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Abstract— The control of a new kind of airship is presented.
By restricting its flight to a vertical plane, the mathematical
model is reduced. The simplified model is proved to be
minimum phase, and a nonlinear controller based on input-
output linearization is designed. Since the performance of the
controller is significantly impacted by the choice of parameters,
simulations of three different pole placement strategies are
presented. The nonlinear controller shows better performances
than a linear LQR controller when the initial condition is
significantly away from the desired equilibrium.

I. INTRODUCTION

Airships attract people’s interest again in the recent ten
years for their new applications [1], [2], and there is a lot
of research on its stability, control, planning and tracking of
trajectories [3], [4], [5]. Almost all of these works are based
on airships which are driven by propulsors along the hull, and
the attitude is controlled by elevators and rudders or vector-
propulsors. These mathematical models are all derived from
the Gomes model [3].

In this paper, a new kind of airship will be considered,
which moves forward by a cyclic change of the net buoyancy
of the craft and the position of the ballast. This concept
of airship is derived from underwater gliders who replace
traditional thrust propulsion by a cyclic change of the net
buoyancy and of the position of the centroid [6], which has
proved to be efficient in water [7]. The structure of this new
kind of airship, the inertial frame {G, i, j, k}, and the non
inertial frame {O, e1, e2, e3} are shown in Figure 1. A
blower is used to fill an hermetic inner bladder with ambient
air, and the valve is used to release the inner air. The ballast
can move backward and forward.

The mechanism to operate this kind of airship is as
follows. When releasing air from ballonets, the mass of the
airship reduces, the lift becomes positive. Accompanying the
ballast moves to the tail, the airship gets a positive pitch
angle θ. Then it moves upward and forward, see Figure 2.
Oppositely, when pumping air into ballonets, the airship’s
mass increases, the lift decreases and becomes negative. With
the ballast moving to the head, the pitch angle θ becomes
negative. So it moves downward and forward, see Figure 3.
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Fig. 1. Structure of Buoyancy-Driven Airship
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Fig. 2. Ascent of Buoyancy-Driven Airship

If the ballast is moving to the side, then the airship will roll.
Due to the coupling of roll and rotation moments, the airship
flies to the right or the left [5], [6].

This new kind of airship flies more efficiently than air-
ships with thrusters under some conditions. At present, the
only monograph available on buoyancy-driven airship is
the doctoral dissertation [5]. This pioneering studies the
feasibility and physical model of this kind of airship, and
gives a PID control for the system. However, the complete
mathematical model of 6DOF is not given, and the control
method also needs to be improved. These motivates this
work. The complete equations of 6DOF motion can be found
in [8], and a linear LQR controller was designed. The model
considered herein is based on the mathematical model in [8].

In the rest of this paper, a simplified model valid for a
motion in the vertical plane is introduced without considered
disturbances. A suitable choice of the output is proven to
be locally minimum phase. The system is then input-output
linearized. Some simulations are presented to illustrate the

o
(G) θ

V

i

e1

e3

α
ξ

Fig. 3. Descent of Buoyancy-Driven Airship
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controller’s performance.
The rest of the paper is organized as follows. In section

II, the mathematical model of the buoyancy-driven airship
presented in [8] is recalled. The model is further simplified
based on some principles in section III. In section IV, it
is proved that the simplified model is minimum phase with
the selected output and a nonlinear controller is designed to
linearize it. The impact of the pole placement for closed loop
stabilisation is illustrated by simulation results.

II. PRELIMINARIES

The following complete mathematical model of the 6DOF
buoyancy-driven airship has been derived in [8].




Ṙ

ḃ

Ω̇
V̇
ṙp

Ḃp

ṁb




=




RΩ̂
RV

J−1
s M̄

m−1
s F̄

1
m̄Bp − V −Ω× rp

m̄g(RT k) + Bp ×Ω + u
u4




(1)

where, M̄ is a moment matrix, and F̄ is a force matrix. The
values of M̄ and F̄ are as follows,

M̄ = (JsΩ + r̂pBp)×Ω + msV × V

+RT M − r̂pRT Fp

F̄ = (msV + Bp)×Ω + RT F −RT Fp

The state variables and the rest of the parameters are
explained in Table I.

To control the motion of the airship, we start from the
most simple case, when the airship only flis in the vertical
plane i− k, see Figure 1. In this case the equations are

v̇1 =
1

m1
(−m3v3Ω2 + (m̄−m0) g sin θ

+Za sinα−Xa cos α− u1) (2)

v̇3 =
1

m3
(m1v1Ω2 + (m̄ + m0) g sin θ

−Za cos α−Xa sinα− u3) (3)

Ω̇2 =
1
J2

((m3 −m1) v1v3 + Ma + rp1u3

−rp3u1) (4)

θ̇ = Ω2 (5)

ṙp1 =
1
m̄

Bp1 − v1 − rp3Ω2 (6)

ṙp3 =
1
m̄

Bp3 − v3 − rp1Ω2 (7)

Ḃp1 = −Bp3Ω2 − m̄g sin θ + u1 (8)

Ḃp3 = Bp1Ω2 + m̄g cos θ + u3 (9)
ṁb = u4 (10)

ẋ = v1 cos θ + v3 sin θ (11)
ż = −v1 sin θ + v3 cos θ (12)

TABLE I
NOMENCLATURE

Notation Description
α attack angle, α = arctan(v3/v1)
θ pitch angle
Ω Ω = (Ω1, Ω2, Ω3)T , angular velocity in the body frame
b the position of the airship in the inertial frame

Bp Bp = (Bp1, Bp2, Bp3)T , the momentums of the ballast
F the total external forces on the airship
Fp total external forces on the ballast
Js the moment of inertia of the airship
J2 sum of the moment of inertia and added inertia about e2

k a unit vector along the direction of the gravity
mb the mass of the ballonet
ms the stationary mass of the airship
m̄ the mass of ballast

m1, m3 sum of body and added mass along e1, e3 axis
m0 the net buoyancy of the airship
M the total external moments on the airship
Ma aerodynamic pitch moment
rp rp = (rp1, rp2, rp3)T , the position of the ballast
R rotation matrix
u u = (u1, u2, u3)T , vector of control inputs
ũ ũ = (ũ1, ũ2, ũ3)T , transformed vector of control inputs
u4 the control input of the mass of the ballast
V V = (v1, v2, v3)T , velocity along e1, e2, e3 axes
w1 designed input for I/O linearization

λ1, λ0 parameters of the feedback controller
x x = (θ, Ω2, v1, v3, rp1, Bp1)T , system states
xe xe = (θe, Ω2e , v1e , v3e , rp1e , Bp1e )T , equilibrium
Xa drag, aerodynamic force
Za lift, aerodynamic force

III. SIMPLIFIED MODEL

In the mathematical model (2)-(12), the position of the
ballast is represented by rp1 and rp3, which are unbounded
in the system. That means the ballast can freely move in
the vertical plane. But the ballast’s movement along e3 axis
has little contribution to the control of the attitude and
velocity of the airship, and the movement of the ballast
along this direction also leads to unnecessary complexity
and unstability to the system, because the airship should
have “bottom-heaviness”. The ballast’s movement on the
negative direction of e3 axis contributes to the unstable “top-
heaviness” [7]. So it is assumed that the ballast is fixed at
a constant height. That means a fixed value of rp3 and to
cancel u3 and Bp3. A fixed height of the ballast also makes
the actuators more simple and easy to realize. Under these
cosiderations we may proceed to simplify the math model.

First, we simplify (8) and (9) as follows,

Ḃp1 = ũ1

Ḃp3 = ũ3

where, ũ1 and ũ3 denote the total external forces on the
ballast, which is different from u1 and u3 that only denote
the external forces from the body of airship.

With fixed rp3, the right hand side of equation (7) is equal
to zero. So Bp3 = m̄(v3 − rp1Ω2) and ũ3 = Ḃp3 = m̄(v̇3 −
ṙp1Ω2− rp1Ω̇2). Combining with equations (4), (2) and (6),
the new functions of Ω̇2 and v̇3 can be derived.

To further simplify the model, it is assumed that during the
routine fly, we just adjust the position of the ballast to cope

ha
l-0

04
05

43
1,

 v
er

si
on

 1
 - 

20
 J

ul
 2

00
9



with general disturbances. This assumption is reasonable,
because compared with changing the mass of the ballonets,
it is easy and energetically economic to change the position
of the ballast, and in this paper, we just focus on the
stabilization of airship during straight line cruise. So it is
unnecessary to change the mass of the ballonets which is
denoted by mb.

x and z are the position of the airship in the vertical plane
with respect to the inertial frame. Since our control objective
will be tracking the attitude angle ξ, and not path following.
equations (11) and (12) can be ignored.

Integrating the above suggestions to simplify
the model (2)-(12), it reduces to six states x =
(θ, Ω2, v1, v3, rp1, Bp1)T and one control input ũ1:

θ̇ = Ω2 (13)
Ω̇2 = T1H1 + T2H2 (14)
v̇1 = H3/m1 (15)
v̇3 = T2H1 + T3H2 (16)

ṙp1 = Bp1/m̄− v1 − rp3Ω2 (17)

Ḃp1 = ũ1 (18)

where

T1 =
m3 + m̄

J2 (m3 + m̄) + m̄m3r2
p1

T2 =
m̄rp1

J2 (m3 + m̄) + m̄m3r2
p1

T3 =
J2 + m̄r2

p1

J2 (m3 + m̄) + m̄m3r2
p1

H1 = (m3 −m1) v1v3 − m̄g (rp1 cos θ + rp3 sin θ)
− (rp1Bp1 + rp3m̄ (v3 − rp1Ω2))Ω2 + Ma

−rp3ũ1 + m̄rp1Ω2 (v1 + rp3Ω2)− rp1Ω2Bp1

H2 = m1v1Ω2 + Bp1Ω2 + m0g cos θ − Za cos α

−Xa sinα− m̄Ω2(v1 − rp3Ω2) + Bp1Ω2

H3 = −m3v3Ω2 − m̄(v3 − rp1Ω2)Ω2 −m0g sin θ

+Za sinα−Xa cos α− ũ1

IV. NONLINEAR CONTROLLER

In [8], a linear controller was derived using a LQR
optimal method. This linear controller displays good control
performances, but valid only in a small neighborhood around
the equilibrium. In this section, a nonlinear controller based
on I/O linearization is designed for the system whose internal
stability is proved.

A. Stability of zero dynamics

Define x = (θ, Ω2, v1, v3, rp1, Bp1)T . Then equations
(13)-(18) are rewritten in the following form,

ẋ = f(x) + g(x)ũ1 .

Consider the output of the system y = x, that is the six
states. Both variables θ and rp1 have relative degree 2 [10].
However, it is easy to check that considering the output rp1

yields a non minimum phase systems and thus, input-output
linearization can not be applied; whereas the output function
θ defines a minimum phase system.

The unforced system has an equilibrium xe which
can obtained from solving f(xe) = 0. For the cho-
sen parameter, xe = (θe,Ω2e

, v1e
, v3e

, rp1e
, Bp1e

)T =
(0.44, 0, 9.97,−0.8,−1, 299)T . The linear approximation
around this point is

ẋ = Ax + Bũ1 (19)

where,

A =




0 1 0 0 0 0
−0.08 0.01 −0.0004 0.004 −0.03 0
0.57 0.93 −0.063 −0.17 0 0
0.24 9.13 0.05 −0.62 0.002 0
0 −2 −1 0 0 0.03
0 0 0 0 0 0




B =




0
−0.0002
−0.002
0.00001

0
1




and whose transfer function is easily computed as

TF1 =
−0.02s4 − 0.02s3 − 0.1s2 − 0.08s− 0.005
100s6 + 67s5 + 1.9s4 − 2.3s3 − 5s2 − s

for y = θ, and

TF2 =
3.6s4 + 2.4s3 + 0.3s2 + 0.2s + 0.01

100s6 + 67s5 + 1.9s4 − 2.3s3 − 5s2 − s

for y = rp1.
The four zeros of TF1 have negative real part, whereas

some of TF2 have positive real part and thus are unstable.
Since the linear approximation of the system (13)-(18)

with the output y = θ has stable transmission zeros, the
nonlinear system has locally stable zero dynamics and thus
the system is minimum phase [9].

B. I/O linearization of θ

Since the relative degree of the output y = θ is 2, we
propose the following desired error equation

ë + λ1ė + λ0e = w1

where e = y − θe, θe is the desired value for θ, and w1

denotes a new control input. Equivalently,

θ̈ + λ1θ̇ + λ0(θ − θe) = w1 (20)

λ1 and λ0 assign the poles of the error dynamics. Substituting
(13) and (14) into (20), the equation can be solved and the
control ũ1 derived, as follows,

ũ1 = T4(H4 − w1 + λ1Ω2 + λ0(θ − θe)) (21)
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where,

T4 =
J2m3 + J2m̄ + m̄r2

p1m3

rp3(m3 + m̄)
H4 = T1(H1 + rp3ũ1) + T2H2

Equation (21) is the nonlinear feedback controller of the
system. Let w1 = 0, and substituting (21) into (13)-(18), the
closed loop system will be derived.

The choice of the values of λ1 and λ0 not only has a direct
impact on the motion of θ and Ω2, but also a significant one
on the states v1, v3, rp1 and Bp1. The impact on the θ and Ω2

are easy to analyze, but the transient response of v1, v3, rp1

and Bp1 remains unclear due to the nonlinear equations. By
trying different values of λ1 and λ0, different performances
of the controller are presented.

C. Simulation results

The airship is desired to fly with angle ξe and velocity Ve,
see Figure 1 and 4. In this paper, we only consider the control
during the upward and downward phase, and do not consider
the transfer between these two phases. The conditions in the
downward phase are the same as the upward phase with only
reversed values of some states and parameters.

G i

ξe

Desired Flying Angle
ξe

Fig. 4. Flying Sketch

The parameters used in this project are taken from [8].
The value of the states on the equilibrium xe are presented
in the section IV.A of this paper.

When deciding the values of λ1 and λ0, there is a tradeoff
between the performance of θ and Ω2 with respect to the one
of states v1, v3, rp1 and Bp1, and thus they must be carefully
chosen. To this end, we will present three different sets of
λ1 and λ0. All of these simulations are under initial errors
∆θ = +5◦ and ∆v1 = +2 m/s.

To compare the results of different parameters, the poles
under different sets of parameters should have the same
negative real part, so θ stabilizes in a similar period, see
Figure 5.

x

x

Re

Im

x Re

Im

x x Re

Im

a b c

x

-1/4

-1/4

1/4

-1/4 -100/4 -1/4

Fig. 5. Three Different Assignments of Poles

First strategy: two complex poles

The poles are chosen to be of the form s = −a(1 ± i).
For the reported simulation, a = 1/4, so λ1 = 1/2 and
λ0 = 1/8, see Figure 5.a. This is called Controller No. 1.

Second strategy: a double real pole

Both poles are placed at −a, with a = −1/4, see Figure
5.b. So the controller No. 2 is with λ1 = 0.5 and λ0 =
0.0625.

Third strategy: a dominant real pole

The last considered strategy is to obtain a first-order like
response by placing a dominant pole. Controller No. 3 has
two different negative real poles. One pole close to the
imaginary axis, another is far away from the imaginary axis.
Let s1 = − 1

4 , s2 = − 100
4 , see Figure 5.c, so λ1 = 25.25

and λ0 = 6.25.
The dynamics of θ under these controllers are presented

in Figure 6. Figure 7 and 8 are the dynamics of v1 and v3

with the controller No. 3. To different controllers, the mainly
difference of dynamics of v1 and v3 is the final values. Figure
9 to 11 are the dynamics of rp1 which presents the movement
of the ballast.

0 5 10 15 20 25 30 35 40 45 50
25

26

27

28

29

30

31

Time (s)

θ 
(d

eg
)

Controller No.3

Controller No.1

Controller No.2

θ
e

Fig. 6. Comparison of Dynamics of θ
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v 1 (
m

/s
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v
1e

Fig. 7. Dynamics of v1

D. Analysis of the Simulation Result

Generally, from the simulation results, the system is stable
under certain initial errors with these controllers, but the
differences between three controllers are significant.
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Fig. 8. Dynamics of v3
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p1

Controller No.1

r
p1e Am=1.2m

T=3s

Fig. 9. Dynamics of rp1 with Controller No.1

In detail, from Figure 6, the three controllers have similar
stationarity and rapidity, which is due to the same negative
real parts, see Figure 5. Both θ and Ω2 stabilize at the
equilibrium point quickly, which is the goal of these feedback
controllers.

With respect to v1 and v3, they have small periodic
oscillations under three conditions, but the final amplitudes
are different. With controller No. 1 and No.2, the final
amplitudes are the same, which is 0.14 m/s for v1, and v3 is
small enough to be ignored. The controller No. 3 has much
better performance. To v1, the final amplitude is 0.01 m/s,
and v3 attenuates to v3e

quickly.
From Figure 9 to 11, we can more clearly find that

controller No. 3 is better than the two others. The amplitude
of rp1 under controller No. 3 continually declines with the
time, but it is constant under controllers No. 1 and No. 2.

These controllers are also sensitive to the initial errors as
with the LQR controller in [8], since large initial errors will
lead to unstability. However, the bound is much more broad.

V. CONCLUSIONS AND FUTURE WORK

A. Conclusions

With these controllers, v1, v3, rp3 and Bp1 have periodic
oscillations, with a period approximately of 3 s, which is
acceptable for the system. These oscillations are associated
to the complex zeros of the linear approximation close to the
imaginary axis. Here, two of the zeros of TF1 are −2.85×
10−4 ± 2.16i.

0 5 10 2480 2485 2490 2495 2500
−2.5

−2  

−1.5

−0.5

0   

Time (s)

p1

Controller No.2

r
p1e

T=3s

Am=1.2m

Fig. 10. Dynamics of rp1 with Controller No.2

0 10 7980 7990 80001980 20001990
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−0.5

0   

Time (s)

r p1
 (

m
)

Controller No.3

r
p1e

Am
=0.1m

T=3s

Fig. 11. Dynamics of rp1 with Controller No.3

These nonlinear controllers are better than linear LQR
controllers for autonomous buoyancy-driven objects, since
the nonlinear controllers have larger stable domain of initial
conditions than the linear LQR one, which can be illustrated
by simulations. When the initial error of v1 is larger than
+4.5 m/s, the linear controller no more ensures stability and
the airship crashes down [8]. But these nonlinear controllers
also ensure stability in a certain domain, and large initial
errors lead to larger oscillations.

B. Future Work

In this paper, we presented a nonlinear controller based
on input-output linearization, using an output with relative
degree 2. An open research line is the search of outputs
with maximal relative degree to obtain the smallest internal
dynamics. Also the behavior of the internal dynamics sug-
gests the existence of stable limit cycles, which produces a
continuous change of speed and orientation. Further research
is required to eliminate these limit cycles, or maximally
reduce their amplitude at least.
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