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HOLONOMY OF TAME WEYL STRUCTURES

FLORIN BELGUN, ANDREI MOROIANU

Abstract. A Weyl structure on a compact conformal manifold is not complete in
general. If, however, the life-time of incomplete geodesics can be controlled on compact
subsets of the tangent bundle, the Weyl connection is called tame. We prove that every
closed, non-exact, tame Weyl structure on a compact conformal manifold is either flat,
or has irreducible holonomy, generalizing an analogous statement for Riemannian cone
metrics [6].
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1. Introduction

The holonomy of Riemannian manifolds is an extensively studied topic for a long
time, and it is a basic fact that if the manifold is not locally symmetric, then the local
holonomy group either acts reducibly (in which case the manifold locally splits as a
Riemannian product and the holonomy group is the product of the holonomy groups of
the factors), or it belongs to the Berger list [4].

On a conformal manifold (M, c), the rôle of the Levi-Civita connection is played by
the family of compatible Weyl structures, which are conformal, torsion-free connections
on the tangent bundle TM [15]. Weyl structures can be closed or exact, i.e. locally,
resp. globally equal to the Levi-Civita connection of some Riemannian metric in the
conformal class, or non-closed.

As a consequence of the Merkulov-Schwachhöfer classification of groups occurring
as holonomy of torsion-free connections [12], the holonomy group of every non-closed
irreducible Weyl structure is the full conformal group in dimensions other than 4. In [3]
we show that the reducible case is very interesting and, so far, little understood: The
holonomy reduction defines locally a conformal product structure, and the holonomy
group, although included in a product group, is not necessarily a product itself. In
short, the reduced holonomy of a non-closed Weyl structure is either trivial, the full
conformal group, some special groups in dimension 4, or it is reducible (in which case
no complete description exists yet).

In contrast to that, the restricted holonomy of a closed Weyl structure is always a Rie-
mannian holonomy (see Remark 2.4 below). However, not every Riemannian holonomy
group occurs as holonomy of a closed, non-exact Weyl structure. More precisely, we
show in Section 5.2 that the locally symmetric case and the quaternion Kähler holonomy
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Spk · Sp1 do not occur, while all other holonomy groups in the Berger list occur as re-
stricted holonomy groups of closed, non-exact Weyl structures. Moreover, one can even
realize them on compact manifolds, by means of the cone construction, cf. Proposition
5.8 for details.

On the other hand, no compact examples of closed, non-exact Weyl structures with
reducible holonomy are known so far, besides the flat ones. In the main result of this
paper (Theorem 4.1), we show that, under a certain restriction, called tame (see below),
the holonomy of a closed, non-exact, Weyl structure on a compact conformal manifold
is either discrete or irreducible.

It is remarkable that an analogous statement has no chance to hold for exact or non-
closed Weyl structures. Simple counter-examples are Riemannian products for the first
case and conformal products (see [3]) for the second one. In order to understand why
this result is expectable for closed, non-exact Weyl structures, we consider it from the
point of view of a classical result by S. Gallot [6], which states that the metric cone over
a complete Riemannian manifold is either irreducible or flat.

Recall that a metric cone over a Riemannian manifold (N, gN) is N̄ := R∗
+ ×N , with

the metric gN̄ := dt2 + t2gN , and it carries a global flow of homotheties (the flow of
the radial vector field t(∂/∂t)). The metric gN̄ and its Levi-Civita connection define by
projection a conformal structure and a closed, non-exact canonical Weyl structure on
the quotient of the cone by the discrete group Γ generated by one of these homotheties.
Gallot’s result can thus be restated as follows: If N is complete, then the canonical
Weyl structure on N̄/Γ is irreducible or flat.

We generalize this construction in Section 2. To every closed, non-exact Weyl struc-
ture D on a conformal manifold (M, c), we associate its minimal Riemannian cover
(M0, g0), with the property that the deck transformation group acts on M0 by strict
homotheties, and the pull-back of D to M0 is the Levi-Civita connection of g0. We
obtain in this way a one-to-one correspondence between closed, non-exact, Weyl struc-
tures on compact conformal manifolds and incomplete Riemannian manifolds carrying
a co-compact group Γ of strict homotheties acting freely and properly discontinuously,
called cone-like manifolds (Remark 2.4).

In the first result of this paper, Theorem 2.6, we show that every cone-like manifold
(M0, g0) can be completed as a metric space by adding exactly on point ω, called the
singularity of (M0, g0), which emphasizes again the similarity with a cone. The crucial
point of the proof is Lemma 2.8, which states that on a cone-like manifold, the distance
from a fixed point to its image through any contracting homothety in Γ is bounded (a
fact which does not necessarily hold on the universal covering of M0).

If the restricted Riemannian holonomy of a cone-like manifold (M0, g0) is reducible,
our main result (Theorem 4.1) states that, under the tame assumption, the metric g0 is
flat. The idea of the proof is to show that the sets of leaves of any of the two integrable
foliations (corresponding to the parallel splitting of the tangent bundle) contain “large”
families of complete (immersed) submanifolds, all isometric to each other. On the other
hand, we also show that the homotheties of (M0, g0) preserve these families, and we
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end up with pairs of complete submanifolds which are at the same time isometric and
homothetic to each other, thus flat.

Roughly, these ideas are inspired by the original proof of Gallot [6] of the irreducibility
of the cone over a complete manifold. However, in our more general cone-like setting,
the difficulty comes from the lack of information about the incomplete geodesics (which,
for a cone, are just its rays, the orbits of the homothety flow). The notion of a tame
connection, which we introduce in Section 3, is equivalent to the existence of uniform
bounds for the life-times of the incomplete geodesics generated by vectors belonging to
any compact subset of the tangent bundle, and allows us to construct the large families
discussed above.

Theorem 4.1 applies to a wide class of Weyl structures: We show in Section 5 that the
tame condition is fulfilled by any small deformations of a cone metric, more precisely by
a C1-neighbourhood of the canonical Weyl structure on the quotient of a cone by one
of its homotheties. This is a consequence of a more general result (Theorem 5.4), which
states that every Weyl structure is tame, provided that it satisfies an analytic (open)
condition, called analytically tame, which is tautologically fulfilled by the canonical Weyl
structure on cone quotients.

We classify, at last, all possible restricted holonomy groups of closed tame Weyl
structures (Propositions 5.8 and 5.9).

2. The minimal Riemannian cover of a closed Weyl structure

In this section, (M, c) denotes a connected conformal manifold and D denotes a
closed, non-exact, Weyl structure on (M, c) (see e.g. [3] for the basic definitions). Let

π̃ : M̃ → M be the universal cover of M , endowed with the induced conformal structure
c̃ := π̃∗c, and Weyl derivative D̃ := π∗D. Since M̃ is simply connected, D̃ is exact, so
M̃ carries a Riemannian metric g̃0 ∈ c̃, unique up to a multiplicative constant, whose
Levi-Civita covariant derivative is just D̃.

Lemma 2.1. The group A ≃ π1(M) of deck transformations of the covering M̃ → M
consists of homotheties of g̃0.

Proof. Every element α ∈ A is a conformal transformation of (M̃, c̃), so there exists a
positive function ρ such that α∗g̃0 = ρ2g̃0. On the other hand, α preserves D̃, so the
Riemannian metric α∗g̃0 is D̃-parallel, therefore ρ is constant. �

For every α ∈ A we denote by ρ(α) the constant of homothety. Consider the sub-
group of isometric deck transformations of (M̃, g̃0):

I := {α ∈ A | ρ(α) = 1}.
Of course, ρ being a group homomorphism from (A, ◦) to (R∗

+,×), I is a normal sub-

group of A. The quotient manifold M0 := M̃/I is a Galois covering of M with Abelian
deck transformation group Γ := A/I, isomorphic to the subgroup ρ(A) of (R∗

+,×).
Moreover g̃0 projects to a Riemannian metric g0 on M0. Clearly ρ descends to a group
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homomorphism, also denoted by ρ : Γ → R∗
+, such that f ∗g0 = ρ(f)2g0 for every f ∈ Γ.

The pull-back of D to M0 (still denoted by D) is the Levi-Civita connection of g0, and
the deck transformation group Γ acts by pure homotheties on (M0, g0) (i.e. the only
isometry in Γ is the identity). This motivates the following:

Definition 2.2. Let D be a closed Weyl structure on a connected conformal manifold
(M, c). The triple (M0, g0,Γ), together with the covering π : M0 →M = M0/Γ is called
the minimal Riemannian cover of (M, c,D).

Notice that there is no canonical way to choose g0 in its homothety class, but all the
properties we will consider in the sequel will not depend on such a choice.

If d denotes the geodesic distance on M0 induced by the Riemannian metric g0, every
f ∈ Γ is a homothety of the metric space (M0, d), i.e. d(f(x), f(y)) = ρ(f)d(x, y) for
each x, y ∈M0.

Definition 2.3. A cone-like space is a locally compact metric space (M0, d) together
with a finitely generated, non-trivial group Γ acting freely and properly discontinuously
by homotheties on (M0, d), such that Γ contains no isometry besides the identity, and
such that the quotient M0/Γ is a compact topological space.

Remark 2.4. The above considerations show that the minimal Riemannian cover de-
fines a one-to-one correspondence between the set of triples (M, c,D) consisting in a
compact manifold M , a conformal structure c and a closed, non-exact Weyl structure
D on it, and the set of cone-like Riemannian manifolds (M0, g0,Γ) (modulo constant
rescalings of the metric g0).

A fundamental example, which is the Leitfaden of our present study, is the following:

Example 2.5. Let (N, gN) be a complete Riemannian manifold and let

(M0, g0) := (R∗
+ ×N, dt2 + t2gN)

be the metric cone over N (note that g0 and the product metric g on M0 ≃ R ×N are
conformally related by setting t = es, t ∈ R∗

+, s ∈ R). The multiplication by some
λ > 1 on the R-factor is a strict homothety of g0 and an isometry of g. It generates
a group Γ acting freely and properly discontinuously on M0. The metric g projects to
the product metric, also denoted by g, on the quotient manifold M := M0/Γ ≃ S1 ×N .
The Levi-Civita connection D0 of g0 is Γ-invariant, inducing therefore a closed, non-
exact Weyl structure D on (M, [g]). It is straightforward to check that (M0, g0) is
the minimal Riemannian cover of (M, [g], D). A slightly more general example of Weyl
manifold having (M0, g0) as minimal Riemannian cover can be constructed by projecting
the Levi-Civita connection of g0 onto the mapping torus of an isometry of N and, more
generally, on any compact quotient of M0 ≃ R × N by an Abelian group acting by
isometries (and preserving the corresponding splitting) of the product metric.

Metric cones can be equivalently characterized by the existence of a global homothetic
gradient flow, i.e. a complete vector field which is locally a gradient (with respect to
a local D-parallel metric g0), and acts infinitesimally by homotheties of g0. We will
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exhibit in this section some further properties which the class of cone-like spaces shares
with the (much more restricted) class of metric cones.

The terminology in Definition 2.3 is justified by the following result which shows that
(M0, d) can be completed by adding one single point.

Theorem 2.6. Let (M0, d,Γ) be a cone-like space. Then the metric completion of

(M0, d) is a metric space M̂0 such that M̂0rM0 is a single point ω, called the singularity
of M0.

Proof. Since every commutator of Γ is an isometry of (M0, d), the hypothesis ensures
that Γ is Abelian. We need to show that (M0, d) contains at least one non-convergent
Cauchy sequence, and that any two such sequences are equivalent.

Let f ∈ Γ be any element with ρ(f) < 1. For every x ∈M0 and m < n ∈ N we have

d(fm(x), fn(x)) ≤
n−1∑

k=m

d(fk(x), fk+1(x)) = d(x, f(x))
n−1∑

k=m

ρ(f)k < d(x, f(x))
ρ(f)m

1 − ρ(f)
,

thus showing that {fn(x)} is a Cauchy sequence. If this sequence had a limit l in M0,
then l would be a fixed point of f , contradicting the fact that Γ acts freely. Thus (M0, d)
is non-complete.

Lemma 2.7. Let {xn} be a non-convergent Cauchy sequence in (M0, d). Then there
exists x ∈ M0 and a sequence {fn} of elements of Γ satisfying limn→∞ ρ(fn) = 0 such
that {xn} is equivalent to {fn(x)}.

Proof. Let π denote the projection of M0 onto the compact space M := M0/Γ. By
choosing a subsequence if necessary, we may assume that π(xn) converges to some
y ∈M . Take x ∈ π−1(y). Since Γ acts properly discontinuously, there exists some open
neighbourhood U0 of x such that h(U0) ∩ U0 = ∅ for every h ∈ Γ different from the
identity. We choose r > 0 such that the ball Bx(2r) of radius 2r in x lies in U0. Then
U := π(Bx(r)) is a neighbourhood of y in the quotient topology, so there exists some
n0 such that π(xn) ∈ U for n ≥ n0. This shows that for n ≥ n0 there exist zn ∈ Bx(r)
and fn ∈ Γ such that xn = fn(zn).

Suppose that ρ(fn) does not tend to zero. By taking a subsequence if necessary, we
may assume that ρ(fn) > δ for every n. For every m,n such that fn 6= fm, the open
balls fn(Bx(2r)) and fm(Bx(2r)) are disjoint, being included in fn(U0), and fm(U0)
respectively. As fn(zn) ∈ fn(B(x, r)) and fm(zm) ∈ fm(B(x, r)), we get d(xn, xm) =
d(fn(zn), fm(zm)) ≥ 2rδ. The fact that {xn} is a Cauchy sequence ensures therefore the
existence of an index N such that fn = fN for every n > N . Since Bx(r) is relatively
compact, we may assume (passing to some subsequence, if necessary) that zn tends to

z ∈ Bx(r). Thus {xn} converges to fN(z), contradicting the fact that {xn} does not
converge.

This shows that limn→∞ ρ(fn) = 0. Since d(fn(zn), fn(x)) = ρ(fn)d(zn, x) < rρ(fn),
the sequences {xn} and {fn(x)} are equivalent, thus proving the lemma. �

In order to conclude the proof of the theorem we need one more technical result.
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Lemma 2.8. For every fixed point x ∈M0 there exists a constant Kx, depending on x,
such that d(x, f(x)) < Kx for every contracting f ∈ Γ (i.e. with ρ(f) < 1).

Proof. Let {h1, . . . , hn} be a system of generators of Γ with ρi := ρ(hi) > 1. Let
Dx := max{i=1,...,n} d(x, hi(x)). For every (a1, . . . , ak) ∈ Nk, we claim that

d

(
x,

( k∏

i=1

hai

i

)
(x)

)
≤ Dx

k∏

i=1

ρai+1
i − 1

ρi − 1
. (1)

We prove the claim by induction on k. For k = 1 we have

d(x, ha1

1 (x)) ≤
a1−1∑

s=0

d(hs
1(x), h

s+1
1 (x)) = d(x, h1(x))

a1−1∑

s=0

ρs
1 ≤ Dx

ρa1

1 − 1

ρ1 − 1
< Dx

ρa1+1
1 − 1

ρ1 − 1
.

Assume now that (1) holds for each k ≤ l and for every (a1, . . . , ak) ∈ Nk and consider
some element (a1, . . . , al+1) ∈ Nl+1. We denote by

h :=
l∏

i=1

hai

i and by yj :=
(
hj

l+1 ◦ h
)
(x), ∀ j = 0, . . . , al+1.

Using (1) for k = l we have

d(x, y0) ≤ Dx

k∏

i=1

ρai+1
i − 1

ρi − 1
,

and d(yj, yj+1) = ρj
l+1d(y0, y1) = ρ(h)ρj

l+1d(x, hl+1(x)), which further imply

d

(
x,

l+1∏

i=1

hai

i (x)

)
= d(x, yal+1

) ≤ d(x, y0) +

al+1−1∑

j=0

d(yj, yj+1)

≤ Dx

l∏

i=1

ρai+1
i − 1

ρi − 1
+Dx

l∏

i=1

ρai

i

al+1−1∑

j=0

ρj
l+1

≤ Dx

l∏

i=1

ρai+1
i − 1

ρi − 1

(
1 +

al+1−1∑

j=0

ρj
l+1

)
≤ Dx

l∏

i=1

ρai+1
i − 1

ρi − 1

( al+1∑

j=0

ρj
l+1

)

= Dx

l+1∏

i=1

ρai+1
i − 1

ρi − 1
,

thus proving our claim for k = l+1. In order to finish the proof of the lemma, let f ∈ Γ
be an element with ρ(f) < 1. By reordering the system of generators if necessary, we
can write

f =

n∏

i=1

hai

i , with ai ≥ 0 for i ≤ m and ai ≤ 0 for i ≥ m+ 1.
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We denote bi := −ai ≥ 0 for i ≥ m+ 1. Using (1) we obtain

d(x, f(x)) =

( n∏

i=m+1

ρai

i

)
d

( m∏

i=1

hai

i (x),

n∏

i=m+1

hbi

i (x)

)

≤
( n∏

i=m+1

ρai

i

)(
d
(
x,

m∏

i=1

hai

i (x)
)

+ d
(
x,

n∏

i=m+1

hbi

i (x)
))

≤
( n∏

i=m+1

ρai

i

)(
Dx

m∏

i=1

ρai+1
i − 1

ρi − 1
+Dx

n∏

i=m+1

ρbi+1
i − 1

ρi − 1

)
.

We neglect the −1 terms in the numerators above and multiply the brackets. Remem-
bering that

∏n
i=1 ρ

ai

i = ρ(f) < 1, we finally get

d(x, f(x)) ≤ Dx

( m∏

i=1

ρi

ρi − 1

n∏

i=1

ρai

i +
n∏

i=m+1

ρi

ρi − 1

)

≤ Dx

( m∏

i=1

ρi

ρi − 1
+

n∏

i=m+1

ρi

ρi − 1

)

≤ Dx

( n∏

i=1

ρi

ρi − 1
+ 1

)
=: Kx,

where the last inequality follows from the fact that a+ b ≤ ab+ 1 for all a, b ≥ 1. �

Let now {xn} be a non-convergent Cauchy sequence in M0. Choose y ∈M0 and f ∈ Γ
such that ρ := ρ(f) < 1. We claim that {xn} is equivalent to {fn(y)}.

By Lemma 2.7, there exists x ∈ M0 and a sequence {fn} of elements of Γ satisfying
limn→∞ ρ(fn) = 0, such that {xn} is equivalent to {fn(x)}. Since limn→∞ ρ(fn) =
0, there exists an increasing sequence of integers {kn} such that ρ(fkn

) < ρn. As
ρ(f−n ◦ fkn

) < 1, Lemma 2.8 yields

d(fn(x), fkn
(x)) = ρnd(x, (f−n ◦ fkn

)(x)) ≤ Kxρ
n.

The sequences {fkn
(x)} and {fn(x)} are thus equivalent, so the same holds for {xn} and

{fn(x)}. Finally, for any y 6= x, {fn(x)} is clearly equivalent to {fn(y)}, thus finishing
the proof of the theorem. �

Theorem 2.6 shows that cone-like spaces still have the one-point completion, although,
in contrast to metric cones, they only carry a discrete group of homotheties. Note that
the universal covering of a metric cone is a metric cone itself, therefore admits the
one-point completion as well. It is unknown whether this fact holds for the universal
covering of an arbitrary cone-like space (see Section 5.4).

Functions on a metric cone measuring geometric quantities like lengths, are equivari-
ant with respect to the radial flow (acting by homotheties), and thus vary linearly on
the rays.
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In the more general case of cone-like spaces, we introduce, for further use, the following
simple notion:

Definition 2.9. Two positive functions f1, f2 : M0 → R∗
+ are said to be equivalent

if their ratio is bounded above and below by positive constants. A function which is
equivalent to the distance to the singularity ω is called quasi-linear.

Denote by δ : M0 → R∗
+ the distance to the singularity ω ∈ M̂0: δ(x) := d(x, ω).

Lemma 2.10. Let ψ : M0 → R∗
+ be any Γ-equivariant function of weight 1 on M0 (i.e.

satisfying ψ ◦ f = ρ(f)ψ for every element f ∈ Γ), such that ψ and ψ−1 are locally
bounded (e.g., ψ is continuous). Then ψ is quasi-linear.

Proof. Consider a compact fundamental domain Ω of the action of Γ on M0 and define

k1 := inf
x∈Ω

ψ(x)

δ(x)
, k2 := sup

x∈Ω

ψ(x)

δ(x)
.

Because δ is continuous and ψ and its inverse are locally bounded, their quotients δ/ψ
and ψ/δ are bounded on the compact set Ω. It follows that k1, k2 are positive real
numbers, so that

ψ(x)

δ(x)
∈ [k1, k2]

holds tautologically on Ω. Let now y be an arbitrary point of M0 and f ∈ Γ such that
x := f−1(y) ∈ Ω. From the equivariance property of ψ we get

ψ(y)

δ(y)
=
ψ(f(x))

δ(f(x))
=
ρ(f)ψ(x)

ρ(f)δ(x)
=
ψ(x)

δ(x)
∈ [k1, k2],

which finishes the proof. �

As a consequence of the previous lemma, we show for later use that if (M0, g0) is
the minimal Riemannian cover of a closed non-exact Weyl structure D on a compact
conformal manifold (M, c), then any conformal factor relating g0 to the pull-back on
M0 of a metric in the conformal class c on M is equivalent to the distance function δ
to the singularity ω ∈M0:

Lemma 2.11. Let g be the pull-back to M0 of a metric in c on M and let ϕ : M0 → R∗
+

be defined by g0 = ϕ2g. The function ϕ is then quasi-linear on M0.

Proof. Every element f ∈ Γ being an isometry of g, we obtain

ρ(f)2ϕ2g = ρ(f)2g0 = f ∗g0 = (ϕ ◦ f)2g,

showing that ϕ ◦ f = ρ(f)ϕ. The assertion thus follows from Lemma 2.10. �
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3. Tame Weyl structures and their geodesics

In contrast to the Riemannian situation, a Weyl structure on a compact conformal
manifold is not necessarily geodesically complete.

Example 3.1. Let (M, c) be a compact conformal manifold and let D be a closed, non-
exact, Weyl structure on M . Theorem 2.6 shows that the minimal Riemannian cover
(M0, g) of (M, c,D) is incomplete, so through every point of M0 passes an incomplete
geodesic. Its projection onto M is thus an incomplete geodesic of D.

In order to study the geometry of M0 in the neighbourhood of its singularity ω,
we need to understand the behaviour of the geodesics passing through or near ω. In
principle, the dynamics of the geodesic flow of (M, g) can be rather wild near ω. Here
is a list of phenomena which may occur:

(1) The lengths of the geodesics starting at some given point P and passing through
ω (i.e. the life-time of an incomplete geodesic) might not be bounded.

(2) There might exist closed geodesics through ω (i.e. geodesics having finite life-
time in both directions).

(3) There might even exist a complete geodesic whose adherence contains ω.

3.1. Tame connections. To begin with, let us recall some basic facts about the geo-
desic flow of an affine connection D on a manifold M , or, equivalently, the exponential
map

expD : U →M

defined on an open subset U of TM , and of regularity depending on the ones of M and
D. For our purposes, we assume it is C∞. For X ∈ Ux := U ∩ TxM , expD(X) is the
point γ(1) on the geodesic defined by

γ(0) = x and γ̇(0) = X.

We define the life-time LD : TM → (0,+∞] of a half-geodesic generated by X ∈ TM ,
by

LD(X) := sup{t > 0 | tX ∈ U},
in other words, the supremum of the time for which the half-geodesic tangent to X is
defined. Of course, if (M,D) is geodesically complete, all life-times are infinite.

We split the complement TM r {0} of the zero section in the tangent bundle into
two sets, the set ID of vectors generating incomplete half-geodesics, and its complement
CD. These subsets are both star-shaped, i.e. for a vector X ∈ TM

X ∈ ID ⇐⇒ sX ∈ ID, ∀ s > 0.

We exclude the zero section in TM because it generates complete geodesics, but admits
a neighbourhood in CD if and only if D is geodesically complete (and thus C = TM in
this case). There is nothing to say, in general, about the topology of the two subsets of
the partition, as one of them is obtained as an infinite intersection of open sets.

Definition 3.2. An affine connection D on a manifold M is called weakly tame if the
set CD of non-zero vectors generating a complete half-geodesic is open in TM r {0}.
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In other words, the set of vectors generating incomplete geodesics ID is closed in
TM r {0}.
Example 3.3. Let (M, g) be the metric cone over a complete Riemannian manifold
(N, h). The only incomplete geodesics on M are then the rays {x} × (0, t] (connecting
the point (x, t) with the cone apex), and their length is t (see [6]). The Levi-Civita
connection of (M, g) is thus weakly tame.

It is equally easy to construct examples of affine connections which are not weakly
tame: Consider the flat torus T 2, choose a point ω on it, and pick a dense geodesic
avoiding ω. This can be seen as a limit of geodesics passing through ω. The induced
flat connection on T 2 r {ω} is thus not weakly tame.

Definition 3.4. A weakly tame connection D on a manifold M is called tame if the
life-time LD : ID → R

∗
+ is locally bounded.

Note that LD is lower semi-continuous on ID: If a geodesic generated by X ∈ TM is
defined up to time T , all geodesics generated by vectors in some neighbourhood of X
in TM are also defined up to time T .

We will see later on that the metric cone over a complete Riemannian manifold
(Example 3.3) is tame.

Example 3.5. Not all weakly tame connections are tame, as the following example of
a domain in R2 shows. Take

S := {(x, y) ∈ R
2 | x > 1, x2y2 < 1} r {(n, 0) | n ∈ N, n > 3}

and let D be the restriction to S of the canonical flat connection in R2.

P

Figure 1. An example of weakly tame connection which is not tame.

The connection D on S is obviously weakly tame, since there are no complete half-
geodesics. On the other hand, the life-time of a half-geodesic from any point P ∈ S
on the x-axis gets arbitrarily large as its defining vector approaches (1, 0) ∈ TPS (for
points Q ∈ S away from the x-axis, the length of any geodesic through Q is bounded
by a constant depending on Q). Therefore (S,D) is not tame.

Proposition 3.6. An affine connection D on M is tame if and only if LD is bounded
on any intersection of ID with a compact set in TM r {0}.



HOLONOMY OF TAME WEYL STRUCTURES 11

Proof. This condition easily follows if D is tame, because such intersections are them-
selves compact (as D is weakly tame, ID is closed).

Conversely, if X ∈ CD, then for any t > 0, there exists a compact neighbourhood
U(t) of X in TM r {0}, for which all the generated geodesics are defined at least up to
time t: We choose, for example, a compact neighbourhood Vt ⊂ U of tX in TM (recall
that the domain of definition U of exp is open in TM), then define U(t) := (1/t)Vt.

As U(t) is compact, we get by hypothesis an upper bound K(t) for the life-time of
all incomplete geodesics generated by vectors in U(t)∩ID. Let us fix t0 > 0 and choose
some T larger thanK(t0). The set U0 := U(t0)∩U(T ) is again a compact neighbourhood
of X, but now, the upper bound K(t0) for LD on U0 ∩ ID ⊂ U(t) ∩ ID and the lower
bound T are contradictory, therefore U0 ∩ ID is empty, which shows that CD is open
and D is weakly tame.

Moreover, the hypothesis implies that LD is locally bounded, therefore D is tame as
well. �

Remark 3.7. In the definition of a tame structure, we ask for LD to be locally bounded
and for D to be weakly tame. The following simple example, along with Example 3.5,
shows that these two conditions are independent:

Example 3.8. Let Z := S1 × (a, b) be a bounded, flat cylinder. The only complete
geodesics on Z are the circles, hence CD ⊂ TZ r {0} is the sub-bundle of tangent lines
to the geodesic circles, in particular it is not open, therefore Z is not weakly tame.

On the other hand, the length of an incomplete geodesic depends continuously on its
slope with respect to the geodesic circles, therefore LD : ID → (0,∞) is a continuous
function defined on an open subset of TZ, in particular it is locally bounded.

3.2. Tame Riemannian metrics. We will now investigate the notions defined above
in the particular case where D is the Levi-Civita connection of a Riemannian manifold,
in particular on the minimal Riemannian cover (M0, g0) of a closed, non-exact Weyl
manifold. Note that a connection on M is (weakly) tame if and only if its pull-back to
any covering of M is (weakly) tame. In order to characterize tame closed Weyl struc-
tures on a compact manifold, it thus suffices to understand tame cone-like Riemannian
manifolds. In the following lemmas (that hold in a general setting), we intentionally
use notations from the previous sections, to emphasize where our main interest lies:

Lemma 3.9. A Riemannian manifold (M0, g0) is weakly tame if and only if the set

Ig0 := ID ∩ S(TM0)

is closed. Here D is the Levi-Civita connection of g0 and S(TM0) is the sphere bundle
of unit vectors in TM0.

The proof is obvious. Note the slight difference between ID and Ig0 . We also denote
the restriction of LD to Ig0 by Lg0 and Ig0 ∩ TxM0 =: Ig0

x .
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For an incomplete Riemannian manifold (M0, g0), we set

µ : M0 → (0,+∞], µ(x) := sup
X∈I

g0
x

LD(X).

It is the supremum of the lengths of all incomplete half-geodesics starting in x.

Lemma 3.10. The Riemannian manifold (M0, g0) is tame if and only if µ is locally
bounded.

Proof. Note first that, since M0 is incomplete, from every point starts an incomplete
half-geodesic, and so the set Ig0

x is non-empty for any x ∈M0, hence µ is well-defined.

If D is tame, the fact that µ is locally bounded follows immediately from Proposition
3.6.

Conversely, let K ⊂ TM0 r {0} be a compact set. Then its projection K0 on M0 is
compact as well, and there exists q > 1 such that

K ⊂ {X ∈ TxM0 | x ∈ K0,
1

q
≤ ‖X‖ ≤ q}.

The local boundedness of µ, together with the inequality above implies that

LD(X) ≤ q sup
K0

µ, ∀ X ∈ K ∩ ID,

so D is tame by Proposition 3.6. �

We give now a criterion characterizing closed tame Weyl structures on compact man-
ifolds, or, equivalently, on cone-like Riemannian spaces:

Proposition 3.11. Let (M, c) be a compact conformal manifold, and let D be a closed,
non-exact Weyl structure on it. Then D is tame on M (or, equivalently, on M0) if and
only if µ : M0 → (0,+∞] is (finite and) quasi-linear on M0.

Proof. The distance δ to the singularity ω ∈M0 is always continuous on M0, and µ ≥ δ,
therefore µ−1 is locally bounded. On the other hand, δ and µ are clearly Γ-equivariant
of weight 1, because both denote geometrical lengths. If D is tame, Lemma 2.10 implies,
together with Lemma 3.10, the quasi-linearity of µ.

Conversely, if µ is quasi-linear, then it is locally bounded, therefore, again by Lemma
3.10, D is tame. �

In the next section we prove our main result, concerning the holonomy of a closed
tame Weyl structure. Finally, in Section 5 we will show that the tame condition applies
to an open set of Weyl structures (in the C1-topology), in particular the class of tame
closed Weyl structures is significantly large. We also give the complete classification of
their possible restricted holonomy groups.
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4. Closed tame Weyl structures with reducible holonomy

The goal of this section is to prove the following

Theorem 4.1. If the restricted holonomy representation of a closed, non-exact, tame
Weyl structure D on a compact conformal manifold (M, c) is reducible, then D is flat.

Proof. We start by showing that if the restricted holonomy Hol0(D) is reducible, then
there exists a finite covering M̄ of M on which the full holonomy of the pull-back of
D has reducible holonomy. In order to keep the argument as simple as possible, we
will not be very precise on the holonomy groups and consider them as abstract groups
rather than as transformation groups of each tangent space.

Consider the metric g̃0 on the universal cover M̃ of M (defined up to a multiplicative

constant), whose Levi-Civita covariant derivative ∇̃ is the pull-back of D to M̃ . The
holonomy of ∇̃ is clearly equal to the restricted holonomy of D. By Theorem IV.5.4 in
[10], the tangent bundle of M̃ splits in a direct sum TM̃ = T0 ⊕ . . .⊕ Tm of ∇̃-parallel

sub-bundles and the holonomy group of ∇̃ satisfies Hol(∇̃) = H1 × . . . × Hm, where
Hi acts irreducibly on Ti and trivially on Tj for j 6= i (T0 being the flat component).
Moreover this decomposition is unique up to a permutation of the set {1, . . . , m} (such
permutations may occur if some of the factors Hi coincide).

By Lemma 2.1, every element f ∈ A of the deck transformation group of the covering
M̃ →M is affine with respect to ∇̃, so there exists a permutation σf of {1, . . . , m} such
that f∗(Ti) = Tσf (i). Let B ⊂ A be the kernel of the group homomorphism A → Sm

given by f 7→ σf . The metric g̃0 and the connection ∇̃ on M̃ descend to a conformal
structure c̄ and a Weyl structure D̄ on the quotient M̄ := M/B, which is a finite
covering of M with group A/B ⊂ Sm. By construction, the holonomy group of D̄ on
M̄ is reducible.

Replacing (M, c,D) by (M̄, c̄, D̄), we can from now on assume that the full holonomy
ofD is reducible. This implies that the tangent bundle of the minimal Riemannian cover
(M0, g0) of (M, c,D) splits in a direct sum of orthogonal distributions TM = V1 ⊕ V2,
parallel with respect to the Levi-Civita connection ∇0 = D of g0. These distributions
are integrable, hence define two orthogonal (and complementary) foliations on M0.

We will use the notion maximal leaf Mi, i = 1, 2, through x ∈ M0 to denote the set
of points that can be connected to x by means of a smooth curve tangent to Vi. It is a
standard fact that Mi are immersed submanifolds of M0.

We start with two preliminary results which hold on every (not necessarily complete)
reducible Riemannian manifold (M0, g0).

Lemma 4.2. Let U1 be a leaf of V1 (not necessarily complete) and let X ∈ V2 be
a parallel vector field along U1. Assume that expx tX is defined for all x ∈ U1 and
t ∈ [0, 1]. Then x 7→ ψ(x) := expxX maps U1 isometrically onto its image.

Proof. The statement is classical but as we could not find a precise reference, we provide
the proof for the reader’s convenience.
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We first show that the map ψ is a local isometry between U1 and some other leaf U ′
1

of V1. Consider the map ϕ : U1 × [0, 1] → M0 defined by ϕ(x, t) := expx tX. Define
X(x,t) ∈ Tϕ(x,t)M0 by

X(x,t) :=
d

ds

∣∣∣∣
s=t

ϕ(x, s).

In other words, X(x,t) is the tangent vector to the geodesic s→ expx sX at s = t, so we
clearly have the relation

ϕ(x, t+ s) = expϕ(x,t) sX(x,t). (2)

Let us fix x ∈ U1 and denote xt := ϕ(x, t). The local de Rham decomposition theorem
(Proposition IV.5.2 in [10]) states that each xt has a neighbourhood U(t) inM0 isometric
to a Riemannian product U(t) ≃ U1(t) × U2(t), where U1(t) and U2(t) are local leaves
of V1 and V2 through xt.

The geodesic segment ϕ({x} × [0, 1]) is compact, so it can be covered by a finite
number of neighbourhoods U2(s1), . . . , U2(sn), with 0 = s1 < . . . < sn = 1. Choose now
ti ∈ (si, si+1) ∀ i = 1, . . . , n− 1, such that ϕ(x, ti) ∈ U2(si) ∩ U2(si+1), and set tn := 1.
For k = 1, . . . , n, let Vk be the open subset of U1 defined by

Vk := {y ∈ U1 | ϕ(y, sk) ∈ U(sk)}.
We denote by V the intersection of the Vk’s and by Wk the subset of U(tk) given by
Wk := ϕ(V × {tk}).

Xk+1

U(sk+2)

Xk

U(sk)

Wk

U1

U(sk+1)

U ′
1

XV

x0 = x

Wn

x1

Wk+1

Figure 2. Stepwise exponentiation along the geodesic segment ϕ ({x} × [0, 1]).

Consider the vector field Xk along Wk whose value at ϕ(y, tk) is X(y,tk). By construc-
tion, there exists a bijection ϕk : Wk → Wk+1 defined by ϕk(ϕ(y, tk)) := ϕ(y, tk+1) for
all y ∈ V .

We claim that for every k = 1, . . . , n,

(1) ϕk−1 is an isometry;
(2) the vector field Xk is parallel along Wk;
(3) Wk is an open subset of the leaf U1(tk).

For k = 1, the first statement is empty, and the other two hold by hypothesis.

Assume that the claim holds for some k ≥ 1. Since Xk is parallel along Wk, it is
constant in the product coordinates on Wk × U2(sk) ⊂ U(sk) (i.e. there exists Z ∈
Txtk

U2(sk) such that (Xk)(z,xtk
) = (0, Z), ∀ z ∈ Wk). By (2) we have ϕk(ϕ(y, tk)) =

expϕ(y,tk)(tk+1 − tk)X(y,tk) so in the product coordinates ϕk(z, xtk) = (z, xtk+1
) for all
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z ∈ Wk, showing that Wk ⊂ U1(tk) and that ϕk is an isometry. Moreover Xk+1 is
constant along Wk+1 in these coordinates, thus proving the induction step.

We have shown that in the neighbourhood V of x in U1, the map x 7→ ψ(x) = expxX
is the composition of n−1 isometries ϕn−1◦· · ·◦ϕ1 between local leaves of the distribution
V1. As this holds in the neighbourhood of every point x of U1, ψ is a local isometry from
U1 to its image U ′

1. In particular, this shows that U ′
1 is an open subset of the complete

integral leaf of V1 passing through ϕ(x, 1).

Moreover, the claim above shows that Y := ψ∗(X) is a well-defined parallel vector

field along U ′
1. Consider the map ψ̃ : U ′

1 → M0 defined by y 7→ expy(−Y ). From the

local considerations above, it is clear that ψ̃ ◦ ψ is the identity of U1. This shows that
ψ is one-to-one. �

The next result, which is somewhat folkloric, like the previous one, shows that expo-
nentiating a geodesic tangent to V1 in the direction of a constant or affine Jacobi field
tangent to V2 yields another geodesic whenever it is defined.

Lemma 4.3. Let γ : [a, b] → M0 be a geodesic tangent to V1 parametrized by arc-length
and let X ∈ Tγ(a)M0 be a vector tangent to V2. Extend X to a parallel vector field along
γ.

(i) Assume that γs(t) := expγ(t)(sX) is well-defined for all t ∈ [a, b] and s ∈ [0, 1].
Then γ1(t) is a geodesic in M0 and its tangent vector at t is the parallel transport of
γ̇(t) at expγ(t)(X) along the geodesic s 7→ expγ(t)(sX).

(ii) Assume that γX(t) := expγ(t)(tX) is well-defined for all t ∈ [a, b]. Then γX(t) is

a geodesic in M0 and the projections of γ̇X(t) onto V1 and V2 are parallel vector fields
along γX of length 1 and |X| respectively.

Proof. (i) The first statement follows immediately from Lemma 4.2. The second one is
a consequence of the claim used to prove the same lemma.

(ii) Assume first that M0 is a global Riemannian product M0 = M1 ×M2. If γ(a) =
(m1, m2), then γ(t) = (γ1(t), m2) for some geodesic γ1 inM1 parametrized by arc-length.
The vector field X along γ can be written X = (0, X2), where X2 is a constant vector
tangent to M2 at m2. Denoting by γ2(t) = expm2

tX2 the geodesic in M2 starting at m2

with initial speed X2, then γX(t) = (γ1(t), γ2(t)), is a geodesic in M0. The projections
of γ̇X(t) onto V1 and V2 are (γ̇1, 0) and (0, γ̇2), which are clearly parallel vector fields
along γX of length 1 and |X| respectively.

Back to the general case, it is of course enough to show that the statement holds
in the neighbourhood of every point γX(t0). Since the domain of definition of the
exponential on the normal bundle of a geodesic is open, the curve c(t) := expγ(t)(t0X)

is well-defined for t near t0. By Lemma 4.2, c(t) is a geodesic through x := γX(t0),
parametrized by arc-length. Moreover, if Y denotes the parallel vector field along c(t)
with Yx = d expγ(t0)(t0X), Lemma 4.2 also shows that Yγ(t) = d expγ(t)(t0X), so by (2),

γX(t) = expγ(t)((t− t0)Y ).
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c

γ(t0)γ

xY
U

γX(t) = expγ(t) tX

tX

γ(t)

Figure 3. Idea of the proof of Lemma 4.3 (ii).

By the local de Rham theorem, the point x has a neighbourhood U isometric to
U1 × U2, where Ui is some local leaf of Vi through x. As γX(t) lies in U for t near t0,
the statement follows from the first part of the proof. �

We assume from now on that D is a closed tame Weyl structure on a compact con-
formal manifold (M, c) which has reducible holonomy and that (M0, g0) is the minimal
Riemannian cover of (M, c,D). We denote as before by d the distance induced by g0 on
M0, by ω the singularity of M0 and by δ the distance to the singularity: δ(x) := d(x, ω).
Since D = ∇0, g0 has reducible holonomy, so the above results apply to the present
setting. We will need the following quantitative version of the local de Rham decompo-
sition theorem for (M0, g0).

Lemma 4.4. There exists a quasi-linear function σ : M0 → R∗
+ such that each point

x ∈ M0 has a neighbourhood U and an isometry F : U → B1
x(σ(x)) × B2

x(σ(x)), with
F (x) = (x, x), where Bi

x(r) is the ball of radius r around x in the maximal leaf Mi

though x, tangent to the distribution Vi.

Proof. By Lemma 2.10, it is enough to define σ on a relatively compact fundamental
domain K ⊂ M0 of the covering M0 → M , and to extend it to M0 in a Γ-equivariant
way by σ(f(x)) = ρ(f)σ(x) for all f ∈ Γ and x ∈ K.

The local de Rham theorem ensures that for every x ∈M0 there exist neighbourhoods
Ui(x) of x in the maximal leaf Mi(x) though x, tangent to the distribution Vi, such that
U1(x) × U2(x) is isometric to a neighbourhood U(x) of x in M0. Take a finite number
of points xi such that K ⊂ ∪iU(xi). Each neighbourhood U1(xi) and U2(xi) contains a
geodesic ball centered in xi of radius r1(xi) and r2(xi) respectively. It is then enough
to define σ on K to be the minimum of all these radii. �

We now come to a key point of the proof of Theorem 4.1, namely the existence of
complete maximal leaves tangent to the distributions Vi.

Proposition 4.5. If M1 is a maximal leaf of V1 which is incomplete, then every maximal
leaf of V2 which intersects M1 is complete.

Proof. Since M1 is totally geodesic and incomplete, through every point x ∈M1 passes
a geodesic γ : (0, r] → M1 parametrized by arc-length, such that γ(r) = x, which can
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not be defined at t = 0. Since Mi is totally geodesic in M0, γ is also a geodesic in M0.

By Theorem 2.6, we must have limt→0 γ(t) = ω in (M̂0, d).

Let X ∈ TxM ∩ V2 be any unit normal vector to M1 at x, extended as before to
a parallel vector field along γ. We claim that the geodesic generated by X in M0 is
complete.

The crucial point here is the fact that every point γ(t) is far enough from the singu-
larity ω, in order to ensure that the exponential function is well-defined in a suitable
neighbourhood. More precisely, Proposition 3.11 shows that there exists a constant
κ > 0 such that for every t ∈ (0, r], the distance δ(γ(t)) from γ(t) to ω (in M0) is
bounded from below by κt. Consequently, expγ(t) sX is well-defined for |s| ≤ κt, so by
Lemma 4.3 (ii), the curve γ1 : (0, r] → M0 defined by γ1(t) := expγ(t) κtX is a geodesic

in M0 with |γ̇1|2 = 1 + κ2. Moreover, the limit in M̂0 of γ1(t) as t → 0 is clearly ω.
Proposition 3.11 applied this time to the geodesic parametrized by arc-length γ̃1 defined
by

γ̃1(t) := γ1((1 + κ2)−1/2t)

yields δ(γ̃1(t)) > κt, whence

δ(γ1(t)) > (1 + κ2)1/2κt > κt.

Consequently, for every t ∈ (0, r], every geodesic defined by a unit vector Y ∈ Tγ1(t)M0

is defined at least up to the time κt. Taking Y to be the speed vector of the geodesic
s → expγ(t) sX at s = κt, we obtain that this geodesic can actually be extended for
s ∈ [0, 2κt], for any t ∈ (0, r]. By Lemma 4.3 (ii), the curve γ2 : (0, r] → M0 defined
by γ2(t) := expγ(t) 2κtX is thus a geodesic in M0 with |γ̇2|2 = 1 + 4κ2. Again, we check
that the distance from γ2(t) to the singularity is at least κt, showing that for every
t ∈ (0, r], expγ(t) sX is well-defined for |s| ≤ 3κt. Iterating the same argument shows
that the geodesic expγ(t) sX is actually defined for every t ∈ (0, r] and for every s ∈ R.

γ2(t) = expγ(t) 2κtX

γ3(t) = expγ(t) 3κtX

γ1(t) = expγ(t) κtX

γω

Figure 4. Idea of the proof of Proposition 4.5.

In particular, for t = r, γ(t) = x, we have proved that the geodesic through x tangent
to X ∈ V2 is complete. Since X was arbitrarily chosen, the whole integral leaf of V2

through x is thus complete. �
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In order to apply this result, we need to show that incomplete leaves actually exist.

Lemma 4.6. There exist incomplete maximal leaves Mi of Vi or, equivalently, incom-
plete geodesics γi tangent to Vi for i = 1 and i = 2.

Proof. Let γ : (0, 1] → M0 be an incomplete geodesic, such that limt→0 γ(t) = ω in

(M̂0, d). We may assume that γ is not tangent to V1 or V2: If for instance γ were
tangent to V1, we replace it by γX given by Lemma 4.3 (ii), which is neither tangent to
V1 nor to V2.

Let X1 and X2 denote the projections of γ̇ on V1 and V2 respectively, which are clearly
parallel along γ. We denote by ri := |Xi| 6= 0 the norms of Xi and by r :=

√
r2
1 + r2

2

the norm of γ̇. Define the slope of γ to be the quotient q(γ) := r1/r2.

We claim that γ1(t) := expγ(t)(−tX1) is defined for every t ∈ (0, 1], and is an in-

complete geodesic tangent to V2, such that limt→0 γ1(t) = ω in (M̂0, d). The argument
is similar to that used in the proof of Proposition 4.5: The exponential, denoted γs(t)
of −tsX1 at γ(t) is well-defined by Proposition 3.11 for |s| ≤ κr

r1
. For every fixed s

in this interval, γs(t) is an incomplete geodesic and its slope is (see Lemma 4.3 (ii))
q(γs) = (1 − s)q(γ). If κr

r1
≥ 1, which is equivalent to q(c) ≤ (κ−2 − 1)−1/2, the incom-

plete geodesic γs has zero slope for s = 1, i.e. it is tangent to V2. Otherwise, we replace
γ by γs with s = κr

r1
and repeat this procedure. The slope of the new geodesic is

q(γs) =

(
1 − κr

r1

)
q(γ) = q(γ) − κr

r2
≤ q(c) − κ,

showing that the procedure stops after a finite number of iterations. Since V1 and V2

play symmetric rôles, this finishes the proof. �

Corollary 4.7. If there exists an incomplete geodesic γ passing through a point x ∈M0

such that γ̇ is neither tangent to V1 nor to V2, then x belongs to a complete leaf of V1

which intersects an incomplete maximal leaf of V2, and to a complete leaf of V2 which
intersects an incomplete maximal leaf of V1.

Proof. The result follows directly from the proof of Lemma 4.6 together with Proposition
4.5. �

Lemma 4.8. If M1 is a maximal leaf of V1 which is incomplete, then all maximal leaves
of V2 which intersect M1 are isometric.

Proof. Let M2(x) denote the maximal leaf of V2 through x. Since every two points of M1

can be joined by a broken geodesic, it is enough to show that M2(γ(0)) and M2(γ(1))
are isometric for every geodesic γ : [0, 1] → M1. Consider the normal vector field X(t)
on M2(γ(t)) obtained by parallel transport of γ̇(t). Since M2(γ(0)) is complete, every
point y ∈ M2(γ(0)) can be expressed as y = expγ(0)(Y ) for some Y ∈ Tγ(0)M2(γ(0)).
We extend Y along γ by parallel transport. By Proposition 4.5, the leaves M2(γ(t)) are
complete, hence expγ(t)(sY ) is well-defined for every s ∈ R and t ∈ [0, 1]. By Lemma
4.3 (i) we get expγ(t)(Y ) = expy(tX(0)). The exponential of X(0) is thus defined for all
y ∈M2(γ(0)) so we conclude by Lemma 4.2. �
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Consider now a metric g on M0 obtained as the pull-back of a metric in the conformal
class c on M . Let ϕ be the conformal factor relating g to g0 by g0 = ϕ2g and let d̃ the
geodesic distance induced on M0 by g. Denote by Bx(r) and B̃x(r) the set of points at

distance less than r from x with respect to d and d̃ respectively. Recall that by Lemma
2.11 ϕ is quasi-linear, so there exist positive constants k1, k2 such that

k1δ(x) ≤ ϕ(x) ≤ k2δ(x), ∀ x ∈M0. (3)

Lemma 4.9. For every x ∈M0 and positive real number r, the open ball Bx(r) contains

the open ball B̃x(r̃), where r̃ = r
k2(δ(x)+r)

.

Proof. For every y ∈ Bx(r) we have δ(y) ≤ δ(x) + r, so by (3) ϕ(y) ≤ k2(δ(x) + r).

Consequently, the g0-length l0(c) and g-length l(c) of every path contained in Bx(r) are
related by

l0(c) ≤ k2(δ(x) + r)l(c). (4)

Assume there exists z ∈ B̃x(r̃)rBx(r) and let c : [0, 1] →M0 be any path joining x and
z. Define s0 = inf{s | c(s) /∈ Bx(r)} and consider the path c′ = c|[0,s0] which is clearly

contained in Bx(r). Then l0(c′) ≥ r, so by (4), l(c) ≥ l(c′) ≥ r̃. Since this holds for

every path c, we must have d̃(x, z) ≥ r̃, contradicting the fact that z ∈ B̃x(r̃). �

Lemma 4.10. Let γ : (0, a] → M0 be an incomplete g0-geodesic parametrized by arc-
length, such that limt→0 δ(γ(t)) = 0. There exist positive real numbers ρ, q ∈ (0, 1) such
that the open balls Bn := Bγ(qn)(ρq

n), n ∈ N, are all pairwise disjoint.

Proof. Recall that by Proposition 3.11 we have control on the distance from γ(t) to the
singularity ω, i.e. there exists a constant κ ∈ (0, 1), independent of γ, such that:

κt ≤ δ(γ(t)) ≤ t, ∀ t ∈ (0, a]. (5)

We start with arbitrary ρ and q in (0, 1). For every y ∈ Bn, Equation (5) yields

(κ− ρ)qn ≤ δ(γ(qn)) − ρqn ≤ δ(y) ≤ δ(γ(qn)) + ρqn ≤ (ρ+ 1)qn,

so by (3) we get
k1(κ− ρ)qn ≤ ϕ(y) ≤ k2(ρ+ 1)qn.

It is thus enough to choose ρ and q such that k2(ρ+ 1)qn+1 < k1(κ− ρ)qn for every n,
which is equivalent to ρ < κ and q < k1

k2(ρ+1)
(κ− ρ). �

Corollary 4.11. Consider the open subset B := ∪n≥1Bn in M0. There exists f ∈ Γ
different from the identity such that f(B) ∩ B 6= ∅.

Proof. Lemma 4.9 applied to x = γ(qn) and r = ρqn shows that Bn contains the open
ball B̃x(r̃) where

r̃ =
r

k2(δ(x) + r)
=

ρqn

k2(δ(x) + ρqn)
≥ ρqn

k2(qn + ρqn)
=

ρ

k2(1 + ρ)
.

Recall that Γ acts by isometries on (M0, g) and that (M0, g)/Γ = (M, g). If f(Bn)∩Bm =
∅ for every f ∈ Γ and m 6= n, the projections π(Bn) of Bn onto M would be pairwise
disjoint sets, each of them containing a ball of g-radius ρ

k2(1+ρ)
in M . This is impossible

since M is compact, thus proving our assertion. �
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The last step in the proof of Theorem 4.1 is the following:

Lemma 4.12. Let M1 be a maximal leaf of V1 which is incomplete. Then for every
x ∈M1, the maximal leaf M2(x) of V2 through x is flat.

Proof. Let γ : (0, 1] → M1 be an incomplete geodesic with respect to g0 parametrized by
arc-length, such that γ(1) = x and γ(t) converges to ω (with respect to d) as t tends to
0. By Lemma 4.10 one can find ρ, q ∈ (0, 1) such that the open balls Bn := Bγ(qn)(ρq

n)
are pairwise disjoint. Moreover, one can choose ρ such that each maximal leaf of V2

through a point of B = ∪n≥1Bn intersects M1. Indeed, this follows from Lemma 4.4
provided that ρqn is smaller than σ(γ(qn)) for every n. Since σ is quasi-linear, there
exists some σ0 such that σ(x) ≥ σ0δ(x), so from (5) it suffices to take ρ < κσ0.

Corollary 4.11 now shows that there exists f ∈ Γ different from the identity and
y, z ∈ B such that y = f(z). Then f maps the integral leaf M2(z) of V2 through z to
the integral leaf of V2 through y. Since both leaves intersect M1, Lemma 4.8 shows that
they are isometric. Composing f with this isometry we obtain a strict homothety of
M2(z). Since M2(z) is complete, Lemma 2, page 242 in [10] shows that it must be flat.
By Lemma 4.8 again, all the other leaves tangent to V2 must be flat as well. �

We are now in position to complete the proof of Theorem 4.1. From Corollary 4.7,
and Lemma 4.12, the sectional curvature of g0 vanishes at each point x which belongs to
an incomplete geodesic which is neither tangent to V1 nor to V2. The proof of Lemma 4.3
(ii) shows that the set of such points is dense in M0. Thus (M0, g0) is a flat Riemannian
manifold, so the holonomy group of D = ∇0 is discrete. �

Remark 4.13. The only place where the compactness assumption on M is needed
in Theorem 4.1, is to ensure, by Theorem 2.6, that the minimal Riemannian cover
of (M, c,D) has exactly one singularity. Theorem 4.1 thus holds in a slightly more
general setting, and applies in particular to all metric cones over complete Riemannian
manifolds.

5. Examples and applications

5.1. Analytically tame Weyl structures. In order to show that the hypotheses
in Theorem 4.1 are satisfied by a large variety of Weyl structures, we introduce the
following:

Definition 5.1. A Weyl structure D on a conformal manifold (M, c) is called analyti-
cally tame if there exists a complete Riemannian metric g ∈ c and a positive real number
ε > 0 such that

|θ|2g(X,X) + (∇Xθ)(X) ≥ 2εg(X,X), ∀ X ∈ TM, (6)

where ∇ denotes the Levi-Civita covariant derivative of g and θ denotes the Lee form
of D with respect to g.
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Recall that the Lee form θ of a Weyl structure D with respect to a metric g ∈ c
measures the difference between D and the Levi-Civita connection ∇ = ∇g of g:

DXY −∇XY = θ̃X(Y ) := θ(X)Y + θ(Y )X + θ♯g(X, Y ), ∀ X, Y ∈ TM, (7)

where θ = g(θ♯, ·).
Example 5.2. With the notations form Example 2.5, it is easy to see that the standard
Weyl structure D0 on (a compact quotient of) a metric cone is analytically tame. Indeed,
the Lee form of D0 with respect to the complete metric g is θ0 := ds and it is parallel
for ∇ = ∇g. Therefore |θ0|2g + ∇θ = g thus (6) is even an equality for ε = 1/2.

Remark 5.3. An exact Weyl structure on a compact conformal manifold M can not
be analytically tame. Indeed, its Lee form θ with respect to any metric is exact, θ = dϕ
so (6) cannot hold at points where ϕ reaches its maximum on M .

The remaining part of this section is devoted to the proof of the following result,
which also justifies the terminology in Definition 5.1:

Theorem 5.4. If D is an analytically tame Weyl structure with respect to some complete
metric g ∈ c on a conformal manifold (M, c), then D is tame.

Proof. Let θ be the Lee form of D with respect to g. If ∇ denotes the Levi-Civita
covariant derivative of g, then we get from (7), see also [8]:

DX −∇X = (θ ∧X)∗ − pθ(X)Id (8)

on T ∗M⊗p, where (θ ∧ X)∗ is the usual extension of the endomorphism θ ∧ X as a

derivation (in fact, the right hand side of (8) is just θ̃X , acting as a derivation on
T ∗M⊗p). It is easy to check that (θ ∧X)∗g = 0, so (8) yields

DXg = −2θ(X)g. (9)

On the other hand, applying (8) to the Lee form θ itself yields

DXθ = ∇Xθ + g(θ, θ)g(X, .) − 2θ(X)θ,

thus showing that (6) is equivalent to

(DXθ)(X) ≥ 2εg(X,X) − 2θ(X)2, ∀ X ∈ TM. (10)

Let γ(t) be a geodesic with respect to D on M and let I = (a, b) denote its maximal
domain of definition, with a, b ∈ R = R ∪ {±∞}. We introduce the functions F (t) :=

g(γ̇(t), γ̇(t))−
1

2 and H(t) := θ(γ̇(t)), defined on I. Using (9) we get

F ′(t) = γ̇(t).F (t) = −1

2

[
(Dγ̇(t)g)(γ̇(t), γ̇(t))

][
g(γ̇(t), γ̇(t))−

3

2

]
= F (t)H(t), (11)

and from (10),

H ′(t) = γ̇(t).H(t) = (Dγ̇(t)θ)(γ̇(t)) ≥ 2εF (t)−2 − 2H(t)2. (12)

Lemma 5.5. If b < ∞ (i.e. γ is incomplete toward the future) then limt→bF (t) = 0.
Similarly, if a > −∞, then limt→aF (t) = 0.
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Proof. We have to show that the g-norm of the speed vector of an incomplete D-geodesic
cannot be bounded on M . Consider the geodesic flow of D, viewed as a vector field
on the tangent bundle TM . Let γ be the maximal half-geodesic with respect to D,
issued from some X ∈ TxM . There exists T > 0 such that the maximal integral curve
through X of the geodesic flow is defined only for t < T . Assume that the g-norm of γ̇
is bounded: g(γ̇(t), γ̇(t)) < k2 for all t ∈ [0, T ). Then the corresponding integral curve
is contained in the subset K(k, T ) of TM defined by

K(k, T ) := {Yy ∈ TM | d(x, y) ≤ kT and g(Y, Y ) ≤ k2},
where d denotes the geodesic distance with respect to g. Since g is complete, the closed
geodesic balls are compact, so K(k, T ) is a compact subset of TM . On the other hand,
it is well-known that an incomplete integral curve of a vector field cannot be contained
in any compact subset, thus proving the lemma. �

In order to fix the ideas, we will assume from now on that

0 ∈ I and H(0) ≤ 0 (13)

(this can always be achieved by making a translation in time and replacing γ(t) with
γ(−t) if necessary).

Lemma 5.6. The function F has at most one critical point. If this happens, then the
critical point is an absolute minimum of F , and γ is complete. Conversely, if γ is
complete, then F has a critical point.

Proof. Let t0 be a critical point of F . From (11), H(t0) = 0. Moreover, (12) shows that
H ′ is strictly positive at each point where H vanishes, so actually H cannot vanish more
than once. Thus H(t) is positive for t ≥ t0 and negative for t ≤ t0, so t0 is a global
minimum of F . Lemma 5.5 then shows that γ cannot be incomplete.

Conversely, assume that γ is complete, i.e. I = R. If F has no critical point, H does
not vanish, so by our assumption (13), H < 0 on R. F is thus a decreasing positive
function, so limt→∞H(t)F (t) = limt→∞ F ′(t) = 0. Dividing by H(t)2 in (12) yields

H ′(t)

H(t)2
>

2ε

F (t)2H(t)2
− 2.

Since the right hand side tends to infinity as t → ∞, an integration shows that
limt→∞H(t) = 0. Using (12) again, we then see that there exist some t0 ∈ R and
δ > 0 such that H ′(t) > δ for t > t0. This of course contradicts the fact that H is
negative on the whole real line R, thus proving the lemma. �

The convention (13) together with Lemma 5.6 ensures that if γ is an incomplete
geodesic, H is negative on I, so F is decreasing. By Lemma 5.5, γ is complete toward
−∞, i.e. I = (−∞, b), with b ∈ R+.

Lemma 5.7. If γ : I → M0 is a geodesic with respect to D which is incomplete in the
positive direction, then

H(t) ≤ −
√
ε

F (t)
, ∀ t ∈ I. (14)
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Proof. If (14) does not hold, there exists t0 ∈ I such that

−
√
ε

F (t0)
< H(t0) < 0.

We define the open set

I ′ := {t ∈ I | −
√
ε

F (t)
< H(t)},

and let (a′, b′) be the connected component of I ′ containing t0. By (12), H is strictly
increasing on I ′. In the other hand, we have seen that F is decreasing on I. If b′ ∈ I,
we would have

H(b′) = −
√
ε

F (b′)
< −

√
ε

F (t0)
< H(t0),

a contradiction. The only possibility left is thus b′ = b. But this is impossible as well,
since by (11),

lim
t→b′

log(F (t)) = log(F (t0)) +

∫ b′

t0

H(t)dt > −∞,

contradicting Lemma 5.5. �

Back to the proof of Theorem 5.4, using (14) and (11) we get F ′(t) ≤ −√
ε, and thus

√
εb =

∫ b

0

√
εdt ≤ −

∫ b

0

F ′(t)dt ≤ F (0) = g(γ̇(0), γ̇(0))−
1

2 .

In other words, the life-time of every geodesic γ, incomplete in the positive direction, is
bounded from above by (εg(γ̇(0), γ̇(0)))−

1

2 . Let K be any compact subset of TM r {0}
and let l(K) denote

l(K) := inf
X∈K

{g(X,X)}.

With the notations from Section 3, for every X ∈ ID ∩K we have LD(X) ≤ (εl(K))−
1

2 ,
so D is tame by Proposition 3.6. �

The analytically tame condition (6) is clearly open in the C1 topology defined by
the metric g on the space of Weyl structures. Therefore, Theorem 4.1 applies to open
subsets of the space of closed Weyl structures.

5.2. Holonomy issues. An exact Weyl structure on a conformal manifold is just the
Levi-Civita connection of some metric in the conformal class. The possible restricted
holonomy groups of exact Weyl structures are thus given by the Berger-Simons theorem
([4], p. 300). The analogous question for non-closed Weyl structures can be answered
from [12] in the irreducible case and was studied in [3] in the reducible case. It thus
remains to understand the case of closed, non-exact Weyl structures. The next result
gives a complete list in the compact case, under the assumption that the connection is
tame.
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Proposition 5.8. The restricted holonomy group of a closed, non-exact, tame Weyl
structure D on a compact n-dimensional conformal manifold (M, c) is one of the fol-
lowing:

SO(n), U(n/2), SU(n/2), Sp(n/4), G2 (for n = 7), Spin(7) (for n = 8), 0.

Conversely, each of the groups listed above can be realized as the restricted holonomy of
a closed, non-exact Weyl structure on a compact conformal manifold.

Proof. Since D is locally the Levi-Civita connection of metrics in the conformal class
c, the Berger-Simons theorem applies. Assume first that D is locally symmetric. The
metric g0 on the minimal Riemannian cover M0 of (M, c,D) is then locally symmetric.
Every nontrivial homothety f satisfies f ∗g0 = ρ(f)2g0 and preserves the Riemannian
curvature tensor R0. In particular f ∗(|R0|2) = ρ(f)−4|R0|2. On the other hand, R0

being parallel with respect to the Levi-Civita connection of g0, |R0|2 is constant on M0.
Since ρ(f) 6= 1, this shows that (M0, g0) is flat, so Hol0(D) = 0.

Assuming from now on that Hol0(D) 6= 0, D is irreducible by Theorem 4.1, so Hol0(D)
is in the Berger list [4], p. 301. It remains to show that Sp(k) ·Sp(1) can not be realized
as the restricted holonomy group of a closed, non-exact Weyl structure. The argument
is similar to the one used above. If Hol0(D) = Sp(k) · Sp(1) then the minimal cover
(M0, g0) is quaternion-Kähler, therefore Einstein with non-zero Ricci tensor Ric = λg0

[4]. Since the homotheties that act onM0 preserve the Levi-Civita connection of g0, they
also preserve the Ricci tensor. We infer that every homothety has to be an isometry,
which contradicts the fact that D is not exact.

Conversely, we will show that every group in the above list can be realized as the
holonomy of a closed, non-exact Weyl structure on a compact manifold. In fact, the
examples that we provide are all quotients of cone constructions by a non-trivial homo-
thety [1].

Indeed, let n > 2 (the case n = 2 is trivial) and (Nn−1, h) be a compact Riemannian
manifold of a certain weak holonomy type (that we precise in each case), and let M :=
S1 × N with the product metric g. The conformal manifold (M, c) (where c is the
conformal class of g) can equally be seen as the quotient of the cone M0 := R∗

+ × N ,
g0 = dt2 + t2h by the infinite cyclic group generated by η(t, x) := (kt, x), for 0 < k < 1.
The cone-like manifold (M0, g0) is the minimal Riemannian cover of the Weyl manifold
(M, c,D), where D is the projection to M of the Levi-Civita connection of the cone
(M0, g0).

The remaining part of the proof is based on well-known results in Riemannian geom-
etry (see [1] for details):

(1) If (N2m−1, h) is Sasakian and not Einstein, then Hol0(M,D) = U(m) [14];
(2) If (N2m−1, h) is Sasaki-Einstein and neither 3-Sasakian, nor locally isometric to

the unit sphere, then Hol0(M,D) = SU(m);
(3) If (N4k−1, h) is 3-Sasakian but not locally isometric to the unit sphere, then

Hol0(M,D) = Sp(k);
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(4) If (N6, h) is strictly nearly Kähler [9], has scalar curvature equal to 30, and is
not locally isometric to S6, then Hol0(M,D) = G2;

(5) If (N7, h) has a proper nearly parallel G2-structure (i.e. the space of Killing
spinors with Killing constant 1/2 is one-dimensional, [5]), then Hol0(M,D) =
Spin(7).

(6) If (Nn−1, h) is the unit sphere Sn−1, then Hol0(M,D) = 0. �

Note that the case Hol0(M,D) = U(m) is well-known in the literature and corre-
sponds to locally conformally Kähler (l.c.K.) manifolds. The l.c.K. structure constructed
above on S1×N for every Sasakian manifoldN has the following special property: There
exists a metric g in the conformal class such that the Lee form of D with respect to g
is ∇g-parallel [14]. This special kind of l.c.K. metric is called Vaisman metric and it
is known that not every l.c.K. structure contains such a metric in the conformal class,
not even for a deformation of the l.c.K. conformal class (see [11], [13] for examples of
l.c.K. manifolds which can not be conformally Vaisman for topological reasons, having
non-zero Euler characteristic, and also [2] for a classification of Vaisman structures on
compact 4-manifolds).

For the other holonomy groups in the above list we have the following structure result
(note that the tame assumption is no longer required):

Proposition 5.9. Let (M, c,D) be a compact Weyl manifold of dimension n > 2, such
that D is a closed Weyl structure whose restricted holonomy is one of the following
subgroups of SO(n): SU(n/4), Sp(n/4), G2 ⊂ SO(7), Spin(7) ⊂ SO(8) or 0 ⊂ SO(n)
(cases (2)–(6) in the above list). Then the following hold:

(1) There exists a compact Riemannian manifold (N, gN) satisfying one of the con-

ditions (2)–(6) above, such that the universal cover M̃ of M , together with the
metric g0 whose Levi-Civita connection is the pull-back of D, is a metric cone
over (N, gN), i.e. M̃ = R∗

+ ×N , and g0 = dt2 + t2gN .
(2) The minimal Riemannian cover of (M, c,D) is the metric cone over a finite

quotient of (N, gN).
(3) The manifold M , endowed with its Gauduchon metric, is the mapping torus of

an isometry of this finite quotient of (N, gN).

Proof. Let g ∈ c denote the Gauduchon metric of D on M (which is determined up
to a multiplicative constant by the fact that the Lee form of D with respect to g is
δg–co-closed, see [7]), as well as its pull-back to the universal cover M̃ of M . We denote
by g0 the metric on M̃ having D as Levi-Civita covariant derivative. In all five cases
(2)–(6), the metric g0 is Ricci-flat, so D is an Einstein-Weyl structure. This also holds
on the compact manifold M , therefore Theorem 3 in [8] implies that the Lee form of
D with respect to g is parallel. The same is true on the complete, simply connected
manifold (M̃, g), which is therefore a Riemannian product (R, ds2) × (N, gN).

The Lee form of D with respect to g on M̃ is just ds, so g0 = e2sg, i.e. g0 = dt2 + t2gN

after a coordinate change t := es. This means that (M̃, g0) is the metric cone over
(N, gN). It is well-known, see for example [1], that if the holonomy of the metric cone
of (N, gN) is one of the five groups above, then (N, gN) is Einstein with positive scalar
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curvature. This, together with the fact that N is closed in M̃ , (and thus complete),
implies that N has to be compact.

Let f ∈ π1(M) be any deck transformation, thus acting isometrically on (M̃, g).
Since f is affine with respect to D, it has to preserve the Lee form of D with respect
to g, i.e. f ∗(ds) = ds, and therefore it preserves its g-dual ∂/∂s. This means that f
commutes with the flow of ∂/∂s on M̃ , so it is induced by an isometry, also denoted by
f , of (N, gN): f(s, x) = (s+ ln(ρ(f)), f(x)) (recall that ρ(f) is the homothety constant
of f with respect to g0: f ∗g0 = ρ(f)2g0). It follows that the group I ⊂ π1(M) of
deck transformations preserving g0 induces a group of isometries IN acting freely on
(N, gN), so the minimal Riemannian cover (M0, g0) of (M, c,D) is the metric cone over
(N, gN)/IN .

Finally, the compactness of N implies that the deck transformation group Γ =
π1(M)/I of the covering M0 → M is discrete, hence isomorphic to Z, showing that
(M, g) is the mapping torus of an isometry of (N, gN)/IN . �

As a consequence, χ(M) = 0 and the fundamental group of M is a finite extension
of Z. Note that if dimM = 2 and D is flat, its minimal covering may be C∗ or C. In
both cases π1(M) is (a finite extension of) Z2.

Remark 5.10. The Berger-Simons theorem, along with the de Rham decomposition
theorem, completely classify the restricted holonomy groups of torsion-free connections
with bounded full holonomy group (as a subset of GL(n,R) ⊂ Rn2

). On the other hand,
a closed, non-exact Weyl structure is just a torsion-free connection whose restricted
holonomy group is compact, but its full holonomy group is not bounded. Theorem 4.1
and the results in this section can thus be interpreted as an holonomy classification for
this kind of connections (under the tame assumption).

5.3. An example of cone-like manifold which is not tame. Let Ĉ0 be the following
rotation cone in R3:

Ĉ0 := {(x, y, z) | z =
√
x2 + y2}.

The set C0 := Ĉ0 r {0} is a smooth Riemannian submanifold of R3 and its metric

completion is Ĉ0. The homothety X 7→ 2X in R3 defines by restriction a homothety
f of C0, which generates a group of homotheties Γ := {fn | n ∈ Z} acting freely and
properly discontinuously on C0. The quotient space is a topological torus T 2. The
Riemannian metric on C0 defines by projection a conformal structure on T 2, and its
Levi-Civita connection projects to a closed, non-exact Weyl structure on T 2.

We are going to apply some surgery and smoothening to get by similar methods a
closed, non-exact Weyl structure on a surface of genus 2.

To do that, consider the domain B0 := C0 ∩ {1 < z < 2}, remove the two topological
discs obtained as intersection of B0 with the full cylinder

Z0 := {(x, y, z) ∈ R
3 | y2 + (z − 3/2)2 ≤ 1/16},
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connect the borders of the two removed discs by the part of the boundary of Z0 that
lies inside the cone C0, then smoothen it up to get a new surface B ⊂ R3 such that:

(1) Only the part of B0 inside the (larger) cylinder

Z := {(x, y, z) ∈ R
3 | y2 + (z − 3/2)2 ≤ 1/8}

has been changed (in particular there are neighbourhoods of the two boundary
circles of B0 that are unchanged, so the gluing with the remaining part of C0

can be done smoothly);
(2) The symmetries

Sx, Sy : R
3 → R

3, Sx(x, y, z) := (−x, y, z), Sy(x, y, z) := (x,−y, z)
still act as isometries of B.

The union
N0 :=

⋃

n∈Z

fn
(
B

)

is then a non-closed (hence incomplete) smooth submanifold in R3 which can be com-
pleted as a metric space by adding the origin to it. Let g0 denote the induced Riemannian
metric from R3. The group Γ acts on (N0, g0) by homotheties and the quotient space
N := N0/Γ is a genus 2 surface (obtained by gluing together the two circles that con-
stitute the boundary of B). The Riemannian metric g0 and its Levi-Civita connection
define, by projection, a conformal structure c, and a closed, non-exact Weyl structure
D on N .

Z

B0

B
kn

γn

c−

c+construction
of N0

{x = 0}

γn−1

{y = 0}
geodesicsand

symmetries

on N0

Figure 5. Construction and properties of N0.

We are going to study the geodesics of N0 and prove the following

Proposition 5.11. The Weyl structure D is not tame on (N, c).

Proof. Consider the isometries Sx and Sy acting on (N0, g0), whose fixed point sets
consist of unions of geodesics in N0:
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(1) Fix(Sx) = N0 ∩{x = 0}, which is a union of two half lines c+, c− : (0,∞) → N0,
c±(t) := (0,±t, t) and an infinity of circles kn := {(0, y, z) | y2 +(z− 3 · 2n−1)2 =
4n−2}, n ∈ Z;

(2) Fix(Sy) = N0 ∩ {y = 0}, which is a union of closed curves γn connecting fn(B)
with fn+1(B) and intersecting kn in Pn := (0, 0, 7 · 2n−2), and kn+1 in Qn+1 :=
(0, 0, 3 · 2n−1).

We denote P := Pn, for some positive integer n. The point P is a fixed point for
both isometries Sx and Sy, and hence for their composition S := Sx ◦ Sy. The latter
induces the map X 7→ −X on TPN0 and associates to a point Q ∈ N0 the geodesic
reflection through P , i.e. the point Q̄ such that, for any geodesic cQ : (−ε, a] → N0

with cQ(a) = Q and cQ(0) = P , cQ can be defined on a symmetric interval [−a, a], and
Q̄ = cQ(−a).

On the other hand, there exists a geodesic γ : (−ε, T ) → N0 such that γ(0) = P and
γ(t) tends to ω = (0, 0, 0) as t tends to T . The remark above implies that the geodesic
is actually defined on (−T, T ) (and this is its maximal domain of definition), and

lim
t→T

γ(t) = ω = lim
t→−T

γ(t),

so both ends of the incomplete geodesic γ tend to the singularity.

For any ε > 0, the point γ(T −ε) can thus be connected by at least two half-geodesics
with ω, namely the two branches of γ, of lengths ε and 2T − ε respectively. As ε can be
chosen arbitrarily small, we see that there is no bound for the ratios of those lengths,
therefore N0 is not tame by the converse statement in Proposition 3.11. �

5.4. Open problems. Several natural questions emerge from the considerations in the
present paper. We list here some of the most interesting ones:

(1) Theorem 2.6 shows that if D is a closed Weyl structure on a compact conformal
manifold (M, c), then the minimal Riemannian cover (M0, g0) can be metrically
completed by adding exactly one point. The metric completion of its universal
covering (M̃, g̃) is, however, not well understood: The boundary of M̃ in its
metric completion may be more complicated in general, possibly depending on
the growth of the fundamental group of M .

(2) One can check that the analytically tame condition forces the Lee form θ to
be non-vanishing, therefore restricting the topology of M0 to products R × N ,
in particular χ(M) = 0. Does the tame condition also imply a topological
restriction? And if this restriction is satisfied, is the structure automatically
tame?

(3) Ultimately, is the tame condition necessary in the proof of Theorem 4.1?

The answer to this last question seems to be the most challenging problem in the
holonomy theory of Weyl structures.
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