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Abstract

The -paper is concerned with the determination of a
minimal structure of a one hidden layer perceptron for
system identification and control. Structural identification
is a key issue in neural modeling. Decreasing the size of a
neural network is a way to avoid overfitting and bad
generalization and leads moreover to simpler models
which are required for real time applications, particularly
in control. :

A learning algorithm and a pruning method both based on
a criterion robust to outliers are presented. Their
performances are illustrated on a real example, the inverse
model identification of a Maglev system, which is
nonlinear, dynamical and fast. This inverse model is used
in a feedforward neural control scheme. Very satisfactory
approximation performances are obtained for a network
with very few parameters.

Keywords
one hidden layer perceptron, structural identification,
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1. Introduction

Artificial neural networks have been the focus of a great
deal of attention during the last decade, due to their
capabilities to solve nonlinear problems by learning.
Backpropagation or derived algorithms have been
particularly applied for process modeling and
identification [S, 16] and for control [1, 9, 14].

In order to diminish the influence of the outliers (i.e. to
provide a more reliable and robust estimate of the
unknown parameter vector), a M-estimator can be used.
This approach, stemming from robust statistics, has been
introduced for neural networks learning by several authors
[2, 3, 6, 7, 13, 17]. It must be noted that neural networks
are not at all intrinsically insensitive to outliers and
ignoring the effect of outliers, particularly for industrial
data which are frequently corrupted by spiky noise, can
lead to biased estimators but also to overparametrized
structures and poor generalization as a consequence of
overfitting.
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Even if in some cases perceptrons with several hidden
layers carry out more precise mappings, most of the time
perceptrons with one hidden layer and linear activation at
the output are sufficient and the universal approximation
ability of such a structure has been proved. The search for
the appropriate structure of a perceptron for modeling a
particular system is one of the key issues in neural
modeling. Apart from the fact that decreasing the size of
the network leads to simpler models which are required
for real time control with short sampling period,
constraining the model to be "simple” in some sense is a
way to avoid overfitting which often causes bad
generalization [10]. Several approaches can be used to
constrain the number of the network parameters or the
parameters themselves, including the use of regularized
learning criteria (e.g. "weight decay") or the pruning of
useless parameters after learning. This paper focuses on
pruning methods, particularly the Optimal Brain Surgeon
(OBS) method [8], insofar as, in practice, tuning the
balance parameter for regularized criteria is not an easy
task, which is most of the time done by hand.

In the second part, the form of a one hidden layer
perceptron with linear activation function at the output
and the general Levenberg-Marquardt estimation
algorithm are briefly recalled. In the third part, a robust
weighted learning criterion is described while the fourth
part recalls the principle of the OBS procedure and the
weak modifications necessary to incorporate the robust
criterion for weight elimination.

The last part illustrates the proposed robust algorithms for
parameter estimation and pruning on a real magnetic
levitation system (Maglev), which is nonlinear and
unstable. The goal is to build a neural inverse model of the
MagLev system to be included in a feedforward control
strategy [11, 12]. Results obtained with standard
Levenberg-Marquardt parameter algorithm followed by
OBS pruning and outlier-robust learning and pruning are
compared, showing that a network with very few
parameters and very satisfactory  approximation
performances can be obtained with the second approach.



Such a network can be then easily incorporated in a real
time application, with short sampling time.

2. Neural model and general learning rule

~ The one hidden layer perceptron with linear activation
function at the output is considered here. Its form is given,
for single output, by:

n n, '
§= iwfg[iw},,xg +b:]+b2
i=1

(¢))

h=1

where xg, h=1,---,n,, are the inputs of the network,

wilh and bil, i=1,-,n;, h=1---,n,, are the weights
and biases of the hidden layer, the activation function g is
the hyperbolic tangent, wiz , i=1---,n,, and b2 are the

weights and bias of the output neuron. All the weights and
biases of the network can be grouped in the parameter
vector 6, and the inputs xg in the regression vector
(p(x):[x? xg xgo]. So for the case k, the output
predicted

by the network
9(k,8) = NN(9(x(k)),8) .

can be  written:

To estimate from data the parameter vector 6, the
prediction error:

e(k,0) = y(k) - 3(k,0) @

with y(k) the desired output, is formed and incorporated in

a criterion to be minimized. A general form for this
* criterion, which leads to a M-estimator, is given, for n
samples, by:

VO) =13 Lie(k,0) @)

k=1
where L(.) is a scalar case cost function.

The minimization of the criterion (3) can therefore be
carried out using the Gauss-Newton algorithm:

6"+ =8 —(H(6 ) 'V (@) @)

In (4), the gradient V'(G) of the criterion (3) with respect
to O is given by:

V') = —%Zw,e)n (e(k,0))
k=1

®

where y(k,0) is the gradient of §(k,0) with respect to

0 and L(e(k,0)), the score or influence function, is the
first derivative of L(e(k,0)) with respect to €. The
second derivative H(8) of the criterion (3) with respect to
0, known as the Hessian matrix, is obtained by
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differentiating (5) and can be approximated with the
Levenberg-Marquardt update rule by:

H(®) =~ w(k,0)L (e(k,0)) (k.8) +BI

k=1

(6)

where L"(e(k,B)) is the second derivative of L(g(k,0))
with respect to €, I is the identity matrix and B a small
non negative scalar, adjusted during learning.

The criterion most frequently used for parameter

estimation is the classical ordinary least-squares criterion
(L2 norm), with as case cost function a quadratic one:

L(e(k,8)) = %sz(k,e) )
whose derivatives are simply:
L'(e(k,0) =e(k,0) , L"(e(k,0)=1 (8)

Such a criterion receives the largest contributions from the
points which have the largest errors and the solution can
be dominated by a very small number of points which can
be gross errors or outliers.

3. An outlier-robust learning rule

The batch learning method presented here is detailed in
[4, 17]. This Iteratively Reweighted Least Squares (IRLS)
method starts, following Huber, from a distribution of the
noise e contaminated by outliers expressed by a mixture of
two probability density functions. The first one
corresponds to the basic distribution of a measurement

. . . . . 2
noise, for example Gaussian, with variance o] and the

second one, corresponding to outliers, is arbitrary

symmetric long-tailed, for example also Gaussian, but
. . 2 2

with variance 63 such as 67 << 63 :

e(k) ~ (1-p)N(0,67) + uN(0,63)
where [ is the probability of occurring a large error. In
practice, neither the probability u nor the two variances

Gf and G% are known and the preceding maodel is
replaced by:

e(k) ~ (1-8(k))N(0,67) + 8(k)N(0,63) 9)

where €(k) is the prediction error, given by (2), 8(k) =0
for |e(k)|<M and 8(k)=1 for |e(k)|>M, and M is a
bound which can be taken as 30, .

The unknown variances G; and o3 are estimated as
follows. At each iteration i of the algorithm (4), the
prediction error sequence € is calculated by (2), and the
variances recursively estimated by:



for (k)| < 30, (k ~1)

20N 20 1 21y 2
oy (k)=oi(k 1)+k_1(k)(e (k)-oj(k-1) (10a)
otherwise
ol(k)=ci(k-1)
and
for [e(k)| > 30, (k~ 1)
2 — 2 _ _1__ 2 el _
o3 (k) =0o3(k 1)+1:(k)(8 (k)-03(k-1)) (10b)

otherwise

o3(k) = 03(k-1)

with 1(0) =0 at each iteration, and t(k+1)=1(k)+1
whenever [e(k)|>30,(k—1). 63(0) can be chosen equal

to 6-(0) and 67(0) equal to the classically calculated

variance of the prediction errors at the first iteration. Note
that t(n) is the estimate of the number of outliers.

The variance o> (k) of (k) is finally given by:
n

62(k) = (1-8(k)) o2 (m) +8(K) 03 (n)

(11)
leading to the weighted robust norm:
1e%(k
L(e(k))=——2(—) (12)
2 0,(k)

Algorithm (4) can be then employed with (12) as case cost
function in criterion (3), with its first derivative:

e(k)
G2 (k)

in the criterion gradient (5) and with its second derivative:

L'(e(k)) = 13)

L"(e(k)) = (14)

ol (k)

in the approximate Hessian (6).

4. Robust Pruning

After estimation of the parameter vector, it can be useful
to determine the minimal structure of the network.
Removing the useless parameters leads obviously to a
simpler model, but moreover diminishes the overfitting of
the model to data, i.e. the learning of the noise and of the
unknown underlying model of the system at the same
time, and can thus improve the generalization abilities of
the model. The pruning algorithm which is probably the
most classical is the Optimal Brain Surgeon, proposed by
Hassibi and Stork [8]. This algorithm minimizes the
sensitivity of the error criterion subject to the constraint of
nullity of a weight, which expresses the deletion of this
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weight. The sensitivity dV(8) of the criterion V(8) is
approximated by a Taylor expansion around © to order
two:

V() = SGTV'(9)+%69TH60 (15)

The gradient V() being zero after convergence, the first
term in (15) vanishes, leading to:

SV(0) = %SBTH 50 (16)

which involves only the Hessian H. Noting e, a canonical
selecting  the q" of 6
(eq=[0-010-0]), the deletion of the weight 8,

vector component
(i.e. eqT(89+6)=0) must lead to a minimal increase of

the criterion. The following Lagrangian can thus be
written:

4(66)=%6(—)TH86+A(CZ(66+6)) (17)
and minimized, leading to:
0
80=-—1He, (18)
qaq

where H;('l is the q" diagonal term of H™'. The weight to

be deleted is the one which minimizes (15). Equation (18)
allows to force the g™ weight to zero and to update the
remaining weights, without retraining. It can be
nevertheless useful to retrain the network after each
pruning of a weight, in order to compensate the
approximation introduced by the Taylor expansion (15).

If the true quadratic criterion is used, the corresponding
approximate Hessian is given by:

1 n
H(®) =;Zw(k,e)wT<k,e>
k=1

(19)

For the robust weighted criterion, the Hessian becomes:

H®) =13 w(k.0)——yT(k.6)

3 (20)
Ny o, (k)

where Gﬁ(k) is given by (11).

As presented in [18] on simulation examples, the use of
weighted robust criterion for initial learning as well as for
pruning greatly improves the estimation of the parameters,
particularly the associated generalization capabilities, and
the model structure selection.



5. Magnetic levitation example

Outlier robust learning and structure determination
presented above are applied to model the inverse behavior
of a magnetic levitation system (Maglev). Precise
description of the MagLev system which allows to balance
a metallic ball without any support, by the use of an
electromagnet, and to steer the object tracking a desired
vertical trajectory, can be found in [11, 12]. The system
input is the voltage .U applied to the coil and the output is
the voltage V, corresponding to the position X of the ball
(cf. figure 1).

optical
sensor

Xy

Figure 1: Principle diagram of Magnetic Levitation

A neural inverse model of the system is used with a PID in
a feedforward control strategy (cf. figure 2).

-

id Vv
—; P.ID. b 4 MagLev =
Ref - +

uff

A\ 4

Figure 2: Principle of neural feedforward control

Based on direct linear model of the system, the expression
of the output V, at time k+1 can be written:

V (k+1) = f(V,(k), V. (k= 1), U(k), Uk ~ 1)) 21

where f is a non linear function modeling the system
behavior. The inverse model can be thus expressed as:

Uk) = f_l(Vx(k +1),V,(k), V. (k—1),U(k-1)) (22)

So, taking ¢(k) =[V,(k+1) V,(k) V,(k=1) U(k-1)] as
regression vector, the neural network estimates the inverse
model: U(k) = NN(6(k),) .

To collect data for estimation and validation of the neural
model, experiment is carried out in closed loop, the system
being unstable in open loop. A white noise is added to the
control signal U, given by the PID controller, to enrich the
excitation signal, as presented in figure 3. In this figure,
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"ML system" is the block which represents the real system
(real time interfaced).

[}

ML System

PID

Figure 3: Data collection in closed loop

The reference voltage is chosen with two goals: to control
the system around the operating point (-3 volts) and to
explore an operating range as large as possible. From
1500 couples (Vx(k), U(k)), presented figure 4, network
parameters estimation is achieved by two ways.

1
0.9
0.8
0.7
06
05

04

0 s00

1000

1500 A

-7
4] 500 10600

1500 B.

Figure 4: Learning set with 1500 data
(A) U in volts (B) Vx in volts

The first one is the standard Levenberg-Marquardt (LM)
algorithm for initial learning and OBS algorithm for
pruning as implemented in [15]. The initial fully
connected model comprises 10 hidden hyperbolic tangent
units, i.e. 61 parameters.

Figure SA plots the evolution, during pruning, of the
training error "X", of the test error "O" and of the
Akaike's FPE estimate "+", with respect to parameter's
number. Starting from the initial learning (with 61
parameters), the plot should be read from right to left.
Figure 5B gives the final architecture of the pruned



network. At each parameter deletion, retraining for 50
iterations maximum is performed. According to the FPE
(Final Prediction Error), the optimal network architecture
was the one comprising 9 hidden neurons and 38
parameters. '

Figure 5: (A) Training error, test error and FPE with
respect to parameter number
(B) Architecture of the pruned network

In [18], simulation examples show the importance of the
quality of the model obtained after initial learning.
Nevertheless, in order to focus on pruning process, the
second way uses modified pruning presented in section 4
from the initial structure of 10 hidden neurons, with 61
parameters estimated- as before with
algorithm.

Figure 6A plots, during robust pruning, the evolution of
the training error "X", of the test error "O" and of the
Akaike's FPE estimate "+" with respect to the parameter's
number. According to the FPE, the optimal network
architecture, presented figure 6B, is the one comprising 6
hidden neurons with 19 parameters.

standard LM .
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_Figure 6: (A) Training error, test error and FPE with
respect to parameter number
(B) Architecture of the pruned network

Comparisons are given in table 1. The "robust OBS"
algorithm (ROBS) gives performances slightly better than
the standard least squares OBS in terms of mean square

_error on the learning set (MSLE) and on the test set

(MSTE), but with a number of parameters divided by 2.
Moreover, the robust pruning process is performed
quicker, the iteration number necessary for retraining at
each weight deletion being clearly lower, with a stopping
criterion on the gradient norm. Note, from figure 6A, that
the network with only 11 parameters can be finally

selected without significant worsening of the
approximation performances.
Before OBS | After OBS | After ROBS
# parameter 61 38 19
MSLE 3.0210° 3.95 107 3.9 107
MSTE 3.9103 4.3 10* 4.0107

Table 1. Compared pruning results

Finally, figure 7 illustrates an example of the good results
using the neural inverse model in feedforward control
strategy, given figure 2. The reference signal and the



corresponding output Vy are plotted. The proposed
strategy has been carried out in real time using Matlab-
Simulink and RTW (Real Time Workshop) software
environment, with sampling period of 3ms.

0 v T T

;m&mf \M e

-6

N

0 50 100 150 200 250 300
Figure 7: Reference trajectory and the output of the
MaglLev system

350

6. Conclusion

The use of artificial neural networks for control is
motivated by their universal approximation capabilities.
The feedforward one hidden layer perceptron with linear
activation at the output gives a simple, but sufficient
general structure for nonlinear modeling. In this paper,
the usefulness of deleting spurious parameters and outlier-
robust criterion for pruning are shown. The model size
reduction is applied to the identification of the inverse
model of a MagLlev system for feedforward control.
Obtaining a model with very few parameters and good
approximation capabilities allows to envisage adaptive
parameter estimation algorithms, which cannot be

_ implemented in real time with standard environment, for
systems requiring short sampling period, without minimal
structure neural models.
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