter
ξ on K (b) displays a divergent behavior around the critical
point Kc = 6.4, which is the signature of the Anderson phase
transition. The dashed line is a fit using Eq. (48). The re-
sulting critical exponent is ν = 1.6 ± 0.1. Other parameters
are k̄ = 2.85, ω2 = 2π

√
5 and ω3 = 2π

√
13.

larger than the localization time, and 〈p2〉 converges to
its asymptotic value 2ℓ2. Thus

Λ(K, t) = f
(

ξ(K)t−1/3
)

= 2ℓ2t−2/3 ,

which implies, if we identify the scaling parameter with
the localization length, ξ(K) ∼ ℓ,

f(x) = 2x2 .

Figures 11(a) and 12(a) show the results of the fitting
procedure applied to the numerical data and to the ex-
perimental data, respectively. In both cases, the proce-
dure groups all points in a single curve, within the accu-
racy of the data. The resulting curve clearly displays
two branches, a diffusive (red) and a localized (blue)
one, with the critical point being at the tip joining the

0 0.5 1 1.5 2 2.5
1

2

3

4

5

6

 ln(ξ/t1/3)

ln
 Λ

0

(c)

4 5 6 7 8 9

10

20

30

40

 K

ξ

(b)

Figure 12: (Color online) Finite-time scaling applied to the
experimental results (from 30 to 150 kicks). The scaling pro-
cedure is the same as in Fig. 11. (a) The fact that all experi-
mental points lie on a single curve, with a diffusive (red) and a
localized (blue) branch, is a proof of the relevance of the one-
parameter scaling hypothesis. (b) The maximum displayed
by the scaling parameter ξ in the vicinity of Kc = 6.4 is a
clear-cut proof of the Anderson transition. Phase-breaking
mechanisms (cf. text) smooth the divergence at the critical
point. When these effects are properly taken into account,
one obtains a critical exponent ν = 1.4 ± 0.3, [the dashed
line is a fit with Eq. (48)] compatible with the numerical re-
sults. This plot corresponds to 48 experimental runs.Other
parameters as in Fig. 11.

two branches; this is a signature of the Anderson transi-
tion. It also justifies a posteriori the scaling hypothesis
Eq. (46) used for analyzing the data.

The scaling parameter ξ(K) is plotted in Figs. 11(b)
and 12(b), for numerical and experimental data respec-
tively. As stated above, this parameter can be identi-
fied to the localization length in the localized regime. In
the diffusive regime, it scales as the inverse of the diffu-
sive constant. Indeed, in the far diffusive regime one has
〈p2〉 = D(K)t, which implies

Λ(K, t) = D(K)t1/3

f(x) = x−1.

so that ξ(K) = 1/D(K) in the far diffusive regime.
One notes that ξ(K) increases rapidly in the vicinity of
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the critical valueKc, on both sides of the transition. This
corresponds to a divergence of the localization length and
to a vanishing of the diffusion constant at criticality (in
practice smoothed by decoherence, see below). This con-
stitutes a clear experimental evidence of the Anderson
phase transition.

D. Experimental determination of the critical

exponent

The behavior of ξ(K) gives a fundamental information
about the transition, namely the value of the localiza-
tion length critical exponent ν. There is a discrepancy in
the literature between the theoretical predictions ν = 1
[13], ν = 1.5 [72], and the result of numerical simulations
ν = 1.57±0.02 [12], which stresses even more the impor-
tance of an experimental determination. In this section,
we present the first unambiguous experimental determi-
nation of the critical exponent of the Anderson transition
in 3 dimensions.

The finite-time scaling procedure allows us to extract
from finite-time experimental data the localization length
ℓ (corresponding to t→ ∞), which is the order parameter
of the Anderson transition. It is given by the scaling
parameter ξ(K) and predicted to diverge at criticality
with the power law

ℓ ∼ |K −Kc|−ν . (47)

We thus expect that the singularity in ξ(K) can be de-
scribed by Eq. (47), and to be able to extract the value of
the critical exponent ν. This is of primary importance, as
there is presently no unambiguous accurate experimen-
tal determination of ν for non-interacting particles, and
there is a discrepancy in the literature between the theo-
retical predictions ν = 1 [13], ν = 1.5 [72], and the result
of numerical simulations ν = 1.57 ± 0.02 [12].

When the slope of ln Λ vs ln t−1/3 is small, as it is
near the critical point, the scaling procedure tends to
round off the singularity in ξ(K). Moreover, decoher-
ence in the experiment produces a cut-off the algebraic
divergence. If the system has a finite phase-coherence

time τϕ, a new characteristic length [73] pϕ = [Dτϕ]
1/2

appears in the problem, which sets an upper bound for
the observable localization length ℓ and thus smooths
its divergence at criticality. In practice, we model such
smoothing by introducing a small cut-off on the diver-
gence of ξ(K), which takes into account both the finite-
time scaling procedure itself and decoherence effects:

1

ξ(K)
= α|K −Kc|ν + β . (48)

The experimental data have been fitted with this for-
mula (48) [dashed curve in Fig. 12(b)], which gives
Kc ≃ 6.4 ± 0.2, and a critical exponent ν = 1.4 ± 0.3.
In order to compare these results to the ideal case of the
perfectly coherent quasiperiodic kicked rotor, Eq. (20),

we also fitted the curve in Fig. 11b with Eq. (48); in this
case, the cutoff β accounts for limitations of the finite-
time scaling procedure. The model Eq. (48) fits very
well to the numerical data [dashed curve in Fig. 11b] and
gives the critical stochasticity Kc ≃ 6.4 ± 0.1 and the
critical exponent ν = 1.6 ± 0.2. The good agreement
between the numerical simulations and the experimental
results proves that spurious effects (such as decoherence)
are well under control. Moreover, the experimental value
we obtained ν = 1.4 ± 0.3 is compatible with the value
found in numerical simulations of the true random 3D
Anderson model [11, 12]. We emphasize that there are no
adjustable parameters in our procedure, all parameters
are determined using the atoms themselves as probes.

VI. UNIVERSALITY OF THE ANDERSON

TRANSITION

At this point, a reasonable question is: Does the
quasiperiodic kicked rotor exhibits the same critical phe-
nomena – i.e. belongs to the same (orthogonal) universal-
ity class [66] – as the true 3D-Anderson model. Can this
simple three-frequency dynamical system exactly mimic
the critical behavior of 3D disordered electronic conduc-
tors? In this section, we show that the answer is posi-
tive: The 3-frequency quasiperiodic kicked rotor and the
true 3D-Anderson model belong to the same universality

class. This is a strong claim that relies on a very precise
determination of the critical exponent ν. The accuracy
of this determination is comparable to that obtained in
the most sophisticated numerical studies of the 3D An-
derson model [12, 74]. Within numerical uncertainties,
the critical exponent is found to be universal and iden-
tical to the one found for the 3D-Anderson model [12].
The technical details of the calculation have already been
reported in [75]. We here just discuss the essential ingre-
dients proving universality.

A. Precise estimate of the critical exponent

Reliably distinguishing the different universality
classes of the Anderson transition requires a very pre-
cise determination of the critical exponent; for instance,
the value ν = 1.43± 0.04 for the unitary symmetry class
is close to the one for the orthogonal symmetry class [76]
ν = 1.57 ± 0.02.

The main uncertainty in our experimental determina-
tion of the critical exponent is due to statistical errors on
Π0 and to the limited duration of the experiment. How-
ever, numerical simulations are not limited to 150 kicks
but can be ran for several thousands of kicks, and sta-
tistical uncertainties on 〈p2〉 can be sharply reduced by
averaging over initial conditions. The numerical inaccu-
racy in the finite-time scaling determination of ν from
the numerical data is thus mainly due to the procedure
failing to reproduce the singular behavior of the scaling
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Figure 13: (Color online) Dynamics of the quasiperiodic
kicked rotor in the vicinity of the critical regime. The rescaled
quantity ln Λ(K, t) vs. K is plotted from t = 30 to t = 40000.
All curves intersect, to a very good approximation, at a single
point (Kc ≃ 6.4, ln Λc ≃ 1.6). This multiple crossing indicates
the occurrence of the metal-insulator transition. Small devi-
ations from crossing are due to the existence of an irrelevant
scaling parameter at finite time and residual correlations in
the disordered potential (see text). K and ǫ are swept along
the straight line drawn in Fig. 6. Parameters are k̄ = 2.85,
ω2 = 2π

√
5, ω3 = 2π
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13.

function at the critical point.
How can one improve the accuracy on the determina-

tion of the critical exponent ν? This can be achieved
by fitting directly the raw data ln Λ(K, t). The start-
ing point of our analysis is the behavior of the scaling
function F ≡ lnF in the vicinity of the critical point:

ln Λ = lnF
[

(K −Kc) t
1/3ν

]

= F
[

(K −Kc) t
1/3ν

]

. (49)

As ln Λ(K, t) is an analytical function for finite t
(Fig. 11), the scaling function F can be expanded around
Kc:

ln Λ(t) ≃ ln Λc + (K −Kc) t
1/3νF1 + ... , (50)

where ln Λc ≡ F [0] and F1 = dF(x)/dx|x=0.
A remarkable feature of Eq. (50) is that when ln Λ is

plotted against K, the curves for different times t should
intersect at a common point (Kc, ln Λc); and this cross-
ing, indicates the occurrence of the metal-insulator tran-
sition. This is clearly visible in Fig. 13. Another inter-
esting feature of Eq. (50) is that the critical exponent ν
can be determined from the slope of ln Λ at Kc:

(ln Λ)′(Kc, t) ≡
∂ ln Λ(K, t)

∂K

∣

∣

∣

∣

K=Kc

∝ t1/3ν . (51)

This is the simplest procedure to evaluate the critical ex-
ponent: (ln Λ)′(Kc, t) is evaluated by linear regression of
ln Λ vs K in a small interval near Kc, giving an exponent
ν ≃ 1.61 ± 0.10 (see Fig. reffig:simulambdaprimevslnt).
The linear regime has nevertheless very small size: (K −
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Figure 14: (Color online) Linear regression of (ln Λ)′(Kc, t),
Eq. (51) vs. ln t for t = 30 to t = 40000 permits to extract
the critical exponent ν from the slope 1/3ν, which is ν =
1.61. It is difficult to assess the uncertainty associated with
this measurement as it depends crucially on the interval of
K where the behavior of ln Λ vs K can be assumed to be
“linear”. The parameters are the same as in Fig. 13.

Kc)t
1/3ν ≪ 1, and neglecting non-linear corrections lead

to systematic errors on the estimation of ν. This is why
the error ±0.1 refers to systematic errors and not to
the uncertainty on the fitting parameters, which is much
smaller as easily seen in Fig. 14.

In practice, there are small systematic deviations from
Eq. (50). Such deviations can have different sources:

• the presence of an irrelevant scaling variable, that is
when, in addition to (K−Kc)t

1/3ν , (ln Λ) depends
also on another scaling variable which vanishes in
the limit t → ∞, but still plays a role at short time;

• non-linear dependence of the scaling variables in
the stochasticity parameter K;

• resonances due to the periods being well approxi-
mated by a ratio of small integers.

The latter one is specific to our three-frequency dynam-
ical system, but the former two also play an important
role in the standard Anderson model [11, 12]. These
small corrections can be taken into account – following
the method devised in [12] for the Anderson model – by
slightly modifying the basic scaling law, Eq. (45), in two
ways: introduce a non-linear of the argument of the F
function with K −Kc in Eq. (49) on the one hand, and
allow to subtract irrelevant scaling corrections to (ln Λ)
on the other hand. To minimize the the effect of res-
onances, we only retain data for sufficiently long times
and average over different initial conditions, i.e. different
quasi-momenta β and phases ϕ2 and ϕ3.

We computed ln Λ for times up to t = 106 kicks with
an accuracy of 0.15%, for which more than 1000 initial
conditions are required. We analyze data over the full
range of times t ∈

[

103, 106
]

: The best fit is determined
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Figure 15: (Color online) lnΛs, after subtraction of cor-
rections due to the irrelevant scaling variable, plotted ver-
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and the scaling function deduced from the

model (black curve). The parameters are that of the set D
(see Table I). The best fit estimates of the critical stochas-
ticity and the critical exponent are in this case: Kc =
8.09 ± 0.01, lnΛc = 1.64 ± 0.03 and ν = 1.59 ± 0.01.

k̄ ω2 ω3 K ε

A 2.85 2π
√

5 2π
√

13 6.24 → 6.58 0.413 → 0.462

B 2.85 2π
√

7 2π
√

17 5.49 → 5.57 0.499 → 0.514

C 2.2516 1/η 1/η2 4.98 → 5.05 0.423 → 0.436
D 3.5399 k̄/η k̄/η2 7.9 → 8.3 0.425 → 0.485

Table I: The four sets of parameters considered: k̄, ω2 and ω3

control the microscopic details of the disorder, while ǫ drives
the anisotropy of the hopping amplitudes.

by minimizing the deviation

χ2 =
∑

K,t

[

ln Λ(K, t) − F(K, t)

σ(K, t)

]2

, (52)

where σ(K, t) is the numerical uncertainty (one standard
deviation) of the computed quantities ln Λ(K, t).

In Fig. 15, we plot the scaling function corrected from
the irrelevant scaling variable, as a function of ξ(K)/t1/3.
All data collapse almost perfectly on the scaling function
deduced from the model.

Since the measurement errors in the data introduce
some uncertainty in the determination of the fitted pa-
rameters, the confidence intervals for the fitted param-
eters were estimated using the bootstrap method which
yields Monte-Carlo estimates of the errors in the fitted
parameters [77]. The fitted parameters presented below
are given with the corresponding 68.2% confidence inter-
vals (standard errors).

Kc lnΛc ν y

A 6.36 ± 0.02 1.60 ± 0.04 1.58 ± 0.01 0.71 ± 0.28
B 5.53 ± 0.03 1.08 ± 0.09 1.60 ± 0.03 0.33 ± 0.30
C 5.00 ± 0.03 1.19 ± 0.15 1.60 ± 0.02 0.23 ± 0.29
D 8.09 ± 0.01 1.64 ± 0.03 1.59 ± 0.01 0.43 ± 0.23

Table II: Best fit estimates of the critical parameters Kc

and ln Λc, the critical exponent ν together with their uncer-
tainty (one standard deviation). ν is expected to be universal
whereas ln Λc and Kc do depend on anisotropy [52] and k̄,
ω2 and ω3. Irrelevant parameters are sensitive to microscopic
details, therefore y is strictly positive and not universal.

B. Universality of the critical exponent

A key property of the Anderson transition is that the
critical behavior can be described [76, 78] in a frame-
work of universality classes. This means that the critical
behavior should not be sensitive of the microscopic de-
tails but should depend only on the underlying symme-
tries of the system (e.g. time-reversal symmetry). Irrel-
evant parameters become negligible for sufficiently long
times/large system size, whereas the relevant parame-
ter behavior is universal. This brings the universality of
the critical exponents. When considering a system with
pseudo-random disorder such as the quasi-periodic kicked
rotor, one could ask whether the universality is broken
or not due to correlations in the disorder potential. To
answer the question, we changed some parameters that
govern the microscopic details of the disorder potential
of the quasi-periodic kicked rotor, namely k̄, ω2 and ω3

and the path along which we cross the transition.
The computer time required in those sophisticated nu-

merical studies is very long. Therefore we chose to re-
strict ourselves to the detailed study of only four different
cases, see Table I.

The estimated critical parameters and their confidence
intervals are given in Table II. A typical scaling function
is drawn in Fig. 15.

The most important point to be drawn from Table II
is that the estimates of the exponent ν for the four differ-
ent sets are in almost perfect agreement with each other
and with the estimate of ν based on numerical studies
of the true random Anderson model ν = 1.57 ± 0.02 of
the orthogonal symmetry class [12]. Note also that in
the case of the quasiperiodic kicked rotor, the critical
stochasticity Kc and ln Λc depend on: (i) the anisotropy
governed by the parameter ε and (ii) k̄, ω2 and ω3. The
dependence (i) of the critical disorder and critical ln Λ
on anisotropy is a typical feature of the Anderson transi-
tion in anisotropic solids [51, 52, 53]. The quasiperiodic
kicked rotor may indeed be seen to correspond to a model
of random chains (coupled by terms scaling like ε in the
two transverse directions) considered in [52], see Eq. (33).
The dependence (ii) follows from the relation between the
initial “classical” diffusion constant (see section II) and
the parameters k̄, ω2 and ω3. Such a dependence was ob-
served both numerically and experimentally for the stan-
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dard kicked rotor [79, 80], and was accounted for in terms
of correlations between the kicks by Shepelyansky in his
early work [79].

The Anderson transition with the quasiperiodic kicked
rotor is a robust feature: we observed that, for certain
mutually incommensurate triplets (k̄, ω2, ω3), systematic
deviations to scaling (such as resonances) can occur for
intermediate times, but eventually vanish.

VII. CONCLUSION

We discussed in detail in the present work the first
unambiguous evidence of the Anderson transition in 3D
with atomic matter waves with atomic matter waves
by realizing experimentally a quasiperiodic kicked rotor.
This allowed us to put into evidence the existence of the
transition and to measure its critical exponent thanks
to a finite-time scaling procedure. Our numerical result
ν = 1.59 ± 0.01 is in perfect agreement with the current
value for the Anderson model, and is compatible with
our experimental determination 1.4 ± 0.3. We have also
shown that the quasiperiodic kicked rotor exhibits the
same critical phenomena as the truly random Anderson
model, and therefore that both systems belong to the
same (orthogonal) universality class.

These results are particularly relevant since they show
that it is possible to explore a system like the Ander-
son model, that played an important hole in many ar-

eas of physics but resisted thorough experimental inves-
tigations. One can guess that this kind of analogy will
be extended to other models in the near future, as evi-
denced by the work of Wang and Gong [81] concerning
the analogy of a quantum kicked rotor and the Harper
model. This shall open new and exciting tracks in cold-
atom physics. These analog models can even prove more
flexible and more powerful than the original ones, as, for
example, our Anderson-equivalent system can very easily
be extended to higher dimensions by introducing new in-
commensurate frequencies. Intermediate situations like
a 2D kicked rotor with two or three incommensurate
frequencies might be a convenient solution from the ex-
perimental point of view. This can hardly be done in
condensed-matter systems or even in the ultracold atom
realization of the 1D Anderson model [22]. The theo-
retical study of quantum phase transitions in high di-
mensions will most probably be boosted as experimental
results become available. We are presently working in
this direction: Numerical and experimental determina-
tions of the critical exponents in four dimensions seems
feasible.
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