
HAL Id: hal-00404929
https://hal.science/hal-00404929v2

Submitted on 17 Jul 2009

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Dense and Accurate Spatio-Temporal Multi-View
Stereovision IMAGINE Research Report 09-43

Jérôme Courchay, Jean-Philippe Pons, Renaud Keriven, Pascal Monasse

To cite this version:
Jérôme Courchay, Jean-Philippe Pons, Renaud Keriven, Pascal Monasse. Dense and Accurate Spatio-
Temporal Multi-View Stereovision IMAGINE Research Report 09-43. 2009. �hal-00404929v2�

https://hal.science/hal-00404929v2
https://hal.archives-ouvertes.fr


Dense and Accurate
Spatio-Temporal Multi-View Stereovision

IMAGINE Research Report 09-43
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Abstract. In this report, we describe a novel method to simultaneously
and accurately estimate the 3D shape and 3D motion of a dynamic scene
from multiple-viewpoint calibrated videos. We follow a variational ap-
proach in the vein of previous work on stereo reconstruction and scene
flow estimation. We adopt a representation of a dynamic scene by an an-
imated mesh, i.e. a polygonal mesh with fixed connectivity whose time-
varying vertex positions sample the trajectories of material points. In-
terestingly, this representation ensures a consistent coding of shape and
motion by construction. Our method accurately recovers 3D shape and
3D motion by optimizing the positions of the vertices of the animated
mesh. This optimization is driven by an energy function which incor-
porates multi-view and inter-frame photo-consistency, smoothness of the
spatio-temporal surface and of the velocity field. Central to our work is an
image-based photo-consistency score which can be efficiently computed
and which fully handles projective distortion and partial occlusions. We
demonstrate the effectiveness of our method on several challenging real-
world dynamic scenes.



1 Introduction

In recent years, several methods for automatic generation of complete spatio-
temporal models of dynamic scenes from multiple videos have been proposed
[1–15]. In particular, the most recent ones have proven effective for full-body
marker-less motion capture, yielding visually impressive results. However, when
taking a closer look at the aforementioned techniques, it becomes apparent that
very few of them achieve a desirable coupled, dense and accurate 3D shape and
3D motion estimation.

Accurate 3D shape. Many recent techniques still produce an approximate
geometry: free-form deformation of a template body model [2, 11, 15], visual
hull [1, 3, 15], Laplacian deformation of a laser scan of the initial pose [4, 5].
These methods are unable to recover genuine geometric details such as facial
expressions and clothing folds and wrinkles.

Accurate 3D motion estimation is crucial in some applications like mo-
tion transfer and time interpolation. Also, a coarse motion estimation precludes
the enforcement of temporal consistency constraints during coupled shape and
motion estimation. However, in most existing performance capture techniques,
3D scene flow [16], i.e. the dense 3D motion field of the scene, is not accurately
estimated. Often, it is interpolated from sparse 3D correspondences [3, 4, 12].
Some methods do not address 3D motion estimation whatsoever: [7] uses a four-
dimensional level set representation which, beyond its very high computational
and memory requirements, does not encode 3D correspondence. [10, 15] produce
animated meshes but, despite appearances, the underlying 3D correspondences
are purely artifactual.

Coupled 3D shape and 3D motion estimation allows to exploit their re-
dundancy, and has long been recognized [17] as a desirable way to improve their
performance. However, most marker-less motion capture methods fail to inte-
grate spatio-temporal consistency constraints. In [3, 12, 13], shape is computed
independently in each time frame, prior to motion estimation. In [9], shape and
motion are estimated sequentially, not simultaneously. In [5], an initial mesh
is propagated by 3D scene flow, under silhouette constraints, but without any
stereo cues; as a result, this method suffers from temporal drift. The latter is cir-
cumvented in [4] by substituting sparse 3D correspondences for dense 3D scene
flow, but neither shape or motion are accurate enough to allow enforcing spatio-
temporal consistency. In [1, 7], a certain degree of spatio-temporal coherence is
obtained through four-dimensional representations, but as these representations
do not encode temporal correspondence, they cannot exploit inter-frame match-
ing constraints. In [14], shape and motion are estimated simultaneously using
a plane-sweep carving algorithm in a 6D space, but this approach has a very
high computational and memory cost, is limited to two frames, and is unable to
enforce the smoothness of the recovered shape and motion.

Thus, to our knowledge, two methods [6, 8] achieve this highly desirable cou-
pled, dense and accurate 3D shape and 3D motion estimation. In [8], shape and
motion are represented through the detail coefficients of a time-varying subdivi-
sion surface. The latter coefficients are estimated by simultaneously optimizing



multi-view and inter-frame photo-consistency. However, the non-linearity of the
chosen multi-resolution representation makes this optimization intricate. Also,
the required motion initialization relies on the spatio-temporal derivatives of the
input images, thereby making it applicable mainly to slowly-moving Lambertian
scenes under constant illumination.

[6] is the only work to date which can handle complex real-world dynamic
scenes. Despite the effectiveness of this method, we believe that the expansion
framework used does not allow to take into account the full visibility depending
on occluding patch not computed yet.

In this paper, we propose a novel method to simultaneously and accurately es-
timate the 3D shape and 3D motion of a dynamic scene from multiple-viewpoint
videos. First, we follow a variational approach in the vein of previous work
on stereo reconstruction and scene flow estimation [9, 17, 19–22]. None of these
methods fits our applications in their current state: most are limited to a single
time-varying depth map of the scene [17, 19–22], while others do not enforce
spatio-temporal consistency constraints [9, 20].

Second, we adopt a representation of a dynamic scenes by an animated
mesh, i.e. a polygonal mesh with fixed connectivity whose time-varying vertex
positions sample the trajectories of material points. Interestingly, this represen-
tation ensures a consistent coding of shape and motion by construction. It is
widely used in computer graphics, especially in computer animation. It is also
popular for performance capture from video [3–6, 10, 11, 15] or from time-varying
point clouds [23, 24] (the latter being obtained from video or from fast 3-D scan-
ning hardware).

Our method accurately recovers 3D shape and 3D motion by optimizing
the positions of the vertices of the animated mesh. This optimization is driven
by an energy function which incorporates multi-view and inter-frame photo-
consistency, smoothness of the spatio-temporal surface and of the velocity field.
Central to our work is an image-based photo-consistency score which can be
efficiently computed and which fully handles projective distortion and partial
occlusions, in the spirit of [9].

The rest of this research report is organized as follows. In Section 2, we
describe in detail the discrete geometric representation, the variational formu-
lation, the energy function and the associated minimization procedure which
constitute our approach. In Section 3, we discuss implementation aspects and
we demonstrate the effectiveness of our method on several challenging real-world
dynamic scenes.

2 Our Approach

2.1 Discretize then optimize

An overwhelming majority of variational methods in this area [9, 17, 19, 20, 22]
and more generally in computer vision, rely on an optimize then discretize ap-
proach: an energy functional depending on a continuous infinite-dimensional



spatio-temporal representation is considered, the gradient of this energy func-
tional is computed analytically, then the obtained evolution flow is discretized.

In contrast, we adopt a discretize then optimize approach: we define an en-
ergy function depending on a discrete finite-dimensional spatio-temporal repre-
sentation, and we use standard non-convex optimization tools. The benefits of
this approach have long been recognized in mesh processing, but have seldom
been demonstrated in computer vision [25–27]. Thus, the choice of an adequate
discrete spatio-temporal representation is crucial in our work.

2.2 Animated mesh representation

In our context, animated polygonal meshes present many significant advantages.
Compared to unrelated meshes at different time instants, they are more compact,
easier to store and to manipulate. They provide a direct access both to the shape
of the scene at a given time instant, and to motion trajectories. 3D shape and
3D motion are mutually consistent by construction.

Their fixed topology may be regarded as a limitation, as argued in [12].
We believe that it is not, since the human body has a constant - spherical, if
disregarding pierces - topology. It is questionable to treat a character with hands
on hips as a genus-2 torus. It should rather be regarded as a topological sphere
with some temporary contact regions.

Furthermore, let us mention that our method is not limited to a spherical
topology: while the topology of the animated mesh is constant across time, we
are able to modify it across our optimization process using a spatio-temporal
version of Delaunay deformable models [28].

2.3 Variational formulation

In the following, we consider a dynamic scene, imaged by N calibrated and
synchronized video sequences composed of T frames, and represented by an
animated polygonal mesh with K vertices. We note:

– Ii,t : Ωi ⊂ R2 → Rd, i ∈ {1..N}, t ∈ {1..T} the input images. In practice
d = 1 for grayscale images and d = 3 for color images.

– X = {xk,t, k ∈ {1..K}, t ∈ {1..T}} the 3D positions of the vertices of the
animated mesh at the different time instants,

– Xt = {xk,t, k ∈ {1..K}} the tth temporal slice of the animated mesh.

In the sequel, by a slight abuse of notation, we indistinctly use X and Xt to
refer to the animated mesh and to the positions of its vertices.

The energy to minimize with respect to X is composed of a data attach-
ment term, of a regularization term for the spatio-temporal surface and of a
regularization term for the velocity field:

E(X) = ED(X) + λSES(X) + λV EV (X) . (1)

ED encourages multi-view and frame-to-frame matching consistency. It is
defined as the sum over camera pairs (i, j) and pairs of time frames (t, u) of



a dissimilarity measure between image Ii,t and the reprojection of Ij,u via the
animated mesh. The detailed description of this term is left to Section 2.4.

ES favors the regularity of the spatio-temporal surface. We use the total area
of the animated mesh. The minimization of this term by gradient descent yields
a discrete version of the well known mean curvature motion, which we implement
as described in [29].

EV penalizes rapid variations of the velocity field along the animated mesh.
It is the total squared L2 norm over the animated mesh of the gradient of the
velocity field. The detailed description of this term is left to Section 2.8.

We minimize the above energy function using a standard gradient descent on
the spatio-temporal positions X. In order to avoid unwanted local minima, we
resort to a multi-resolution and chronological scheme. We first optimize the first
three frames of a low-resolution animated mesh using low-resolution versions
of input images. Then we initialize an additional time frame by extrapolating
3D position from speed and acceleration of previous frames. We iteratively add
time frames, and optimize the sequence using a sliding time window of a few
frames, until we reconstruct the whole temporal sequence at low resolution. We
repeatedly apply the above procedure with increased image and mesh resolutions,
until we reach the desired accuracy.

2.4 Data attachment term

The formal definition of ED and of its gradient requires some additional no-
tations. The perspective projection performed by camera i is denoted by Πi :
R3 → R2. Our method takes into account the visibility of the surface points. We
refer to Xi,t as the part of the temporal slice Xt visible in image i. The back-
projection of a point of camera i on the animated mesh at frame t is denoted by
Π−1
i,Xt

: Πi(Xt)→Xi,t.
We also define 3D transport functions TXt⇀Xu

that map points in Xt to
points in Xu. This can be written formally using the linear finite-element repre-
sentation depicted in Figure 1. For each vertex k of the animated mesh at some
time frame t, we define a basis function φk,Xt such that (i) φk,Xt(xk,t) = 1 (ii)
∀l 6= k, φk,Xt

(xl,t) = 0 (iii) φk,Xt
varies linearly inside the triangular facets

adjacent to the kth vertex, and cancels outside this ring. We then have at pixel
pi in image i:

TXt⇀Xu =
∑
k

xk,u φk,Xt . (2)

In a simpler way we can say that the back-projection Yt of pixel pi lies on a
triangular facet f and has barycentric coordinates φl,Xt

(Yt) at time t, l being a
vertex of f . So the position of this particle at time u is Yu =

∑
l∈f xl,u φl,Xt(Yt),

that is Yu =
∑
k∈X xk,u φk,Xt

(Yt) since φk,Xt
(Yt) cancels if vertex k is outside

facet f .
Finally, we define image transport functions T(i,Xt)⇀(j,Xu) which map posi-

tions in Ii,t to positions in Ij,u via the animated mesh:

T(i,Xt)⇀(j,Xu) = Πj ◦ TXt⇀Xu ◦Π−1
i,Xt

. (3)
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Fig. 1. Finite element representation over a facet (k, l,m) of the animated mesh.

With these notations in hand the reprojection of image j at time u in image
i at time t via the animated mesh writes Ij,u ◦T(i,Xt)⇀(j,Xu). This is illustrated
in Figure 2.

The data attachment term is the sum over oriented camera pairs (i, j) and
oriented pairs (t, u) of time frames of a dissimilarity measure M between image
Ii,t and the above defined reprojection of Ij,u via the animated mesh. The dis-
similarity is computed only over the region of image plane i where both images
are defined, i.e. after discarding semi-occluded regions. This image region writes
Πi (Xi,t ∩ TXu⇀Xt

(Xj,u)).More clearly, pixel pi in image i is visible in both
images, if its back-projection lies on the surface at time t, and this point on the
surface once transported at time u is visible (nore occluded, nore outside the
image frame) in image Ij,u. This visible image region is computed before each
optimization step on graphics hardware. For conciseness, we will omit it in the
equations below:

ED(X) =
∑
i,j

∑
t,u

M
[
Ii,t , Ij,u ◦ T(i,Xt)⇀(j,Xu)

]
. (4)

We now compute the partial derivative of this energy term with respect to
the variation of a single position xk,t of the animated mesh. First, we note that
the only oriented pairs of time frames affected by such a variation are (u, t)
and (t, u), u ∈ {1..T}. Second, when the animated mesh moves, the reprojected
image changes. Hence the partial derivative of ED involves the derivative of the
similarity measure M with respect to its second argument, denoted by ∂2M .

Using the chain rule, and after some index manipulations, we get:

∂ED
∂xk,t

=
∑
i,j

∑
u∫

Ωi

∂2M
[
Ii,t , Ij,u ◦ T(i,Xt)⇀(j,Xu)

]
DIj,u

∂T(i,Xt)⇀(j,Xu)

∂xk,t
(pi) dpi

+
∫
Ωj

∂2M
[
Ij,u , Ii,t ◦ T(j,Xu)⇀(i,Xt)

]
DIi,t

∂T(j,Xu)⇀(i,Xt)

∂xk,t
(pj) dpj , (5)
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Ii,t(pi)

Ii,t Ij,u

Ij,u ◦ T(i,Xt)⇀(j,Xu)(pi)
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cj

Fig. 2. Reprojection of image j at time u in image i at time t via the animated mesh.

where DI.,. denotes the Jacobian matrices of the input images. For conciseness,
we have omitted the points where the latter are evaluated in the above equation.

As regards the quantities ∂T...
∂xk,t

, we can make several observations. First,
they are purely geometric, i.e. independent of image data. Second, they cancel
outside the ring of triangular facets adjacent to the kth vertex. Hence, despite
appearances, integration is performed only over the visible projection of this ring
in the different images, not over the full image domains. Third, these quantities
involve the normal of the triangular facet visible at pixel pi, and the barycentric
coordinate of xk,t in this facet. Complete expressions can be obtained using a
non trivial geometric reasoning. here below the detailed numerical computation,
but also an additional intuitive solving are proposed. The numerical solving,
mainly consist in computing how barycentric coordinates change for a small
perturbation of the surface.

2.5 Data energy gradient flow

Back-projection on X of the pixel pi in image i writes:

Π−1
i,Xt

(pi) =
∑
k

xk,t φk,Xt



After a small perturbation δX of surface, then the back projected point vary
along the optical ray di, then one get:

Π−1
i,Xt+δXt

(pi) =
∑
k

(xk,t + δxk,t) φk,Xt+δXt

And α being unknown:∑
k

xk,t φk,Xt
+ αdi =

∑
k

(xk,t + δxk,t) φk,Xt+δXt

In an other way,

αdi =
∑
k

xk,t (φk,Xt+δXt − φk,Xt
) +

∑
k

δxk,t φk,Xt+δXt

Now as
∑
k xk,t (φk,Xt+δXt − φk,Xt) is a vector lying on the surface one get

that is dot product with facet normal is null, so:

α =
∑
k

φk,Xt+δXt

N · δxk,t
N · di

So by noticing Kk,t = δxk,t − N ·δxk,t

N ·di di we have the following equations:∑
k

(xk,t +Kk,t) φk,Xt+δXt =
∑
k

xk,t φk,Xt

Now as back-projection lies on the facet f we have
∑
k∈f φk,Xt

= 1, so one
can notice that:

φ1,Xt (x1,t − x3,t) + φ2,Xt (x2,t − x3,t) + x3,t =
∑
k

xk,t φk,Xt

And if we consider small displacements, the back-projected point still lies on
the facet f and so one can write the vector equality:

∑
k=1,2

φk,Xt (xk,t − x3,t) =
∑
k=1,2

φk,Xt+δXt [(xk,t − x3,t) + (Kk,t −K3,t)]

Our objective is to compute the unknowns φk,Xt+δXt which allows to re-
trieve back-projected particle position on the mesh after perturbation. So, to
find φ2,Xt+δXt we just have to compute the cross product of left part and right
part of equation 6 with the vector (x1,t − x3,t) + (K2,t −K3,t) to obtain finally
with a first order limited development φ2,Xt+δXt and in a more general way
φk,Xt+δXt with a symetric formulation:

φk,Xt+δXt = φk,Xt +
[(xk−1,t − xk+1,t)× (

∑
v φv,XtKv,t)] ·N

[(xk,t − xk+1,t)× (xk−1,t − xk+1,t)] ·N

At time u the position variation after and before perturbation is:



∆X =
∑
k

(xk,u + δxk,u) φk,Xt+δXt −
∑
k

xk,u φk,Xt

So by extending the formulation of Kk,t in function of δxk,t and with simple
reformulation given that a · (c× b) = −b · (c× a) one can easily check we get:

∆X =
∑
k δxk,u φk,Xt

+
∑
k (
∑
v δxv,t φv,Xt

) · N×(xk−1,t−xk+1,t)
[(xk,t−xk+1,t)×(xk−1,t−xk+1,t)]·N xk,u

−
∑
k (
∑
v δxv,t φv,Xt

) · [(xk−1,t−xk+1,t)×di]·N
[(xk,t−xk+1,t)×(xk−1,t−xk+1,t)]·N

N
N ·di xk,u

Still with triple product formula b(a · c) = c(a · b) + a × (b × c), and by
denoting Vk,t = N×(xk−1,t−xk+1,t)

[(xk,t−xk+1,t)×(xk−1,t−xk+1,t)]·N we get:

∆X =
∑
k δxk,u φk,Xt

+
(∑

k [Vk,t]× [xk,u]× + (Vk,t · xk,u) Id
)

(
∑
v δxv,t φv,Xt

)

− (
∑
k Vk,t · di xk,u)

(∑
v
φv,Xtδxv,t·N

N ·di

)
That is,

∆X =
∑
k δxk,u φk,Xt

+
(∑

k [Vk,t]× [xk,u]× + (Vk,t · xk,u) Id
)

(
∑
v δxv,t φv,Xt)

−
(∑

k [Vk,t]× [xk,u]× + (Vk,t · xk,u) Id
)
di

(∑
v
φv,Xtδxv,t·N

N ·di

)
By denoting the deformation matrix relative to the facet

Df (t, u) = −
∑
k

[Vk,t]× [xk,u]× − (Vk,t · xk,u) Id

One have the simple formula:

∆X =
∑
v

δxv,u φv,Xt +Df (t, u)
∑
v

φv,Xt

(
−δxv,t + di

δxv,t ·N
N · di

)
The variation of energy corresponding to a surface perturbation εδ is:

dED
dε

=
∑
i,j

∑
t,µ

∑
x∈Ωi

∂M

∂2
(t, µ)DIj,µDΠj∆X(x, µ) (6)

Point remaining fixed in first image we only consider ∂M
∂2 (t, µ) the similarity

partial derivative according to the second term. This similarity partial derivative
calculation will be described more deeply in the next section. By rearranging



correctly those different terms and sums, and using the domain of non semi-
occluded points in image Ii,t whose back-projection lies in f that we write in a
naive manner,

Ωf,t = Ωi ∩Πi(ft)

one can easily check that we get:

dED
dε

=
∑
t

∑
v

〈∇ED(v, t), δxv,t〉

With the three following gradients:

∇ED(v, t) =
∑
i,j

∑
u

∑
f3v

δE1 + δE2 + δE3

and,


δE1 =

∑
x∈Ωf,t

φv,Xt

N ·di

[
∂M
∂2 (t, u)DIj,uDΠj Df (t, u)di

]
N

δE2 = −
∑
x∈Ωf,t φv,Xt

[
∂M
∂2 (t, u)DIj,uDΠj Df (t, u)

]T
δE3 =

∑
x∈Ωf,u φv,Xu

[
∂M
∂2 (u, t)DIj,tDΠj

]T
2.6 Similarity measure

We have chosen here to use the Normalized Cross Correlation which is still one
of the most popular stereovision matching measure.

Concerning the similarity gradient equation (6) in previous section, the de-
tailed equation is a bit more involved since the correlation variation in the win-
dow Ωxk centered in xk will depend on xk but also on all other pixels inside the
correlation window.:

dED
dε

=
∑
i,j

∑
t,µ

∑
x∈Ωi

∑
xk∈Ωx

∂MΩxk

∂2
(x, t, µ)DIj,µDΠj∆X(x, µ)

Where
∂MΩxk

∂2 (x, t, µ) corresponds to the gradient at point x of the corrella-
tion in the window centered in xk this can be formulated in a simpler manner
by integrating:

dED
dε

=
∑
i,j

∑
t,µ

∑
x∈Ω

∑
xk∈Ωx

∂MΩxk

∂2
(x, t, µ)

︸ ︷︷ ︸
∂M
∂2 (µ,t)

DIj,µDΠj∆X(x, µ)
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Fig. 3. Intensity variation in image j for a space-time surface perturbation δ

2.7 Intuitive gradient flow

If we add a spatio-temporal perturbation δX, if we denote by di the optical ray
from camera center to back-projected point, and N the normal to the surface,
the new back-projected point will be:

Π−1
i,(Xt+εδXt)t

(x) = Π−1
i,Xt

(x) +
N · δ
N · di

di

Previous calculation has been introduced in [9]. Notice that in this formula
point on image i remains fixed, since we move along optical ray. Which is neces-
sary in our case, as we integrate over the image pixel grid. Now we want to know
the position of back-projection after perturbation not only at time t (as done
above) but also at other time u. At this time we get a position but this is not
a particle that could be tracked, just coordinates. So we want to identify from
which particle, on mesh before perturbation, this position comes from. Then we
aim to follow this particle over time.

We can see on Figure 3 the global particle tracking process. Our back-
projection of x at time t on a weakly perturbated surface, comes from particle
X that had at time t and before perturbation, following coordinates:

X(t) = Π−1
i,Xt

(x) +
N · δ
N · di

di − δ

We aim to write equations in the mesh so as functions of vertices, the back-
projected point writes:

Π−1
i,Xt

(x) =
∑
k

xk,t φk,Xt

So perturbation at back-projected point at time t, lying on facet f is:

δ =
∑
v∈f

δxv,t φv,Xt



The particle X writes in the discrete mesh:

X(t) = Π−1
i,Xt

(x) +
∑
v∈f

φv,Xt

(
N · δxv,t
N · di

di − δxv,t
)

So if we consider the variation of position along surface between the point
X1 back-projected on surface before perturbation and the particle X at time t
we get:

∆XSurf (x, t) = X(t)−Π−1
i,Xt

(x)

=
∑
v∈f

(
φv,Xt

N ·δxv,t

N ·di
di − φv,Xt

δxv,t

)
We denote by Df (t, u) the intrinsic deformation matrix of facet f from time

t to time u. This deformation matrix maps a vector at time t to the vector at
time u accordingly with the facet deformation. So, The new variation of position
at time u is:

∆XSurf (x, u) =
∑
v∈f φv,Xt

Df (t, u)
(
N ·δxv,t

N ·di
di − δxv,t

)
Now one can easily compute the variation of position between the coordinate

of back-projected point at time u and the position of tracked particle X once
perturbated with δXu:

∆X(x, u) = ∆XSurf (x, u) +
∑
v∈f φv,Xt

δxv,u

∆X(x, u) =
∑
v∈f φv,Xt

[
Df (t, u)

(
N ·δxv,t

N ·di
di − δxv,t

)
+ δxv,u

]
As one can see, this intuitive reasonning leads to the same result than in

section 2.5, but before we have provided the exact values of the deformation
matrix Df (t, u).

2.8 Velocity field regularization term

The velocity field is unambiguously encoded by the animated mesh X. Specifi-
cally, it is a continuous and piecewise linear vector field Xt → R3 defined by

vX,t(x) = TXt⇀Xt+1(x)− x , (7)

or equivalently by
vX,t =

∑
k

(xk,t+1 − xk,t)φk,Xt . (8)

The velocity field regularization term writes:

EV (X) =
∑
t

∫
Xt

‖∇vX,t(x)‖2dx . (9)



To simplify this expression, we use the fact that ∇φk,Xt
is constant in each

triangular facet f of Xt and equals hk,f
‖hk,f‖2 , where hk,f is triangle’s height going

through vertex k. Af being the area of f , the energy term becomes:

EV (X) =
∑
t

∑
f∈Xt

Af

∥∥∥∥∥∥
∑
k∈f

hk,f
‖hk,f‖2

(xk,t+1 − xk,t)

∥∥∥∥∥∥
2

. (10)

If we neglect the variation of hk,f with respect to vertex displacement, the partial
derivatives ∂EV

∂xk,t
of this energy term can now easily be derived.

3 Numerical Experiments

3.1 Implementation aspects

The computation of image reprojections via the animated mesh and of the data
attachment energy’s gradient are the most expensive parts of our algorithm.
Hence, they are implemented on GPU using the OpenGL API and the Cg shading
language.

In all our experiments, we choose the opposite of normalized cross correlation
as the image dissimilarity measure M , in order to accommodate moving shadows
and time-varying lighting conditions. We use a small correlation window of 9×9
pixels. The storage of the animated mesh and the computation of spatio-temporal
smoothing terms are based on the C++ Computational Geometry Algorithms
Library (CGAL)3.

Also, in order to limit the computational expense, the summation in Equation
4 is restricted to pairs of neighboring cameras pairs of neighboring time frames
in a sliding time window, without any noticeable degradation of the results.

The resolution of the mesh is controlled by a lower and an upper edge length
thresholds, that are applied to the whole time sequence: an edge is bisected if it
is longer than the upper threshold in at least one time frame; an edge is collapsed
if it is shorter than the lower threshold in all time frames.

The topology of the mesh is automatically corrected when needed by applying
Delaunay deformable models [28] to the coordinates of the animated mesh at a
reference time frame. The user chooses a reference frame that reflects the actual
topology of the scene: e.g a pose with arms and legs slightly apart for human
motion.

3.2 Experimental results

The “Pants” dataset is composed of 8 cameras. It is courtesy of R. White, K.
Crane and D.A. Forsyth [30]. We have successfully applied our algorithm to the
first 60 frames of this dataset. Due to the high image resolution, four multi-
resolution scales have been necessary to obtain the accurate spatio-temporal
reconstruction shown in Figure 4.
3 http://www.cgal.org/



Fig. 4. Our results on the “Pants” dataset. See text for more details.



Figure 5 demonstrates the superiority of our spatio-temporal approach com-
pared to a frame-by-frame multi-view stereovision method [9], on the “Pants”
dataset. The improvements are three-fold: (i) our approach exploits speed and
acceleration to make better initial guesses of the subsequent time frames, thus
being less prone to unwanted local minima (ii) thanks to the enforcement of
temporal coherence, our approach is less likely to fail in regions with low photo-
consistency evidence (iii) our approach simultaneously and consistently estimates
3D shape and 3D scene flow.

Fig. 5. Comparison between a frame-by-frame multi-view stereovision approach (top)
and our spatio-temporal approach (bottom) on the “Pants” dataset. See text for details.

The “Dancer” dataset was made available to us by the 4Dviews company4. It
was acquired by 14 calibrated and synchronized video cameras. We have applied
our algorithm to the first 10 frames of this dataset. To bootstrap our multi-
resolution and chronological optimization procedure, we have used a standard
stereo-vision algorithm at the first time frame. The obtained reconstruction after
processing three multi-resolution levels is displayed in Figure 6. We insist on the
fact that we have not used silhouette information in our algorithm and that
stereovision on such a dataset is particularly challenging: because it was design
for visual hull based techniques, many parts of the subject are textureless.

4 http://4dviews.com



Fig. 6. Our results on the “Dancer” dataset. See text for more details.

4 Conclusion

We have presented a novel variational approach to dense and accurate 3D shape
and motion reconstruction from multi-view video sequences. Our method lever-
ages the benefits of the animated mesh representation, of image-based photo-
consistency, of discrete geometric optimization and of GPU computation. We
have validated our algorithm on two challenging real datasets, and obtained
results that rival state-of-the-art techniques.
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multi-view silhouettes. ACM Transactions on Graphics 27(3) (2008)

16. Vedula, S., Baker, S.: Three-dimensional scene flow. IEEE Transactions on Pattern
Analysis and Machine Intelligence 27(3) (2005) 475–480

17. Zhang, Y., Kambhamettu, C.: Integrated 3D scene flow and structure recovery
from multiview image sequences. In: IEEE Conference on Computer Vision and
Pattern Recognition. Volume 2. (2000) 674–681

18. Huguet, F., Devernay, F.: A variational method for scene flow estimation from
stereo sequences. In: IEEE International Conference on Computer Vision. (2007)

19. Pons, J.P., Keriven, R., Faugeras, O., Hermosillo, G.: Variational stereovision and
3D scene flow estimation with statistical similarity measures. In: IEEE Interna-
tional conference on Computer Vision. Volume 2. 597–602

20. Wedel, A., Rabe, C., Vaudrey, T., Brox, T., Franke, U., Cremers, D.: Efficient
dense scene flow from sparse or dense stereo data. In: European Conference on
Computer Vision. (2008) 739–751

21. Zhang, Y., Kambhamettu, C.: On 3D scene flow and structure estimation. In:
IEEE Conference on Computer Vision and Pattern Recognition. Volume 2. (2001)
778–785
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