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A Support Method for the Contextual Interpretation
of Biomechanical Data

Emmanuel Roux, Anne-Pascale Godillon-Maquinghen, Patrice Caulier, Stéphane Bouilland, and Denis Bouttens

Abstract—In the clinical field, biomechanical data provided by
advanced technical devices are still underexploited. Data analy-
sis usually consists of extracting attributes or computing synthetic
values from temporal data and exploiting them by means of a
monovariable statistical method. This article proposes a method to
support clinicians, especially those in orthopedics, in the contextual
interpretation of biomechanical data. We propose to characterize
temporal biomechanical data by means of fuzzy space–time win-
dows and to induce fuzzy decision trees to map the biomechanical
and clinical data related to patients. Then, we present a method for
objectively explaining a given clinical characteristic of a particular
patient; this method is derived using the fuzzy rule base gener-
ated from the trees and a satisfiability measure. We have applied
our method to real data in order to provide an objective expla-
nation of the subjective self-evaluation of the functional status of
patients with a shoulder prosthesis, and evaluate it by means of the
stratified tenfold cross validation method. The mean explanation
rate—which corresponds to the mean proportion of the patients
belonging to test sets whose functional state is explained by the
proposed method—exceeds 80% for more than half of the decision
trees, and exceeds 70% for 94% of the trees. By supporting clin-
icians during the biomechanical data interpretation process, our
method helps them take the objective biomechanical measurements
in the medical practice into account, particularly in orthopedics. It
can also make subjective evaluations more objective by mapping
subjective and objective data.

Index Terms—Functional evaluation, fuzzy decision trees, fuzzy
rules, objective explanation, stratified tenfold cross validations,
three-dimensional (3-D)-movement measurement.

I. INTRODUCTION

B IOMECHANICAL measurement techniques have devel-
oped considerably over the past twenty years. These tech-

niques, which permit easy, reliable, three-dimensional (3-D)
measurements of movements, accelerations and forces, have
principally been applied to lower limb and gait analysis and
have become quite effective in these application domains over
the last two decades. Medical practitioners, particularly in or-
thopedics, immediately sensed the benefits that could be derived
from using these tools to objectively evaluate treatment results
or to improve diagnosis methods, for example.
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However, biomechanical data are still underexploited in the
clinical field. In fact, the temporal data sets provided by biome-
chanical measurements are relatively large and consequently
pertinent information is often difficult to extract from the data.
In addition, most clinicians are unfamiliar with the use of
these sets and do not make the most out of the information
available. Consequently, clinical reports take a lot of time to
be generated and provide too many and unspecific informa-
tion. Thus, gait analysis laboratories are often viewed as inef-
ficient, unproductive and uneconomical [1]. Moreover, in the
clinical field, data analysis usually consists of extracting at-
tributes or computing synthetic values from the temporal data
and exploiting them by means of a monovariable statistical
method [2], [3]. Data relative to several trials of a given subject
are usually averaged, preventing the representation of multi-
modal phenomena, resulting, for example, from different move-
ment strategies of the subject. All of these data analysis meth-
ods, intended to give clinicians easily intelligible, interpretable
and exploitable values, are well known, but provide limited
information.

However, Artificial Intelligence offers a variety of techniques
liable to help physicians interpret and exploit biomechanical
data in a clinical context. Chau [4], [5] presents a review of ad-
vanced data analysis methods within gait analysis. Neural Net-
works take a large part in this review. According to Chau [4], [5],
other methods: fuzzy clustering, multiple correspondence anal-
ysis, fractal methods, wavelets and time-frequency analysis, are
marginal and have to be further evaluated within the applica-
tions discussed in his paper. Within movement analysis, neural
networks are used for movement simulation, notably in order to
obtain simulated data of unobservable variables [5], for prog-
nosis, by predicting postoperative gait characteristics accord-
ing to preoperative data [6], or classification, for a diagnosis
support for example. However, due to the “black-box” prop-
erties of neural networks, it is difficult to provide a biome-
chanical interpretation of the input–output relationships. Dr.
Gait III and its predecessor QUAWDS (QUalitative Analysis
of Walking DisorderS) are knowledge-based systems that ex-
ploit pathological gait data [1], [7]. These support systems
combine a qualitative model of the “normal” gait and an as-
sociation model defined by means of a rule base. These two
models are derived from the background knowledge of the do-
main and from more specific experts’ knowledge. In our case,
i.e., within upper limb analysis, it seems difficult to describe
a “normal” movement given the wide variety of functions the
upper limb fulfills, the high redundancy of its kinematic chain
and consequently the numerous movement strategies it offers.
Kuchar et al. [8] propose a case-based reasoning system within
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gait analysis. They use data provided by an accelerometer and
data relative to age, sex, etc. A rule base is used to provide
a brief interpretation of the data, and then similar case(s) are
retrieved from the case base. Besides methodological difficul-
ties associated with case-based reasoning, i.e., the case base
completeness, the case model, the definition of the similarity
measure and the adaptation of the similar case, case-based rea-
soning does not automatically extract general knowledge from
data.

In this paper, we first propose a method to automatically ex-
tract general knowledge from biomechanical data in a way that
the data characterizing and coding, the data analysis method
and the results can be easily understood and interpreted by the
user. We propose to use fuzzy decision trees. To our knowl-
edge, it is the first time fuzzy decision trees are applied within
movement analysis. This general knowledge is then used to
assist clinicians in the interpretation and the exploitation of
biomechanical data. The aim of our procedure is to explain,
for a given patient, the presence or the absence of a given
clinical characteristic, using the available biomechanical data
on this patient and an abductive reasoning, exploiting a fuzzy
rule base.

The paper is organized as follows. First, we briefly de-
scribe the biomechanical data and explain our statistical data
characterizing and coding methods, using fuzzy space–time
windowing. Then, we present the automatic mapping of the
biomechanical and clinical data relative to the patients, us-
ing “forests” of fuzzy decision trees induced from sets of
examples. The rule base, derived from the trees, permits the
clinical state of a given patient to be explained in terms of
his/her biomechanical characteristics, by means of a satisfiabil-
ity measure.

Our methods are then applied to obtain the objective expla-
nation of the subjective self-evaluation of the functional state
of patients with a shoulder prosthesis. Eventually the perfor-
mances of the explanation method are evaluated using an ex-
planation rate and a stratified tenfold cross validation. There
are both biomechanical and medical reasons for developing
this application. Although technological and methodological
improvements in biomechanical measurement procedures have
recently been applied to upper limb biomechanical analysis [9],
the data obtained have often been difficult to interpret. These
interpretation difficulties stem partially from the newness of
the techniques, but also from the complexity of upper limb
biomechanics that is due, in part, to the redundancies of the
kinematic chain. In addition, shoulder arthroplasty is a rela-
tively new field of medicine. Given the significant increase of
the number of interventions since the 1990s, a method for ob-
jectively evaluating results has become necessary, particularly
in view of the current social and juridical pressure put on sur-
geons. So the present work is original for two reasons: it first
presents advanced Artificial Intelligence methods that, to our
knowledge, have not been applied to orthopedics yet; second,
these methods are used within the analysis of the upper limb
biomechanics and pathologies, which have been understudied
until recently.

II. METHODS

A. Characterizing and Coding Biomechanical Data

Traditionally, biomechanical data include kinematic data ob-
tained, for example, by means of a 3-D optoelectronic system;
acceleration data provided by position data derivatives or by
accelerators; and force measurements produced by force plates.
These data provide temporal and 3-D information. For a given
subject, such data can be obtained simultaneously, for several
experimental conditions and for several trials under the same
experimental conditions. These data are related to measurement
variables that are not always directly exploitable. In fact, anal-
ysis variables, such as hip flexion or acceleration of the body’s
center of mass, have to be derived from the measured variables,
in order to provide an intelligible description, in a biomechanical
context, of the phenomenon studied.

These analysis variables must then be statistically character-
ized and coded [10]: characterized in order to summarize the
data, and coded to make them homogeneous and compatible
with a particular statistical method. However, biomechanical
data, and especially movement measurements by means of op-
toelectronic systems and external markers, are very sensitive to
both measurement artifacts [11]–[14] and the poor repeatability
of the human movement. In this context, fuzzy sets theory ap-
pears to be an appropriate tool for dealing with the variability
and the inaccuracy of the biomechanical data in one hand, and
the characteristics of human reasoning on the other hand. For
these reasons, we propose to characterize and to code biome-
chanical data by computing their membership values with regard
to fuzzy space–time windows.

1) Space–Time Windows: Space–time windowing was pro-
posed by Loslever and Bouilland [10] for characterizing and
coding biomechanical data and for use in Multiple Correspon-
dence Analysis. These characterizing and coding steps are per-
formed simultaneously in space–time windowing. The differ-
ence between Loslever et al.’s work [10] and ours lies in the
choice of the data analysis method applied and in the defi-
nition of the space–time windows that, in our application, are
linked to the functional characteristics of human movement (see
Section III).

The time domain of each analysis variable is considered
through a fuzzy window set T = {T1, . . . , Tj , . . . , TNT

} such
that µTj

(tq ), i.e., the membership value of the qth time sample
tq , falls between [0, 1] and meets the condition

∑
j µTj

(tq ) = 1.
In the same way, the range of amplitudes (spatial domain) of
each analysis variable is considered through NA spatial fuzzy
windows with the same properties.

Of course, in the temporal and the spatial domains, the choice
of the shape and number of the fuzzy subsets depends on both
the application and the objectives of the study. These issues will
be described and explained in the application section.

2) Membership Value Computation: Let Vn (tq ) be the value
taken by the nth analysis variable at time unit tq .

Let µTj
(tq ) (respectively, {µAi , n

(Vn (tq ))}) be the member-
ship value of the jth time window Tj for the qth time unit (re-
spectively, of the ith space window Ai,n for the Vn (tq ) value).
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TABLE I
PART OF THE LEARNING SET AND NOTATIONS USED FOR THE DECISION TREES INDUCTION WITHIN OUR APPLICATION

The membership value of the space–time window Wn
j,i for a

given time series (or signal) related to the analysis variable Vn ,
is defined as in Loslever and Bouilland [10]

µW n
j , i

=
1∑Q

q=1 µTj
(tq )

·
Q∑

q=1

µTj
(tq ) · µAi , n

(Vn (tq )) (1)

with Q being the number of time units, and µW n
j , i

, the
weighted average of the space membership values with the time
membership values as weights. Note that for a given vari-
able Vn and a given temporal window j, µW n

j , i
verifies:∑

i µW n
j , i

= 1. This property is required to maintain the sta-
tistical context and to allow µW n

j , i
to be interpreted as

the frequency of the signal’s appearance in the space–time
window Wn

j,i .
NV and NT are the number of analysis variables and the

number of time windows, respectively. The universe of objects is
described by NL = NV · NT linguistic variables (or attributes)
L(l) (l ∈ [1, NL ]). Each attribute L(l) is divided into NA fuzzy
subsets S

(l)
i (i ∈ [1, NA ]), corresponding to the space windows.

We note µ
S

(l )
i

the membership value of the fuzzy subset S
(l)
i

for a given time series related to the lth variable. An example
of such a fuzzy coding, with the notations used, is presented in
Table I in Section III.

B. Fuzzy Decision Trees (FDT), Forests of FDT

Some fuzzy decision tree (FDT) induction methods join the
tree (FDT) building and the computation of the membership
values. In Boyen et al. [15] for example, attributes are not
fuzzified beforehand but the tree is induced by finding, at each
node, a locally optimal fuzzy dichotomy of the subset of ex-
amples. Parameters of the tree are adjusted afterwards in order
to find a global optimum. In our case, finding optimal fuzzy
subsets would provide rules difficult to read and interpret by the
users. To facilitate the interpretation of the results, we prefer
to keep explicitly, in the resulting model, the expert’s back-
ground knowledge that permitted the definition of the space–
time windows. So the method we use is derived from Quinlan’s
approach [16] and the ID3 algorithm adapted to fuzzy mem-
bership values [17]–[21]. First, a learning set is built of exam-
ples/observations, characterized both by their fuzzy member-

ship values in relation to the modalities of a set of categorical
variables (or attributes) and by their fuzzy or crisp member-
ship values in relation to the classes of a known categoriza-
tion (see Table I for an example of learning set and for nota-
tions within our application). This learning set is subjected to a
four-step procedure.

1) A discrimination measure is used to determine which cate-
gorical variable best explains the repartition of the patients
among the classes, and a node is created.

2) The data set is partitioned to build as many subsets as there
are modalities of the variable chosen in step 1.

3) A termination condition is tested with the help of a termi-
nation criterion.

4) If the termination condition is verified, then the subset
is considered to be a leaf of the tree, which means that
it has an acceptable proportion of examples belonging to
one class, as defined by the termination criterion. If the
termination condition is not verified, then steps 1) to 3)
are repeated.

The most popular discrimination measure is based on infor-
mation entropy as defined by Shannon. The fuzzy conditional
information entropy, denoted E(l), is defined by the following
expression: for the lth attribute

E(l) =
NS∑
i=1

M
(
χN/S

(l )
i

)

∑NS

j=1 M
(
χN/S

(l )
i

)

·
C∑

c=1

−pN/S
(l )
i (c) · log

(
pN/S

(l )
i (c)

)
(2)

M(S(l)
i ) is the cardinality of the fuzzy set S

(l)
i defined as

M
(
S

(l)
i

)
=

K∑
k=1

µ
S

(l )
i

(k) (3)

where K is the number of examples and µ
S

(l )
i

(k) the
membership value of the fuzzy subset S

(l)
i for the data rela-

tive to the lth variable and the kth example (see Table I).

∀k ∈ [1,K], χN/S
(l )
i (k) = min

(
χN (k), µ

S
(l )
i

(k)
)

(4)
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where χN is a vector that indicates to what extent the
examples verify the conjunction of the fuzzy restrictions
from the root of the tree to the node N [18]. At the root
level, ∀k ∈ [1,K], χ0(k) = 1. The min operator completes the
logical conjunction AND.

In (2), pN/S
(l )
i (c) can be considered as the fuzzy conditional

probability of belonging to the class c, given the fuzzy restriction

S
(l)
i at the node N [22], [23]. pN/S

(l )
i (c) is defined as

pN/S
(l )
i (c) =

M
(
χN/S

(l )
i

)
· Cc

M
(
χN/S

(l )
i

) (5)

where Cc is the set of membership values of the patients’ learn-
ing set for the class c (see Table I). In fact, because the oc-
currences of the examples are assumed to be equally probable
and the product operator is used in the numerator expression,

pN/S
(l )
i (c) meets the conditions:

∑
c pN/S

(l )
i (c) = 1.

The variable chosen to split the observations of the training
set at a node is the one that minimizes E(l), the conditional
information entropy.

After selecting an attribute, examples must be shared out
among the subnodes of the tree. The membership value of an
example in the subnode that corresponds to the fuzzy subset S(l)

i

is defined as follows:



χN/S
(l )
i (k) = min

(
χN (k), µ

S
(l )
i

(k)
)

,

if µ
S

(l )
i

(k) = maxj∈[1,NA ]

(
µ

S
(l )
j

(k)
)

χN/S
(l )
i (k) = 0, otherwise.

(6)

This definition implies that an example belongs to only one
sub node. While this is not an essential property for the fuzzy
decision trees [18], [19], the computation time and the size of
the tree are significantly reduced given this restriction.

The termination criterion is based on a threshold denoted β ∈
[0, 1] and is defined as follows: if, at the node N, pN (c) ≥ β,
then the node N is a leaf. pN (c) is denoted p at the leaf level.

The conditional information entropy is particularly adapted
to cases where there are two classes [19]. Consequently, we
induce as many decision trees as there are classes, and each tree
infers the membership and the non-membership of a class. So for
each clinical classification with C (C > 2) classes, a “forest” of
decision trees (i.e., a set of C trees) is induced, as proposed by
Marsala [19]. This principle is graphically presented in Fig. 1.

C. Defining Fuzzy Rules

Each path from the root to the leaf of a fuzzy decision tree (i.e.,
each branch of a tree) can be converted into a rule. The fuzzy
conditions of these rules are comprised of the fuzzy modalities
of the attributes along the path. The rule concludes, at the leaf
level, with the membership or the nonmembership in the class
for which the tree was induced and p corresponds to the rule’s
fire strength.

Note that in the present study, the main goal of the rule base
is not to make predictions, but rather to act as a knowledge
depository that would allow new situations to be explained.

Fig. 1. Induction of a forest of decision trees for a classification with classes
�,�, and ♦. One tree is induced per class. A branch of a tree infers the
membership or the nonmembership (crossed symbols) of the class.

For this purpose, the knowledge extracted from the data, and
modeled by the fuzzy rules, has to be as general as possible so
that it can be exploited by the final user, which means that the
rules must be concise and intelligible. However, the knowledge
also has to be specific enough to permit rare clinical situations to
be explained. Clearly, if such a situation is observed with a new
patient, a set of rules that infer this situation must exist in the
rule base. To manage these contradictory criteria, β is initially
set at an initial value β0 and is increased by increments until
both the membership and the nonmembership of the class under
consideration are explained.

D. Rule Base Optimization

The discrimination measure and the tree induction process
are heuristically defined to produce the smallest tree. Still, each
individual rule can be optimized by removing all fuzzy condi-
tions that penalize the rule’s fire strength. The method is similar
to that of Yuan and Shaw [21]: as each condition is removed
from the IF part of the rule, a new fire strength p′ is computed.
If p′ ≥ p, the condition is removed once and for all. The result
is shorter and more general rules with higher fire strengths.

E. Objective Explanation of Patient’s Clinical State

This section proposes a method to provide a set of hypothesis
that could explain a clinical characteristic of a given patient by
exploiting the fuzzy rule bases induced beforehand. Proposing
an explanation of a situation is possible if this situation was part
of the learning process. Given the definition of the parameter β,
a set of fuzzy rules leading to this clinical situation should exist.
The explanation is found by editing the rules that lead to this
clinical situation and whose fuzzy conditions (IF part) are best
satisfied by the patient’s biomechanical data.

Let {R1, R2, . . . , RN } be the set of fuzzy restrictions (con-
ditions) of the rule R. ∀j ∈ [1, N ], µRj (k) is the membership
value of the condition Rj for the patient k and represents the
extent to which the biomechanical data of the kth patient satisfy
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Rj . Let SR(k) be a satisfiability measure defined as

SR(k) = minj∈[1,N ](µRj (k)). (7)

The rule(s) that can explain the given clinical characteristic of
the patient is (are) the one (those) that maximizes SR(k). In (7),
the min operator is used instead of the product operator to make
SR(k) independent of the length of the rule premises. In fact, in
practice, all trees are not the same size, and for any given tree,
branch length can vary, due to the different sizes of the classes
in the learning set.

III. APPLICATION

The previously described data analysis method was applied
in order to objectively explain the functional state of patients
with a shoulder prosthesis.

A. Population of the Study

Forty two patients were included in the study. They were
about to undergo shoulder arthroplasty or had already been op-
erated on. Their average age was 65 (standard deviation was 9),
and they suffered from various pathologies, the most frequent
being osteoarthritis and arthritis. At present, all these patients
have been operated on and have participated in a rehabilitation
program in the department of orthopedic surgery run by Dr. De.
Bouttens of the Groupe Hopale.

B. Biomechanical Data

In this application, we considered only the kinematic mea-
surements of the upper limb. Several procedures for the mea-
surement of the upper limb kinematics have been proposed in
order to provide a routinely usable protocol in the clinical do-
main (see [9], [13], [14], [24], and [25]). However, we had
to develop a protocol more suitable to the specificities of the
patient’s state of health and to the results we wanted to obtain.
So the measurement protocol and the data preprocessing method
that we used are original [12]. They are routinely employed at
the Hopale Group’s Movement Analysis Laboratory.

Measurements are carried out as follows. A 6-camera op-
toelectronic system is used to measure the 3-D positions of
reflective markers fixed on the patients’ skin [12]. Movement
is measured during three different gestures that are specific to
our study: the elevation of the arm in the scapular plane (SP),
the movement of the hand to the nape of the neck (HN), and
the elevation of a light load from table height (LE). These ges-
tures, considered to be representative of everyday activities, are
repeated from three to five times, depending of the patient’s
state of health. Patients are seated and are asked to perform the
tasks as naturally as possible. Instructions are given concerning
the beginning and the end of the gestures: the subject is asked
to look straight ahead with both arms outstretched vertically
and with the palms turned medially. The body segments taken
into account are the head, the trunk, the arm, the forearm, and
the hand. Euler’s angles are used to describe the relative move-
ment of the body segments since this representation is easily
interpretable by clinicians. For each patient, a preliminary pre-

Fig. 2. Fuzzy space–time windowing for the movements: Elevation of the arm
in the Scapular Plane (SP) and movement of the Hand to the Nape of the neck
(HN) (see Section III-C of the text for details).

operative measurement is performed, followed by a series of
postoperative measurements, performed three and six months
after surgery, and then once a year.

In our present application, the actual number of the mea-
surements varied from one patient to another, depending on the
length of the patient’s follow-up period. In the present paper,
data were not considered as longitudinal. In fact, for a given pa-
tient, each evaluation defined a new observation that was added
to the learning set (see Section III-E). Nineteen (NV = 19)
analysis variables were retained to describe the kinematics, in-
cluding the relative orientations of the studied body segments,
the angular velocities and accelerations of shoulder and elbow
flexion, and the linear velocity and acceleration of the hand.
These 19 variables were the result of a compromise between in-
formation saving and interpretability of movement description.
This set of variables was chosen in cooperation with the medi-
cal team, and a preliminary multivariate data analysis permitted
certain highly correlated variables to be removed. We do not
further develop the whole process of the choice of the variables
as it is not properly the issue of the present paper.

C. Fuzzy Space–Time Windowing

For each measurement trial, significant periods of movement
were defined. For SP and HN movements, five fuzzy periods,
i.e., five fuzzy time windows, were defined according to the fol-
lowing five instants: the starting point, the instant of task com-
pletion (maximal elevation of the arm or hand in contact with the
nape of the neck), the return to the initial position (movement’s
end) and the two midpoints between each couple of consecutive
instants (see Fig. 2). LE movement was segmented into nine
fuzzy periods by defining the following nine instants: the start-
ing point, the grasping of the load prior to lifting, the maximal
elevation of the load, the placing of the load after lifting, the
movement’s end and the four midpoints between each couple of
these consecutive instants. Note that these instants were defined
from a functional point of view, i.e., in relation to the comple-
tion of a task. In our application, analysis variables were coded



114 IEEE TRANSACTIONS ON INFORMATION TECHNOLOGY IN BIOMEDICINE, VOL. 10, NO. 1, JANUARY 2006

using NT (NT ∈ {5, 9}) fuzzy triangular time windows cen-
tered on characteristic instants (see Fig. 2). Note that our time
windows are trial dependant as they depend on characteristic in-
stants. This approach is quite different from the one proposed by
Loslever et al. [10], in which time windows are of equal width.
It provides a higher temporal abstraction level and a functional
representation of the movement that is of major interest within
the evaluation of the functional recovery. As an illustration, with
such a movement characterization, we do not refer to the “shoul-
der flexion between X% and Y% of the movement duration,”
but to the “shoulder flexion during the lifting of the load,” for
example.

All analysis variables were coded using NA = 3 fuzzy trian-
gular space windows. Loslever et al. [3] showed this character-
ization accomodates data summarizing and information saving.
These windows were defined according to three characteristic
values for each variable (see Fig. 2). These values were es-
tablished according to: i) statistical properties of the variables
(e.g., −25 and 40 were the extrema of the values for the ro-
tation of the head and thus corresponded to the inferior and
superior boundaries, respectively); ii) anatomical joints’ limits
(e.g., 0 and 150 are the anatomical minimum and maximum el-
bow flexion and consequently defined the inferior and superior
boundaries for this variable, respectively); iii) preferences of
the clinicians (e.g., more than 150 for the shoulder flexion was
considered as healthy, so 150 defined the superior boundary for
this variable). For a given variable, the space windows were the
same for all the gestures (SP, HN, and LE) in order to assign
an unique meaning to a space modality and thus to facilitate the
interpretation of the results.

For both time and space domains, the triangular shape of the
windows was chosen because it only requires three parameters,
facilitates and speeds up computation and has been proved to
correctly characterize the data [3].

D. Functional Evaluation

The functional state of the patients was determined by the
American Shoulder and Elbow Surgeons (ASES) question-
naire [26]. Of course, any functional evaluation method could
be used. The choice of the ASES questionnaire is justified here
by its routine application in the orthopedic department of the
Groupe Hopale. The ASES questionnaire is a typical subjective
self-evaluation composed of ten questions concerning the abil-
ity to perform everyday tasks: “to put a coat on,” “to do one’s
hair,” “to sleep on the shoulder,” “to wash one’s back,” “to get
washed,” “to reach a high shelf,” “to lift 500 g above the shoul-
der,” “to throw a ball,” “to practice professional activities,”
and “to practice a sport.” Patients answer each question by
choosing the appropriate modality among the following four:
“Impossible,” “Very difficult,” “Quite easy,” and “Easy.” The
last two items of the questionnaire, related to professional and
sports activities, were ignored in our application. In fact, due
to their age and functional deficiencies, most of the patients
did not have professional and sports activities and consequently
did not respond to these two questions. In any case, the situa-
tions with regard to these two items are not the same from an

individual to another. Therefore, inducing general knowledge
from these highly specific situations would not make sense. So
eight items out of ten were studied. For each patient, the func-
tional evaluation was performed the same day as the kinematic
measurements.

E. Induction of the Fuzzy Rule Base

To facilitate the interpretation of results, the three gestures
[Hand to the Nape (HN), arm elevation in the Scapular Plane
(SP) and Load Elevation (LE)], were considered separately. The
data training pairs (or examples) from which the rules were in-
duced were constructed using the membership values of the
kinematic data for a given gesture and the responses to a given
question of the ASES functional evaluation (see Table I). A pa-
tient could define more than one example, since he/she could be
evaluated both cinematically and functionally several times (pre-
and postoperatively). By doing this, we assume that the relations
between the kinematic behavior and the functional abilities are
independent of the phase of the rehabilitation program in which
the patients are. The training sets gathered 87 examples for the
gesture HN, 90 examples for the LE and 93 examples for the SP.
The set of modalities associated with an item of the ASES ques-
tionnaire was considered as a classification of the set of patients.
Given the principle of a forest of decision trees, four trees (the
same number as the modalities) were induced for each ASES
item.

IV. RESULTS

A. General Results

Ninety-six fuzzy decision trees were induced, corresponding
to three gestures and eight items of the ASES functional eval-
uation with four response modalities. β0 was fixed at 0.7. We
obtained 1330 rules. The average number of rule conditions was
two, with a minimum of one and a maximum of 11; 95.8% of
the rules had at most five conditions.

As an example, the following rules link the gesture HN to the
impossibility and the possibility of doing one’s hair:

1) IF Hand velocity is Medium during Forward movement
(during HN gesture), THEN it is Possible (to do one’s
hair) (p = 0.96);

2) IF Hand velocity is High during forward movement,
THEN it is Possible (p = 1);

3) IF Shoulder Flexion is Low at the instant of contact,
THEN it is Impossible (p = 1);

4) IF Hand velocity is Low during forward movement AND
IF Wrist is in Extension during forward movement, THEN
it is Impossible (p = 0.77);

5) IF Hand velocity is Low during forward movement AND
IF Shoulder Flexion is Low during forward movement,
THEN it is Impossible (p = 0.86);

6) IF Wrist Flexion is Low during forward movement AND
IF Shoulder Flexion is Medium during forward movement,
THEN it is Possible (p = 0.91).

The fuzzy rule bases act as a knowledge repository from
which different kind of information can be retrieved. In fact,
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the fuzzy rules map functional deficiencies and insufficient mo-
bility ranges, movement velocities and/or accelerations that are
directly related to the pathological joints and muscles. It is the
case, for example, in the two following rules: 1) During LE ges-
ture realization, IF the Shoulder Flexion is “Low” at the instant
of maximum load elevation, THEN it is “NOT-Easy” to reach
a high shelf (p = 1); and 2) IF the Shoulder Flexion Velocity
is “Low” during the load elevation, THEN it is “NOT-Easy” to
reach a high shelf (p = 0.90). Rules can also map functional
deficiencies and compensatory strategies characterized by kine-
matic behaviour of (supposed) healthy joints. In fact, the wrist
is a healthy joint in the following rule: During HN gesture re-
alization, IF the Hand Velocity is “Low” AND IF the Wrist is
in “Extension” during forward movement, THEN it is Impossi-
ble to do one’s hair (p = 0.77). In fact, the hyper-extension of
the wrist is a frequently observed compensatory strategy when
patients have difficulties to reach the nape of their neck due to
restrictions in shoulder mobility. Eventually, fuzzy rules map-
ping gesture characteristics and the facility to perform a given
task often describe the different “healthy” strategies used to
complete the considered gesture. It is the case for the following
rule: During SP gesture, IF the Shoulder Flexion is “Important”
at the maximum arm elevation in the scapular plane, THEN it
is “Easy” to reach a high shelf (p = 0.92).

B. Explanation Rate

In order to evaluate the explanation method for use with pa-
tients that did not belong to the training set, a stratified tenfold
cross validation was performed on each of the 96 fuzzy rule
bases [27]. For each patient in the test sets, we determined which
rule was most likely to explain his/her functional self-evaluation,
i.e., which rule produced the maximum satisfiability value. If
all the conditions of the explanatory fuzzy rule were met by the
kinematic characteristics of the patient, the functional state of
a patient was considered explained. The condition [VnisS

(l)
i ]

was satisfied by the kinematic data relative to the patient k

if: maxj∈[1,NA ]µ
S

(l )
j (k) = µS

(l )
i . An explanation rate index, in-

tended to evaluate the explanation capacities, was defined as the
proportion of patients in a test set whose functional state had
been explained.

For each patient in a test set, we determined whether or not
his/her functional state had been explained, and we computed
the explanation rate relative to the set. Then, the ten explanation
rates, relative to the ten test sets, were averaged. Ninety-six
Mean Explanation Rates (MER) were thus obtained. The MER
evaluates the capacity of the method to explain a given response
of the ASES questionnaire (“Easy” for instance) or its negation
(“NOT-easy”). Because of the large number of decision trees
involved, we have chosen to describe our results globally, by
presenting the proportions of the 96 rule bases (i.e., of the 96
decision trees) that reached some given performances. Thus, our
computations demonstrate that 54% of the 96 fuzzy rule bases
present a MER at least equal to 80% and that only 6% of the rule
bases provide a MER below 70%. We do not detail the results
of the 90 rule bases for which the MER exceed 70%. However,
in order to critically discuss the method, Table II presents the

TABLE II
THE SIX LEAST EFFECTIVE ASSOCIATIONS GESTURE-FUNCTIONAL STATE FOR

THE EXPLANATION

six kinematic data-functional state associations that resulted in
a rule base with a MER below 70%.

We also defined a more restrictive evaluation index, denoted
MER+, by assessing the method capacity to explain a given
response without considering its negation. The MER and the
MER+ could be intuitively compared to the precision and the
sensitivity in a classification problem, respectively.

As it is developed in the Discussion section, the MER+ was
particularly restrictive in our application as some modalities
of the ASES questionnaire have been rarely answered by the
patients. For instance, the case “It is Very Difficult to reach a
high shelf ” appeared only four times. So the learning process
was performed with a class composed of only three examples.
Moreover, the MER+ could thus only be computed for the four
test sets that comprised one example for which “It is Very Dif-
ficult to reach a high shelf.” In this case, the explanation rate
was then equal to one or zero for each test set. However, we
chose to present the results that correspond to the limits of the
applicability of the method. In fact, these results do not discard
the method by itself and permits to discuss the functional eval-
uation. Fig. 3 presents the cumulative histogram of the MER+

values. It shows that 16.7% of the MER+ values exceed 80%
for the modalities Impossible and Easy, but no decision tree
is able to provide a MER+ superior to 50% for the two other
modalities. These results are discussed and put into perspective
in the next section.

V. DISCUSSION

In this section, some aspects of the general method are dis-
cussed in terms of the application and of the results presented
above, as methodological choices have been justified throughout
the paper.

The general results show that the model provided by fuzzy
rules is readable. In fact, only 4.2% of the fuzzy rules are po-
tentially difficult to exploit by the final user, in that they have
more than five conditions. Still, some results remain quite dif-
ficult for the surgeon to interpret. Certain functional states are
more related to the kinematic characteristics of joints exhibit-
ing no previously established pathology (wrist, neck, etc.) than
they are to problems in the shoulder joint. These kinematic
characteristics reflect compensatory strategies, and should not
be considered as the explanation for the functional deficiency
but rather as the consequence of the deficiency. This remain-
ing difficulty does, however, not detract from the value of our
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Fig. 3. Histogram of the normalized cumulative sum of the number of trees
associated with the MER+ values (MER values for the “positive answers”) as
a function of the modalities. For instance, 38% of the 24 trees (rule bases) that
infer the modality “Easy” have a MER+ superior or equal to 70. Of course,
100% of the trees have an explanation rate superior or equal to zero.

proposed method, since the mapping of the objective biome-
chanical data and the clinical data (possibly subjective) can
still direct clinicians’ attention to important biomechanical in-
formation related to particular clinical features, i.e., relative to
a given context of interpretation. However, it does bring the
term “explanation” into question. (Despite this, we will con-
tinue to use the term, at least for the time being.) Note that
identifying compensatory strategies can be of major interest as
the definition of an individualized rehabilitation program can be
derived from the identified compensations. In fact, some reha-
bilitation programs proposed to immobilize healthy joints used
for compensation, in order to force the pathological joints to be
mobilized.

The stratified tenfold cross validation method permits a quan-
titative evaluation of the explanation method. Good results
were obtained for the MER. Although Table II indicates that
our method is less effective at explaining difficulties in per-
forming certain tasks, such as To put a coat on and To wash
one’s back. The fact that these tasks require an internal ro-
tation of the shoulder that cannot be specifically measured
through the three gestures analyzed here, could account for
this lack of effectiveness. Patients present great difficulties to
perform shoulder rotation and specific gestures intended to ob-
tain rotation amplitude would be often unrealizable. So adding
such gestures to the existing measurement protocol seems un-
conceivable. In addition, the low MER value for the task,
To sleep on the shoulder, could be explained by the absence
of a direct link between this task and a specific movement.
To throw a ball, on the other hand, requires movements that
can easily be evaluated through the three gestures discussed
in this paper. Despite these seeming discrepancies, a detailed
study of the other results shows that similarities, or differ-
ences, between the measured gestures and those required to
complete the ASES questionnaire tasks do not seem to in-

fluence the performances of our explanation method signifi-
cantly.

The factor that most influences explanation performances is
the size of the classes in the training set. The poor results (Fig. 3)
concerning the explanation of the two modalities, Very difficult
and Quite easy, can be explained by the low proportions of these
two responses. These two modalities, Very difficult and Quite
easy, are also particularly prone to subjective interpretation and
uncertainty. Obviously, identifying a task as “Impossible” or
“Easy” is simpler than judging it “Very difficult” or “Quite Easy.”

Still, given that the evaluation method only considers fuzzy
rules whose conditions are totally satisfied by the kinematic
data, these poor results do not invalidate the use of this expla-
nation method for these two functional deficiencies. Clearly,
some rules can provide partial explanations if only a sub-
set of their conditions is satisfied. Moreover, fuzzy rules can
also be considered absolutely, providing an explanation of
a functional deficiency that is not relative to a given pa-
tient, i.e., providing a general knowledge. Other discrimina-
tion measures, such as the ambiguity measure [21] or the
measure of fuzziness [19], could improve performances by
better managing class size differences, but the results could
be less intelligible for clinicians, who are more familiar with
probabilities.

In particular, our results call into question the efficiency of the
ASES evaluation. Given that the two modalities, Very difficult
or Quite Easy, are rarely selected, using three response modal-
ities (for example: Easy, Difficult, Impossible) might be more
appropriate to the way the patients evaluate their own func-
tional state. Other evaluation methods do exist. For instance,
the Shoulder Disability Questionnaire (SDQ) [28] is used to
evaluate functional status limitations in patients with shoulder
disorders. It covers 16 items related to patient activity over the
24 h preceding the evaluation, and offers three response modal-
ities: Yes, if the patient is restricted with respect to the given
activity; No, if he/she is not restricted; and NA (Not Applica-
ble), if the given activity has not been performed during the
past 24 h. These response options tend to focus patients on
the activities they actually can perform and not on those they
would be able to do, or even on those they would like to be able
to do.

SDQ answers are less uncertain and subjective than those
solicited by the ASES evaluation. However, they gather infor-
mation on the person’s ability to perform certain tasks, without
evaluating the difficulties encountered during their performance.

Another evaluation method could propose a continuous scale
for each item of the functional evaluation, with the patient choos-
ing a position between two extreme functional states like ab-
solutely easy and completely impossible. The functional sta-
tus could be characterized using an a posteriori definition of
fuzzy modalities, which would allow the subjectivity and the
uncertainty of the answers to be modeled. Such a functional
evaluation should be exploitable using the data analysis method
proposed in this article, without any modifications. However,
one of the drawbacks of such a functional evaluation would
be the computerization necessary to facilitate answer collection
and processing.
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VI. CONCLUSION

The method we propose in this article for the objective “ex-
planation” of clinical characteristics is a step towards taking
objective biomechanical measurements into account in medical
practice, especially in orthopedics. We have shown that by con-
necting kinematic data with an easily understandable functional
evaluation, our method can support the contextual interpretation
of movement characteristics, thus helping the practitioner inter-
pret the movement from a functional point of view. In the future,
functional deficiencies could be reduced or eliminated by acting
on the movement characteristics likely to explain them. Rules
obtained using fuzzy decision trees can also be seen as clas-
sification rules, which would provide an objective functional
evaluation based solely on kinematic data.

This work is original in a sense that it proposes first a new
method within biomechanical data analysis and secondly deals
with the upper extremity on which research efforts begin to
focus. The method presented in this paper is part of the effort
to improve the quality of medical practice and of its objective
evaluation.
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